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Abstract

We present the test results of the deghosting algorithm given by Weglein et al.
(2002). For the towed streamer case, when the wavelet is available, the algorithm
works well as expected. When the wavelet is not available, an approximate one is ob-
tained using the method was provided by Zhang and Weglein (2003). The deghosting
algorithm still works fine using the approximate wavelet, especially when the rough
duration of the source wavelet is known. For the ocean bottom case, both the source
wavelet and the hydrophone measurements (P ) are assumed to be known. The deghost-
ing is performed using P and its derivative (dP

dz
), which is calculated from P and the

source wavelet using the triangle relationship among these three quantities (Amundsen,
1995; Weglein et al., 2002). Numerical tests of this procedure for ocean bottom case
is underway.

1 Introduction

Deghosting plays an important role in seismic exploration as a pre-requisite for many data
processing techniques. For the towed streamer case, although some conventional procedures
may still work without deghosting, accurate deghosting is necessary for some new techniques
such as imaging without velocity and non-linear inversion. For the ocean bottom case,
deghosting is required even for conventional methods since the ghost notch comes very early
in the spectrum. Although both the field and its derivative are measured on the ocean
bottom, deghosting remains a serious problem due to for instances the coupling between the
geophone and the hydrophone or the noise in the geophone data.

Last year we presented the initial test of the deghosting algorithm given by Weglein et al.
(2002). The test was focused on a single frequency and an idealized model. This year we
apply the deghosting algorithm to a more realistic model and the result is presented in time
domain.

In the following, we will briefly review the deghosting procedure for both towed streamer
and ocean bottom cases, then we will give the numerical test results followed by conclusions.
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2 Theory

The deghosting formula we use is (Weglein et al., 2002):

P deghosted(r, rs, ω) =

∫

M.S.

(

P (r′, rs, ω)
∂G+

0 (r, r′, ω)

∂n′
− G+

0 (r, r′, ω)
∂P (r′, rs, ω)

∂n′

)

· dS′, (1)

where M.S. denotes the measurement surface. In the following we will derive equation (1)
and some related formulas. Start with the wave equation in the frequency domain

∇
′
2

P (r′, rs, ω) +
ω2

c2(r′)
P (r′, rs, ω) = A(ω)δ(r′ − rs), (2)

where A(ω) is the source wavelet. Substituting ω2

c2(r′)
with ω2

c2
0

(1 − α(r′)), we find

∇
′
2

P (r′, rs, ω) +
ω2

c2
0

P (r′, rs, ω) = A(ω)δ(r′ − rs) +
ω2

c2
0

α(r′)P (r′, rs, ω), (3)

where α(r′) represents the difference between the actual medium and the reference medium,
water. We additionally require the differential equation for Green’s function in the reference
medium:

∇
′
2

G0(r
′, r, ω) +

ω2

c2
0

G0(r
′, r, ω) = δ(r′ − r). (4)

Of course, the Green’s function G0 for this differential equation is not unique. Its boundary
conditions are versatile, and different choices lead to different applications/formulas, as we
will see in a moment.

P times Equation (4) minus G0 times Equation (3) followed by a integral on certain volume
gives

∫

V

[

P (r′, rs, ω)∇′
2

G0(r
′, r, ω) − G0(r

′, r, ω)∇′
2

P (r′, rs, ω)
]

dr′

=

∫

V

P (r′, rs, ω)δ(r′ − r)dr′ −

∫

V

G0(r
′, r, ω)

[

A(ω)δ(r′ − rs) +
ω2

c2
0

α(r′)P (r′, rs, ω)

]

dr′.

(5)

Using Green’s second identity, the LHS of the equation above can be reduced to an integral
on the surface of volume V:

∫

V

[

P (r′, rs, ω)∇′
2

G0(r
′, r, ω) − G0(r

′, r, ω)∇′
2

P (r′, rs, ω)
]

dr′ (6)

=

∮

S

[P (r′, rs, ω)∇′G0(r
′, r, ω) − G0(r

′, r, ω)∇′P (r′, rs, ω)] · dS′. (7)
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Figure 1: Various volume configurations

Then we have:
∮

S

[P (r′, rs, ω)∇′G0(r
′, r, ω) − G0(r

′, r, ω)∇′P (r′, rs, ω)] · dS′

=

∫

V

P (r′, rs, ω)δ(r′ − r)dr′ −

∫

V

G0(r
′, r, ω)

[

A(ω)δ(r′ − rs) +
ω2

c2
0

α(r′)P (r′, rs, ω)

]

dr′.

