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Abstract

Reverse time migration (RTM) is the cutting-edge imaging method used in seismic explo-
ration. In earlier RTM publications, density was often used to balance a medium with velocity
variation, such that the acoustic impedance − the product of velocity and density − stays
constant. Thus, reflections from sharp boundaries are avoided. In order to be more complete,
consistent, realistic, and predictive, density variation is intentionally included in our study so
that we can test its impact on the Green’s theorem-based wave-theory RTM algorithms.

The major objectives of this article are to advance our understanding and to provide con-
cepts, added imaging capabilities, and new algorithms for RTM. Although our objective of
extracting useful subsurface information from recorded data is not different from that of well-
known previous RTM publications, our approach is different: we use wave theory as much as
possible to maximize the benefit from the Green’s function and Green’s theorem, rather than
use the more popular methodology of running finite-difference modeling backwards in time.

A significant artifact in RTM is caused by the fact that numerous subsurface seismic events
necessary for backward propagation never return to the measurement surface. This unwanted
phenomenon also exists for the wave-field-prediction method formulated from Green’s theorem:
Green’s formula (in its general form, i.e., equation (2.5)), which links the wave field on the
entire outer surface with interior field values, also requires data from everywhere on the surface.
Weglein et al. (2011a) and Weglein et al. (2011b) proposed a special Green’s function with
vanishing Dirichlet and Neumann boundary conditions at the deeper boundary to cope with
that issue. This article provides a natural extension of the two aforementioned papers, into a
medium with density variation and more complicated geological structures.

The major advantage of RTM over many other seismic imaging methods is its additional
ability to handle two-way propagation without assuming that the events in the input data
are only up-going and that all multiples have been removed. This article demonstrates with
numerical examples that both up- and down-going waves can be precisely predicted from the
data (including internal multiples) on the top surface only. In our example, the contribution of
the transmission events that never return to the measurement surface is deliberately eliminated,
and it is not necessary for those events to enter the calculation.
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The Green’s function with vanishing Dirichlet and Neumann boundary conditions at the
deeper boundary demonstrates many remarkable properties. For example, it vanishes if the
receiver is deeper than the source, it violates reciprocity, and its value is not affected by any
heterogeneity outside the region between the source and receiver. The double vanishing bound-
ary condition also leads us to a wave-theory solution for a model that has many reflectors and
lacks internal multiples.

In this paper, two approaches have been used to derive the Green’s function with vanishing
Dirichlet and Neumann boundary conditions at the deeper boundary. The first is an analytical
boundary-matching method in the frequency domain, and the second is the numerical finite-
difference approach identical to many current finite-difference forward-modeling procedures in
the industry. The second method can be extended to multiple dimensions with lateral variation
in the medium properties. We find these two methods agree with each other with regard to the
intrinsic accuracy issue of the finite-difference approximation to differential equations.

In this paper, we also have some very early and very positive news on the first wave theory
RTM imaging tests, with a discontinuous reference medium and images that have the correct
depth and amplitude (that is, producing the reflection coefficient at the correctly located target)
with primaries and multiples in the data. That is an implementation of Weglein et al. (2011a;b)
with creative implementation and testing and analysis.

1 Introduction

One of the major early objectives of Reverse Time Migration (RTM) is to obtain a better image of
salt flanks through diving waves than is obtained by directly imaging through the complex overbur-
den. The key new capability of the RTM method compared with one-way migration algorithms is
to allow two-way wave propagation in the imaging procedure. This article follows closely the idea
established in Weglein et al. (2011a;b): achieving a Green’s function with vanishing Dirichlet and
Neumann boundary conditions at the deeper boundary, to eliminate the need for measurement at
depth.

To achieve the two-way imaging, we study the behavior of our Green’s function in three examples:
(1) a homogeneous model, (2) a single reflector model, and (3) a two-reflector model with internal
multiples. In order to get two-way propagation without complexity and approximation, we study 1D
examples with both up- and down-going wave propagation. We provide the details to demonstrate
the underlying physics.

