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Abstract

The coupling of the tasks of imaging and inverting seismic primaries discussed in
Innanen et al. (2004) (see also Innanen, 2003 and Innanen and Weglein, 2003), while
from a practical viewpoint running contrary to the strategy of task-separation (e.g.
Weglein et al., 2003), is valuable as a tool for the understanding of the functioning
of the series as a whole. In this paper we numerically implement the formula for
simultaneous imaging and inversion.

We begin by using the numerical implementation to discuss two basic strategies.
(1) We stabilize the addition of high-order terms with a weighted cutoff of high-
frequency/high-wavenumber portions of the series, a strategy that bears a strong re-
semblance to the so-called truncated singular value decomposition inverse methods.
This is found to be necesssary because of the reliance of the n’th term in the sub-
series’ on the n’th derivative of the input. (2) We demonstrate a candidate approach
to the compensation for bandlimited input (i.e., missing low and high frequencies),
using the “gap-filling”, or spectral extrapolation techniques that exist in the literature
for bandlimited impedance inversion. Finally, we use the analogy of the Taylor’s series
expansion of an exponential function to predict and explain the close relationship be-
tween (a) the order of the imaged/inverted model reconstruction (i.e. the number of
terms used in its computation), and (b) the frequency content of the reconstruction.
This relationship, simply put, says that a low-order truncation of the series corresponds
to a low-frequency (or smooth) reconstruction. Adding more terms adds higher fre-
quencies; this suggests the existence of a trade-off between resolution and truncation
order that may be critical in practical computation.

Simple acoustic 1D normal incidence configurations for the numeric examples are
used in order to make simple comments on the broad nature of various subseries, and
the computation of truncated versions thereof. We expect these comments, although
based on simplistic examples, to apply in their essence (although no doubt with some
variation in detail) to more complicated instances of inverse scattering series algorithms
(i.e., multidimensional, elastic generalizations), because of their reliance on the same
basic math-physics formalism.

1 Introduction: Models and Numerical Issues

In Innanen et al. (2004), we investigated the derivation and properties of the quantity
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In this section, we begin the investigation into the numerical computation of

αSII(z) =
N

∑

n=1

α
(n)
SII(z). (3)

1.1 Synthetic 1D Models, Data and Born Approximations

In this section we use some simple Earth models to exercise the numerical computation
of equation (3). We begin by generating 1D models, pathologically designed so that, at
the last value of the discrete z vector, the integral of α1(z) is approximately zero, which
avoids having the end of the signal behave like a strong reflector. This is done with no loss
of generality, since any data set can have such an addendum included beyond the deepest
point of interest. The first such model has 4 wavespeeds, the reference c0 = 1500m/s, and
c1 = 1600m/s, c2 = 1650m/s, c3 = 1467m/s. (This last wavespeed value ensures that the
above constraint holds.) These latter 3 wavespeeds correspond to layers which begin at
depths 300m, 500m, and 700m respectively.

This model is used to generate full-bandwidth data (D(z) at pseudo-depth z), then the
Born approximation α1(z), and its integral, which we refer to as H{α1}. These are plotted
respectively in Figure 1. This same process is carried out on a suite of Earth models,
each having been chosen for (i) simplicity, and/or (ii) high-contrast, and/or (iii) somewhat
complex structure. Table 1 details the models used.

1.2 Brute Implementation

We begin by “naive” application of the formula. The first term returns α1. The result
of computing and adding-in the second and third terms is seen in Figure 2. The figure is
organized as follows: the top panel (a) is the synthetic data; below this (b) consists of two
functions, the Born approximation α1(z) (dashed), and the true perturbation α(z) (dotted).
The required tasks of the inverse series are clear: the inversion must correct the amplitudes,
and the imaging must correct the locations. In other words, the inversion must make the
dashed be the same as the dotted in the up-down direction of the plots, and the imaging must
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Figure 1: Synthetic data (a) corresponding to Model 1 in Table 1 and its integrals; the Born approximation
α1(z) is in (b), and its integral H {α1} is in (c). This last is the main ingredient in computing the coupled
imaging and inversion. All three plots are against pseudo-depth z (m).