(8)

We will make repeated use of this formula. Choosing different volumes V, different boundary
conditions for G0 (as mentioned) and different positions r, which can be either inside or
outside volume, we can arrive at several different useful formulas.

If the whole half space below the M.S. is regarded as the volume V (Fig 1(a)), position r is
outside V, and a causal Green’s function is chosen, then we have

P deghosted(r, rs, ω)

=

∫

M.S.

[

P (r′, rs, ω)
∂

∂z′
G+

0 (r′, r, ω) − G+
0 (r′, r, ω)

∂

∂z′
P (r′, rs, ω)

]

dS ′. (9)

This is the deghosting formula we will use. Note that in the above derivation, α is regarded
as αair, αwater and αearth and only αearth is inside V.

If the configuration in Fig 1(b) is used, where V horizontally extends to infinity, we have:

P (r, rs, ω) = A(ω)GDD
0 (r, rs, ω) +

∫

M.S.

P (r′, rs, ω)
∂

∂z′
GDD

0 (r′, r, ω)dS ′, (10)
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where GDD
0 vanishes both at the free surface (denoted as F.S.) and the M.S.. The superscript

“DD” indicates the use of double Dirichlet boundary conditions. This is the field prediction
formula first given by Tan (1992). It has also been used as the wavelet estimation formula
by Osen et al. (1998), who claim that the wavelet of a point source can be calculated using
the field measurements on the M.S. and one extra measurement between the F.S. and the
M.S.

Taking the derivative with respect to z of both sides of Eq.(10) will give the derivative of
the field prediction formula:

∂P (r, rs, ω)

∂z
= A(ω)

∂GDD
0 (r, rs, ω)

∂z
+

∫

M.S.

P (r′, rs, ω)
∂2GDD

0 (r′, r, ω)

∂z′∂z
dS ′. (11)

If we choose configuration Fig 1(c) instead, the scattered field prediction formula gives

∫

M.S.

[

P (r′, rs, ω)
∂

∂z′
GD

0 (r′, r, ω) − GD
0 (r′, r, ω)

∂

∂z′
P (r′, rs, ω)

]

dS ′

= P (r, rs, ω) − A(ω)GD
0 (r, rs, ω)

= Ps(r, rs, ω), (12)

where GD
0 is the Green’s function that vanishes on the F.S.

The wavelet estimation formula (Weglein and Secrest (1990)) can be derived if the configu-
ration of Fig 1(d) is used

∫

M.S.

[

P (r′, rs, ω)
∂

∂z′
GD

0 (r′, r, ω) − GD
0 (r′, r, ω)

∂

∂z′
P (r′, rs, ω)

]

dS ′

= −A(ω)GD
0 (r, rs, ω). (13)

This equation describes the triangle relationship among the source wavelet A(ω), the wave
field P and its derivative dP

dz
. Any one of these three quantities can be calculated if the other

two are known.

As discussed in (Zhang and Weglein, 2002), deghosting can be achieved either using one
measurement on two surfaces or two measurements on one surface. The issue of the difference
between the deghosting formula we used and conventional up-down separation is discussed
in Appendix A.

The deghosting formula Eq.(1) computes the receiver side up-going field. The same integral
on the source side will get rid of the source ghost; this is discussed further in Appendix B.
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2.1 Towed streamer deghosting

In Eq. (1), both P and its derivative on M.S. are needed. However, in practice, only P ,
the hydrophone measurement, is available. Our procedure is to use Eqs. (10) and (11) to
predict the P and its derivative on a new surface between the F.S. and the M.S.. When the
wavelet is available, the prediction is exact.

As pointed out by Tan (1999), GDD
0 in Eqs. (10) and (11) has a special property. It will

vanish rapidly when the offset increases, for frequencies less than 120Hz if water speed is
1500m/s and cable depth is 6.0m. Hence for large offsets:

P (r, rs, ω) ≈

∫

M.S.

P (r′, rs, ω)
∂GDD

0 (r′, r, ω)

∂z′
dS ′ (14)

∂P (r, rs, ω)

∂z
≈

∫

M.S.

P (r′, rs, ω)
∂2GDD

0 (r′, r, ω)

∂z′∂z
dS ′ (15)

In the absence of a wavelet estimate, we can use these approximations to perform deghosting.

Last year, we tested the deghosting algorithm both with and without the source wavelet for
a single frequency and using an idealized model. It turns out that very good deghosting
results may be achieved when the source wavelet is available.

