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SUMMARY

The ISS(Inverse-Scattering-Series) internal-multiple attenua-
tion algorithm(Araújo et al. (1994) and Weglein et al. (1997))
can predict the correct time and approximate amplitude for all
first-order internal multiples without any information of the
earth. This algorithm is effective and can attenuate internal
multiples in many cases. However, in certain places, both off-
shore and onshore, the multiple is often proximal to or interfer-
ing with the primaries. Therefore, the task of removing inter-
nal multiples without damaging primaries becomes more chal-
lenging and subtle and currently beyond the collective capabil-
ity of the petroleum industry. Weglein et al. (2003) proposed
a three-pronged strategy for providing an effective response to
this pressing and prioritized challenge. One part of the strat-
egy is to develop an internal-multiple elimination algorithm
that can predict both the correct amplitude and correct time for
all internal multiples. The ISS internal-multiple elimination
algorithm for all first-order internal multiples generated from
all reflectors in a 1D earth is proposed in part I of this paper.
The primaries in the reflection data that enters the algorithm
provides that elimination capability, automatically without our
requiring the primaries to be identified or in any way sepa-
rated. The other events in the reflection data, that is, the inter-
nal multiples, will not be helpful in this elimination scheme.
That is a limitation of this new algorithm. In part II of this
two part paper, we show how the ISS anticipates that short-
coming. Higher order ISS terms when combined with this new
algorithm will provide elimination ability without the current
shortcoming. The basic algorithm is developed,evaluated and
tested in part I. The next version with higher order ISS terms
that rewrites the elimination algorithm without a downside is
presented and tested in part II. Moreover, this elimination algo-
rithm based on the ISS internal-multiple attenuation algorithm
is derived by using reverse engineering to provide the differ-
ence between eliminate and attenuate for a 1D earth. This par-
ticular elimination algorithm is model type dependent since the
reverse engineering method is model type dependent. The ISS
internal-multiple attenuation algorithm is model type indepen-
dent and in future work we will pursue the development of an
eliminator for a multi-dimensional earth by identifying terms
in the inverse scattering series that have that purpose.

INTRODUCTION

The inverse-scattering-series allows all seismic processing ob-
jectives, such as free-surface-multiple removal and internal-
multiple removal to be achieved directly in terms of data, with-
out any estimation of the earth’s properties. For internal-multiple
removal, the ISS internal-multiple attenuation algorithm can
predict the correct time and approximate and well-understood
amplitude for all first-order internal multiples generated from

all reflectors without any subsurface information. If the events
in data are isolated, the energy minimization adaptive subtrac-
tion can fix the gap between attenuation algorithm and elimi-
nation algorithm plus all factors that are outside the assumed
physics of the subsurface and acquisition, et al. However, in
certain places, events often interfere with each other in both
on-shore and off-shore seismic data. In these cases, the criteria
of energy minimization adaptive subtraction may fail and com-
pletely removing internal multiples becomes more challenging
and beyond the current capability of the petroleum industry.

