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SUMMARY

The inverse scattering series internal multiple attenuation (ISS
IMA) algorithm (Araújo et al., 1994; Weglein et al., 1997) is
modified and extended by incorporating the source wavelet
and radiation pattern in order to enhance the fidelity of the
amplitude and phase predictions of the internal multiple. The
modified ISS IMA algorithm is fully data-driven to predict all
first-order internal multiples for all horizons at once, without
requiring any subsurface information. In synthetic data tests,
for data produced by a point source with a wavelet, the ampli-
tude and shape of the predicted internal multiples are signifi-
cantly improved by incorporating the source wavelet deconvo-
lution. For data generated by a general source with a radiation
pattern, the prediction is further improved by incorporating the
source wavelet and radiation pattern into the algorithm. There-
fore, the modified ISS IMA algorithm produces more accurate
results when the data are generated by a frequency and angle
dependent source.

INTRODUCTION

In seismic exploration, seismic reflection events are classified
as primary or multiple, depending on whether the energy arriv-
ing at the receiver has experienced one or more upward reflec-
tions, respectively. Methods for seismic imaging and param-
eter estimation (inversion) assume that the data contain only
primaries. Multiples are considered to be noise because they
can interfere with primaries and/or be misinterpreted as pri-
maries. Hence, multiple removal is a prerequisite to seismic
imaging and inversion.

This abstract will focus on internal multiple attenuation and
will analyze and test the impact of incorporating the source
wavelet and radiation pattern on internal multiple prediction.
The ISS IMA algorithm was first proposed by Araújo et al.
(1994) and Weglein et al. (1997). It is a fully data-driven
and model-type independent algorithm (Weglein et al., 2003),
and it predicts the correct traveltimes and approximate ampli-
tudes of all internal multiples at all depths at once. Matson
et al. (1999) extended the theory for land and OBC applica-
tions. Ramı́rez and Weglein (2005) discussed how to extend
the ISS IMA algorithm from attenuation toward elimination
of multiples. Herrera and Weglein (2013) developed the 1-D
ISS internal multiple elimination algorithm for internal mul-
tiple generated by a single shallowest reflector and Zou and
Weglein (2013) further derived a general form of the ISS inter-
nal multiple elimination algorithm.

The ISS IMA algorithm has certain data requirements: (1)
removal of the reference wavefield, (2) an estimation of the
source wavelet and radiation pattern, (3) source and receiver
deghosting, and (4) removal of the free-surface multiples. The

first three requirements can be obtained by Green’s theorem
methods (Zhang and Weglein, 2005; Mayhan et al., 2012; Tang
et al., 2013) and the free-surface multiples can be removed by
the ISS free-surface multiple elimination algorithm (Carvalho,
1992; Weglein et al., 2003; Yang et al., 2013). Green’s the-
orem methods and the ISS free-surface multiple elimination
algorithm are consistent with the ISS IMA algorithm, since
all are multidimensional wave-theoretic preprocessing meth-
ods and do not require subsurface information.

The ISS IMA algorithm assumes that the input data are spike
wave. In other words, the input data have been deconvolved.
If the input data are generated by a source wavelet instead of
by a spike wave, the predicted internal multiple has convolved
at least three source wavelets. Hence, the source wavelet has a
significant effect on the amplitude and shape of the predicted
internal multiple. In this paper, to improve the amplitude and
the shape of a predicted internal multiple, the ISS IMA algo-
rithm is extended to accommodate a source wavelet.

In addition, the ISS IMA algorithm assumes an isotropic point
source, i.e., it assumes that the source has no variation of am-
plitude or phase with take-off angle. A large marine air-gun ar-
ray will exhibit directivity and produce variations of the source
signature (Loveridge et al., 1984). In on-shore exploration,
even if there is no source array, the source can have radiation
pattern or directivity. That directivity has significant effects on
multiple removal or attenuation and AVO analysis. In seismic
data processing, it is important that we characterize the source
array’s effect on any seismic processing methods. Therefore,
to further improve the effectiveness of the ISS IMA algorithm,
it is extended to accommodate a source wavelet and radiation
pattern. The synthetic data tests show that accommodating the
source wavelet and radiation pattern can enhance the fidelity
of the amplitude and phase predictions of internal multiples.

