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SUMMARY

The Inverse Scattering Series (ISS) methods require prerequi-
sites to reach their potential. Seismic data preprocessing for
ISS methods includes identifying and removing the reference
wave, estimating the source wavelet and radiation pattern, and
source and receiver deghosting. For on-shore seismic explo-
ration, these preprocessing steps still have many serious chal-
lenges. To study how to determine the reference velocity for
land application, this paper uses the marine environment and a
point source as a starting point, and shows that the invariance
of the estimated source signature for different output points
below the cable could be a criterion to find the correct refer-
ence velocity. In addition, for the case of a source signature
and radiation pattern, the invariance of the source wavelet in
one radiation angle could be the criterion for having the right
reference velocity.

INTRODUCTION

The current petroleum industry trend to deep water and com-
plex geology, where primary and multiple events may often
experience interfering or proximal with each other. In this
case, removal of the multiple events becomes a big challenge.
Inverse Scattering Series (ISS) methods offer a direct way of
removing free-surface multiples and attenuating internal mul-
tiples without requiring any subsurface information. How-
ever, these methods have prerequisites that need to be satisfied.
The prerequisites include identifying and removing the refer-
ence wave, estimating the source wavelet and radiation pat-
tern, and source and receiver deghosting. In order to deliver
the high fidelity of ISS multiple predictions, effective prepro-
cessing methods need to be developed and improved (Zhang
(2007), Mayhan et al. (2011), Mayhan and Weglein (2013),
Tang et al. (2013), Yang et al. (2013)).

As seismic exploration goes to more complex and difficult on-
shore and offshore plays, there are more fundamental issues
and challenges need to be resolved. Among these issues and
challenges, removal of the reference wave on land is one press-
ing and important topic. Why do we need to remove the refer-
ence wave first? Scattering theory separates the real world into
two parts: the reference medium, whose property is known,
plus a perturbation. The wave that travels in the reference
medium is called the reference wave, which does not expe-
rience the earth that we are interested in. So it is important to
identify the reference wave and remove it before the follow-
ing data processing steps, such as multiple removal and depth
imaging. We need to identify it because it also contains the in-
formation of the source signature, which is essential informa-
tion in the subsequent processing steps. ISS methods require
that the reference medium agrees with the actual medium on

and above the measurement surface (Weglein et al. (2003)).
Green’s theorem provides a good mathematical tool to achieve
these prerequisites that are consistent with the ISS methods
they are meant to serve.

For on-shore seismic application, the property of the medium
near surface is often complicated and not easy to determine,
e.g., because the conditions of rocks, soil or minerals in the
near surface are not easy to define due to weathering. Strong
ground roll could be generated that can obscure reflected seis-
mic data. To remove the ground roll/reference wave, the phys-
ical properties of the near surface is needed. Our purpose in
looking for a way to determine the velocity of near surface
medium on land, is to provide a foundation for the study of
on-shore seismic data preprocessing methods. It is part of
the comprehensive Inverse Scattering Series multiple removal
strategy.

In order to study the complex on-shore or ocean bottom near
surface property, we propose to start from seeking criteria which
can determine whether we have the correct reference medium
information or not. The criteria could be the presence of some
invariance that only the correct reference velocity would sat-
isfy. We use a marine seismic application as a starting point
to pursue this idea. First, consider an isotropic point source,
which has an isotropic source wavelet in every radiation di-
rection. Using Green’s theorem, we can estimate the wavelet
signature everywhere below the measurement surface. When
using the correct reference velocity, the results for the wavelet
should be invariant for all output points below the measure-
ment surface. Thus, the value of reference velocity we use in
the wavelet calculation that leads to an invariance of the es-
timated source wavelet is the correct reference velocity. Fur-
thermore, instead of a single point source, in practice, source
arrays which have angle radiation pattern are widely used in
industry (Loveridge et al. (1984)). Then the invariance of the
estimated wavelet will happen when estimating the wavelet at
different points along one radiation angle. Similarly, only the
correct reference velocity can lead to the invariance. Thus, the
invariances of the source wavelet indicate that we have found
the correct reference velocity.

This paper will discuss the criteria of predicting the reference
medium properties from invariances in Green’s theorem-based
wavelet estimation, for both a point source and for source array
cases. For a point source, the source wavelet estimated at any
points beneath the measurement surface should stay the same,
while for source array, estimated source wavelet results in one
radiation angle should be invariant. These invariances could be
criteria of having the correct reference velocity. Future study
will extend this research from marine example to complex on
shore elastic model.
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THEORY

Green’s theorem for wavelet estimation

The theory of wavelet estimation using Green’s theorem was
first described in Weglein and Secrest (1990). Assume that
source A(ω) is placed at ~rs and the receiver is at~r. The pres-
sure wavefield P satisfies constant density acoustic wave equa-
tion in the frequency domain,(

∇
2 +

ω2

c2(~r)

)
P(~r,~rs,ω) = A(ω)δ (~r−~rs) (1)

In scattering theory, we treat the actual medium as a combina-
tion of an unperturbed medium, called the reference medium,
plus a perturbation. Introduce perturbation α defined by

1
c2(~r)

=
1
c2

0
[1−α(~r)],

where c0 is the velocity in a homogeneous reference medium.
Then Equation 1 becomes(

∇
2 +

ω2

c2
0

)
P(~r,~rs,ω)=

ω2

c2
0

α(~r)P(~r,~rs,ω)+A(ω)δ (~r−~rs)︸ ︷︷ ︸
ρ

.

