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ABSTRACT

Deghosting benefits traditional seismic processing and is
a prerequisite to all inverse-scattering-series based proces-
sing. The freedom of choosing a convenient reference med-
ium (and associated Green’s function) means Green’s
theorem offers a flexible framework for deriving useful
algorithms including deghosting. Among advantages over
traditional deghosting methods are: (1) no need for Fourier
transforms over receivers and sources, and (2) can accom-
modate a horizontal or non-horizontal measurement surface,
the latter of particular interest for ocean bottom and onshore
applications. The theory of Green’s theorem-derived de-
ghosting is presented, and its first application on deep-water
Gulf of Mexico synthetic (SEAM) and field data is reported.
The source and receiver deghosting algorithms work with
positive and encouraging results.

INTRODUCTION

Deghosting is a long-standing problem (see, e.g., Robinson and
Treitel, 2008) and benefits traditional seismic processing and all
inverse-scattering-series (ISS) based processing. The benefits of
deghosting include the following: (1) removing the downward com-
ponent of the recorded pressure wavefield (receiver deghosting) en-
hances seismic resolution by removing ghost notches and boosting
low frequencies, (2) deghosting is a prerequisite for many proces-
sing algorithms including multiple elimination (ISS free-surface
multiples, ISS internal multiples, and surface-related-multiple elim-
ination), and (3) model-matching full-wave inversion (FWI) bene-
fits from enhanced low-frequency data.
Although ISS methods are independent of subsurface velocity

(and in fact of all subsurface properties), they make certain assump-

tions about their input data. Weglein et al. (2003) describe how
every ISS isolated-task subseries requires (1) the removal of the
reference wavefield, (2) an estimate of the source signature and
radiation pattern, and (3) source and receiver deghosting, and how
the ISS has a nonlinear dependence on these preprocessing steps.
The fact that the ISS is nonlinear places a higher premium on pre-
processing requirements. An error in the input to a linear process
creates a linear error in its output, but the same linear error in ISS
input creates a combination of linear, quadratic, cubic, etc., errors in
its output. The non-linear model matching FWI would share that
interest.
The freedom of choosing a convenient reference medium (and

associated Green’s function) means Green’s theorem offers a flex-
ible framework for deriving useful algorithms. Green’s theorem
methods can be categorized as wavefield prediction or wavefield
separation. To predict the wavefield anywhere in a volume V,
Green’s theorem based wavefield prediction has the traditional need
for (a) wavefield measurements on the boundary S enclosing V and
(b) a knowledge of the medium throughout V. Examples of wave-
field prediction based on Green’s theorem include Schneider
(1978), Clayton and Stolt (1981), Stolt and Weglein (2012), and
reverse-time migration (Weglein et al., 2011a, 2011b). In contrast,
Green’s theorem-based wavefield separation only assumes separate
sources inside and outside V, and nothing about the character of
those sources is called for or needed. Within wavefield separation,
different applications (e.g., wavelet estimation and deghosting) call
for different choices of reference media and sources. Examples of
wavefield separation based on Green’s theorem include source-wa-
velet estimation (Weglein and Secrest, 1990) and deghosting (We-
glein et al., 2002; Zhang andWeglein, 2005, 2006; Zhang, 2007). In
Green’s theorem wavefield separation methods, evaluating the sur-
face integral at a point inside V provides the contribution to the total
field at a point inside V due to sources outside V, without needing or
determining the nature or properties of any of the actual (active or
passive) sources inside or outside V. Hence, Green’s theorem-
derived wavefield separation preprocessing steps (e.g., for wavelet
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estimation and deghosting) are consistent with subsequent ISS pro-
cessing methods that also do not assume knowledge of or require
subsurface information. The Green’s theorem wavefield prediction
and wavefield separation methods are multidimensional and work
in the ðr;ωÞ or ðr; tÞ data spaces (and, hence, are simple to apply to
irregularly spaced data).
Green’s theorem-derived deghosting was developed in a series

of papers (Weglein et al., 2002; Zhang and Weglein, 2005, 2006;
Zhang, 2007) and has characteristics not shared by previous meth-
ods. For example, there is no need for Fourier transforms over
receivers and sources, and it can accommodate a horizontal or
non-horizontal measurement surface. In Mayhan et al. (2011),
we reported the first use of Green’s theorem-derived receiver de-
ghosting on deep-water Gulf of Mexico synthetic (SEAM) and field
data; in Mayhan et al. (2012), we reported the first use of Green’s
theorem-derived source deghosting on the same data; and in this
paper we provide more detail on the algorithms used.
A brief aside on our terminology. (1) The total wavefield P mea-

sured by the hydrophones is considered as the sum of a reference
wavefield P0 (which for a homogeneous whole-space reference
medium (used in Green’s theorem deghosting) is a direct wave from
source to receiver) and the scattered wavefield Ps (which is P − P0).
(2) Ghosts begin their propagation moving upward from the source
(source ghosts) or end their propagation moving downward to the
receiver (receiver ghosts) or both (source/receiver ghosts) and have
at least one upward reflection from the earth.
After the reference wavefield and all ghosts have been removed,

multiples and primaries are defined. (3) Free-surface multiples have
at least one downward reflection from the air/water boundary and
more than one upward reflection from the earth. (An nth order free-
surface multiple has n downward reflections from the air/water
boundary.) (4) Internal multiples have no downward reflections
from the air/water boundary, more than one upward reflection from
the earth, and at least one downward reflection from below the free
surface. (An nth order internal multiple has n downward reflections
from any reflector(s) below the free surface.) (5) Primaries have
only one upward reflection from the earth. These marine events
are summarized in Figure 1.

The source- and receiver-deghosting steps described below
essentially follow the method described and exemplified in pages
33–39 of Zhang (2007). The difference is that for each shot we
choose to input dual measurements of P and ∂P∕∂z along the towed
streamer, whereas Zhang chose to use the source wavelet and P
along the cable for his numerical examples. (The theory in Zhang
[2007] covers both cases.) The advantages of having the wavefield
P and its normal derivative along the towed streamer are (1) to allow
deghosting for an arbitrary source distribution without needing to
know or to determine the source, and (2) for increased stability in
the vicinity of notches. Using measurements at two depths (or GDD

0

as described below) introduces a more depth-sensitive denominator.