As stated in Whitmore (1983); Baysal et al. (1983); Luo and Schuster (2004); Fletcher et al. (2006);
Liu et al. (2009) and Vigh et al. (2009), accurate medium properties above the target are required for
the RTM procedure discussed in this article. The major difference is that in most RTM algorithms in
the industry, a smoothed version of the velocity is used in the imaging procedure to avoid reflections
from the velocity model itself, while the exact velocity models (often discontinuous) are used in all
three examples in this article.

To apply the firm footing and math-physics foundation established in Weglein et al. (2011a;b) in
an arbitrary medium, we first study in detail the properties of the Green’s functions with vanishing
boundary conditions at the deeper boundary z′ = B. The understanding of the aforementioned

285



RTM M-OSRP12

properties provides us with a straightforward procedure for constructing a Green’s function with
the double vanishing boundary condition for a 1D medium with arbitrary complexity. We adopt
the notations of the aforementioned articles as much as possible while introducing some minor
modifications to allow smooth expansions into new territories.

One of the remarkable properties of the Green’s function in this article is that, although both the
causal Green’s function G+

0 and the anti-causal Green’s function G−0 vary with the medium below
the source, the Green’s function with both vanishing Dirichlet and Neumann boundary conditions
does not. The implications are that if we want to predict the wave field at depth z, the medium’s
properties deeper than z are not required. Such a property is very difficult to visualize if G+

0 or G−0
is used to make the prediction, since both of them will change with the medium’s properties deeper
than z. It is worthwhile to note that this property of the Green’s function with vanishing boundary
conditions is also demonstrated by the WKBJ Green’s function used in the derivation of FK and
phase-shift migrations. While the WKBJ Green’s function is an approximate solution for a medium
with smooth variations, and the Green’s function with double vanishing boundary conditions in
this report is exact and for a discontinuous medium, nevertheless we find their similarity worth
reporting.

The property that allows an easy iterative procedure for constructing a Green’s function with double
vanishing boundary conditions is the following: the field values of the Green’s function vanishing
at the deeper surface are not affected by heterogeneity beyond the region between the field point
and the source. Consequently, we can start the calculation from a field location sufficiently close
to the source that the medium in between is homogeneous. In this case, the initial field value
(for all time and frequency values) can be calculated from a much simpler medium obtained by
extending the homogeneity to the entire space∗. This initial field value contains two parts: the
first part† is the out-going G+

0 and is produced by the actual source, and the second term is the
downward propagation portion‡ that will cancel with the downward propagation energy of G+

0 .
Consequently, it will give a solution that vanishes completely below the source, satisfying both
Dirichlet and Neumann boundary conditions. For the solution of the wave field above the initial
field, standard analytic boundary-matching methods or discrete finite-difference procedures can be
used to iteratively extrapolate the function values to locations further and further away from the
source location.

Another property of the Green’s function with both Dirichlet and Neumann boundary conditions
vanishing is that it contains no multiples or reflections from the energy produced by the source,
even for models with an arbitrary number of reflectors. This property, derived from precise Green’s
theory, agrees with many methodologies in the current seismic imaging procedures (which are often
derived with some approximation to the wave equation): a smooth model is preferred, in order to
exclude reflections and multiples caused by the velocity model.

The major contributions of this article are:
∗For example, equation (14) of Weglein et al. (2011b) or equation (3.1) in this paper.
†The second term of equation (14) of Weglein et al. (2011b).
‡The first term of equation (14) of Weglein et al. (2011b).
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• It provides two methods to calculate the Green’s function with vanishing Dirichlet and Neu-
mann boundary conditions for arbitrary 1D medium.

• It incorporates the density variation for Green’s theorem RTM.

• It provides the finite-difference scheme for calculating the Green’s function that vanishes at
the deeper boundary.

• It provides a two-way propagation and downward continuation of wave fields, by using Green’s
function with double vanishing boundary conditions.

• It demonstrates remarkable properties of the precise analytical Green’s function that coincide
with many existing seismic imaging ideas derived with different degrees of approximation.

