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SUMMARY

In this paper, the Inverse Scattering Series (ISS) internal multi-
ple attenuation algorithm is analytically and numerically eval-
uated on reflection data from an attenuating medium. All pre-
vious synthetic data tests on this algorithm have involved mul-
tidimensional acoustic and elastic media. The results for an
attenuating medium show that the method retains its value to
directly predict internal multiples (IM) with the exact phase
and an approximate amplitude, without knowing the medium,
and its anelastic properties.

INTRODUCTION

The inverse scattering series can achieve all processing objec-
tives directly by using distinct isolated task-specific subseries
and without subsurface information (Weglein et al. (2003)).
ISS internal multiple attenuator has shown stand-alone capa-
bilities on both marine and on-shore plays (e.g., Ferreira, 2011;
Fu et al., 2010). To extend attenuation method to elimination,
Zou and Weglein (2013) proposes a new algorithm to compen-
sate for transmission loss in the attenuator. This new elimina-
tion method requires the input data to be wavelet deconvolved
and assumes an elastic subsurface. Obviously, if the data are
attenuated and broadened because of their propagation in the
anelastic medium, Q compensation is the conventional step to
recover the amplitudes before substituting the data into ISS in-
ternal multiple elimination algorithm. That can be a difficult
step to effectively achieve in practice.

Q compensation based on ISS without Q information of the
subsurface has demonstrated an early but encouraging effec-
tiveness (e.g., Innanen and Weglein, 2003, 2005; Innanen and
Lira, 2008). ISS Q compensation without Q method supposes
that the input data contain primaries only, i.e., the internal mul-
tiple has been attenuated or eliminated for best before stepping
into Q compensation algorithm.

This paper demonstrates that applying the industry standard
ISS internal multiple attenuator to data from an anelastic earth
will attenuate the multiples. The data with primary and rela-
tively weak residual internal multiple can be substituted into
the ISS Q compensation algorithm to obtain effective elastic
data and then insert that data into the new elastic internal mul-
tiple elimination algorithm.

In this paper, for the first time the ISS internal multiple atten-
uator is tested on data from an attenuating medium. A two-
reflector model with constant Q in each layer is used for ana-
lytical and numerical testing and evaluation. The result indi-
cates that the prediction has the correct phase and an approx-
imate amplitude. That is positive news for the ISS internal
multiple attenuator and encourages developing an elimination

method for the exploration plays where absorption is signif-
icant, e.g., pre-salt plays in the deep water Gulf of Mexico,
off-shore Brazil, the Red Sea and the North Sea.

ANALYTICAL TEST OF ISS INTERNAL MULTIPLE AT-
TENUATION ALGORITHM ON DATA WITH Q

Q Definition

Based on Aki and Richards (2002), Q is used to represent the
energy lost for a wave-field propagating, in one wave length,
and is defined as

Q =
2πE
∆E

, (1)

where E is the energy of the wave-field, and ∆E is the energy
lost in a wavelength of propagation. With the definition of Q,
the amplitude of wave-field A along propagation direction x
can be represented as

A(x) = A0e−
ω

2cQ x, (2)

where A0 is the amplitude without an absorption influence, ω

is the angular frequency, and c is the velocity of the wave-
field. The exponentially decaying term causes the attenuation
and results in a wavelet broadening with a finite length, rather
than the original spike. It is not difficult to understand that
when Q decreases, the amplitude will decrease; on the other
hand, when Q increases to infinity, there is no absorption.

Here, we assume that Q is frequency independent. In order to
guarantee that the amplitude attenuates for negative frequency,
it is convenient to replace ω with |ω|, and then we have

A(x) = A0e−
|ω|
2cQ x. (3)

The dispersion is ignored here. That is convenient for later
analytical calculations.

Analytical Test Under 1D Normal Incidence

Following the Q definition, we can express the wave-field in
an anelastic medium analytically. In this section, the anelas-
tic data will be used as input to test the ISS internal multiple
attenuation algorithm analytically.

For 1D normal incidence, the ISS internal multiple attenuation
algorithm (e.g., Araújo, 1994; Weglein et al., 1997, 2003) can
be expressed as:

b3(kz) =
∫

∞

−∞
b1(z)eikzzdz

∫ z−ε

−∞
b1(z1)e−ikzz1 dz1∫

∞

z1+ε
b1(z2)eikzz2 dz2,

(4)



where the deghosted data, D(t), for an incident spike wave,
satisfies D(ω) = b1(2ω/c0), and b1(z) =

∫
∞

−∞
b1(kz)e−ikzzdkz,

kz = 2ω/c0 is the vertical wavenumber, and b1(z) corresponds
to an uncollapsed FK migration of the normal-incident spike
plane-wave data. ε in the formula is used to make sure the
events satisfy the lower-higher-lower relationship, and its value
is chosen on the basis of the length of the wavelet.

A two-reflector model is provided below as an example, with
the parameters listed in Fig.1, and with the depths of source
and receiver both assumed to be zero.

