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SUMMARY

The Inverse Scattering Series (ISS)
internal-multiple-attenuation algorithm is often called
upon due to its unique and unmatched ability to attenuate
internal multiples. It can predict internal multiples (accurately
in time and approximately in amplitude) that are generated
by any reflectors below the free surface without needing
sub-surface information. While this algorithm is the
most capable algorithm currently available for attenuating
internal multiples, there are an increasing number of
offshore and onshore circumstances where the problem
of removing internal multiples is beyond the current ISS
internal-multiples-attenuation algorithm’s ability to address.
For example, an open issue and specific problem is removing
internal multiples which are proximal to or interfering with
the primaries (Weglein et al., 2011). This invites us to pursue
solutions that can address this type of challenge. Recent
work by Herrera and Weglein (2013) and Zou and Weglein
(2013) extend the current ISS internal-multiple-attenuation
algorithm to the ISS first-order internal-multiple-elimination
algorithm. Ma et al. (2011) and Liang et al. (2013) show the
spurious predictions (events that do not exist in the data) that
the current ISS internal-multiple-attenuation algorithm can
produce when the input data are generated by three or more
reflectors, and internal multiples in the input data are treated
as subevents. That spurious event issue is only a problem
for the ISS leading-order term (the term used to derive
the current ISS internal-multiple-attenuation algorithm),
specific higher-order terms from ISS will remove those
spurious events. We develop the new higher-order ISS
internal-multiple-attenuation algorithm and show examples
of how it can effectively address that limitation (spurious
predictions) of the current ISS internal-multiple-attenuation
algorithm while at the same time retaining the current
algorithm’s recognized strengths.

INTRODUCTION

The Inverse Scattering Series is a comprehensive seismic
data-processing tool from which distinct task-specific
subseries can be isolated to perform specific tasks (Weglein
et al., 2003). For example, the current ISS leading-order
internal-multiple-attenuation algorithm was first developed
by Araujo et al. (1994) and Weglein et al. (1997) from
the ISS internal-multiple-attenuation subseries. The
strengths (always present independent of the circumstances
and complexity of the geology and the play) of the ISS
internal-multiple-attenuation algorithm are: (1) this algorithm
does not need any sub-surface information for predicting the
internal multiples, and (2) all first-order internal multiples
generated by any reflectors below the free surface are predicted

at once with accurate time and approximate amplitude. The
tests on ISS internal-multiple-attenuation algorithm have
shown promising results and unique value compared with
other multiple-suppression methods (Fu et al., 2010; Hsu
et al., 2010; Andre, 2011; Terenghi et al., 2011; Luo et al.,
2011; Weglein et al., 2011; Kelamis et al., 2013). However,
Weglein et al. (2011) point out limitations of the current ISS
internal-multiple-attenuation algorithm: (1) this algorithm is
always an attenuation algorithm, and (2) spurious predictions
can occur only if there are three or more reflectors, and
internal multiples in the input data are treated as subevents.

It should be mentioned that those two limitations will not
always matter. For example, in the cases in which there
are several strong internal-multiple generators, and primaries,
internal multiples and spurious events are isolated from each
other, the current ISS internal-multiple-attenuation algorithm,
combined with the energy-minimization adaptive subtraction
methods, will remove internal multiples and spurious events
completely.

However, there are times when those two limitations
do matter. For example, in some offshore (e.g., North
Sea) and most on-shore (e.g., Middle East) plays with
many internal multiple generators, internal multiples
will be proximal to or interfere with primaries, the
current ISS internal-multiple-attenuation algorithm plus
energy-minimization adaptive subtraction methods will not
remove internal multiples and spurious predictions. In these
circumstances, a complete internal-multiple-elimination
algorithm without spurious predictions is called upon.

In this paper, we will focus on addressing the second limitation
(i.e., spurious predictions) and exemplifying that including the
higher-order terms for addressing the spurious prediction will
provide added values and better prediction results.

AN OVERVIEW OF THE ISS LEADING-ORDER
INTERNAL MULTIPLE ATTENUATION ALGORITHM

We refer the current ISS internal-multiple-attenuation
algorithm as ISS leading-order internal-multiple-attenuation
algorithm (leading-order means this algorithm predicts
internal multiples with the exact time but approximate
amplitude). This algorithm starts with the input data,
D(kg,ks,ω), in 2D, which are the Fourier transform of the
deghosted prestack data, and with the wavelet deconvolved
and direct wave and free-surface multiples removed. The
second term is the prediction of the first-order internal
multiples. In a 2D earth, this prediction is (Weglein et al.,
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2003)
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i for i ∈ {g,s} (ω is the temporal

freqency); zs and zg are source and receiver depths; and z j
(i ∈ {1,2,3}) represents pseudo-depth by using a reference
velocity migration. The quantity b1(kg,ks,z) corresponds to
an uncollapsed migration (Weglein et al., 1997) of effective
plane-wave incident data.