Depth (m) Model 1 (m/s) Model 2 (m/s) Model 3 (m/s) Model 4 (m/s)

300-500 1600 1600 2000 2000
500-700 1650 1650 1700 2200
700-750 1467 1600 1422 1423
750-800 – 1570 – –
800-870 – 1530 – –
870-910 – 1500 – –
910-∞ – 1454 – –

Table 1: All Earth models used in the following imaging/inversion examples. All have reference media
(z < 300m) characterized by wavespeed c0 = 1500m/s. Model 2 has structure deeper than the others: the
dash – signifies that the model remains constant at the last given wavespeed value. For instance, Model 1 is
constant at 1467m/s below 700m.
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make the dashed be the same as the dotted in the left-right direction. The next panel (c)
again illustrates α1(z) (dashed), and includes the cumulative result of the terms in equation
(3) beyond the first (solid). The lower panel (d) superimposes the full inversion results, α1

+ cumulative result (solid), against the true perturbation α(z). In all figures of this kind
that follow, “added value” associated with higher order terms in the series is demonstrated
by having the plots in (d) become close to one another.

One can see the disturbances created by the series at the discontinuities – clearly more terms
are needed to correct the location of the discontinuities. It is interesting to note that, by the
third term, the amplitude correction (inversion) has come, visually, close to accomplishing
its task; away from the discontinuities, and following the Born structure of the model, the
layers have found their desired amplitude.
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Figure 2: The third-order correction from equation (3), using Model 1 from Table 1. (a) Data input; (b)
Born approximation (dashed) vs. true perturbation (dotted); (c) Born approximation (dashed) vs. second-
order correction (solid); (d) sum of Born approximation and correction (solid) vs. true perturbation. The
inversion task is close to being done.

Continuing with the naive application of equation (3), compute the fourth term and add.
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This is plotted in Figure 3. Clearly the discontinuities on the higher derivative operators
quickly create large oscillations over the whole signal. Shortly hereafter the sum “blows up”.
Something more sophisticated is required.

200 300 400 500 600 700 800
−0.1

0

0.1

D
(z

)

200 300 400 500 600 700 800

−0.2

0

0.2

200 300 400 500 600 700 800

−0.2

0

0.2

In
ve

rs
io

n
  
R

e
su

lts

200 300 400 500 600 700 800

−0.2

0

0.2

Pseudo−depth z (m)

b 

c 

d 

a 

Figure 3: The cumulative sum up to fourth order from equation (3), using Model 1 from Table 1. (a) Data
input; (b) Born approximation (dashed) vs. true perturbation (dotted); (c) Born approximation (dashed) vs.
second-order correction (solid); (d) sum of Born approximation and correction (solid) vs. true perturbation.
Divergence occurs shortly hereafter.

1.3 Stabilizing the n’th Derivative

The uncontrolled oscillation of the unstable cumulative sum suggests that it is the high-
frequency portions of the derivative operators which cause the problem. A simplistic regu-
larization, amounting to a smoothed cutting-off of the highest frequencies, allows resolution
to be traded-off for stability. The regularization works as follows. Windows in the k domain
are constructed by convolving a gate function with a Gaussian; such a window is there-
fore defined with two parameters, the variance of the Gaussian, and the width of the gate.
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The latter controls the frequency cut-off, and the former controls the smoothness of the
“shoulders” of the cutoff. Figure 4 illustrates these windows.
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Figure 4: Four plots of regularization windows in the k domain for various parameters. A low variance
Gaussian convolved with narrow gate is illustrated (a) vs. wide gate (b) as is a high variance Gaussian
convolved with narrow gate (c) vs. wide gate (d). Character of the ensuing regularization may be altered by
changing these parameters to suit specific situations.
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Figure 5: Regularized derivative operators in the k domain (solid) vs. un-regularized operators (dotted).
(a) d/dz, (b) d2/dz2, (c) d3/dz3, and (d) d4/dz4. “Levels” of regularization are dictated by the window
parameters (see Figure 4).