Figure 1: A two-reflector 1D model. P(1) and P(2) are pri-
maries from the first and the second interface, respectively; R1
and R2 are reflection coefficients; T12 and T21 are transmission
coefficients; c1 and c2 are the velocities; ρ1 and ρ2 are densi-
ties; and Q1 and Q2 are quality factors.

For a 1D model and a 1D normal-incident plane wave, two
primaries in the data D(ω) can be represented as:

P(1)(ω) = R1eiω 2z1
c1 e−|ω|

z1
c1Q1 , (5)

P(2)(ω) = T12R2T21eiω(
2z1
c1

+
2(z2−z1)

c2
)e−|ω|(

z1
c1Q1

+
z2−z1
c2Q2

)
. (6)

The dispersion effect is not considered here in order to simplify
the analytical calculation, i.e., the velocity does not change
with frequency.

After migrating the data into the pseudo depth domain to get
b1(z), we can substitute it into eqn.4. We further assume that
the two primaries are isolated and ε is chosen reasonably to
make sure there is no overlap between the two events among
the integrals. The predicted internal multiple b3(kz) can be
obtained:

b3(kz)

= (T12R2T21)
2R1eikz(z1+

2c1
c2

(z2−z1))e−|kz|(
z1

2Q1
+

c1
c2

z2−z1
Q2

)e−|kz|
z1
Q1 .
(7)

The actual first-order internal multiple in the kz domain is

IM(kz) =−T12T21R2
2R1eikz(z1+

2c1
c2

(z2−z1))e−|kz|(
z1

2Q1
+

c1
c2

z2−z1
Q2

)
.

(8)

The relation between the predicted internal multiple and the
actual internal multiple is

b3(kz) =−T12T21e−|kz|
z1
Q1 IM(kz). (9)

By using the ISS internal multiple attenuation algorithm, the
multiple can be predicted with the correct phase and an ap-
proximate amplitude.

If the data are without the influence of Q absorption, then from
Weglein et al. (2003), we can obtain the relation between pre-
dicted and actual internal multiple as

b3(kz) =−T12T21IM(kz). (10)

Comparing eqn.9 and eqn.10, it can be seen that the predicted
amplitude is less accurate for input data with Q absorption than
it is for data without Q; however, the phases are correct under
both conditions.

NUMERICAL TEST OF ISS INTERNAL MULTIPLE AT-
TENUATION ALGORITHM ON DATA WITH Q

A two-reflector 1D model (Fig.1) will be used as an example to
numerically test the effectiveness of ISS internal multiple at-
tenuator on anelastic data. The parameters are listed in Table1.

Layer
Number

Velocity
(m/s)

Density
(kg/m3)

Travel
Times (s)

Q Value

1 1500 1000 0.5 200
2 4000 1000 1.1 100
3 2000 1000

Table 1: The parameters of a two-reflector 1D model

By using the parameters of Table 1, the synthetic data involv-
ing the Q value of each layer are generalized analytically with-
out considering dispersion. The data include all the primaries
and all the first-order internal multiples.

Substituting the input data b1, shown as the blue line in Fig.2(a),
into ISS internal multiple attenuation algorithm, we can predict
internal multiple b3, shown as the red line in Fig.2(a). Actu-
ally, the red line in Fig.2(a) is -b3. It can be seen from eqn.9
that the polarity of b3 is opposite to that of the actual internal
multiple. In order to show the result more clearly, the predicted
internal multiple and the actual internal multiple are compared
in Fig.2(b). From the result, we can further establish that the
prediction result matches well in phase and approximately in
amplitude even with data from an attenuating medium, without
knowing Q absorption properties.

DISCUSSION

In this paper, the ISS internal multiple attenuation algorithm
is tested analytically and numerically using Q-influenced data,
with the conclusion that the prediction will have the correct
phase and an approximate amplitude.



(a)

(b)

Figure 2: The numerical result of ISS internal multiple attenu-
ation algorithm with anelastic data. (a): the input data b1 (blue
line) and the predicted multiple -b3 (red line); (b): the actual
internal multiple (blue line) and the predicted internal multiple
-b3 (red line).

The discussion in this paper gives us confidence that even for
an attenuating medium, the ISS internal multiple attenuator
can provide a result that retains the primary and partially re-
moves the internal multiple. This is an important step in a strat-
egy to eliminate internal multiples for both elastic and anelas-
tic media. That will allow application for exploration plays
where the geology exhibits significant absorption, e.g., pre-salt
plays in the deep water Gulf of Mexico, off-shore Brazil, the
Red Sea and the North Sea.
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APPENDIX A

B3 CALCULATION

The primaries in frequency domain can be expressed from eqn.5
and eqn.6. Since the migrated data in pseudo depth domain are
required to substitute into the internal multiple attenuation al-
gorithm, the variable should be changed from ω to kz =

2ω

c1
:

P(1)(kz) = R1eikzz1 e−|kz|
z1

2Q1 , (A-1)