The data with their first-order internal multiple attenuated are

D(kg,ks,ω)+D3(kg,ks,ω), (2)

where b3(kg,ks,ω) =−2iqsD3(kg,ks,ω).

For a 1-D earth and a normal incident plane wave, equation 1
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The deghosted data, D(t), for an incident plane wave, satisfy
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Equation 2 then reduces to

D(t)+D3(t), (4)

where D3(t) is Inverse Fourier transform of D3(ω), and
D3(ω) = b3(

2ω
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), where k = 2ω

c0
.

The idea behind using equation 1 or equation 3 to predict
the first-order internal multiple is to treat primaries (events
that experience only one upward reflection) in the data
as subevents, and to combine different subevents that
satisfying the “ lower(A)-higher(B)-lower(C) ” requirement in
the pseudo-depth domain (see Figure 1).

We denote the three primary-subevents combination as
“PPP ”, where P stands for primary. Equation 1 or equation
3 can predict all first-order internal multiples without needing
any subsurface information, and those predicted internal
multiples will have an accurate time and an approximate
amplitude. Its limitations (e.g., spurious predictions) and
resolutions are pointed out in in Weglein et al. (2011). In the
next section, we will briefly review the generation of those
spurious predictions and the proposed algorithms to reduce
them (Ma et al., 2011; Liang et al., 2013).

Figure 1: Combination of subevents for the first-order
internal multiple (dashed line), (SABE)time + (DBCR)time −
(DBE)time = (SABCR)time, figure adapted from Weglein et al.
(2003)

Figure 2a: In a two-reflector example, a “Primary – Primary –
Internal multiple (PPI)” combination predicts a second-order
internal multiple.

THE HIGHER-ORDER MODIFICATION OF THE
ISS INTERNAL-MULTIPLE LEADING-ORDER
ALGORITHM

The work of Araujo et al. (1994) and Weglein et al. (1997)
focuses on the analysis of the leading-order prediction of
first-order internal multiples (i.e., equation 1) by treating
primaries in the data as subevents (see Figure 1). However,
data consist of both primaries and internal multiples. Hence,
when the data are input into equation 1, the internal multiples
are inevitably also treated as subevents. When both primaries
and internal multiples are treated as subevents,

b3 = b1 ∗b1 ∗b1

= (P+ I)(P+ I)(P+ I)

= PPP+PPI +PIP+ IPP+PII + IPI + IIP+ III, (5)

where ∗ stands for the nonlinear interaction between the
data (see equation 1), and P and I stand for primaries and
internal multiples. Notice that we use the above expression
to categorize different possible subevent combinations.

When internal multiples are treated as subevents, Zhang
and Shaw (2010) use a two-reflector model to show that a
second-order internal multiple can be predicted (see Figure
2a); Ma et al. (2011) and Liang et al. (2013) use three-reflector
and four-reflector examples to show that spurious events are
generated, respectively (see Figures 2b and 2c).

It is worth noting that because of the “lower-higher-lower”
requirement of the algorithm (see Figure 1), the spurious event



A higher-order modification of current ISS leading-order internal multiple attenuation algorithm

Figure 2b: In a three-reflector example, a “Primary – Internal
multiple – Primary (PIP)” combination predicts a spurious
event.

Figure 2c: In a four- reflector example, a “Primary – Primary
– Internal multiple (PPI)” combination predicts another type
of spurious event.

in Figure 2b (i.e., P3–I212–P3), can be generated only when the
arrival time of the third primary (P3) is greater than that of the
internal multiple (I212). Otherwise, this spurious event would
not be produced.

In Figure 2c, the condition for the prediction of spurious event
(i.e., P4–P3–I212) is that the arrival time of the third primary
(P3) is smaller than that of the internal multiple (I212).

In order to eliminate the prediction of spurious events, we must
remove the effects of internal multiples acting as subevents.
The higher-order terms from ISS are isolated to address the
two types of spurious events shown in 2b and 2c:
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where b1(z) is the same as in equation 3, and
b3(z) =

∫
∞

−∞
eikzb3(k)dk. The superscripts PIP and PPI

in equations 6 and 7 indicate that higher-order terms, bPIP
5

and bPPI
5 , are included to address the spurious prediction

generated by Primary–Internal multiple–Primary and
Primary–Primary-Internal multiple, respectively. The
factor of 2 is used in equation 7 because an internal multiple
can act as a subevent in either the innermost integral or the
outermost integral.