(2)
The right hand side of the equation can be viewed as the source
of the wavefield P, which consists of two terms: the pertur-
bation α , which generates scattered wave Ps, and the active
source A(ω), the energy source that generates the wave, P.
The corresponding Green’s function satisfies,(

∇
2 +

ω2

c2
0

)
G0(~r,~r′,ω) = δ (~r−~r′). (3)

Having a causal Green’s function G+
0 , we can have wavefield

P,

P(~r,ω) =

∫
∞

G+
0 (~r,

~r′,ω)ρ(~r′,ω)d~r′

=

∫
∞

G+
0 (~r,

~r′,ω)
ω2

c2
0

α(~r′)P(~r′,ω)d~r′

+A(ω)G+
0 (~r,~rs,ω). (4)

The first term on the right hand side of Equation 4 is the source
that generates the difference between the total wavefield P and
the reference wavefield P0, where P0 = A(ω)G0.

On the other hand, from Green’s second identity, plugging P
and G0 in Equation 2 and Equation 3 in, we have,∫

V
(P∇

′2G0−G0∇
′2P)d~r′

=

∫
V

(
P(~r′,~rs,ω)

[
−ω2

c2
0

G0(~r′,~r,ω)+δ (~r−~r′)
]

−G0(~r′,~r,ω)

[
−ω2

c2
0

P(~r′,~rs,ω)+ρ(~r′)

])
d~r′

=

∫
V

P(~r′,~rs,ω)δ (~r−~r′)d~r′

−
∫

V
G0(~r′,~r,ω)

[
ω2

c2
0

α(~r′)P(~r′,~rs,ω)+δ (~r′−~rs)A(ω)

]
d~r′

=

∮
S

dSn̂ ·[
P(~r′,~rs,ω)∇′G0(~r′,~r,ω)−G0(~r′,~r,ω)∇′P(~r′,~rs,ω)

]
(5)

When choosing the volume as the infinite space below the
measurement surface, and ~r is chosen to be below the mea-
surement surface (inside the volume V), as shown in Figure 1.
Equation 5 becomes

P(~r,~rs,ω) =

∫
V

G0(~r,~r′,ω)
ω2

c2
0

α(~r′)P(~r′,~rs,ω)d~r′

+

∮
S

[
P∇
′G0−G0∇

′P
]
· n̂dS. (6)

Choosing G+
0 in Equation 6, let’s compare Equation 6 and

Equation 4. When the support of perturbation α(~r) is within
the volume V, the integral of α over infinity equals integral
over volume V. Thus, with~r inside the volume, the support of
α within the volume, both Equations 6 and 4 should give the
same wavefield. Therefore,

A(ω)G+
0 (~r,~rs,ω)

=

∮
S

dSn̂ ·[
P(~r′,~rs,ω)∇′G+

0 (
~r′,~r,ω)−G+

0 (
~r′,~r,ω)∇′P(~r′,~rs,ω)

]
.(7)

So source signature A(ω) can be estimated by a surface inte-
gral and then divided by the Green’s function. Using Sommer-
feld’s radiation condition for G+

0 , the wavefield contribution at
~r in V from the infinite far away boundary vanishes. Then,

A(ω) =
1

G+
0 (~r,~rs,ω)

·
∫

m.s.
dSn̂ ·[

P(~r′,~rs,ω)∇′G+
0 (
~r′,~r,ω)−G+

0 (
~r′,~r,ω)∇′P(~r′,~rs,ω)

]
. (8)

From Equation 8, we can see that the wavelet A(ω) is indepen-
dent of the observation point~r. The estimation result of source
wavelet should stay the same at any observation point~r below
the measurement surface . This condition will only hold when
using the correct reference velocity. Therefore, the invariance
of the estimated wavelet can be a criterion of having the correct
reference velocity. Later, we will present test result to support
this conclusion.

Radiation pattern
In the previous section, we focused on solving the wavelet
from a point source at δ (~r−~rs). In a more general case, a ex-
tended source array that consists of several point source could
be used in seismic exploration. In this case, the source displays
a radiation pattern in different radiation angles. The radiation
pattern from a single effective point source could be estimated
by assuming that A(ω) is a function of the radiation angle θ

(using far field approximation).

Assume that a general extended source ρ(~r) as Figure 2 shows.
Wavefield at~r generated from this source array can be calcu-
lated from the integral,

P0(~r,ω) =

∫
G0(~r,~r′,ω)ρ(~r′)d~r′. (9)
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In 3D propagation, Green’s function in frequency domain can
be written as

G0(~r,~r′,ω) =
eik|~r−~r′|

|~r−~r′|
. (10)

In the far field, |~r|>> |~r′|, we have approximation,

|~r−~r′| =

√
(~r−~r′)2

=
√

r2−2~r ·~r′+ r′2

= r[1− 2~r ·~r′
r2 +

r′2

r2 ]1/2

= r(1−~r ·~r′
r2 +

r′2

2r2 + ...)