THEORY

Receiver deghosting

Green’s theorem derived-preprocessing is based on a perturba-
tion approach where the actual problem and medium are considered
as composed of a reference medium plus “sources.” The latter arise
as source terms in the differential equation that describes the wave
propagation in the actual medium. A reference medium (and its
associated Green’s function) is chosen to facilitate solving the pro-
blem at hand, and the perturbations are represented as source terms
necessary to write the actual propagation in terms of a reference
medium source term picture. Within that general reference medium
and source term framework, Green’s theorem-derived preproces-
sing is remarkably wide ranging. For example, Figure 2 shows
the configuration chosen for Green’s theorem-derived deghosting.
For deghosting, a reference medium that consists of a whole-space
of water requires three source terms: a source that corresponds to air
and begins above the air-water boundary, the air guns in the water
column, and a source that corresponds to earth and begins below
the water-earth boundary. Choosing a hemispherical surface of
integration bounded below by the measurement surface, and the
prediction or observation point inside the surface of integration

Didn’t experience the earth Experienced the earth

FS

No ghost Ghost 

Primaries + Internal multiples Free-surface multiples 

Primaries Internal multiples 

Locate Invert 

Tools 
Green’s theorem 
Scattering series 

Improve resolution 

Figure 1. Classification of marine events and how they are
processed.

Free surfaceFree surface

Measurement surfaceMeasurement surface

sr

Earth

r
V

air

earth

Figure 2. Configuration for Green’s theorem-derived deghosting
(Zhang [2007] Figure 2.10). αair and αearth are perturbations, the
differences between the actual medium (half-space of air, water,
half-space of earth) and the reference medium (whole-space of
water). The closed surface S of integration is the measurement
surface plus the dashed line. r in the figure corresponds to r 0g in
equation 2.
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gives receiver-deghosted data, P 0
R (as explained in Appendix A). A

different choice of a reference medium (a half-space of air and a
half-space of water, separated by an air/water boundary) with
two source terms, is useful for separating the reference wave
P0=Pd

0 þ PFS
0 and Ps ¼ P − P0. The prediction or observation point

outside or inside the surface of integration, gives wavefield separa-
tion, in which the total wavefield P is separated into the reference
wavefield P0 (prediction or observation point outside) or the scat-
tered wavefield Ps (prediction or observation point inside).
Green’s theorem-derived deghosting (receiver and source) is

based on Weglein et al. (2002), Zhang and Weglein (2005,
2006), and Zhang (2007). Depending on the marine experiment,
we have the following options for receiver deghosting. (1) If we
have P measurements only, we can use a derived variation of
Green’s theorem (equation 3), a “double Dirichlet” Green’s func-
tion (equation 7 or 8), and an estimate of the source wavelet to pre-
dict P and ∂P∕∂z above the towed streamer(s). Then we can use the
derived variation of Green’s theorem, a “whole-space” Green’s
function (equation 1), and the predicted P and ∂P∕∂z to predict
receiver-deghosted P 0

R above the input P and ∂P∕∂z. (2) If we have
a dual-sensor towed streamer or over/under towed streamers, we can
use the derived variation of Green’s theorem and a whole-space
Green’s function to directly predict receiver-deghosted P 0

R above
the towed streamer(s). The theory of case (2) assumes measurement
of the pressure wavefield P and its normal derivative ∂P∕∂n≡
∇Pðr; rs;ωÞ · n̂ where r is the receiver location, rs is the source
location, and n̂ is the unit normal to the measurement surface (point-
ing away from the enclosed volume V).
The reference medium is chosen to be a whole-space of water

(where a causal solution exists for the acoustic wave equation in
3D). In the ðr;ωÞ domain, the causal whole-space Green’s function is

G0ðr; r 0g;ωÞ ¼ Gd
0 ¼

�
−ð1∕4πÞ exp ðikRþÞ∕Rþ in 3D

−ði∕4ÞHð1Þ
0 ðkRþÞ in 2D

(1)

where r 0g is the observation or prediction location, k ¼ ω∕c0, c0 is the
wave speed in the reference medium, Rþ ¼ jr − r 0gj, and Hð1Þ

0 is the
zeroth-order Hankel function of the first kind (Morse and
Feshbach [1953], § 7.2). The observation or prediction point is chosen
between the air/water boundary and the measurement surface, i.e.,
inside the volume V bounded by the closed surface of integration
consisting of the measurement surface and the dashed line in
Figure 2. For a discussion of why the causal whole-space Green’s
function exhibits the forms in equation 1, please see chapter 7 inMorse
and Feshbach (1953).
The configuration in Figure 2, the derived variation of Green’s

theorem, and the acoustic wave equations for P and Gd
0 combine to

give the key equation,

P 0
Rðr 0g; rs;ωÞ ¼

I
S
dS n̂ · ½Pðr; rs;ωÞ∇Gd

0ðr; r 0g;ωÞ

− Gd
0ðr; r 0g;ωÞ∇Pðr; rs;ωÞ�; (2)

where S is the closed surface consisting of the measurement surface
and the dashed line in Figure 2, and n̂ is the unit normal to S (point-
ing away from the enclosed volume V). The source location, rs,
and observation or prediction point, r 0g, are inside the volume V.
Extending the radius of the hemisphere to infinity, invoking the

Sommerfeld radiation condition, and assuming a horizontal mea-
surement surface, the integral over the closed surface becomes
an integral over the measurement surface (Weglein et al. [2002]
equation 5),

P 0
Rðr 0g; rs;ωÞ ¼

Z
m:s:

dS

�
Pðr; rs;ωÞ

∂
∂z

Gd
0ðr; r 0g;ωÞ

− Gd
0ðr; r 0g;ωÞ

∂
∂z

Pðr; rs;ωÞ
�
: (3)