By including the higher-order terms in equations 6 and 7, the
proposed new algorithm in 1-D is

D(t)+D3(t)+DPIP
5 (t)+DPPI

5 (t), (8)

where D(t) and D3(t) are the same as in equation 4,
and DPIP
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It should be mentioned that, in the cases where there are
only three reflectors, only DPIP

5 is needed to address PIP-type
spurious events because PPI-type spurious events arise only
when there are four or more reflectors.

1-D NORMAL INCIDENT EXAMPLES WITH
INTERFERING PRIMARIES AND INTERNAL
MULTIPLES

In this section, we test both the DPIP
5 and DPPI

5 terms by using
more realistic and practical synthetic data (generated by many
reflectors with interfering primaries and internal multiples),
compare the reference internal multiples to the prediction
results with/without the inclusion of higher-order terms.

Figure 3: Velocity model used to generate synthetic data
(courtesy of Saudi Arabian Oil Co.).

The first synthetic data are generated based on velocity model
in Figure 3 by using reflectivity method with a ricker wavelet
of peak frequency at 25 Hz .

The comparison is shown in Figure 4. When input
contains only primaries, the leading-order algorithm predicts
the first-order internal multiples very well (see Figure 4a).
The prediction result shows degradation (because of the
higher-order internal multiples and spurious events in the
prediction) when the input contains both primaries and internal
multiples (see Figure 4b). With the inclusion of higher-order
terms, the prediction result improves (see Figure 4c).

In the second test, instead of comparing the prediction results
with the reference internal multiples of first-order, we will

Figure 4a: Comparison between the reference first-order
internal multiples (in blue) and leading-order prediction (in
red) with primaries as input.
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Figure 4b: Comparison between the reference first-order
internal multiples (in blue) and leading-order prediction (in
red) with primaries and internal multiples as input.

Figure 4c: Comparison between the reference first-order
internal multiples (in blue) and leading-order plus higher-order
prediction (in red) with primaries and internal multiples as
input.

Figure 5: Velocity and density blocking from well-log data
(courtesy of Kuwait Oil Company).

compare the prediction results with the reference internal
multiples of all orders. The model (data courtesy of Kuwait
Oil Company) is shown in Figure 5 with both velocity and
density varying. We use reflectivity methods with a ricker
wavelet of peak freqency at 25 Hz to generate the test data
corresponding the model in Figure 5.

The comparison among the reference internal multiples (blue
in Figure 6), leading-order prediction (red in Figure 6a), and
leading-order plus higher-order prediction (red in Figure 6b)
are shown in Figure 6 where arrows point to the significant
improvements. Notice that the inputs for both predictions
contain primaries and internal multiples. The results show that
inclusion of higher-order terms improves the prediction results
in the cases in which events are interfering with each other.

Figure 6a: Comparison between the reference internal
multiples (in blue) and leading-order prediction (in red).

Figure 6b: Comparison between the reference internal
multiples (in blue) and leading-order plus higher-order
prediction (in red).

CONCLUSIONS

In this paper, we exemplified a serious shortcoming (i.e.,
spurious predictions) of the current ISS leading-order
internal-multiple-attenuation algorithm. We develop, test
and analyze the resolution with a new higher-order ISS
algorithm that anticipates and removes the spurious events.
This higher-order ISS internal-multiple-attenuation algorithm
retains the strengths of the current leading-order ISS
internal-multiple-attenuation algorithm and addresses one of
its limitations.

The synthetic tests on the realistic well-log based data sets in
this paper show the significance and value of including the
higher-order ISS terms to address the spurious predictions.
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Weglein, A. B., F. V. Araújo, P. M. Carvalho, R. H. Stolt, K. H.
Matson, R. T. Coates, D. Corrigan, D. J. Foster, S. A. Shaw,
and H. Zhang, 2003, Inverse scattering series and seismic
exploration: Inverse Problems, R27–R83.

Weglein, A. B., F. A. Gasparotto, P. M. Carvalho, and
R. H. Stolt, 1997, An inverse-scattering series method
for attenuating multiples in seismic reflection data:
Geophysics, 62, 1975–1989.

Zhang, H., and S. Shaw, 2010, 1-d analytical analysis of higher
order internal multiples predicted via the inverse scattering
series based algorithm: SEG Expanded Abstracts, 29,
3493–3498.

Zou, Y., and A. Weglein, 2013, A new method to eliminate first
order internal multiples for a normal incidence plane wave
on a 1d earth: SEG Technical Program Expanded Abstracts,
4136–4140.