The following notations are worth mentioning at the beginning: G+
0 and G−0 are used to denote

causal and anti-causal Green’s functions, respectively. GDN
0 is used to denote the Green’s function

with vanishing Dirichlet and Neumann boundary conditions at the deeper boundary. k = ω/c0
where c0 is the constant velocity of the reference medium, and ω is the angular frequency.

Although Green’s theorem and Green’s functions are more often discussed in the frequency domain,
in this paper the Green’s functions and wave field prediction examples are always graphed in the
time domain since this domain is more easily accessible (without expressing the values in complex
numbers). A very straightforward Fourier transform is sufficient to make the domain change:

f(t) =
1

2π

∞∫
−∞

f̃(ω)e−iωtdω. (1.1)

The Green’s function, resulting from an ideal impulsive source, contains frequency information of
an arbitrary frequency. For display, we convolve it with a band-limited wavelet (the first derivative
of a Gaussian function§) to avoid aliasing beyond the Nyquist frequency.

2 Green’s theorem wave-field prediction with density variation

In many migration methods, density variation is often left out of the acoustic wave equation since it
does not affect the travel time. In reverse time migration, however, density serves a very important
role even in the early stage: in order to have a reflectionless medium with velocity variations, a
counterbalancing density variation is introduced to make sure the acoustic impedance is constant.
Therefore in our derivation of Green’s theorem-based RTM, we explicitly incorporate the density
variations in the acoustic medium. First, let us assume the wave propagation problem in a volume
V bounded by a shallower depth A and deeper depth B:

§The wavelet is iωe−ω2/β in the frequency domain or 1
2

√
β
π
e−βt2/4 in the time domain, where β = (20π)2
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{
∂

∂z′
1

ρ(z′)
∂

∂z′
+

ω2

ρ(z′)c2(z′)

}
P (z′, ω) = 0 , A < z′ < B, (2.1)

where z′ is the depth, and ρ(z′) and c(z′) are the density and velocity fields, respectively. In
exploration seismology, we let the shallower depth A be the measurement surface where the seismic
acquisition can be accomplished economically. The volume V is the finite volume defined in the
“finite volume model” for migration, the details of which can be found in Weglein et al. (2011a). We
measure P at the measurement surface z′ = A, and the objective is to predict P anywhere between
the shallower surface and another surface with greater depth, z′ = B. This can be achieved via the
solution of the wave-propagation equation in the same medium by an idealized impulsive source or
Green’s function:

{
∂

∂z′
1

ρ(z′)
∂

∂z′
+

ω2

ρ(z′)c2(z′)

}
G0(z, z

′, ω) = δ(z − z′) , A < z′ < B, (2.2)

where z is the location of the source, and z′ and z increase in a downward direction. It can be
achieved as follows:

• Multiply equation (2.2) by P (z′, ω).

• Multiply equation (2.1) by G0(z, z
′, ω).

• Integrate the difference of the two aforementioned products (both are functions of z′) over the
variable z′ from A to B.

The right-hand side of the operation above is:

B∫
A

P (z′, ω)δ(z − z′)dz′ = P (z, ω), (2.3)

where in the derivation above we assume z is inside the volume V (i.e., A < z < B). Omitting the
arguments of the following functions: P (z′, ω), G0(z, z

′, ω), c(z′) and ρ(z′), since their arguments
will not be changed in the derivation process, the left-hand side of the operation above is:
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B∫
A

[
P

∂

∂z′

{
1

ρ

∂G0

∂z′

}
+

ω2PG0

ρc2
−G0

∂

∂z′

{
1

ρ

∂P

∂z′

}
− ω2PG0

ρc2

]
dz′

=

B∫
A

[
P

∂

∂z′

{
1

ρ

∂G0

∂z′

}
−G0

∂

∂z′

{
1

ρ

∂P

∂z′

}]
dz′

=

B∫
A

[
P

∂

∂z′

{
1

ρ

∂G0

∂z′

}
+

∂P

∂z′
1

ρ

∂G0

∂z′
−G0

∂

∂z′

{
1

ρ

∂P

∂z′

}
− ∂G0

∂z′
1

ρ

∂P

∂z′

]
dz′

=

B∫
A

[
∂

∂z′

{
P

ρ

∂G0

∂z′

}
− ∂

∂z′

{
G0

ρ

∂P

∂z′

}]
dz′ =

B∫
A

∂

∂z′

{
P

ρ

∂G0

∂z′
− G0

ρ

∂P

∂z′

}
dz′

=

B∫
A

∂

∂z′

{
1

ρ

[
P
∂G0

∂z′
−G0

∂P

∂z′

]}
dz′

=
1

ρ

{
P
∂G0

∂z′
−G0

∂P

∂z′

}∣∣∣∣z′=B
z′=A

.