THEORY

The ISS IMA algorithm (Araújo, 1994; Weglein et al., 1997,
2003) for first-order internal multiple prediction in a 2D earth
is given by
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where ω , ks and kg are temporal frequency and the horizon-
tal wavenumbers for source and receiver coordinates, respec-
tively. qs and qg are the corresponding vertical source and re-
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ceiver wavenumbers, respectively. qi = sgn(ω)
√

ω2/c2
0− k2

i
for i = (g,s); c0 is the reference velocity. zs and zg are the
source and receiver depths; and zi (i = 1,2,3) represents pseu-
dodepth (vertical depth of the water speed migration). The
parameter ε is introduced to insure that the relations z1 > z2
and z3 > z2 are satisfied.

From the first-order equation of the inverse scattering series
D = Gd

0V1Pd
0 (Weglein et al., 2003), which can be represented

explicitly in 2-D case as
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where the data D have been deghosted and the reference wave-
field and free-surface multiples have been removed. Gd

0 and
Pd

0 are the direct reference Green’s function and the direct ref-
erence wavefield, respectively.

For a unit source, Pd
0 = Gd

0 . We take a Fourier transform over
xs and xg on both sides of equation 2 and define b1 as

b1(kg,ks,qg +qs)≡
V1(kg,qg,ks,qs,ω)

−2iqg
=−2iqsD(kg,ks,ω),

(3)
where b1 represents effective plane-wave incident data and
D(kg,ks,ω) is the Fourier-transformed prestack data. The in-
put b1 are introduced into equation 1 after an uncollapsed Stolt
migration (Weglein et al., 1997) that takes b1(kg,ks,qg + qs)
into the pseudodepth domain, b1(kg,ks,zi), by using the ref-
erence velocity, c0. Then, the first-order internal multiples
D3(kg,ks,ω), which are predicted by the ISS IMA algorithm
(equation 1), are obtained by

D3(kg,ks,ω) = (−2iqs)
−1b3(kg,ks,qg +qs). (4)

For an isotropic point source, Pd
0 = A(ω)Gd

0 . Fourier trans-
forming over xs and xg on both sides of equation 2 gives

b1(kg,ks,qg +qs) =−2iqsD(kg,ks,ω)/A(ω), (5)

where A(ω) is the source signature. After b3 has been pre-
dicted by equation 1, the first-order internal multiple is achieved
by convolving the source wavelet A(ω) back

D3(kg,ks,ω) = (−2iqs)
−1A(ω)b3(kg,ks,qg +qs). (6)

For a general source with a radiation pattern (e.g., a source ar-
ray), the direct reference wavefield Pd

0 for a 2D case can be
expressed as an integral of the direct reference Green’s func-
tion Gd

0 over all air-guns in an array,

Pd
0 (x,z,xs,zs,ω)=

∫
dx′dz′ρ(x′,z′,ω)Gd

0(x,z,x
′+xs,z′+zs,ω),

(7)
where (x,z) and (xs,zs) are the prediction point and source
point, respectively. (x′,z′) is the distribution of the source with
respect to the source locator (xs,zs). Using the bilinear form
of Green’s function and Fourier transforming over x, we obtain
the relationship between ρ and Pd

0 as

Pd
0 (k,z,xs,zs,ω) = ρ(k,q,ω)

eiq|z−zs|

2iq
eikx. (8)

On the other hand, the reference wavefield Pd
0 can be solved

from the measured data by using Green’s theorem method (We-
glein and Secrest, 1990).

Since k2 + q2 = ω2/c2
0, q is not a free variable, hence, we

can not obtain ρ(x,z,ω) in space-frequency domain by tak-
ing an inverse Fourier transform on ρ(k,q,ω). However, the
projection of the source signature ρ(k,q,ω) can be achieved
directly from the direct reference wavefield Pd

0 in the f -k do-
main, where the variable k or q represent the amplitude varia-
tions of the source signature with angles.