In these numerical examples the derivatives are computed in the wavenumber domain. Figure
5 illustrates the un-regularized (dotted) and regularized derivative operators (solid) for orders
1 through 4.

Since the n’th derivative is a linear, space invariant operation, its Fourier domain represen-
tation is equivalent to a singular value expansion. A weighted suppression of the Fourier
coefficients of the operator at high frequency is therefore equivalent to stabilization via trun-
cated singular value decomposition, in the parlance of linear inverse theory.

1.4 Numerical Examples of Simultaneous Imaging and Inversion

Using a sharp truncation (i.e. low variance) and a window that cuts off the high-frequency
portion of the derivative operators on either end of the spectrum, we proceed to compute
≈ 100 terms in the series of equation (3) for the same input. The results are in Figure 6.
The regularization parameters must be chosen for each example; we did this by trial and
error for these examples.

Clearly much of the character of the true model is captured here – see the additional examples
in Figures 7 – 9. The main deviation is in the large contrast examples, in which inaccuracy
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Figure 6: The cumulative sum of ≈ 100 terms from equation (3), using Model 1 from Table 1. (a) Data
input; (b) Born approximation (dashed) vs. true perturbation (dotted); (c) Born approximation (dashed) vs.
(solid); (d) sum of Born approximation and correction (solid) vs. true perturbation. Using a low-variance
Gaussian and a gate that cuts the derivative operator off on each end of the spectrum, 100 terms from
equation (3) are computed and summed. Results capture closely the desired result.

in the imaging (reflector location) appears. In these examples, as evidenced by the poorer
resolution, the derivative operators must also be more aggressively regularized (truncated);
however, the missing bandwidth does not explain the inaccuracy. It is reasonable to postu-
late that it is due to the missing higher order imaging terms in the approximation; indeed
there was earlier evidence that the partial nature of this scheme meant inaccuracy at higher
reflection coefficients.

318



Coupled imaging/inversion: numerics MOSRP03

200 300 400 500 600 700 800 900 1000
−0.05

0

0.05

D
(z

)

200 300 400 500 600 700 800 900 1000

−0.2

0

0.2

200 300 400 500 600 700 800 900 1000

−0.2

0

0.2

In
ve

rs
io

n
 R

e
su

lts

200 300 400 500 600 700 800 900 1000

−0.2

0

0.2

Pseudo−depth z (m)

a 

b 

c 

d 

Figure 7: The cumulative effects of ≈ 100 terms from equation (3), using Model 2 from Table 1. (a) Data
input; (b) Born approximation (dashed) vs. true perturbation (dotted); (c) Born approximation (dashed)
vs. correction (solid); (d) sum of Born approximation and correction (solid) vs. true perturbation. Using
a low-variance Gaussian and a gate that cuts the derivative operator off on each end of the spectrum, 100
terms from equation (3) are computed and summed. Results capture closely the desired result.
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Figure 8: The cumulative effects of ≈ 100 terms from equation (3), using Model 3 from Table 1. (a) Data
input; (b) Born approximation (dashed) vs. true perturbation (dotted); (c) Born approximation (dashed)
vs. correction (solid); (d) sum of Born approximation and correction (solid) vs. true perturbation. Using a
low-variance Gaussian and a gate that cuts the derivative operator off on each end of the spectrum, 100 terms
from equation (3) are computed and summed. Results capture closely the desired result, but some inaccuracy
in the high-contrast correction is noticed.
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Figure 9: The cumulative effects of ≈ 100 terms from equation (3), using Model 4 from Table 1. (a) Data
input; (b) Born approximation (dashed) vs. true perturbation (dotted); (c) Born approximation (dashed)
vs. correction (solid); (d) sum of Born approximation and correction (solid) vs. true perturbation. Using
a low-variance Gaussian and a gate that cuts the derivative operator off on each end of the spectrum, 100
terms from equation (3) are computed and summed. Results capture closely the desired result, but greater
inaccuracy in the high-contrast correction is noticed.
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2 Noise and Bandlimitation

In this section we consider two key departures of real-world problems of seismic processing
from theory: noise and bandlimitation.