(2.4)

Equating the results obtained by the left- and right-hand-side operations, and restoring the specific
arguments of each function, we have:

P (z, ω) =
1

ρ(z′)

{
P (z′, ω)

∂G0(z, z
′, ω)

∂z′
−G0(z, z

′, ω)
∂P (z′, ω)

∂z′

}∣∣∣∣z′=B
z′=A

, (2.5)

where A and B are the shallower and deeper boundaries, respectively, of the volume to which the
Green’s theorem is applied. It is identical to equation (43) of Weglein et al. (2011a), except for the
additional density contribution to the Green’s theorem. Similar density contributions can be found
in many seismic imaging procedures, such as equation (21) of Clayton and Stolt (1981).

In the arguments of G0, z is the location of the source, and z′ is the location of the receiver. The
Green’s theorem given in equation (2.5) predicts the data P (z, ω) in an arbitrary location using the
data P (z′, ω) at the measurement surface. In this specific application, z is the depth at which the
wave-field prediction is carried out.

Note that in equation (2.5), the field values at the surface of the volume V are necessary for
predicting the field value inside V . The surface of V contains two parts: the shallower portion
z′ = A and the deeper portion z′ = B. In seismic exploration, the need for data at z′ = B is often
the issue. For example, one of the significant artifacts of the current RTM procedures is caused by
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Figure 1: Green’s theorem predicts the wave field at an arbitrary depth z between the shallower
depth A and deeper depth B.

this phenomenon: there are events necessary for accurate wave-field prediction that reach z′ = B
but never return to z′ = A, as is demonstrated in Figure 1. The solution, based on Green’s theorem
without any approximation, was first published in Weglein et al. (2011a) and Weglein et al. (2011b),
the basic idea can be summarized as the following.

Since the wave equation is a second-order differential equation, its solution is not unique. In other
words, for a wave equation with a specific medium property, there are an infinite number of solutions.
This freedom in choosing the Green’s function has been taken advantage of in many seismic-imaging
procedures. For example, the most popular choice in wave-field prediction is the physical solution
G+

0 . In downward continuing an up-going wave field to a subsurface, the anti-causal solution G−0 is
often used.

If both G0 and ∂G0/∂z
′ vanish at the deeper boundary z′ = B, where measurement is often much

more expensive than acquiring data at the shallower boundary z′ = A, then only the data at the
shallower surface (i.e., the actual measurement surface) is needed in the calculation. We use GDN

0

to denote the Green’s function with vanishing Dirichlet and Neumann boundary conditions at the
deeper boundary.

3 The vanishing property of GDN
0 and its independence of the medium’s prop-

erties below the source

First, let us look at some properties of the Green’s function detailed in equation (14) of Weglein
et al. (2011b):

GDN
0 (z, z′, ω) =

−1
2ik

(
e−ik(z−z

′) − eik|z−z
′|
)
, (3.1)

where k = ω/c0 and the quantity c0 is the unchanged homogeneous velocity in the entire space,
and z and z′ are the locations of the source and receiver, respectively. This Green’s function is
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Figure 2: The construction of GDN
0 for a homogeneous medium with constant velocity 1500m/s.