The algorithm in equation 3 lends itself to application in a marine
single-shot experiment. If the predicted cable is above the towed
cable and below the shots, equation 3 identifies and attenuates
downgoing waves at the predicted cable (as shown in Appendix A).
Receiver ghosts, source/receiver ghosts, the direct wave, and the
direct wave’s reflection at the air/water boundary are removed.
Green’s theorem derived receiver deghosting can be compared

with a conventional Pþ Vz sum method of deghosting (Amundsen,
1993; Robertsson and Kragh, 2002; Kragh et al., 2004). For a 3D
point source and given a 1D earth and horizontal acquisition and
adequate sampling to allow a Fourier transform from space to wa-
venumber, the two algorithms are equivalent. But these givens can
be an issue. In addition, the application of the Pþ Vz sum, under
certain circumstances, brings other assumptions. For example, a 1D
layered earth is assumed and dense sampling is needed to support its
inverse Hankel transform (Amundsen [1993], p. 1336). The latter is
often considered the current industry standard deghosting method.
In contrast, the Green’s theorem deghosting algorithm (1) can ac-
commodate a 1D, 2D, or 3D earth and (2) stays in coordinate space.
Within these assumptions, Pþ Vz can be derived from Green’s
theorem as shown in Appendix B. The derivation follows in the
tradition of Corrigan et al. (1991), Amundsen (1993), Weglein
and Amundsen (2003); Weglein et al. (personal communication,
2013). This derivation, which to our knowledge has not been

Earth Earth

Figure 3. Input (left), receiver deghosted (right) (Zhang [2007]
Figure 2.14).

Earth Earth

Figure 4. CSG to CRG (left), exchange coordinates (right) (Zhang
[2007] Figure 2.15–2.16).
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published before, shows that deghosting in the wavenumber-
frequency domain is a special case of the more general deghosting
in the space-frequency domain derived from Green’s theorem.

Source deghosting

We have shown how Green’s theorem can be applied to select the
portion of the seismic wavefield that is upgoing at a field position
above the cable. The algorithm uses data from a single shot gather
and the receiver coordinate as the integration variable. This section
shows how the theory can be similarly applied for source deghost-
ing, where the portion of the wavefield that is downgoing at the
source is sought. Depending on the marine experiment, we have
the following options for source deghosting. (1) If we have a col-
lection of single source experiments, we can use the derived varia-
tion of Green’s theorem (equation 3), a double Dirichlet Green’s
function (equation 7 or 8), and receiver-deghosted data P 0

R to pre-
dict new P 0

R and ∂P 0
R∕∂z above the receiver-deghosted data. Then

we can use the derived variation of Green’s theorem, a whole-space
Green’s function (equation 1), and the predicted P 0

R and ∂P 0
R∕∂z to

predict source and receiver-deghosted P 0
SR above the input P 0

R and
∂P 0

R∕∂z. (2) If we have over/under shots, we can use the derived
variation of Green’s theorem (equation 4), a whole-space Green’s
function, and receiver-deghosted data P 0

R to directly predict source
and receiver-deghosted P 0

SR above the receiver-deghosted data. An
application of reciprocity to the entire set of shot records allows the
original receiver-ghost removal to become a source-ghost removal.
Then a second application of the derived variation of Green’s
theorem over receivers results in source- and receiver-deghosted
data. An experiment with over/under receivers and over/under
sources can be receiver deghosted and source deghosted by a double
application of the derived variation of Green’s theorem (part of
Weglein et al., 2002).
Green’s theorem-derived source deghosting begins with source-

receiver reciprocity. We interpolate shots so that the distance be-
tween shots is the same as the inline distance between receivers,
assign “station numbers” to shots and receivers relative to a grid
fixed in space, use the station numbers to re-sort the sail line from
common-shot gathers (CSGs) to common-receiver gathers (CRGs),

and exchange the locations of the shots and receivers. Source ghosts
upgoing at the shots are now receiver ghosts downgoing at the
“receivers,” and a second application of equation 3 will remove
them. This can be seen in Figures 3 and 4. In Figure 3, the left panel
shows the recorded data (for simplicity, only primaries and their
ghosts are shown), and the right panel shows receiver-deghosted
data (the receiver ghosts and source/receiver ghosts have been at-
tenuated leaving primaries and their source ghosts). In the left panel
of Figure 4, CSGs have been sorted to produce CRGs, and in the
right panel shot and receiver locations have been exchanged. The
configuration in panel (d) looks like that in panel (a), so a second
application of equation 3 will remove the source ghosts.
If the experiment has over/under shots, the integral analogous to

equation 3 is

P 0
SRðr 0g; r 0s;ωÞ ¼

Z
sources

dS n̂ · ½P 0
Rðr 0g; r;ωÞ∇Gþ

0 ðr; r 0s;ωÞ

− Gþ
0 ðr; r 0s;ωÞ∇P 0

Rðr 0g; r;ωÞ�: (4)

With single shot experiments, the next step in Green’s theorem-
derived source deghosting predicts a dual-sensor cable. Now
(following Zhang (2007)) use a double Dirichlet Green’s function
GDD

0 to predict a dual-sensor cable above the receiver-deghosted
cable. GDD

0 is constructed to vanish on the air/water boundary
and the measurement surface (Morse and Feshbach [1953],
p. 812ff; Osen et al., 1998; Tan, 1999; Zhang [2007], p. 20ff).
In the ðr;ωÞ domain, Green’s theorem now takes the form

P 0
Rðr 0 0g ; rs;ωÞ ¼

Z
m.s.

dS 0
gP 0

Rðr 0g; rs;ωÞ
∂GDD

0

∂zg 0
ðr 0g; r 0 0g ;ωÞjz 0g¼m:s:

(5)

∂P 0
R

∂z 0g
ðr 0 0g ; rs;ωÞ ¼

Z
m.s.

dS 0
gP 0

Rðr 0g; rs;ωÞ
∂2GDD

0

∂z 0g∂z 0 0g
ðr 0g; r 0 0g ;ωÞjz 0g¼m:s:

(6)

where r 0 0g is the observation or prediction point, rs is the shot loca-
tion, r 0g is the receiver location on the receiver-deghosted cable, and

0

0.5

1.0

1.5

2.0

T
im

e 
(s

)