For dealing with this challenging problem, Weglein et al. (2003)
proposed a three-pronged strategy including (1)Develop the
ISS prerequisites for predicting the reference wave field and to
produce de-ghosted data Mayhan and Weglein (2014). (2)De-
velop internal-multiple elimination algorithms from ISS. (3)De-
velop a replacement for the energy-minimization criteria for
adaptive subtraction. For the second part of the strategy, that
is, to upgrade the ISS internal-multiple attenuator to elimina-
tor, the strengths and limitations of the ISS internal-multiple
attenuator are noted and reviewed. The ISS internal-multiple
attenuator always attenuates all first-order internal multiples
from all reflectors at once, automatically and without subsur-
face information. That is a tremendous strength, and is a con-
stant and holds independent of the circumstances and complex-
ity of the geology and the play. The primaries in the reflection
data that enters the algorithm provides that delivery, automat-
ically without our requiring the primaries to be identified or
in any way separated. The other events in the reflection data,
that is, the internal multiples, when they enter the ISS internal-
multiple algorithm will alter the higher order internal multi-
ples and thereby assist and cooperate with higher order ISS
internal-multiple attenuation terms, to attenuate higher order
internal multiples. However, there is a downside, a limitation.
There are cases when internal multiples that enter the atten-
uator can predict spurious events. That is a well-understood
shortcoming of the leading order term, when taken in isola-
tion, but is not an issue for the entire ISS internal-multiple
capability. It is anticipated by the ISS and higher order ISS
internal multiple terms exist to precisely remove that issue of
spurious event prediction, and taken together with the first or-
der term, no longer experiences spurious event prediction. Ma
et al. (2012) and Ma and Weglein (2014) provided those higher
order terms and for spurious events removal. In a similar way,
there are higher order ISS internal multiple terms that provide
the elimination of internal multiples when taken together with
the leading order attenuator term. There are early discussions
in Ramı́rez (2007). And Wilberth Herrera and Weglein (2012)
has derived an algorithm that can eliminate all first-order inter-
nal multiples generated at the shallowest reflector for 1D nor-
mal incidence. Part I of this paper proposes a general elimina-
tion algorithm for all first-order internal-multiples generated
from all reflectors in a 1D earth. Similarly as the attenuator,
The primaries in the reflection data that enters the algorithm
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provides that elimination capability, automatically without our
requiring the primaries to be identified or in any way separated.
The other events in the reflection data, that is, the internal mul-
tiples, will not be helpful in this elimination scheme. That is a
limitation of current algorithm. In part II of this two part paper,
we show how the ISS anticipate that shortcoming. Higher or-
der ISS terms when combined with the current algorithm will
provide elimination ability without the current shortcoming.
The basic algorithm is developed and explained in part I. The
newer version with higher order ISS terms that rewrites elim-
ination algorithm without a downside is presented and tested
in part II. Moreover, this elimination algorithm based on the
ISS internal-multiple attenuation algorithm is derived by using
reverse engineering method. It is model type dependent since
the reverse engineering method is model type dependent. The
ISS internal-multiple attenuation algorithm is model type in-
dependent.

ISS INTERNAL-MULTIPLE ATTENUATION ALGORITHM
AND ATTENUATION FACTOR FOR 1D NORMAL IN-
CIDENCE

First, we can have a review of the ISS internal-multiple at-
tenuation algorithm before we introduce the internal-multiple
elimination algorithm. The ISS internal-multiple attenuation
algorithm is first given by Araújo et al. (1994) Weglein et al.
(1997). The 1D normal incidence version of the algorithm is
presented as follows:

bIM
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∫
∞

−∞

dzeikzb1(z)
∫ z−ε2

−∞

dz′e−ikz′b1(z′)
∫

∞

z′+ε1

dz′′eikz′′b1(z′′).

(1)
Where b1(z) which is closely related to the data is the water
speed migration of the data due to a 1D normal incidence spike
plane wave. ε1 and ε2 are two small positive number intro-
duced to avoid self interaction. bIM

3 (k) is the predicted internal
multiples in the vertical wavenumber domain. This equation
can predict the correct time and approximate amplitude of all
first-order internal multiples.

Figure 1: an example of the Attenuation Factor of a first-order
internal multiple generated at the shallowest reflector, notice
that all red terms are extra transmission coefficients

The procedure of predicting a first-order internal multiple gen-
erated at the shallowest reflector is shown in figure 1. The ISS
internal-multiple attenuation algorithm uses three primaries in
the data to predict a first-order internal multiple(Note that this
algorithm is model type independent and it takes account all
possible combinations of primaries that can predict internal
multiples. These figures are just to show intuitively how it
works). From the figure we can see, every sub event on the
left hand side experiences several phenomena making its way

Figure 2: an example of the Attenuation Factor of a first-order
internal multiple generated at the next shallowest reflector, no-
tice that all red terms are extra transmission coefficients

down to the earth then back to the receiver. When compared
with the internal multiple on the right hand side, the events
on the left hand side have extra transmission coefficients as
shown in red. Multiplying all those extra transmission coeffi-
cients, we get the attenuation factor T01T10 for this first-order
internal multiple generated at the shallowest reflector. And all
first-order internal multiples generated at the shallowest reflec-
tor have the same attenuation factor.