The source depth is 500m. The left panel is the causal solution (if we denote k = ω/c0 and H is
the Heaviside function, the causal Green’s function is G+

0 (z, z
′, ω) = eik|z−z′|/(2ik) in the frequency

domain or G+
0 (z, z

′, t) = −c0
2 H(t − |z − z′|/c0) in the time domain). The middle panel shows the

homogeneous solution (−eik(z′−z)/(2ik) in the frequency domain or c0
2 H(t− (z′− z)/c0) in the time

domain) that cancels with the left panel below the source. The right panel results from summing the
two panels on its left and is the desired Green’s function with double vanishing boundary conditions.
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for a whole-space homogeneous medium with c0 as its velocity. It also satisfies the Dirichlet and
Neumann boundary conditions at the deeper boundary B:

GDN
0 (z, z′, ω)

∣∣
z′=B = 0,

∂GDN
0 (z, z′, ω)
∂z′

∣∣∣∣
z′=B

= 0.

The construction of equation (3.1) (i.e., GDN
0 in a homogeneous medium) is detailed in Weglein et al.

(2011b); we only provide its graphic version in this article in Figure 2.

In equation (3.1), the second term is the causal solution for the same homogeneous medium, and
the first term is a specific solution to the homogeneous¶ wave equation, introduced to perfectly
cancel the causal solution at the deeper boundary. The major objective of this Green’s function is
to eliminate the need for measurement at the deeper surface: z′ = B.
According to equation (2.5), for arbitrary values of the wave field P (z′, ω), this objective implies
G0(z, z

′, ω)|z′=B = ∂G0(z,z′,ω)
∂z′

∣∣∣
z′=B

= 0, since normally the data are available only at the measure-
ment surface: z′ = A. The variable z is used to denote the depth to which we want to continue the
wave field downward. It is obvious that A < z′ < B. First, if z < z′, this Green’s operator vanishes,
since

GDN
0 (z, z′, ω) =

−1
2ik

(
e−ik(z−z

′) − eik|z−z
′|
)

z<z′
=

−1
2ik

(
eik(z

′−z) − eik(z
′−z)

)
≡ 0.

(3.2)

According to equation (3.2), this Green’s function vanishes not only for the isolated location at B,
but also in the extended entire half-space below the source, which include z′ = B.
Obviously this Green’s function satisfies the wave equation of the whole-space homogeneous medium
(i.e., equation (7) of Weglein et al. (2011b)):

(
d2

dz′2
+

ω2

c20

)
GDN

0 (z, z′, ω) = δ(z − z′). (3.3)

If we have an inhomogeneous medium c(z′) such that c(z′) = c0 when z′ < z, the Helmholtz equation
for this inhomogeneous medium is

¶In this article the adjective homogeneous has different meaning when it acts on medium or equation. In the first
case it means medium with constant acoustic property in the entire space, while in the second case it means a wave
equation without the source term.
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Figure 3: The construction of GDN
0 for a medium with one reflector (the velocities above and below

the reflector are 1500m/s and 2700m/s, respectively). The source depth is 500m and is above the
single reflector at 700m. The left panel is the causal solution G+

0 , and the middle panel shows the
homogeneous solution that cancels with the left panel below the source. The right panel results
from summing the two panels on its left and is the desired Green’s function with double vanishing
boundary conditions.

(
d2

dz′2
+

ω2

c2(z′)

)
G0(z, z′, ω) = δ(z − z′). (3.4)

When z′ < z, wave equation (3.4) is satisfied by Green’s function (3.1) since it satisfies the homo-
geneous wave equation (3.3), which is identical to the inhomogeneous equation (3.4) when z′ < z.

For the other possibility, that z′ > z, wave equation (3.4) is also satisfied by Green’s function (3.1)
since it completely vanishes in this region. If we substituteGDN

0 for G0, left-hand side of equation (3.4)
vanishes since the spatial partial derivative is zero, while the right-hand side vanishes due to the fact
that the source z is located outside the region of interest. Consequently, equation (3.4) is satisfied
by the Green’s function in equation (3.3).