500 1000 1500
Trace number

–1.0

–0.5

0

0.5

1.0

×10–3

0.4

0.5

0.6

0.7

0.8

0.9

T
im

e 
(s

)

801
Trace number

P at 11m (jy.twoside.point.gz11_v2_taper.su)

Figure 5. Flat-layer model: Ps at 11 m. The first
event is the water bottom primary and its ghosts,
and the second event is the first free surface multi-
ple and its ghosts. The right panel shows the zero-
offset trace (801 of 1601). More detail is given in
Table C-1 in Appendix C.
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differentiating equation 5 with respect to the observation or predic-
tion coordinate z 0 0g derives equation 6. P 0

R is the result of receiver
deghosting and source-receiver reciprocity. For a single source
experiment, source and receiver deghosting is achieved (with
over/under receivers) first using equation 3 and then substituting
equations 5 and 6 in equation 4.
In 2D the analytic form of the double Dirichlet Green’s function

GDD
0 in the ðr;ωÞ domain is

GDD
0 ðr 0g; r 0 0g ;ωÞ ¼ −

1

b

X∞
n¼1

1ffiffiffi
β

p exp

�
−

ffiffiffi
β

p
jx 0

g − x 0 0
g j
�

× sin

�
nπ
b
z 0g

�
sin

�
nπ
b
z 0 0g

�
(7)

where ðx 0 0
g ; z 0 0g Þ are the observation or prediction coordinates,

ðx 0
g; z 0gÞ are the receiver coordinates on the receiver-deghosted cable,

the air/water boundary is at z 0g ¼ 0, the input (receiver-
deghosted) cable is at zg 0 ¼ b, and we assume β ≡ ðnπ∕bÞ2 − k2 >
0 (Osen et al., 1998; Tan, 1999). In 3D,

GDD
0 ðr 0 0g ; r 0g;ωÞ ¼

2πi
b

X∞
n¼1

Hð1Þ
0 ðγρÞ sin

�
nπ
b
z 0g

�
sin

�
nπ
b
z 0 0g

�

(8)

where γ ¼ i
ffiffiffi
β

p
and ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx 0 0

g − x 0
gÞ2 þ ðy 0 0

g − y 0
gÞ2

q
(Osen et al.,

1998). For a discussion as to why GDD
0 has these forms, please

see p. 820 in Morse and Feshbach (1953). For purposes of
numeric evaluation, the Hankel function with imaginary argument
is replaced by a hyperbolic Bessel function with real argument
(Morse and Feshbach [1953], p. 1323).
The following simple analysis shows that for separating up and

down waves using two measurements at one depth can be more
stable than two measurements at two different depths. Using Pmea-
sured at two depths introduces a depth sensitive denominator. Under
perfect conditions the two methods are equivalent, but under prac-
tical conditions they are not. For example,

P ¼ A expðikzÞ þ B expð−ikzÞ (9)

Pð0Þ ¼ Aþ B (10)
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Figure 6. Flat-layer model: Receiver deghosted
Ps at 8 m. Note that the receiver and source-
receiver ghosts have been attenuated. The right
panel shows the zero-offset trace (801 of 1601).
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Figure 7. Flat-layer model: Source and receiver
deghosted Ps at 1 m. Note that the source ghosts
have been attenuated. The right panel shows the
zero-offset trace (801 of 1601).

Green’s theorem-derived deghosting WA81

D
ow

nl
oa

de
d 

03
/2

1/
13

 to
 1

29
.7

.1
6.

11
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



dP
dz

ð0Þ ¼ ikðA − BÞ (11)

A ¼ dP∕dzð0Þ þ ikPð0Þ
2ik

(12)

B ¼ dP∕dzð0Þ − ikPð0Þ
−2ik

(13)

is stable. However, measurements at two depths or GDD
0 (the latter

comes from G0 ¼ 0 at two depths) gives

Pð0Þ ¼ Aþ B (14)

PðaÞ ¼ A exp ðikaÞ þ B expð−ikaÞ (15)

A ¼ Pð0Þ expð−ikaÞ − PðaÞ
−2i sinðkaÞ (16)

B ¼ Pð0Þ expðikaÞ − PðaÞ
2i sinðkaÞ (17)

which is sensitive in the vicinity of ghost notches (where ka ¼ nπ).
If our interest is away from ghost notches, one-source experiments
will be fine for source and receiver deghosting, whereas if our in-
terest includes the ghost notches, two-source experiments can
provide more stability for source-side deghosting. The appropriate
method depends on bandwidth and depth of sources and receivers.
If our sources and receivers are at the ocean bottom, ghost notches
come up early and double sources would be indicated. This also
impacts receiver deghosting using measurements at two depths
because of sensitivity to ghost notches. The alternative method
of receiver deghosting using the source wavelet AðωÞ, P along
the cable, and the double Dirichlet Green’s function GDD

0 allows
receiver deghosting without the need for measurements at two
depths, but GDD

0 uses information at two different depths and hence

Figure 9. P at 150 m (left panel), P0 at 150 m using 10 m between over/under cables (middle panel), P0 at 150 m using 1 m between over/
under cables (right panel). Note the “leakage” of Ps in the middle panel and the absence of visible “leakage” of Ps in the right panel.
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Figure 8. Flat-layer model data, spectrum of the zero-offset
trace (801 of 1601): blue ¼ input, red ¼ receiver deghosted,
green ¼ source and receiver deghosted. Note the shift of the spec-
trum toward lower frequencies. Also note that source and receiver
deghosting (green) has a larger effect that receiver deghosting (red).
Receiver deghosting results from one application of the algorithm to
measured data, whereas source and receiver deghosting results from
three applications: receiver deghosting, wavefield prediction (of the
receiver deghosted data at a point above the cable), and source
deghosting.
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may have stability issues compared to two measurements at
one depth.

Code

The implementation of the above theory is done in a straightfor-
ward manner. The Green’s theorem-derived algorithm computes the
surface integral in equation 3. The method requires as input two
wave fields, the pressure measurements P and their normal deriva-
tives ∂P∕∂z. Measuring the latter requires a dual-sensor cable or

over/under cables. The programs use data in the Seismic Unix
(SU) format and integrate with all native SU programs.