Figure 2 shows the procedure of predicting a first-order inter-
nal multiple generated at the next shallowest reflector. In this
example, the attenuation factor is (T01T10)

2(T12T21).

The attenuation factor, AFj, in the prediction of internal multi-
ples is given by the following:

AFj =

T0,1T1,0 ( f or j = 1)∏ j−1

i=1
(T 2

i−1,iT
2
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(2)

The attenuation factor AFj can also be performed by using re-
flection coefficients:

AFj =

{
1−R2

1 ( f or j = 1)
(1−R2

1)
2(1−R2

2)
2 · · ·(1−R2

j−1)
2(1−R2

j) ( f or 1 < j < J)
(3)

The subscript j represents the generating reflector, and J is the
total number of interfaces in the model. The interfaces are
numbered starting with the shallowest location. The attenu-
ation factor is directly related to the trajectory of the events,
which forms the prediction of the internal multiple.

ISS INTERNAL-MULTIPLE ELIMINATION ALGORITHM
FOR 1D NORMAL INCIDENCE

The discussion above demonstrates that all first-order internal
multiples generated at the same reflector have the same atten-
uation factor. We can see the attenuation factor contains all
transmission coefficients from the shallowest reflector down
to the reflector generating the multiple. And from the exam-
ples(shown in figure 1 and 2) we can see the middle event con-
tains all the information about those transmission coefficients
.Therefore, our idea is to modify the middle term in the attenu-
ation algorithm to remove the attenuation factor and make the
attenuation algorithm an eliminator. That is from
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By introducing a new function called g(z) in which the ampli-
tude of each event corresponds to a reflection coefficient, we
find a way to construct F [b1(z)] by using b1(z) and g(z). After
that, we find an integral equation about b1(z) and g(z). The
F [b1(z)] is discovered Zou and Weglein (2013):

F [b1(z)] =
b1(z)

[1− (
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b1(z)
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z′−ε
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(7)

To derive the F [b1(z)] from b1(z), g(z) must first be solved
in equation (7). Thereafter, g(z) is integrated into equation
(6). Now we will show one way to solve these equations. By
iterating g(z) in (7), we can get more accurate approximation.
Substitute more accurate approximations of g(z) into F [b1(z)],
we will achieve or obtain higher orders of approximation of
the elimination algorithm which can predict correct amplitude
of first-order internal multiples generated at deeper reflectors.

ISS INTERNAL-MULTIPLE ELIMINATION ALGORITHM
FOR 1D PRESTACK

Now we get the algorithm in 1D normal incidence and it lights
the way to find an algorithm in 1D pre-stack. Let us discussed
an example in a 2D world with 1D earth. In this example, the
reflection coefficients and transmission coefficients are both
angle dependent. With discussions about this example Zou
and Weglein (2014), we find that the attenuation factors consist
of angle dependent transmission coefficients. Following early
discussions and work in Ramı́rez (2007) and Wilberth Herrera
and Weglein (2012), we discovered the elimination algorithm
in 1D pre-stack.

Below shows the 1D pre-stack internal-multiple elimination
algorithm for acoustic medium (Note that the ISS internal-
multiple attenuation algorithm is model type independent). Due
to the angle dependent reflection coefficients, we can no longer
just integrate the data in k-z domain to get the reflection coef-
ficients as we did in 1D normal incidence, we need to go to k-q
domain where each (k, q) corresponds to one reflection coeffi-
cient. The differences between the 1D pre-stack and 1D nor-
mal incidence algorithms are (1) the 1D pre-stack algorithm
has one more variable k, and (2) use the reflection coefficients
in the k-q domain instead of direct integral in k-z domain.
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NUMERICAL TESTS FOR 1D PRESTACK ISS INTERNAL-
MULTIPLE ELIMINATION ALGORITHM

We test the 1D pre-stack acoustic internal multiple elimination
algorithm for a two-reflector model. Each layer has density
1.0g/cm3, 1.2g/cm3, 2.0g/cm3 and velocity 1500m/s 3000m/s
and 4500m/s respectively. Figure 3 shows the data and figure 4
and 5 show the attenuation and elimination algorithm predic-
tions respectively. Figure 6 to Figure 13 show different traces
in different offsets (the elimination algorithm prediction (red)
and attenuation algorithm prediction (green) compared to data
(blue)). We can see the elimination algorithm keeps the correct
time and can predict better amplitude.