2.1 Robustness to Incoherent Noise

It has been mentioned that, in principle, equation (3) should be unstable, and, indeed, it has
been found that the derivative operators require high-frequency truncation, more-so with
greater model contrast. Once this has been accomplished the recovered models capture the
sharpness of the contrasts admirably, through the computation of ≈ 100 terms. These results
apply for full bandwidth data with no noise. In the next section we will address the problem
of bandlimitation. Here we consider the results in the presence of varying levels of additive
incoherent (Gaussian) noise.

Consider the example of Figure 7. Three realizations of Gaussian noise (with variance of
approximately %1 of the data amplitudes) are added to the data, and the imaging/inversion
terms are recomputed using the

∫ z

0
α1(z

′)dz′ that comes from integrating the noisy data.
Figures 10 – 12 contain the results.

The results are clearly deteriorated by the presence of noise – in fact, realization to realiza-
tion the same level of noise can produce quite different results. Both the location and the
amplitude of the correction are corrupted, but a qualitative conclusion is that the inversion,
or amplitude results are the most sensitive. In all cases the imaging component, i.e. the
movement of the reflectors, still marks a great improvement over the Born approximation.

The quality of these Earth models, recovered in the presence of noise, is heartening in the
sense that one might expect the smallest amount of noise to render computation of equation
(3) completely unstable. Nevertheless, it is clear that a very high-fidelity estimate of α1 will
be of tremendous value. The estimation of such an input might include edge-preserving noise
reduction strategies, as well as (presumably) low frequency/wavenumber filling strategies.
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Figure 10: The data used to generate Figure 7 is corrupted with %1 noise, and the imaging/inversion results
are recomputed. Organization of results is as in Figure 7. This is the first of three realizations.
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Figure 11: The data used to generate Figure 7 is corrupted with %1 noise, and the imaging/inversion results
are recomputed. Organization of results is as in Figure 7. This is the second of three realizations.
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Figure 12: The data used to generate Figure 7 is corrupted with %1 noise, and the imaging/inversion results
are recomputed. Organization of results is as in Figure 7. This is the third of three realizations.
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2.2 Spectral Extrapolation: Computing α1 from Bandlimited Data

There are some striking computational similarities between these inverse scattering subseries
methods and other well-studied problems of inversion of seismic wave field measurements. In
particular, at its core are integral operations on a quantity which ideally should be realized
over a full band of frequencies, including a DC component. Since this quantity is based on
wave field measurements which are unavoidably bandlimited, however, it too is bandlimited
in practice. The consequences to the output of the subseries requires study.

As with seismic inverse methods such as impedance inversion, methods for extension of the
spectrum to zero frequency do exist. In this section an investigation of the applicability of
such methods to our various subseries, in their current 1D incarnations, is presented. We
show some specific results and their application to examples akin to those previously pre-
sented; but the idea here is to broadly propose the use of a framework, long in the literature
(see below for references), for tackling the important problem of bandlimited inversion.

A measured signal, wavelet deconvolved, may be assumed to be the bandlimited expression of
some reasonably simple full-bandwidth signal type. An example might be a series of lagged
and scaled delta functions, i.e. a reflectivity series. The spectrum of the measured signal –
which is the full bandwidth spectrum multiplied by a gate function – can be extended, in
principle uniquely, guided by this assumption.

The calculation of α1 is linear inversion, and with the right assumptions it is equivalent to
1D inversion for acoustic impedance. So the root of the low-frequency trouble is in essence
the same for the inverse series as it is for impedance inversion; strategies for coping with this
lack in impedance recovery may therefore by readily applicable in the 1D normal incidence
inverse series examples presented here.