RESULTS

Example: Flat-layer model

Figure 5 shows synthetic data produced using Cagniard-de Hoop
code and a flat-layer model. (More detail on the input data is given
in Tables C-1, C-2, and C-3 in Appendix C.) The first event is the

Figure 10. SEAM data, shot 131,373: recorded data at 17 m (top left), receiver deghosted at 10 m (top right), source and receiver deghosted at
10 m (bottom left). Note the collapsed wavelets in the top right and bottom left panels. Frequency spectra (bottom right): red ¼ P at 17 m,
blue ¼ receiver deghosted at 10 m, green ¼ source and receiver deghosted at 10 m. The spectrum uses a window of 201 traces (232–432) by
0.6 s (1.4–2.0). The first source notch is at 44 Hz which lies above the source frequency range (1–30 Hz). Note the shift of the spectrum toward
lower frequencies (which may be of interest to FWI).
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water-bottom primary and its source ghost, receiver ghost, and
source/receiver ghost, and the second event is the first free-surface
multiple and its three ghosts. Figure 6 shows Green’s theorem-de-
rived output computed using equation 3. Comparing Figures 5 and 6
shows that the receiver ghost and source/receiver ghost associated
with the primary and first free-surface multiple have been attenu-
ated. Figure 7 shows the result of source deghosting. Comparing
Figures 6 and 7 shows that the source ghost has been attenuated
for the first event (the water-bottom primary) and the second event
(the first free-surface multiple). Deghosting also boosts low
frequencies as seen in Figure 8.

Does the quality of deghosting depend on the distance between the
over/under cables? Tang (L. Tang, 2013, personal communication)
has used the same algorithm and a similar flat-layer model to study
how a particular wavefield separation (into the reference and scat-
tered fields) depends on this (and other) parameters. She concluded,
“The estimated results get better when the over/under cables are clo-
ser to each other, i.e., P and dP∕dz are approximately located at the
same depth.” Her results are shown in Figure 9. Robertsson and
Kragh (2002) report the same result, where their upper “cable” is
the air/water boundary. It is expected that the quality of deghosting
is also a function of the distance between the over/under cables.

Figure 11. Field data: hydrophones at 22–25 m (top left), receiver deghosted at 10.5 m (top right), source and receiver deghosted at 8 m
(bottom left). Note the collapsed wavelets in the top right and bottom left panels. Closeup of trace 5 in each of the above panels (bottom right).
Note the gradual recovery of the shape of the wavelet: by receiver deghosting (middle trace) then by source and receiver deghosting (right
trace). Input data courtesy of PGS.

WA84 Mayhan and Weglein

D
ow

nl
oa

de
d 

03
/2

1/
13

 to
 1

29
.7

.1
6.

11
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Example: SEAM

Green’s theorem-derived deghosting was applied to the SEAM
data set generated based on a deep-water Gulf of Mexico earth mod-
el (SEG Advanced Modeling Corporation [SEAM], 2011). We used
the special SEAM classic data set modeled to simulate dual-sensor
acquisition by recording the pressure wavefield at two different
depths, 15 and 17 m, respectively. This dual-sensor data consisted
of nine sail lines for an equivalent wide-azimuth towed-streamer
survey. The source interval is 150 × 150 m, whereas the receiver
interval is 30 m in inline and crossline directions. (More detail about
this data is given in Table C-2 in Appendix C.) Given the low fre-
quency of the data (less than 30 Hz) and the source and receiver
depths of 15 and 17 m, the ghost reflections are not as separable
as in the previous flat layer model with deeper sources and recei-
vers. In this shallower source and receiver situation, successful de-
ghosting would correspond to a change in the wavelet shape. The
top left panel of Figure 10 shows SEAM input, the top right panel
shows receiver-deghosted output computed by the Green’s theorem
approach, and the bottom left panel shows source and receiver-
deghosted output also computed by the Green’s theorem approach.
In the top right and bottom left panels of Figure 10, note the col-
lapsed wavelet. In the bottom right panel of Figure 10, note the shift
of the amplitude spectrum toward low frequencies. Deghosting re-
duces amplitude between notches, where constructive interference
occurs between waves propagating upward and waves propagating

downward. In this data, notches occur at f ¼ nc0∕ð2zÞ, i.e., at mul-
tiples of 50 Hz. Because the source energy is in frequencies less
than 30 Hz, deghosting is manifested by the frequency shift.

Example: Field data

Green’s theorem-derived deghosting was also applied to a field
survey from the deep-water Gulf of Mexico. The data were acquired
using dual-sensor streamers comprised of hydrophones and vertical
geophones. (More detail about this data is given in Table C-3 in
Appendix C.) The vertical geophones measure Vz, whereas Green’s
theorem-
derived algorithms require dP∕dz. It can be shown (from the equa-
tion of motion for a fluid, see Appendix D) that the required
conversion is dP∕dz ¼ iωρVz, where ρ is the density of the refer-
ence medium (sea water). The top left panel in Figure 11 shows a
close up of an input shot record whereas the top right panel displays
the same traces after receiver deghosting and the bottom left panel
displays the same traces after source and receiver deghosting. Note
the collapsed wavelet in the output images. This is also demon-
strated in Figure 12, which compares the amplitude spectra before
and after receiver deghosting. As expected, the deghosting solution
successfully removed the notches from the spectrum that are asso-
ciated with the receiver ghost. In the bottom right panel in Figure 11,
note the gradual recovery of the shape of the wavelet: first by
receiver deghosting (middle trace) and then by source and
receiver deghosting (right trace).

DISCUSSION

In deep water, the particular form of Green’s theorem-derived al-
gorithm that was applied works as well as a conventional Pþ Vz

sum. It does so without the need for a Hankel transform from coor-
dinate space to wavenumber domain, thus avoiding the difficulty of
sufficient sampling needed to support the inverse Hankel transform
(Amundsen [1993], p. 1336). There are two categories of advantages
in using Green’s theorem: (1) avoiding demands of transforms when
the measurement is on a horizontal surface, and (2) when the acqui-
sition is not confined to a horizontal measurement surface, which
precludes the use of transforms. Evaluating the advantages of the
Green’s theorem-derived algorithm requires side by side testing of
the two algorithms as the water becomes shallower, the water bottom
becomes less flat, and full 3D acquisition is used.