P(2)(kz) = T12R2T21eikz(z1+
c1
c2
(z2−z1))e−|kz|(

z1
2Q1

+
c1
c2

z2−z1
2Q2

)
. (A-2)

Then, Fourier transform is applied over kz to pseudo depth do-
main to obtain

P(1)(z) = R1
π

z1
2Q1

(
z1

2Q1
)2+(z−z1)2 , (A-3)

P(2)(z) = T12R2T21
π

z1
2Q1

+
c1
c2

z2−z1
2Q2

(
z1

2Q1
+

c1
c2

z2−z1
2Q2

)2+(z−(z1+
c1
c2
(z2−z1))2

.(A-4)

b1(z) = P(1)(z)+P(2)(z), which will be substituted into ISS
internal multiple attenuation algorithm to predict the internal
multiple b3.

Based on Weglein et al. (2003), the 1D ISS internal multiple
attenuation algorithm is

b3(kz) =
∫

∞

−∞
b1(z)eikzzdz

∫ z−ε

−∞
b1(z1)e−ikzz1 dz1∫

∞

z1+ε
b1(z2)eikzz2 dz2,

(A-5)

where ε is used to make sure the events satisfy the lower-
higher-lower relationship, and its value is chosen on the basis
of the length of the wavelet.

For this model, there are two primaries in the data. Now I
suppose these two events are isolated (Fig.A-1). The pseudo
depth of the first event is z1 with a length of 2a, whereas the
pseudo depth of the second event is z′2 with a length of 2b.
For ε in eqn.A-5 , it is chosen to satisfy ε ≥ max(2a,2b) and
ε ≤ (z′2−b− (z1 +a)).

Kaplan et al. (2004) change the integral order of eqn.A-5 and
rewrite the formula as:

b3(kz) =

∫
∞

−∞

b1(z)e−ikzz[

∫
∞

z+ε

b1(z′)eikzz′dz′]2dz. (A-6)

Since b1(z) = P(1)(z)+P(2)(z), eqn.A-6 can be divided into
two parts:



Figure A-1: A two-reflector model reflection record. P(1) and
P(2) are primaries from the first and the second interface, re-
spectively.

b3(kz)

=
∫

∞

−∞
P(1)(z)e−ikzz[

∫
∞

z+ε
b1(z′)eikzz′dz′]2dz

+
∫

∞

−∞
P(2)(z)e−ikzz[

∫
∞

z+ε
b1(z′)eikzz′dz′]2dz

=
∫ z1+a

z1−a P(1)(z)e−ikzz[
∫

∞

z+ε
b1(z′)eikzz′dz′]2dz (A−7−1)

+
∫ z′2+b

z′2−b P(2)(z)e−ikzz[
∫

∞

z+ε
b1(z′)eikzz′dz′]2dz. (A−7−2)

(A-7)

For (A-7-1), the integral limitation of z is [z1−a,z1 +a]. Con-
sider the lower limit of the integral of z’ and the constraint of
ε ,

z+ ε ≥ z1−a+ ε ≥ z1 +a+2a = z1 +a,

and

z+ ε ≤ z1 +a+ ε ≤ z1 +a+ z′2−b− (z1 +a) = z′2−b.

We can see that the lower limit of the second integral should
be after the end of the first event and before the beginning of
the second event, i.e., in [z+ ε,∞), the kernel of the second
integral is b1(z′) = P(2)(z′).

So

(A−7−1)
=
∫ z1+a

z1−a P(1)(z)e−ikzz[
∫

∞

z+ε
b1(z′)eikzz′dz′]2dz

=
∫ z1+a

z1−a P(1)(z)e−ikzz[
∫

∞

z+ε
P(2)(z′)eikzz′dz′]2dz

=
∫

∞

−∞
P(1)(z)e−ikzz[

∫
∞

−∞
P(2)(z′)eikzz′dz′]2dz

= (T12R2T21)
2R1eikz(z1+

2c1
c2

(z2−z1))e−|kz|(
z1

2Q1
+

c1
c2

z2−z1
Q2

)e−|kz|
z1
Q1 .

(A-8)

Similarly, for (A-7-2), the integral limitation of z is [z′2−b,z′2+
b]. Consider the lower limit of the integral of z’ and the con-
straint of ε ,

z+ ε ≥ z′2−b+ ε ≥ z′2 +b+2b = z′2 +b.

The lower limit of the second integral should be after the end
of the second event, i.e., in [z+ ε,∞), the kernel the of second
integral is b1(z′) = 0.

So

(A−7−2)

=
∫ z′2+b

z′2−b P(2)(z)e−ikzz[
∫

∞

z+ε
b1(z′)eikzz′dz′]2dz

= 0.

(A-9)

Now

b3(kz)
= (A−7−1)

= (T12R2T21)
2R1eikz(z1+

2c1
c2

(z2−z1))e−|kz|(
z1

2Q1
+

c1
c2

z2−z1
Q2

)e−|kz|
z1
Q1 .

(A-10)
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