Basic Concepts of Bandlimited Impedance Inversion

We begin by discussing spectral extrapolation proper, as part of a brief review of methods
for bandlimited inversion. A delta function in the time domain has a complex sinusoid as a
spectrum. The frequency of this sinusoid is uniquely determined by the lag of the delta func-
tion. Since a sinusoid with additive noise is adequately described with autoregressive (and
correctly modelled with ARMA) models, a spectrum of this kind that has been bandlimited
can be effectively predicted and therefore extended beyond the bandwidth. Larger order
ARMA and AR models may, further, predict the summation of many sinusoids (of different
frequencies), and therefore extend the spectra of bandlimited delta series with many varied
lags. Consider the reflectivity series that is this sum of delta functions, following Walker and
Ulrych (1983):

r(t) =
∑

k

bkδ(t − k∆), (4)
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where bk are the reflectivity coefficients and ∆ is the time interval of the experiment. The
Fourier transform, or the spectrum of the reflectivity, R(f), is:

R(f) =

∫

∞

−∞

e−i2πft

[

∑

k

bkδ(t − k∆)

]

dt

=
∑

k

bke
−i2πfk,

(5)

if ∆ is set to unity. So the R(f) is this sum of weighted complex sinusoids. With a finite
bandwidth, the data R(f) may be extended to the lower (and, to some extent, the higher)
frequencies via a prediction scheme. Although the noisy sum of sinusoids is correctly mod-
elled via an ARMA model, Walker and Ulrych (1983) recommend, rather, a truncated AR
prediction approach as being more stable.

An autoregressive process has a predictable part and an unpredictable, or innovational, part.
That is, the j’th element of a series yj can be written as a linear combination of previous
elements, plus an error (innovation) term:

yj =

p
∑

k=1

akyj−k + ej, (6)

or

yj = −

p
∑

k=1

gkyj−k + ej, (7)

where gk = −ak and g0 = 1 are the coefficients of the prediction error filter. With knowledge
of the variance of the error ej (σe), and having in some appropriate way computed the
autocorrelation matrix of yj (Ryy), the prediction error filter g is found by solving the
system

Ryyg = σ2
e i, (8)

where i = [1, 0, 0, ..., 0]T and g and Ryy etc. all have complex elements.

Associating bandlimited R(f) with yj, the filter g may be applied to existing values of R(f)
to produce an extended spectrum data point, one discrete frequency step closer to zero. This
point is thereafter treated as an existing value of the reflectivity spectrum, and the process
is repeated.

Spectral extension, which is essentially extrapolation via a difference equation, has a growing
error in practical application as it predicts further from the known data values. There is in
fact an overall tendency of extended spectra to decay. This can be avoided by an efficient
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alternate form of prediction based on the gap-filling algorithms of Wiggins (1972), in which
the existence of known data values on both sides of the unknown region is utilized to avoid
such accumulating error. Since, by conjugate symmetry, the negative frequencies are also
known, the missing lower frequencies may be thought of as such a gap, on either side of
which are known data. An unknown point in the spectrum is considered to be the weighted
sum of predictions from the “left” and from the “right” data sets (and in which the weights
are determined by minimizing the overall prediction error). Walker and Ulrych (1983) and
Ulrych and Walker (1984) show that a scheme of this kind finds all the missing data points
(of the discrete spectrum) at once. One may extend to high frequencies in the same way,
although, since the high frequency gap is considerably larger than the low frequency one,
the predictions will be more highly attenuated.

The problem may, secondly, be addressed by utilizing the formalism of inverse theory (Olden-
burg, 1984; Oldenburg et al., 1983); the approach adopted here is the work of Ulrych (1989),
which uses an entropic norm to solve for the whole spectrum with the existing spectrum as
the input. The bandlimited signal is viewed as being non-unique, in the sense that an infinite
number of models (i.e. time-domain signals) may be Fourier transformed and bandlimited to
produce the data (i.e. the bandlimited Fourier transform). The method incorporates prior
information garnered from the data (usually a threshold) as a constraint, which directs the
model “choice”, from the set of allowable models, to be that which is sparse, or spike-like.
In such models the low and high frequencies tend to be present.