CONCLUSIONS

The message for the prospector or seismic processor seeking the
bottom line and user-guide for seeking to source and receiver
deghost marine towed streamer and ocean bottom data is as follows:
(1) away from notches, a single streamer of pressure data, and an
estimate of the source signature can achieve receiver deghosting,
and a set of single shot records can then achieve source deghosting,
and (2) if deghosting is requiring for a frequency range that includes
the notches (as can occur for high-frequency towed streamer acqui-
sition and will occur with ocean-bottom data), then we advocate
measurements of the pressure and its normal derivative along a
cable for receiver deghosting and a set of dual over-under source
experiments to achieve source deghosting. We have implemented
and tested Green’s theorem-derived source and receiver deghosting
for the first time on deep-water Gulf of Mexico synthetic (SEAM)
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Figure 12. Field data: muted hydrophones (blue), receiver
deghosted (red). The receiver notches around 30, 60, and 90 Hz
have been filled in. Input data courtesy of PGS.
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and field data. These tests indicate that the algorithm works with
positive and encouraging results. The Green’s theorem derived
deghosting algorithms provide a unique and comprehensive frame-
work and methodology for understanding and addressing each of
these cases.
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APPENDIX A

RECEIVER DEGHOSTING: SUPPLEMENTAL
THEORY

Following Weglein et al. (2002) and Chapter 2 of Zhang (2007),
to separate upward-moving and downward-moving waves, we
define the following (see Figure 2):

1) a reference medium consisting of a whole-space of water with
wavespeed c0,

2) a perturbation αairðrÞ that is the difference between the refer-
ence medium (water) and the upper part (air) of the actual
medium, defined by 1∕c2air ¼ 1∕c2waterð1 − αairÞ,

3) a perturbation αearthðrÞ that is the difference between the re-
ference medium (water) and the lower part (earth) of the actual
medium, defined by 1∕c2earth ¼ 1∕c2waterð1 − αearthÞ,

4) V is a volume bounded above by an upper hemisphere and
below by the measurement surface,

5) a surface (air-water interface) above the measurement surface
(i.e., inside V),

6) a source at rs above the measurement surface (again inside V),
7) a causal whole-space Green’s function Gþ

0 ðr; r 0g;ωÞ in the
reference medium,

8) k0 ¼ ω∕c0,
9) the prediction/observation point r 0g ∈ V lying below the source

rs and above the measurement surface, and
10) S as the hemisphere’s surface.

For two wavefields P and Gþ
0 , Green’s theorem becomes

I
S
dS n · ½Pðr; rs;ωÞ∇Gþ

0 ðr; r 0g;ωÞ −Gþ
0 ðr; r 0g;ωÞ∇Pðr; rs;ωÞ�

¼
Z
V
dr½Pðr; rs;ωÞ∇2Gþ

0 ðr; r 0g;ωÞ

−Gþ
0 ðr; r 0g;ωÞ∇2Pðr; rs;ωÞ�: (A-1)

Substituting the partial differential equations for the pressure
wavefield P and causal whole-space Green’s function Gþ

0

ð∇2 þ k20ÞPðr; rs;ωÞ ¼ AðωÞδðr − rsÞ þ k20ðαair þ αearthÞP
(A-2)

ð∇2 þ k20ÞGþ
0 ðr; r 0g;ωÞ ¼ δðr − r 0gÞ (A-3)

into the right hand side of equation A-1 gives

Z
V
drfPðr; rs;ωÞ½−k20Gþ

0 þ δðr − r 0gÞ� − Gþ
0 ðr; r 0g;ωÞ½−k20P

þ AðωÞδðr − rsÞ þ k20ðαair þ αearthÞP�g

¼
Z
V
drfPðr; rs;ωÞδðr − r 0gÞ − Pðr; rs;ωÞk20Gþ

0 ðr; r 0g;ωÞ

þ Gþ
0 ðr; r 0g;ωÞk20Pðr; rs;ωÞ

− k20½αairðrÞ þ αearthðrÞ�Pðr; rs;ωÞGþ
0 ðr; r 0g;ωÞ

− AðωÞδðr − rsÞGþ
0 ðr; r 0g;ωÞg: (A-4)

The first term gives Pðr 0g; rs;ωÞ because the prediction/observa-
tion point r 0g is between the measurement surface and air-water sur-
face, i.e., ∈ V. The cross terms −Pðr; rs;ωÞk20Gþ

0 ðr; r 0g;ωÞþ
Gþ

0 ðr; r 0g;ωÞk20Pðr; rs;ωÞ cancel. (This cancellation occurs in
the frequency domain but not in the time domain.) αearthðrÞ ¼ 0

because the volume integral doesn’t contain αearth. The last term
gives AðωÞGþ

0 ðrs; r 0g;ωÞ because the source (air guns) is between
the measurement surface and air-water surface, i.e., within the
volume V. Substituting these four results into equation A-4 gives
for the left member of A-4

Pðr 0g; rs;ωÞ −
Z
V
dr k20αairðrÞPðr; rs;ωÞGþ

0 ðr; r 0g;ωÞ

− AðωÞGþ
0 ðrs; r 0g;ωÞ: (A-5)

Using the symmetry of the Green’s function (Gþ
0 ðrs; r 0g;ωÞ ¼

Gþ
0 ðr 0g; rs;ωÞ) and collecting terms givesI
S
n dS · ½Pðr; rs;ωÞ∇Gþ

0 ðr; r 0g;ωÞ −Gþ
0 ðr; r 0g;ωÞ∇Pðr; rs;ωÞ�

¼ Pðr 0g; rs;ωÞ −
Z
V
drGþ

0 ðr; r 0g;ωÞk20αairðrÞPðr; rs;ωÞ

− AðωÞGþ
0 ðr 0g; rs;ωÞ: (A-6)