Figure 3: data

Figure 4: internal multiple attenuation prediction
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Figure 5: internal multiple elimination prediction

Figure 6: the elimination algorithm prediction (red) and atten-
uation algorithm prediction (green) compared to data (blue) at
offset = 0m

Figure 7: the elimination algorithm prediction (red) and atten-
uation algorithm prediction (green) compared to data (blue) at
offset = 0m. After removing the tails of primaries.

Figure 8: the elimination algorithm prediction (red) and atten-
uation algorithm prediction (green) compared to data (blue) at
offset = 200m

Figure 9: the elimination algorithm prediction (red) and atten-
uation algorithm prediction (green) compared to data (blue) at
offset = 200m. After removing the tails of primaries.

Figure 10: the elimination algorithm prediction (red) and at-
tenuation algorithm prediction (green) compared to data (blue)
at offset = 400m

CONCLUSION

The pre-stack 1D ISS internal multiple elimination algorithm
for all first-order internal multiples from all reflectors is pro-

Figure 11: the elimination algorithm prediction (red) and at-
tenuation algorithm prediction (green) compared to data (blue)
at offset = 400m. After removing the tails of primaries.

Figure 12: the elimination algorithm prediction (red) and at-
tenuation algorithm prediction (green) compared to data (blue)
at offset = 600m

Figure 13: the elimination algorithm prediction (red) and at-
tenuation algorithm prediction (green) compared to data (blue)
at offset = 600m. After removing the tails of primaries.

posed in part I of this paper. Numerical tests are carried out to
evaluate this new algorithm and to determine the strengths and
limitations. The results shows the elimination algorithm can
predict better amplitude of the internal multiples. In discussing
the elimination algorithm, the primaries in the reflection data
that enters the algorithm provides that elimination capability,
automatically without our requiring the primaries to be iden-
tified or in any way separated. The other events in the reflec-
tion data, that is, the internal multiples, will not be helpful in
this elimination scheme. That is a limitation of this new algo-
rithm. In part II of this two part paper, we show how the ISS
anticipates that shortcoming. Higher order ISS terms when
combined with the current algorithm will provide elimination
ability without the current shortcoming. The basic algorithm
is developed and explained in part I. The newer version with
higher order ISS terms that rewrites the elimination algorithm
without a downside is presented and tested in part II.This algo-
rithm is a part of the three-pronged strategy which is especially
relevant and provide value when primaries and internal multi-
ples are proximal to and/or interfere with each other in both
on-shore and off-shore data.

ACKNOWLEDGMENTS

We are grateful to all M-OSRP sponsors for encouragement
and support in this research. We would like to thank all our
coworkers for their help in reviewing this paper and valuable
discussions in this research program.



Internal Multiple Removal

REFERENCES
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Weglein, A. B., F. V. Araújo, P. M. Carvalho, R. H. Stolt, K. H.
Matson, R. T. Coates, D. Corrigan, D. J. Foster, S. A. Shaw,
and H. Zhang, 2003, Inverse scattering series and seismic
exploration: Inverse Problems, R27–R83.

Weglein, A. B., F. A. Gasparotto, P. M. Carvalho, and R. H.
Stolt, 1997, An inverse-scattering series method for attenu-
ating multiples in seismic reflection data: Geophysics, 62,
1975–1989.

Wilberth Herrera, Chao Ma, H. L. P. T., and A. B. Weglein,
2012, Progressing amplitude issues for testing 1d analytic
data in leading order internal multiple algorithms: Mission
Oriented Seismic Research Program Annual Report, 167–
188.

Zou, Y., and A. B. Weglein, 2013, Internal multiple removal:
an amplitude correction equation for internal-multiple at-
tenuator(1d normal incidence): Mission Oriented Seismic
Research Program Annual Report, 167–188.

——–, 2014, An algorithm for the elimination of all first-order
internal multiples from all reflectors: 1d noraml incidence
and 1d pre-stack algorithm, discussion and numerical tests:
Mission Oriented Seismic Research Program Annual Re-
port.