As an example, introducing a single reflector below the source for the Green’s function in equa-
tion (16) of Weglein et al. (2011b) will not change the value of the Green’s function. The construc-
tion of GDN

0 with its source located above the single reflector is detailed in Weglein et al. (2011b);
here we provide its graphical version in Figure 3. The equivalence of the Green’s function (3.1) to

293



RTM M-OSRP12

equation (39) in Weglein et al. (2011b) can be demonstrated as follows. Since a is the depth of
the reflector, and we consider the case in which the source is above the reflector, we have z < a
and sgn(a − z) = 1. According to Appendix B of Weglein et al. (2011b), we have: D1 = 0,
C1 = − T

2ike
ik|a−z|e−ik1a = − T

2ike
ik(a−z)e−ik1a. Thus, the wave field below the reflector (i.e., z′ > a,

the transmitted wave) can be simplified as:

T

2ik
eik|a−z|eik1(z

′−a) + C1e
ik1z′ +D1e

−ik1z′

=
T

2ik
eik|a−z|eik1(z

′−a) − T

2ik
eik|a−z|e

−ik1a
eik1z

′
+ 0× e−ik1z

′

=
T

2ik
eik|a−z|eik1(z

′−a) − T

2ik
eik|a−z|eik1(z

′−a) ≡ 0.

(3.5)

Obviously, this Green’s function vanishes if z′ > a (is deeper than the reflector). The same vanishing
property is also displayed for GDN

0 without the single reflector below the source; the details can be
found in equation (3.2).

Since A1 = −1
2ike

−ikz, and B1 = −R
2ik e

ik(2a−z), and if z′ < a is above the reflector, the reflected wave
in equation (39) of Weglein et al. (2011b) can be simplified as follows:

eik|z′−z|

2ik
+R

e−ik(z′−a)

2ik
eik(a−z) +A1e

ikz′ +B1e
−ikz′

=
eik|z′−z|

2ik
+R

eik(2a−z′−z)

2ik
+A1e

ikz′ +B1e
−ikz′

=
eik|z′−z|

2ik
+R

eik(2a−z′−z)

2ik
− eik(z

′−z)

2ik
− R

2ik
eik(2a−z)e−ikz

′

=
eik|z′−z|

2ik
+R

eik(2a−z′−z)

2ik
− eik(z

′−z)

2ik
−R

eik(2a−z′−z)

2ik

=
eik|z′−z|

2ik
− eik(z

′−z)

2ik
=
−1
2ik

(
eik(z

′−z) − eik|z
′−z|

)
.

(3.6)

Consequently, it is identical to the Green’s function (3.1) for z′ < a (i.e., to equation (14) of Weglein
et al. (2011b), the Green’s function with the same vanishing Dirichlet and Neumann boundary
conditions at the deeper boundary for a whole-space homogeneous medium). In other words, the
reflector below the source will not change the values of the Green’s function with vanishing Dirichlet
and Neumann boundary conditions at the deeper boundary.
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Figure 4: The configuration of the experiment with the source below a single reflector.

4 GDN
0 for a model with a single reflector

4.1 Case I: source above the reflector

This case had been derived and documented in detail in Weglein et al. (2011b). The only additional
contribution we have in this article is the density term in the amplitude of the Green’s function:

GDN
0 (z, z′, ω) =

ρ0
2ik

(
eik|z−z

′| − e−ik(z−z
′)
)
. (4.1)

In the equation above, the density at the source location is the extra contribution in extending the
Green’s function in equation (39) of Weglein et al. (2011b). A similar density term can be found in
the Green’s function of Clayton and Stolt (1981).

We can also Fourier transform equation (4.1) to the time domain to have:

GDN
0 (z, z′, t) =

ρ0c0
2

(
H

[
t− z′ − z

c0

]
−H

[
t− |z

′ − z|
c0

])
. (4.2)

4.2 Case II: source below the reflector

From the previous section, if z < a, the solution is trivial since GDN
0 (z, z′, ω) = GDN

0 (z, z′, ω). It
is critical to derive GDN

0 for z > a. The physical experiment is the following (see Figure 4): The
locations of the measurement surface and the deeper surface are A and B, respectively. The depth
of the single reflector and source are a and z, respectively. The causal Green’s function with the
source located at depth z and receiver at depth z′ is denoted as G+

0 (z, z
′, ω).