Either of the two approaches discussed above is well-suited to the task of estimating the
expected form of the full-bandwidth Born approximation. In the examples to follow, the
latter is used, simply because it tends to estimate the high frequencies of the spectrum with
greater accuracy.

Numerical Examples Using Bandlimited Data

In Figure 13, detail of the filled data is given close to a single reflection. The top panel (a)
is the full bandwidth data, the second panel (b) is the bandlimited equivalent (assuming
∆t = 0.004s, these examples correspond to a band of 10–50Hz), the third is the spectrally-
extrapolated output, and the fourth is a detail (zoom) of the extrapolated (solid) pulse vs.
the full bandwidth pulse (dashed).

In Figure 14, the results of Figure 7 are re-computed using spectrally-extrapolated estimates
of the data, with only bandlimited traces as input. Further panels are added to the top of
this figure; first is the bandlimited data, below that is the filled data, and below that are the
panels illustrating the inversion/imaging as previously used.

In Figures 14 and 15, the relatively spatially-complex data example and the high-contrast
data example, both bandlimited are shown to respond very well to the spectral-extrapolation
pre-processing.

Of course, these examples have not specifically pushed the limits of spectral extrapolation
technology. The key is to, in some quantitative way, address the issue of bandlimitation
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in these non-linear inversion schemes. The value of these examples is in the demonstra-
tion of working methods for compensating, often via some reasonable prior knowledge, for
imperfections of the seismic experiment.
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Figure 13: Detail of the filled data is given close to a single reflection. (a) full bandwidth data, (b) the
bandlimited equivalent, (c) spectrally-extrapolated output, and (d) detail of the extrapolated (dashed) pulse
vs. the full bandwidth pulse (solid).
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Figure 14: Simultaneous imaging and inversion as applied to Model 2 from Table 1 is repeated on spectrally-
extrapolated estimates of the data, using only bandlimited traces as input. Further panels are added to the
top of this figure (a) the input bandlimited data, (b) the spectrally-extrapolated (recovered) full-bandwidth
data, (c) Born approximation (dashed) vs. true perturbation (dotted); (d) Born approximation (dashed) vs.
second-order correction (solid); (e) sum of Born approximation and correction (solid) vs. true perturbation.

330



Coupled imaging/inversion: numerics MOSRP03

100 200 300 400 500 600 700 800 900
−0.4
−0.2

0
0.2

D
(z

) 
B

a
n

d
lim

ite
d

100 200 300 400 500 600 700 800 900
−0.4
−0.2

0
0.2

D
(z

) 
R

e
co

ve
re

d

100 200 300 400 500 600 700 800 900
−0.5

0

0.5

1

100 200 300 400 500 600 700 800 900
−0.5

0

0.5

1

100 200 300 400 500 600 700 800 900
−0.5

0

0.5

1

Pseudo−depth z (m)

In
ve

rs
io

n
 R

e
su

lts

a 

b 

c 

d 

e 

Figure 15: Simultaneous imaging and inversion as applied to Model 4 (high contrast) from Table 1 is repeated
on spectrally-extrapolated estimates of the data, using only bandlimited traces as input. Further panels are
added to the top of this figure (a) the input bandlimited data, (b) the spectrally-extrapolated (recovered) full-
bandwidth data, (c) Born approximation (dashed) vs. true perturbation (dotted); (d) Born approximation
(dashed) vs. second-order correction (solid); (e) sum of Born approximation and correction (solid) vs. true
perturbation.
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3 The Relationship Between Order and Frequency Con-