However, an unsatisfactory result is produced when the approximate field and its derivative
are used. Through our analysis, we found that the approximate derivative of the field is far
from accurate at small offsets (Fig 2). It is clear that Eq. (15) is a good approximation
for large offsets, but at small offsets results were poorer than expected. We attempted
to numerically extrapolate from large to small offset, but found that small offset is not
predictable due to the variability of dP

dz
. We speculate that an extrapolator constrained by

physics might perform better.

We found one way to successfully step into the small offset area. The idea is to approximate
the wavelet so that the first rapid varying derivative of GDD

0 term at small offsets in Eq.
(11) can be included. How to find an approximate wavelet? We went back to the wave field
prediction Eq. (10), which is exact everywhere. Based on the assumption that the scattered
field is small compared to the direct wave at zero offset, we assume the integral of the total
field to be equal to that of the direct wave, hence neglecting the contribution of the scattered
field. That is, if we put the output position r at zero offset, then the integral part in Eq.
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Figure 2: The red line is the exact dP

dz
; the black line represents the approximated dP

dz
without using the source

wavelet

(10) is

∫

M.S.

P (r′, rs, ω)
∂GDD

0 (r′, r′′, ω)

∂z′
dS ′

=

∫

M.S.

[

A(ω)GD
0 (r′, rs, ω) + Ps(r

′, rs, ω)
] ∂GDD

0 (r′, r′′, ω)

∂z′
dS ′

≈ A(ω)

∫

M.S.

GD
0 (r′, rs, ω)

∂GDD
0 (r′, r′′, ω)

∂z′
dS ′, (16)

where we have neglected the integral contribution of the scattered field. Only the wavelet is
unknown in the above formula, and we may approximate it this way. The wavelet approxi-
mation formula has been shown to work well in previous year’s effort. Using the approximate
wavelet, a much better deghosting result is achieved. That is, we achieve good deghosting
results from the measurements of the wave field P on the M.S. only.

This year, instead of restricting ourselves to a single frequency, we test the last year’s wavelet
approximation and deghosting algorithm for all necessary frequencies and then consider the
results in the time domain.
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2.2 Ocean Bottom deghosting

On the ocean bottom, both the wave field P and its derivative dP
dz

are measured. In order
to avoid using the measurement of the derivative of P (which is troublesome), we use P and
the source wavelet to calculate it using the triangle relationship Eq. (13), as mentioned by
Amundsen (1995) and Weglein et al. (2002). performing a Fourier transform with respect
to x on both sides of Eq. (13), an algebraic triangle relationship is produced:

∂

∂z′
P (kx, z

′, xs, zs, ω)

=
A(ω)eikxxs

(

e−ikzzs − eikzzs

)

− ikzP (kx, z
′, xs, zs, ω)

(

e−ikzz′ + eikzz′
)

e−ikzz′ + eikzz′
, (17)

where kz =
√

k2 − k2
x and z′ is the cable depth. The above formula is for 2D data. The 3D

version is straightforward and can be found in Amundsen (1995). With P and its derivative,
we can perform deghosting.

3 Numerical tests for towed streamer data

Using the Cagniard-de Hoop method, we generated the synthetic data for the following model
(Fig 3): a F.S. overlies 300m of water (wave speed 1500m/s), below which is a homogeneous
acoustic halfspace characterized by wave speed 2250m/s. The density is constant. The
source wavelet is a Ricker wavelet with a peak frequency of 25Hz (Fig 4). The data for the
towed streamer cable (at a depth of 6m) is generated.

First, we Fourier transform each trace into the frequency domain. We then process the
frequencies from zero to 120Hz. Only the positive frequency is necessary to deal with, since
the signal in time domain is real and hence in the Fourier domain we may assume conjugate
symmetry. For each frequency, we approximate the source wavelet A(ω), predict P (x, z, ω)
and its derivative at a new M.S., and deghost in frequency domain. Finally we transform
the deghosted field back into the time domain.

The data generated for the towed streamer extends from 0s to 2.5s. The receiver interval is
1m and the largest receiver offset is 1500m. The seismic traces at zero offset and 1500m are
presented in Fig 5. The signal includes the direct wave, the primary, multiples from first to
forth order and their related ghosts.

It is apparent that the direct wave dominates at zero offset. This is the assumption upon
which our wavelet approximation is based. The approximate wavelet is compared with the
exact one in Fig 6 (a). There is no visible difference between the exact wavelet and the
approximate one except at large t. Incidentally, if we treat the zero offset trace as the direct
wave, then we can also approximate the wavelet. Fig 6(b) shows that there is almost no
difference between these two methods.
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(0,2) 6.0m

300m

c1=1500m/s

c2=2250m/s

F.S .