If the impulsive source is below the reflector, it will produce an out-going wave ρ1eik1|z
′−z|

2ik1
in the

second medium; i.e., the Green’s function with homogeneous properties (ρ1, c1). After the out-going
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field is obtained, the reflection in the second medium and the transmission in the first medium can
be solved as a classical reflection problem, as is presented in equations (12.5) and (12.8), and the
final result is:

1

ρ1
G+

0 (z, z
′, ω) =

{
1−R
2ik1

eik1(z−a)eik(a−z′) if (z′ < a)
1

2ik1

(
eik1|z′−z| −Reik1(z

′+z−2a)
)

if (z′ > a)
, (4.3)

where R = ρ1c1−ρ0c0
ρ1c1+ρ0c0

is the reflection coefficient of a plane wave incident from above. Since B is the
depth of the deeper surface, for our wave-field prediction purpose we have A < z < B. Consequently,
G+

0 will produce two packets of down-going waves at the deeper surface B: ρ1eik1(B−z)

2ik1
(the direct

wave or the homogeneous propagation as if the entire space is filled with the second medium) and
−Rρ1eik1(B+z−2a)

2ik1
(the reflection wave‖).

For z′ > z, G+
0 can be expressed as:

eik1|z′−z| −Reik1(z
′+z−2a)

2ik1/ρ1
=

eik1(z
′−z) −Reik1(z

′+z−2a)

2ik1/ρ1
=

e−ik1z −Reik1(z−2a)

2ik1/ρ1
eik1z

′
.

In order to have a Green’s function that vanishes at the deeper boundary z′ = B, we can introduce
a homogeneous solution that cancels with the causal solution. As a result, the desired homogeneous
solution, denoted as φ(z, z′, ω), must be

φ(z, z′, ω) =
Reik1(z−2a) − e−ik1z

2ik1/ρ1
eik1z

′
if (z′ > z). (4.4)

We denote the amplitude factor of the down-going wave eik1z
′ as F1(z, ω) =

e−ik1z−Reik1(z−2a)

2ik1/ρ1
. Our

objective is to produce a homogeneous propagation that will produce −F1(z, ω)e
ik1z′ for z′ > z that

cancels G+
0 at the deeper boundary z′ = B. Since the actual medium has a single invariant velocity

c1 for z′ > a and there is no velocity change at the source location, z′ = z, this implies that it is
also the solution for a broader region (i.e., z′ > a):

φ(z, z′, ω) =
Reik1(z−2a) − e−ik1z

2ik1/ρ1
eik1z

′
if (z′ > a). (4.5)

With the solution for z′ > a, the wave propagation for z′ < a can be unambiguously solved via
boundary conditions detailed in Appendix A. The medium’s properties are listed in Table 1, and R is
used to denote the reflection coefficient of this model when the incident wave is coming from above:
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Depth Range Velocity Density
(−∞, a) c0 ρ0
(a,∞) c1 ρ1

Table 1: The properties of an acoustic medium with a single reflector at depth a.

R = ρ1c1−ρ0c0
ρ1c1+ρ0c0

; other coefficients such as the reflection coefficient from below, and the transmission
coefficients, can all be easily expressed as a simple function∗∗ of R.

According to the classical reflection problem listed in Appendix A, the incident wave (i.e., for
z′ < a) intended to produce the transmission packet in equation (4.5) for the purpose of canceling
the boundary values of G+

0 at the deeper boundary z′ = B is:

−F1

1 +R
eik1aeik(z

′−a) =
Reik1(z−a) − eik1(a−z)

2ik1(1 +R)/ρ1
eik(z

′−a). (4.6)

However, the above incident wave will produce a corresponding reflection wave in the upper medium
(i.e., z′ < a) as a byproduct:

−F1R

1 +R
eik1aeik(a−z

′) =
R2eik1(z−a) −Reik1(a−z)

2ik1(1 +R)/ρ1
eik(a−z

′). (4.7)

We can summarize the solution below the reflector in equation (4.5) and the solution above the
reflector in equations (4.6) and (4.7) to have:

φ(z, z′, ω) =

{
Reik1(z−a)−eik1(a−z)

2ik1(1+R)/ρ1
eik(z

′−a) + R2eik1(z−a)−Reik1(a−z)