tent

In low-order truncations of the simultaneous imaging and inversion subseries there occurs
an “explosion” in the depth domain – uncontrolled high-amplitude oscillation of the recon-
struction (see for example Figure 3). After the addition of many terms, this oscillation can
be seen to “settle down” upon the desired reconstruction. (This characteristic evolution-
with-order is also true of the leading order imaging subseries.) It is tempting to ignore this
behaviour prior to convergence, since it appears to be uninterpretable. Here we investigate
the numerical convergence issues of the simultaneous imaging and inversion subseries using
some simple Taylor’s series examples as a guide. The result is an analytical/numerical frame-
work within which to better understand the seemingly unstable order-by-order behaviour of
subseries that locate reflectors.

We know that the n’th term in the simultaneous imaging and inversion subseries (and the
leading order imaging subseries) involves the n’th spatial derivative of an input. We may
therefore make the very loose mathematical comment that, in the wavenumber domain,
terms in the series will involve increasing powers of (ik):

αSII(k) ≈ ... + (ikC)nG(k) + ... (9)

and also some function G(k), and some constant C. Since we have chosen the true model in
these tests, we also know something about what we are constructing; namely, discontinuous
functions that correct spatial locations of reflectors and their amplitudes (in this case the
discontinuous functions are Heaviside functions). In the wavenumber domain, then, the
reconstruction will be an exponential function with a wavenumber-dependent weight, so
again loosely:

αSII(k) ≈ F (k)eikC (10)

where F (k) is the weighting function.

In other words, the simultaneous imaging and inversion process is very similar to the Taylor’s
series expansion of an exponential function about zero, i.e. involving an infinite series of
polynomials:

ex = 1 − x +
1

2
x2 −

1

3!
x3 + ..., (11)

where we interpret the argument x in our case as being ikC.

Since our imaging/inversion goal is to construct these corrective, discontinuous signals nu-
merically over a finite wavenumber interval, the correct analogy is that of constructing ex

over some fixed interval x = (0, xmax). In Figure 16, we estimate the (better behaved)
function e−x over such a fixed interval for a number of orders.
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The evolution of the approximation with truncation order is straightforward: for each suc-
cessive term added, the approximation is made accurate (i.e. it converges) over a larger
interval of x. Beyond this region of convergence the approximation diverges at a rate of xn

for a truncation at the n’th term.
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Figure 16: Taylor’s series approximation of e−x over a fixed interval; six approximations, 0’th–3’rd, followed
by 9’th and 17’th. As more terms are added, the approximations converge over a lengthening interval of x.

Applying this thinking to the simultaneous imaging and inversion subseries (and by associa-
tion the general nature of the inverse scattering series terms for processing and inversion of
primaries), we recognize that there is an implied relationship between the convergent band-
width of the reconstruction and the order at which the series construction is truncated. To
wit: since the interval of construction (of exponential-like models) is in the k domain, we can
expect the series to converge, with added terms, over a growing wavenumber interval. To
demonstrate, we include in Figures 17 – 21 numeric examples of the reconstruction of αSII

in the k domain (Figure 17a etc.). Although the signal in the k domain is somewhat more
complicated than e−x in the x domain, the evolution across increasing truncation orders is
seen to behave very similarly, with an increasing interval of convergence in k. As a final
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step for each example (i.e. after each summation is complete), we manually suppress the
divergent frequencies from each example, inverse Fourier transform, and display the result
(Figures 17b, c – 21b, c). The reconstructions go from smooth to sharp as we move from
low-order to high-order truncation.

