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SUMMARY

Driven by the demand for more capabilities in remov-
ing the internal multiples, the strengths and limitations of
the ISS(Inverse-Scattering-Series) internal-multiple attenua-
tion algorithm(Araújo et al. (1994) and Weglein et al. (1997))
are noted and reviewed. The ISS internal multiple attenuation
algorithm has tremendous strength that it can predict the cor-
rect time and approximate amplitude for all first-order internal
multiples without any information of the earth. As the first
term in the internal-multiple elimination sub-series, the ISS
internal-multiple attenuation algorithm has its own limitations,
as noted in Weglein et al. (2003): in certain circumstances, it
may generate spurious events Ma et al. (2012) and can not pre-
dict exact correct amplitude.That is a well-understood short-
coming of the leading order term, when taken in isolation, but
is not an issue for the entire ISS internal multiple capability.
In part I of this paper, a new elimination algorithm for all first-
order internal multiples for one dimensional earth has been de-
rived based on the ISS internal-multiple attenuation algorithm.
This elimination algorithm based on the ISS internal-multiple
attenuation algorithm is derived by using reverse engineering
method. This elimination algorithm is model type dependent
since the reverse engineering method is model type dependent
while the ISS internal-multiple attenuation algorithm is model
type independent. The primaries in the reflection data that en-
ters this elimination algorithm provides that elimination capa-
bility, without requiring the primaries to be identified or in any
way separated. The other events in the reflection data may al-
ter the amplitude and need assist and cooperate with other ISS
terms to completely eliminate the internal multiples. In part II
of this paper, a modified strategy is proposed to address this
limitation of the new elimination algorithm.

INTRODUCTION

The ISS internal-multiple attenuation algorithm(Araújo et al.
(1994) and Weglein et al. (1997)) can predict the correct time
and approximate amplitude for all first-order internal multiples
without any information of the earth. This algorithm is effec-
tive and can attenuate internal multiples in many cases. How-
ever, in certain places, both offshore and onshore, the multiple
is often proximal to or interfering with the primaries. There-
fore, the task of removing internal multiples without damag-
ing primaries becomes more challenging and subtle and cur-
rently beyond the collective capability of the petroleum indus-
try. Weglein et al. (2003) proposed a three-pronged strategy for
providing an effective response to this pressing and prioritized
challenge. One part of the strategy is to develop an internal-
multiple elimination algorithm that can predict both the cor-
rect amplitude and correct time for all internal multiples. Part
I of this paper proposes a general elimination algorithm for all

first-order internal-multiples generated from all reflectors in a
1D earth. The primaries in the reflection data that enters the
algorithm provides that elimination capability, automatically
without our requiring the primaries to be identified or in any
way separated. The other events in the reflection data, that is,
the internal multiples, will not be helpful in this elimination
scheme. That is a limitation of current algorithm. In part II
of this two part paper, we show how the ISS anticipate that
shortcoming. Higher order ISS terms when combined with the
current algorithm will provide elimination ability without the
current shortcoming. The basic algorithm is developed and
explained in part I. The newer version with higher order ISS
terms that rewrites elimination algorithm without a downside
is presented and tested in part II. In this part II, we will first
give a review of both the internal multiple attenuator and elim-
inator, then we will propose a modified strategy with higher
order terms from the inverse scattering series for addressing
the limitations of the eliminator and test the strategy in a lay-
ered medium.

ISS INTERNAL-MULTIPLE ATTENUATION ALGORITHM
AND ATTENUATION FACTOR FOR 1D NORMAL IN-
CIDENCE

The ISS internal-multiple attenuation algorithm is first given
by Araújo et al. (1994) and Weglein et al. (1997). The 1D nor-
mal incidence version of the algorithm is presented as follows:
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Where b1(z) which is closely related to the data is the wa-
ter speed migration of the data due to a 1D normal incidence
spike plane wave. ε1 and ε2 are two small positive number
introduced to avoid self interaction. bIM

3 (k) is the predicted
internal multiples in vertical wavenumber domain. This equa-
tion can predict the correct time and approximate amplitude of
all first-order internal multiples.

Figure 1: an example of the Attenuation Factor of a first-order
internal multiple generated at the shallowest reflector, notice
that all red terms are extra transmission coefficients

The procedure of predicting a first-order internal multiple gen-
erated at the shallowest reflector is shown in figure 1. The ISS
internal-multiple attenuation algorithm uses three primaries in
data to predict a first-order internal multiple. Multiplying all
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Figure 2: an example of the Attenuation Factor of a first-order
internal multiple generated at the next shallowest reflector, no-
tice that all red terms are extra transmission coefficients

those extra transmission coefficients, we get the attenuation
factor T01T10 for this first-order internal multiple generated
at the shallowest reflector. Figure 2 shows the procedure of
predicting a first-order internal multiple generated at the next
shallowest reflector. In this example, the attenuation factor is
(T01T10)

2(T12T21). The attenuation factor, AFj, in the predic-
tion of internal multiples is given by the following:
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The attenuation factor AFj can also be performed by using re-
flection coefficients:

AFj =
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The subscript j represents the generating reflector, and J is the
total number of interfaces in the model.

ISS INTERNAL-MULTIPLE ELIMINATION ALGORITHM
FOR 1D NORMAL INCIDENCE

The discussion above demonstrates that all first-order internal
multiples generated at the same reflector have the same atten-
uation factor. We can see the attenuation factor contains all
transmission coefficients from the shallowest reflector down to
the reflector generating the multiple. Zou and Weglein (2013)
proposed an elimination algorithm that can remove all the at-
tenuation factors for all first-order internal multiples from all
reflectors. The algorithm is shown as following:
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g(z) is a intermediate function to help construct the above close
formula. To derive the F [b1(z)] from b1(z), g(z) must first be
solved in equation (5). Thereafter, g(z) is integrated into equa-
tion (4). By iterating g(z) in (5), we can get more accurate ap-
proximation. Substitute more accurate approximations of g(z)
into F [b1(z)], we will get higher orders of approximation of
the elimination algorithm which can predict correct amplitude
of first-order internal multiples generated at deeper reflectors.