The physical meaning of equation A-6 is that the total wavefield
at r 0g can be separated into three parts. There are three spatially
distributed sources causing the wavefield P. From the extinction
theorem/Green’s theorem, the left side of equation A-6 is the
contribution to the field at r 0g due to sources outside V. There is
one source outside V, ρearth ¼ k2αearthP. The contribution it
makes at r 0g is ∫Gþ

0 ρearth and upgoing. The two other sources
(ρair ¼ k2αairP and ρair guns) produce a down field at r 0g, since r 0g
is below rs.
Letting the radius of the hemisphere go to ∞, the Sommerfeld

radiation condition gives

Z
m:s:

dSn · ½Pðr; rs;ωÞ∇Gþ
0 ðr; r 0g;ωÞ

− Gþ
0 ðr; r 0g;ωÞ∇Pðr; rs;ωÞ� ¼ P 0

Rðr 0g; rs;ωÞ; (A-7)

where Pðr; rs;ωÞ and ∇Pðr; rs;ωÞ · n̂ are respectively the hydro-
phone measurements and normal derivatives (in the frequency
domain), and Gþ

0 is the causal whole-space Green’s function for
a homogeneous acoustic medium with water speed.
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APPENDIX B

DERIVATION OF CONVENTIONAL P� Vz SUM
FROM GREEN’S THEOREM

A conventional Pþ Vz sum receiver deghosts by decomposing P
into an upgoing wavefield, Pup, and a downgoing wavefield, Pdown,
using

Pup

Pdown

�
¼ 1

2
ð ~P∓ ρω

kz
~VzÞ; (B-1)

where ~P; ~Vz are plane waves and kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω∕c0Þ2 − k2x − k2y

q
.

Equation B-1 is equation 1 in Klüver et al. (2009), which is
equation 17 in Amundsen (1993). The latter assumes a half-space
of air, a water column, and a 1D layered earth.
Substituting the (acoustic) partial differential equations for the

pressure wavefield Pðr 0;ωÞ and Green’s function G0ðr; r 0;ωÞ into
Green’s second identity givesZ

V
dr 0Pðr 0; rs;ωÞδðr 0 − rÞ ¼

Z
V
dr 0ρðr 0; rs;ωÞG0ðr; r 0;ωÞ

þ
I
S
dS 0n̂ 0 · ½Pðr 0; rs;ωÞ∇ 0G0ðr; r 0;ωÞ

− G0ðr; r 0;ωÞ∇ 0Pðr 0; rs;ωÞ�: (B-2)

See, e.g., Weglein et al. (2002) and Chapter 2 of Zhang (2007). For
deghosting, use the configuration shown in Figure 2, i.e., choose

1) ρðr0;rs;ωÞ¼AðωÞδðr0−rsÞþk2½αairðr0Þþαearthðr0Þ�Pðr0;rs;ωÞ,
2) V is a volume bounded above by an upper hemisphere and be-

low by the measurement surface,
3) r above the measurement surface and below the air/water

boundary (i.e., ∈ V), and
4) G0 a whole-space causal Green’s function Gþ

0 .

We can start with Appendix A, equation A-7

P 0
Rðr; rs;ωÞ ¼

Z
m:s:

dS 0n̂ 0 · ½Pðr 0; rs;ωÞ∇ 0Gþ
0 ðr; r 0;ωÞ

− Gþ
0 ðr; r 0;ωÞ∇ 0Pðr 0; rs;ωÞ�: (B-3)

For simplicity assume 2D, and equation B-3 becomes

P 0
Rðx; z; xs; zs;ωÞ ¼

Z
m:s:

dx 0

×
�
Pðx 0; z 0; xs; zs;ωÞ

∂Gþ
0

∂z 0
ðx; z; x 0; z 0;ωÞ

− Gþ
0 ðx; z; x 0; z 0;ωÞ ∂P

∂z 0
ðx 0; z 0; xs; zs;ωÞ

�
: (B-4)

Fourier transform equation B-4 with respect to x,Z
dx expðikxxÞP 0

Rðx; z; xs; zs;ωÞ ¼
Z

dx expðikxxÞ

×
Z
m:s:

dx 0
�
Pðx 0; z 0; xs; zs;ωÞ

∂Gþ
0

∂z 0
ðx; z; x 0; z 0;ωÞ

− Gþ
0 ðx; z; x 0; z 0;ωÞ ∂P

∂z 0
ðx 0; z 0; xs; zs;ωÞ

�
: (B-5)

The left side of equation B-5 becomes ~P 0
Rðkx; z; xs; zs;ωÞ. Substi-

tute the bilinear form of the Green’s function into the right hand side
of equation B-5,Z

dx expðikxxÞ

×
Z
m:s:

dx 0
�
Pðx 0; z 0; xs; zs;ωÞ

∂
∂z 0

×
�
1

2π

Z
dkx 0

expð−ikx 0ðx − x 0ÞÞ expðikz 0ðz 0 − zÞÞ
2ikz 0

�

−
1

2π

Z
dkx 0

expð−ikx 0ðx − x 0ÞÞ expðikz 0ðz 0 − zÞÞ
2ikz 0

∂P
∂z 0

× ðx 0; z 0; xs; zs;ωÞ
�
; (B-6)

where k 0
z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω∕c0Þ2 − k 02

x

p
. Substitute μ ¼ r − r 0 in equation B-6,

Z
m:s:

dx 0
Z

dμx exp½ikxðμx þ x 0Þ�
�
Pðx 0; z 0; xs; zs;ωÞ

×
1

2π

Z
dkx 0

expð−ik 0
xμxÞ expð−ik 0

zμzÞ
2ik 0

z
ð−ik 0

zÞð−1Þ

−
1

2π

Z
dk 0

x
expð−ik 0

xμxÞ expð−ik 0
zμzÞ

2ik 0
z

∂P
∂z 0

ðx 0; z 0; xs; zs;ωÞ
�

¼ 1

2π

Z
m:s:

dx 0
Z

dμx exp½ikxðμx þ x 0Þ�
�
Pðx 0; z 0; xs; zs;ωÞ

×
Z

dk 0
x expð−ik 0

xμxÞik 0
z

−
Z

dk 0
x expð−ik 0

xμxÞ
∂P
∂z 0

ðx 0; z 0; xs; zs;ωÞ
�
expð−ik 0

zμzÞ
2ik 0

z

¼ 1

2π

Z
dk 0

x
expð−ik 0

zμzÞ
2ik 0

z

Z
dμx expð−iðk 0

x − kxÞμxÞ

×
�
ik 0

z

Z
m:s:

dx 0 expðikxx 0ÞPðx 0; z 0; xs; zs;ωÞ

−
Z

dx 0 expðikxx 0Þ ∂P
∂z 0

ðx 0; z 0; xs; zs;ωÞ
�
: (B-7)