The direct relationship between the frequency content of the reconstruction is in this way
made more apparent to the eye (more apparent, that is, than if we had left in the dominant
but uninformative divergent portions of the spectra) and the approximation order of the
model. This insight may be of use as it implies a possible tradeoff that can be made between
the resolution of the reconstruction and the number of terms used (which in more realistic
instances could have very important computational consequences). It has not escaped the
authors’ attention that the very bandwidth extrapolation methods discussed in this paper
(to deal with missing low frequency data) may be applicable in such series computations
to reduce the number of terms needed: i.e., the series terms might be used up to a certain
order, beyond which the remaining signal on the k interval may be “predictable” in the sense
of bandwidth extrapolation. This remains speculative.
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Figure 17: Truncated computation of αSII(z), order 5: (a) in the wavenumber domain, the construction
appears to diverge rapidly with larger k; (b) and (c) manually suppressing the divergent wavenumbers and
inverse Fourier transforming, we see that the correction is present but highly smoothed when compared to the
true perturbation (dotted) and the input Born approximation (dashed).
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Figure 18: Truncated computation of αSII(z), order 10: (a) in the wavenumber domain, the construction
appears to diverge rapidly with larger k, although less so at lower k than for order 5; (b) and (c) manu-
ally suppressing the divergent wavenumbers and inverse Fourier transforming, we see that the correction is
somewhat less smoothed when compared to the true perturbation (dotted) and the input Born approximation
(dashed).
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Figure 19: Truncated computation of αSII(z), order 20: (a) in the wavenumber domain, the construction
can now be seen to be non-increasing over a wider interval of k than in the 5’th and 10’th order truncations;
(b) and (c) manually suppressing the divergent wavenumbers and inverse Fourier transforming, we see that
the correction is concurrently becoming “sharper” when compared to the true perturbation (dotted) and the
input Born approximation (dashed).

337



Coupled imaging/inversion: numerics MOSRP03

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

−30

−20

−10

0

10

Wavelength k

200 300 400 500 600 700 800 900 1000

−0.2

−0.1

0

0.1

0.2

200 300 400 500 600 700 800 900 1000

−0.2

−0.1

0

0.1

0.2

Pseudo−depth z (m)

a 

b 

c 

Figure 20: Truncated computation of αSII(z), order 40: (a) in the wavenumber domain, the construction can
now again be seen to be non-increasing over a wider interval; (b) and (c) manually suppressing the divergent
wavenumbers and inverse Fourier transforming, we see again that the correction is concurrently becoming
“sharper” when compared to the true perturbation (dotted) and the input Born approximation (dashed).
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Figure 21: Truncated computation of αSII(z), order 80: (a) in the wavenumber domain, the construction can
now again be seen to be non-increasing over a wider interval; (b) and (c) manually suppressing the divergent
wavenumbers and inverse Fourier transforming, we see again that the correction is concurrently becoming
“sharper” when compared to the true perturbation (dotted) and the input Born approximation (dashed).
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4 Conclusions

We consider some basic numeric issues associated with the computation and interpretation
of a subseries that is involved with both imaging and inversion of seismic primaries. The
subseries and the computations are concerned with the simple 1D normal incidence acoustic
problem.

The raw computation of truncated versions of the subseries are shown to produce unstable
results, a problem that may be overcome through the use of approximate derivative opera-
tors whose highest frequency components are suppressed. The operator approximations are
designed to accommodate differing contrasts in the data and – we show – incoherent noise.

We also demonstrate the use of a form of spectral extrapolation that exists in the literature
ostensibly for bandlimited impedance inversion. This methodology, on the assumption of
delta-like data events, extrapolates from existing bandwidth intervals to missing intervals.
We show with some simple examples the application of this approach to the computation
of the Born approximation – filling in the low frequencies of the linear result provides a
full-bandwidth input to the higher order terms in the series.

Finally, we consider the numerics of truncated model estimates from the imaging-inversion
subseries; we demonstrate the relationship between truncation order and frequency/wavenumber
content of the constructed model using a simple Taylor’s series expansion of an exponential
function as a guide.

The purpose of this work is to sketch out some of the basic numerical issues at the core of
the inverse scattering subseries’ for the imaging and inversion of primaries. The expectation
is that some or all of the issues encountered here will be visited on inverse scattering series-
based computations in higher dimensions and for more complicated models; further, that
some of the strategies developed for these simple instances might be extended (also to higher
dimensions and greater complexity).
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