M.S.

M.S.

Figure 3: Synthetic model

With this approximate wavelet, the field and its derivative at depth z=5.9m is calculated for
each frequency using Eqs. (10) and (11). The deghosting results at several offsets at a depth
of z=5.8m are presented in Fig 7. The result at zero offset is poor since the approximate
wavelet treats each event in the signal as part of the direct wave. This inaccurate wavelet
will eventually affect each event in the deghosting result; for large offsets, it will cause new
small oscillations in the signal. If the rough duration of the source wavelet is known then
the late events in the approximate wavelet could be cut off and hence we could obtain the
almost exact wavelet. Using the exact wavelet, the deghosting results are shown in Fig 8;
even in this case, we can see that the extremely strong direct wave at zero offset has not
been totally eliminated. We think this is due to numerical errors.

4 Conclusions

We test and develop the deghosting algorithm given by Weglein et al. (2002), for a towed
streamer acquisition. The deghosting algorithm works well, as expected, when the source
wavelet is known. Otherwise, an approximate wavelet is found to perform deghosting. The
approximate wavelet could work very well if we knew the rough duration of the source
wavelet.

The effectiveness of the proposed scheme is currently being tested for an ocean bottom (OBS)
type acquisition.
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Figure 4: Ricker wavelet with peak frequency 25Hz
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Appendix A

We will show that when the prediction point r is brought down to the M.S., Eq. (1) gives
the conventional up-down separation result. In 1D, the up-down separation is:

P up(z′, zs, ω) =
1

2

[

P (z′, zs, ω) −
1

ik

dP (z′, zs, ω)

dz′

]

. (18)

The deghosting formula in Eq. (1) reduces to
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P up(z, zs, ω) = P (z′, zs, ω)
dG+(z, z′, ω)

dz′
− G+(z, z′, ω)

dP (z′, zs, ω)

dz′
, (19)

where, assuming z′ > z > zs > 0,

G+(z, z′, ω) =
1

2ik
eik(z−z′),

dG+(z, z′, ω)

dz′
=

1

2
eik(z−z′).

At the limit z → z′,

G+(z, z′, ω) =
1

2ik
,

dG+(z, z′, ω)

dz′
=

1

2
,

so

P up(z′, zs, ω) =
1

2

[

P (z′, zs, ω) −
1

ik

dP (z′, zs, ω)

dz′

]

,

which is Eq. (18) as desired.

Appendix B

Here we show that the integral in Eq. (1), if carried out on the source side, will eliminate the
source ghosts. If we switch the source and receiver positions in Fig 9 the same data would
be recorded (see Eq. 2). The many-source experiment in Fig 10 will therefore produce the
same results as that of Fig 11.

The source-side deghosting of Fig 10 is exactly the receiver-side deghosting of Fig 11 (i.e., the
source ghosts of Fig 10 would be the receiver ghosts of Fig 11). So the source-side deghosting
seen in Fig 10 is

P source deghosted(r′s, rg, ω) =

∫

S.S.

(

P (rs, rg, ω)
∂G+

0 (rs, r
′

s, ω)

∂n
− G+

0 (rs, r
′

s, ω)
∂P (rg, rs, ω)

∂n

)

· dS,

(20)
where S.S. represents the source surface and r′s can be any point between the S.S. and the
F.S. The formula above computes the source-side deghosted field measured at rg due to
source at r′s; the latter may be brought down to rs in Fig 9 in accordance with the results
of Appendix A.
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(a)

(b)

Figure 5: (a) Data received at (0,6.0). (b) Data received at (1500,6.0)
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(a)

(b)

Figure 6: (a) Red solid: exact source wavelet. Blue dots: approximated source wavelet using equation (16).
(b) Red solid: wavelet using equation (16), approximate source. Blue dots: Approximate source wavelet using
zero trace only.
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(a) (b)

(c) (d)

Figure 7: Red solid: exact up-going field. Blue dots: predicted up-going field using approximate source
wavelet. (a) At (0,5.8). (b) At (400,5.8). (c) At (800,5.8). (d) At (890,5.8).
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(a) (b)

(c) (d)

Figure 8: (Red solid: exact up-going field. Blue dots: predicted up-going field using approximate source
wavelet. (a) At (0,5.8). (b) At (400,5.8). (c) At (800,5.8). (d) At (890,5.8)
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Figure 9: Single point source and point receiver experiment
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Figure 10: Many source experiment
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Earth

F.S .

Figure 11: Single source experiment with an array of receivers.
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