= r− n̂ ·~r′+O(
1
r
). (11)

The above equation uses Taylor series (1+ x)1/2 = 1+ 1
2 x+

O(x2), and n̂ is the unit vector in the direction of~r. And simi-
larly,

1

|~r−~r′|
=

1
r
+

n̂ ·~r′
r2 + ...=

1
r
+O(

1
r2 ). (12)

Then in the far field, Equation 9 becomes

P0(~r,ω) =

∫
eik(r−n̂·~r′)

r
ρ(~r′)d~r′

=
eikr

r

∫
e−ikn̂·~r′

ρ(~r′)d~r′

=
eikr

r
ρ̃(kn̂). (13)

Therefore, in the far field if we process seismic data generated
from the source array as if a point source, we can get the source
wavelet

A(ω,θ) =
P0

G0
= ρ̃(kn̂).

Since n̂ is the direction from the source to the observation
point, the estimated wavelet result will display variances in
different radiation angle. While in one radiation angle, wavelet
A(ω,θ) will be the same. This could be a criterion of deter-
mining the correct reference velocity. If using a wrong refer-
ence velocity, this invariance at one radiation angle will not be
satisfied.

POINT SOURCE

In this test, we use Cagnidard-de Hoop method to model over-
under cable data. Then using Green’s theorem of Equation 8,
we estimate the wavelet, A(ω), at different points at a fixed
depth below the cable. We predict the estimated wavelet re-
sults using different reference velocities:

(1) correct reference velocity c0 = 1500m/s;
(2) wrong reference velocity c0 = 1490m/s;

(3) further wrong reference velocity c0 = 1450m/s.

The estimated reference wavefields P0 are shown in Figure 3,
and corresponding wavelet results in Figure 4. Figure 3 in-
dicates that the wrong reference velocities also lead to errors
in the prediction of P0. The estimated source wavelet results
show that when using the correct reference velocity, the wavelet
displays invariance at different offset, while wrong velocities
give different wavelet prediction at different output points.

Therefore, only the correct reference velocity can result in the
invariance of estimated wavelet. When the velocities are fur-
ther from the reference velocity, the errors of wavelet invari-
ance also becomes larger. This conclusion will also help us in
finding the correct reference velocity.
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S 

Figure 1: Volume chosen as half infinite space below the mea-
surement surface.
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Figure 2: A general extended source.

SOURCE ARRAY

In this section, instead of a point source, data generated by a
source array will be tested. The source array consists of 7 point
sources separated at 3 m, as shown in Figure 5. First, we will
estimate source wavelet along a horizontal cable, whose radi-
ation angles are different. We predict source wavelet at depth
56 m, from offset 0 m to 606 m, whose radiation angles are
from 0◦ to 85◦. The results in Figure 5 show the radiation pat-
tern in different offset (radiation angle). Next, we estimate the
wavelet A(ω,θ) in one radiation angle. The estimated wavelet
in angle 5.8◦ using different velocities is shown in Figure 7.
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(a) (b) (c) 

Figure 3: P0 estimated using (a) correct c0 = 1500m/s, (b)
wrong c0 = 1490m/s, (c) wrong c0 = 1450m/s.

(a) 

(b) 

(c) 

Figure 4: A(t) estimated using (a) correct c0 = 1500m/s, (b)
wrong c0 = 1490m/s, (c) wrong c0 = 1450m/s

Similar to the conclusion above, we can see that only the cor-
rect velocity gives us the invariance of the source array wavelet
in one angle, while the wrong reference velocity will lead to
differences of the wavelet in one radiation angle.

CONCLUSIONS

We have shown that an output point invariance of the estimated
wavelet using Green’s theorem could be a criterion for de-
termining the correct reference velocity. For a point source,
the invariance occurs for the output point anywhere below the
measurement surface, while for a source array, the invariance

18m 

3m 

Figure 5: Source array

Figure 6: Radiation pattern of source array in Figure 5, esti-
mated from offset 0m to 606m.

(a) (b) 

Figure 7: Wavelet estimated at depth 36m, 56m, 76m, 96m,
116m, 136m, 156m in the same radiation angle using (a) cor-
rect reference wave c0 = 1500m/s and (b) wrong reference
velocity c0 = 1450m/s.

is for output points along one radiation angle. Using marine
seismic application as a starting point, this paper shows that in-
variances of Green’s theorem-based wavelet estimation could
be a criterion of determining the reference velocity. Using sim-
ilar thinking, in the future study we will focus on solving the
complex on-shore or ocean bottom near surface medium prob-
lems. For on-shore or ocean bottom problems, understanding
of the near surface property could enable us to predict and re-
move the ground roll/reference wave on land, and thereby en-
hance the capability of subsequent multiple removal process-
ing steps for the challenge of on-shore multiple attenuation.
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