First Type of Equation Approximation for g(z)
The simplest approximation for g(z) is presented as follows:
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Second Type of Equation Approximation for g(z)
A more accurate approximation for g(z) is presented as fol-
lows::
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Higher order approximations
By iterating g(z) in (5), we can get more accurate approxima-
tion, as shown in figure 3. Substitute more accurate approxi-
mations of g(z) into F [b1(z)], we will get better approximation
of the elimination algorithm which can predict correct ampli-
tude of first-order internal multiples generated at deeper reflec-
tors.

Figure 3: different approximations for g(z)

ISS INTERNAL-MULTIPLE ELIMINATION ALGORITHM
FOR 1D PRESTACK

In part I of this paper, a new algorithm dealing with the am-
plitude issue for all first-order internal multiples for one di-
mensional earth has been derived based on the ISS internal-
multiple attenuation algorithm. The algorithm is shown as fol-
lows:
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A MODIFIED STRATEGY OF USING B1 +B3 INSTEAD
OF B1 AS THE INPUT DATA FOR THE ELIMINATION
ALGORITHM

The primaries in the reflection data that enters the elimination
algorithm (both 1D normal incidence and 1D pre-stack) pro-
vides that elimination capability, automatically without our re-
quiring the primaries to be identified or in any way separated.
The other events in the reflection data, that is, the internal mul-
tiples, will not be helpful in this elimination scheme. That is
a limitation of current algorithm. Now, we show the modi-
fied strategy and newer version of internal-multiple elimina-
tion algorithm. The limitation is due to internal multiples in
the input data. Fortunately, we have a good approximations
of the internal multiples (b3) and if we use b1 + b3 instead of
b1 as the input data for the elimination algorithm, we will be
able to significantly reduce the errors due to the multiples in
the data. In figure 4, b1, which is very close to data, con-

Figure 4: using b1 + b3 instead of b1 as the input data for the
elimination algorithm

tains primaries, first-order internal multiples and higher-order
internal multiples. We use the attenuation algorithm to predict
first-order internal multiples(b3) with correct time and approx-
imate amplitude. Due to the multiples in the data, the attenua-
tion algorithm also generates spurious events Ma et al. (2012)
and makes prediction for higher-order multiples at the same
time. However, the elimination algorithm assumes the data
contains only primaries. Here is the strategy, since in b1 + b3
the first-order internal multiples are attenuated and it is a good
approximation for data with only primaries. If we use b1 +b3

instead of b1 for the elimination algorithm, the predicted spu-
rious events and higher-order multiples due to first-order inter-
nal multiples in the data are also attenuated. All events in the
red circle including other events are small compared with the
first-order internal multiples and can be ignored.

NUMERICAL TESTS ON A 34-REFLECTOR MODEL

In this section, we will test the modified strategy for a 34-
reflector model under 1D normal incidence. And the modified
strategy we proposed in this paper can be easily extended to the
1D pre-stack version. In figure 5, is a 34-reflector model. The
input data is shown in figure 6. In this test we used a 40th ap-
proximation of the algorithm as shown in figure 7. We test the

Figure 5: model

Figure 6: input data

ISS internal-multiple attenuation algorithm, the elimination al-
gorithm with input b1 and input b1+b3 respectively. From the
result we conclude that using b1+b3 as the input significantly
reduced errors and makes better prediction for all first-order
internal multiples generated from all reflectors.

Figure 8,9,10 show the prediction of different algorithms/strategies
compared with the input data. Figure 11,12,13 shows a small
time interval of figure 8,9,10 respectively.
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Figure 7: iteration to get g40(z)

Figure 8: Internal multiple attenuator prediction(red) com-
pared with the input data(blue)

Figure 9: internal multiple elimination algorithm (with b1
as the input data) prediction(red) compared with the input
data(blue)

Figure 10: Internal multiple elimination algorithm (with b1 +
b3 as the input data) prediction(red) compared with the input
data(blue)

CONCLUSION

In part I of this paper, a new elimination algorithm for all first-
order internal multiples for one dimensional earth has been de-

Figure 11: A small time interval of figure 8

Figure 12: A small time interval of figure 9

Figure 13: A small time interval of figure 10

rived based on the ISS internal-multiple attenuation algorithm.
The primaries in the reflection data that enters this elimination
algorithm provides that elimination capability, without requir-
ing the primaries to be identified or in any way separated. The
other events in the reflection data may alter the amplitude and
need assist and cooperate with higher order ISS terms to com-
pletely eliminate the internal multiples. In this part II of this
two part set of paper, a modified strategy is proposed to address
this limitation of the current elimination algorithm. In the end
we tested the strategy in a layered medium and the results are
very encouraging.
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Araújo, F. V., A. B. Weglein, P. M. Carvalho, and R. H. Stolt,
1994, Inverse scattering series for multiple attenuation: An
example with surface and internal multiples: SEG Techni-
cal Program Expanded Abstracts, 1039–1041.

Ma, C., H. Liang, and A. B. Weglein, 2012, Modifying the
leading order iss attenuator of first-order internal multiples
to accommodate primaries and internal multiples: funda-
mental concept andtheory, development, and examples ex-
emplified when three reflectors generatethe data: Mission
Oriented Seismic Research Program Annual Report, 133–
147.
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