Substituting the projection of the source signature ρ into equa-
tion 2 and Fourier transforming over xs and xg gives

b1(kg,ks,qg +qs) =−2iqsD(kg,ks,ω)/ρ(kg,qg,ω). (9)

Further details of obtaining ρ can be found in Yang et al. (2013)
and Yang and Weglein (2013). The first-order internal multiple
is calculated from b3,

D3(kg,ks,ω) = (−2iqs)
−1

ρ(kg,qg,ω)b3(kg,ks,qg +qs).
(10)

All above derivations are 2D cases, and they can be directly
extended to 3D. From the derivations, we can see that the ker-
nel of the ISS IMA algorithm (equation 1) is not change and
the source wavelet and radiation pattern are imported by equa-
tions 5 and 9. The predicted internal multiples D3 are also
affected by the source wavelet and radiation pattern in equa-
tions 6 and 10. If the source wavelet is not incorporated into
the ISS IMA algorithm, the amplitudes and shapes of the pre-
dicted internal multiples are not comparable with those of the
internal multiples in the input data. To improve the effective-
ness of the internal multiple prediction, the ISS IMA algorithm
should be modified for its input and output by accommodating
the source wavelet and radiation pattern. This accommodation
can enhance the fidelity of the amplitude and shape of the pre-
dictions of internal multiples.

NUMERICAL TESTS

In this section, we will present the numerical tests of the inter-
nal multiple prediction for the data generated by a point source
and a general source with a radiation pattern. The numerical
tests are based on a 1D acoustic model with varying velocity
and constant density, as shown in Figure 1. The synthetic data
that are generated by the finite-difference method. The data
have one shot gather with 2001 traces, and each trace has 301
time samples, with dt = 5ms. The trace interval is 5m.

The source wavelet effect on internal multiple prediction

For the data generated by a point source, the internal multiple
will be predicted by using the ISS IMA algorithm with and
without source wavelet deconvolution. Figure 2 shows the in-
put data and their corresponding predicted internal multiples.
They are plotted using the same scale. In the input data, the
first two strongest events are the primaries, and the other events
are internal multiples. Figures 2(b) and 2(c) show the predicted
internal multiples using the ISS IMA algorithm with and with-
out source wavelet deconvolution. From Figures 2(b) and 2(c),
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Figure 1: One-dimensional acoustic constant-density medium.

we can see that both algorithms predict the correct traveltimes,
but they predict different amplitudes and shapes for the inter-
nal multiples. In Figure 2(b), the amplitude of the predicted in-
ternal multiple is comparable with the internal multiple in the
input data, while the amplitude is totally different from that of
the internal multiple in the input data in Figure 2(c).
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Figure 2: (a) The input data; (b) and (c) The internal multiples
predicted by the ISS IMA algorithm with and without source
wavelet deconvolution, respectively.

To see the details, we pick the middle trace (offset = 0) and
the far trace (offset = 1700m) from each image in Figure 2.
The time windows are chosen at 0.85s ∼ 1.10s for the mid-
dle trace and at 1.05s ∼ 1.25s for the far trace, as shown in
Figure 3. For the middle trace, it can be seen that the shape
of the internal multiple predicted by the ISS IMA algorithm
without source wavelet deconvolution (Figure 3(c)) is totally
different from that of the true internal multiple (Figure 3(a)).
The predicted and true amplitudes are not comparable, either.
This is because the predicted internal multiples convolve three
wavelets. However, comparing Figure 3(b) with Figure 3(a),
we can see that the amplitude and shape of the internal multiple
predicted by the ISS IMA algorithm with source wavelet de-
convolution are similar to those of the true internal multiple, as
shown in Figure 4(a). It demonstrates that by accommodating
the source wavelet deconvolution, the amplitude and shape of
the predicted internal multiple are significantly improved for
the internal multiple prediction. For the far-offset traces, we
obtain the similar results, as shown in Figures 3(e) and 4(b).

From the numerical test, we conclude that by incorporating
the source wavelet deconvolution, the ISS IMA algorithm pro-
duces more accurate and encouraging results for both zero off-
set and far offset. The predicted internal multiple has the cor-
rect traveltime, and the amplitude and shape are significantly
improved. In addition, Liang et al. (2013) also discussed the
source wavelet effect on the internal multiple prediction for the
1D normal incident model.

0.90

0.95

1.00

1.05

1.10

T
im

e(
s)

1001
Trace Number

(a)

0.90

0.95

1.00

1.05

1.10

T
im

e(
s)

1001
Trace Number

(b)

0.90

0.95

1.00

1.05

1.10

T
im

e(
s)

1001
Trace Number

(c)

1.10

1.15

1.20

1.25

T
im

e(
s)

1341
Trace Number

(d)

1.10

1.15

1.20

1.25

T
im

e(
s)

1341
Trace Number

(e)

1.10

1.15

1.20

1.25

T
im

e(
s)

1341
Trace Number

(f)

Figure 3: (a), (b), (c) The middle traces, and (d), (e), (f) the far
traces, picked from the input data and the internal multiples
predicted by the ISS IMA algorithm with and without source
wavelet deconvolution.
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Figure 4: The comparison between the internal multiple (red)
in the input data and the internal multiple (blue) predicted by
the ISS IMA algorithm with source wavelet deconvolution at
(a) zero offset and at (b) far offset (1700m).