In equation B-7, the integral over dμx gives a Dirac delta,
2πδðk 0

x − kxÞ, the integral over dx 0 is a Fourier transform of the
pressure wavefield and gives ~Pðkx; z 0; xs; zs;ωÞ, and the vertical
derivative of the pressure wavefield is iωρVzðx 0; z 0; xs; zs;ωÞ.
(The latter relationship is derived in Appendix D.) The integral of
dx 0 over the measurement surface allows a Fourier transform
because, in the derivation of equation B-3, we took the radius of
the hemisphere to infinity. We now have (for the right side of
equation B-5),

1

2π

Z
dk 0

x
expð−ik 0

zμzÞ
2ik 0

z
2πδðk 0

x − kxÞ
�
ik 0

z
~Pðkx; z 0; xs; zs;ωÞ

− iωρ
Z

dx 0 expðikxx 0ÞVzðx 0; z 0; xs; zs;ωÞ
�
: (B-8)

In equation B-8, the integral over dx 0 is a Fourier transform of the
vertical velocity field and gives ~Vzðkx; z 0; xs; zs;ωÞ. Using
k 02
z ¼ ω2∕c20 − k 02

x and k2z ¼ ω2∕c20 − k2x, equation B-8 can be
rewritten as
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Z
dk 0

x δðk 0
x − kxÞ

expð−ikz 0μzÞ
2ik 0

z
½ik 0

z
~Pðkx; z 0; xs; zs;ωÞ

− iωρ ~Vzðkx; z 0; xs; zs;ωÞ�

¼ expð−ik 0
zμzÞ

2ik 0
z

½ik 0
z
~Pðkx; z 0; xs; zs;ωÞ

− iωρ ~Vzðkx; z 0; xs; zs;ωÞ�: (B-9)

Collecting terms gives

~P 0
Rðkx; z; xs; zs;ωÞ ¼

expð−ikz 0μzÞ
2ikz 0

ðikzÞ

×
�
~Pðkx; z 0; xs; zs;ωÞ −

ωρ

kz
~Vzðkx; z 0; xs; zs;ωÞ

�

¼ −
1

2
exp½ikz 0ðz 0 − zÞ�

�
~Pðkx; z 0; xs; zs;ωÞ

−
ωρ

kz
~Vzðkx; z 0; xs; zs;ωÞ

�
: (B-10)

In the last equation, the phase factor exp ðikz 0ðz 0 − zÞÞ takes the
one-way wavefield ~P 0

R from the cable depth z 0 to the predicted
(deghosted) depth z. This demonstrates that the Green’s theorem de-
ghosting reduces to the Fourier form equation B-10 under con-
ditions which allow the steps in this demonstration. The standard
practice deghosting P − Vz algorithm today is a version of B-10 that
accommodates a 3D point source, but assumes the earth is 1D.
Equations B-3 and B-10 allow the lifting of the 1D assumption,
and in addition B-3 doesn’t require a horizontal measurement surface.

APPENDIX C

INPUT DATA

APPENDIX D

QUICK DERIVATION OF ∂P∕∂z � iωρVz

1) Newton’s second law of motion: F ¼ mdV∕dt
2) Consider a unit volume in a fluid: F ¼ ρ dV∕dt
3) Fourier transform: F ¼ ρð−iωVÞ
4) Force in a fluid is the pressure gradient: F ¼ −∇P ¼ ρð−iωVÞ
5) Rewriting: ∇P ¼ iωρV
6) The z-component is the desired result.

Table C-1. Synthetic data: Flat-layer-model data created
using Cagniard-de Hoop code.

Parameter Value

Number of shots 1

Number of channels per shot 1601

Number of samples per trace 625

Time sampling 4 ms

Record length 2.5 s

Shot interval n.a.

Group interval 3 m

Shortest offset 0 m

Gun depth 7 m

Streamer depth 9 and 11 m

Air/water boundary, water depth 300 m, 1D constant velocity
acoustic earth (c ¼ 2250 m∕s)
∂P∕∂z ≃ ðPð11 mÞ − Pð9 mÞÞ∕2 m
This data was created by Jinlong Yang using code written by

Jingfeng Zhang (now at BP).

Table C-2. Synthetic data: SEAM deep-water Gulf of Mexico
model.

Parameter Value

Number of shots 9 × 267

Number of channels per shot 661 × 661

Number of samples per trace 2001

Time sampling 8 ms

Record length 16 s

Shot interval 150 m

Group interval 30 m

Shortest offset 0 m

Gun depth 15 m

Streamer depth 15 and 17 m

Air/water boundary, variable water depth, 3D variable density
acoustic earth
3D source, frequency of source: 1–30 Hz
Distance between towed streamers: 30 m
∂P∕∂z ≃ ðPð17 mÞ − Pð15 mÞÞ∕2 m
Reviewer 2 pointed out that “The numerical approximation of the

vertical derivative using a finite difference approach is subject to
considerable error when a distance dz ¼ 2 m is used. In other
words, the pressure data have a much higher accuracy than the
pressure derivative data when computed this way.”

Table C-3. Field data: Deep-water Gulf of Mexico.

Parameter Value

Number of shots 2451

Number of channels per shot 960

Number of samples per trace 3585

Time sampling 4 ms

Record length 14.34 s

Shot interval 32 m

Group interval 12.5 m

Shortest offset 112 m

Gun depth 9 m

Streamer depth 25 m

Data courtesy of PGS
Dual-sensor towed streamer
∂P∕∂z ¼ iωρVz, where ρ is the density of the reference medium

(seawater)
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