The radiation pattern effect on internal multiple prediction

For the data generated by a general source with a radiation pat-
tern (e.g., source array), we will predict the internal multiple
using the ISS IMA algorithm with and without incorporating
the source wavelet and radiation pattern. Here, the synthetic
data are generated by a source array using the same model as
Figure 1. The source array contains five point sources in one
line with 20m range. Here, we assume that the source array
only varies laterally with identical source signatures, but the
assumption is not necessary in the ISS IMA algorithm.
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Figure 5(a) shows the input data generated by the source array.
Similar with the data generated by the point source, the first
two strongest events are the primaries, and the other events are
internal multiples. Figures 5(b) and 5(c) present the internal
multiples predicted by using the ISS IMA algorithm with and
without incorporating the source wavelet and radiation pattern.
From Figures 5(b) and 5(c), we can see that both algorithms
can predict the correct traveltime and an acceptable amplitude
of the internal multiple.
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Figure 5: (a) The input data; (b) and (c) the internal multiples
predicted by the ISS IMA algorithm with and without incor-
porating the source wavelet and radiation pattern.

To compare the internal multiple predictions in detail, the mid-
dle trace (offset = 0) and the far trace (offset = 1700m) are
picked from each image in Figure 5. We choose the time win-
dows at 0.85s∼ 1.10s for the middle trace and at 1.05s∼ 1.25s
for the far trace, as shown in Figure 6. Comparing the mid-
dle and far traces, we can see that the amplitude and shape
of the internal multiple predicted by the ISS IMA algorithm
with and without incorporating the radiation pattern are very
similar to those for the true internal multiple in the input data.
Their comparisons are plotted in Figure 7. At zero offset, there
are no visible differences, as shown in Figure 7(a), while at far
offset, Figure 7(b) demonstrates that the amplitude of the inter-
nal multiple prediction is further improved by accommodating
the radiation pattern. Therefore, for the general source data,
the modified ISS IMA algorithm that incorporates the source
wavelet and radiation pattern can enhance the accuracy and ef-
fectiveness of the amplitude prediction of the internal multiple.

CONCLUSIONS

The ISS IMA algorithm is modified and extended by accom-
modating the source wavelet and radiation pattern, which can
be provided by the prerequisite. The ISS IMA modified algo-
rithm enhances the fidelity of amplitude and phase predictions
of the internal multiple. It retains all the merits of the origi-
nal algorithm that is fully data-driven and does not require any
subsurface information. In synthetic data tests, for data gen-
erated by a point source with a wavelet, the predictions of the
amplitudes and shapes of internal multiples are significantly
improved by incorporating the source wavelet deconvolution.
For data generated by a general source with a radiation pattern,
the prediction is further improved by incorporating the source
wavelet and radiation pattern into the ISS IMA algorithm. We
expect this extended ISS IMA algorithm to be relevant and
useful for on-shore application, as well.

0.90

0.95

1.00

1.05

1.10

T
im

e(
s)

1001
Trace Number

(a)

0.90

0.95

1.00

1.05

1.10

T
im

e(
s)

1001
Trace Number

(b)

0.90

0.95

1.00

1.05

1.10

T
im

e(
s)

1001
Trace Number

(c)

1.10

1.15

1.20

1.25

T
im

e(
s)

1341
Trace Number

(d)

1.10

1.15

1.20

1.25

T
im

e(
s)

1341
Trace Number

(e)

1.10

1.15

1.20

1.25

T
im

e(
s)

1341
Trace Number

(f)

Figure 6: (a), (b), (c) The middle traces, and (d), (e), (f) the far
traces, picked from the input data and the internal multiples
predicted by the ISS IMA algorithm with and without incor-
porating the source wavelet and radiation pattern.
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Figure 7: The comparison between the true internal multiple
(red) in the input data and the internal multiple predicted by
the ISS IMA algorithm with (green dash) and without (blue)
incorporating the source wavelet and radiation pattern at (a)
zero offset and at (b) far offset (1700m).
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