2ik1(1+R)/ρ1
eik(a−z′) if (z′ < a)

Reik1(z−2a)−e−ik1z

2ik1/ρ1
eik1z

′
if (z′ > a)

. (4.8)

Combining equations (4.3) and (4.8), the Green’s function that satisfies the Dirichlet and Neumann
boundary conditions at the deeper boundary z′ = B is:

1

ρ1
GDN

0 (z, z′, ω) =
G+

0 (z, z
′, ω) + φ(z, z′, ω)

ρ1
=⎧⎪⎨⎪⎩

1−R
2ik1

eik1(z−a)eik(a−z′)+
Reik1(z−a)−eik1(a−z)

2ik1(1+R) eik(z
′−a) + R2eik1(z−a)−Reik1(a−z)

2ik1(1+R) eik(a−z′) if (z′ < a)

eik1|z′−z|−Reik1(z
′+z−2a)

2ik1
+ Reik1(z−2a)−e−ik1z

2ik1
eik1z

′
if (z′ > a)

.

(4.9)

‖The amplitude factor is −R instead of R since the incident wave comes from the second medium (below) rather
than the first medium (above).
∗∗For example, the reflection coefficient from below is −R, and the transmission coefficients from above and below

are 1 +R and 1−R, respectively.
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The above expression can be simplified as:

GDN
0 (z, z′, ω) =

⎧⎨⎩
Reik1(z−a)−eik1(a−z)

2ik1(1+R)/ρ1
eik(z

′−a) + eik1(z−a)−Reik1(a−z)

2ik1(1+R)/ρ1
eik(a−z′) if (z′ < a)

eik1|z′−z|−eik1(z′−z)

2ik1/ρ1
if (z′ > a)

. (4.10)

The procedure above is shown in Figure 5 in the time domain.

Let us study the vanishing property of GDN
0 with the source location z below a reflector. If z′ > z

(which automatically implies the solution in equation (4.10), since the source is located below the
reflector: z > a), we have:

GDN
0 (z, z′, ω) =

eik1|z′−z| − eik1(z
′−z)

2ik1/ρ1
=

eik1(z
′−z) − eik1(z

′−z)

2ik1/ρ1
≡ 0 (4.11)

According to equation (4.11), GDN
0 for z > a also vanishes in the half-space below the source, which

includes z′ = B, a behavior demonstrated by GDN
0 for z < a as well.

Following the argument for GDN
0 for z < a, it is obvious that any variations of c(z′) below the

source location z will not change the value of the Green’s function with double vanishing boundary
conditions. A very important consequence is that any heterogeneity below the prediction point
(i.e., the source depth z) will not have any impact on GDN

0 and consequently will not affect the
imaging result at z. It is worthwhile to remind the reader that this fact had already been in many
publications − for example in “Finite Volume Model for Migration” from Weglein et al. (2011a).

In summary, combining equations (4.1) and (4.10), the frequency domain solution for GDN
0 with a

single reflector located at depth a is:

GDN
0 (z, z′, ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ0
2ik

(
eik|z−z′| − eik(z

′−z)
)

if (z < a),

ρ1
2ik1

(
eik1|z′−z| − eik1(z

′−z)
)

if (a < z′ and a < z),

Reik1(z−a)−eik1(a−z)

2ik1(1+R)/ρ1
eik(z

′−a)+
eik1(z−a)−Reik1(a−z)

2ik1(1+R)/ρ1
eik(a−z′) if (z′ < a and a < z).

(4.12)

It can be transformed into the time domain via equation (1.1) to have:
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GDN
0 (z, z′, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0c0
2

(
H
[
t+ z−z′

c0

]
−H

[
t− |z−z′|

c0

])
if (z < a),

ρ1c1
2

(
H
[
t+ z−z′

c1

]
−H

[
t− |z−z′|

c1

])
if (a < z′ and a < z),

ρ1c1
2(1+R)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

H
(
t+ z′−a

c0
+ z−a

c1

)
−H

(
t− z′−a

c0
− z−a

c1

)
+RH

(
t+ z′−a

c0
− z−a

c1

)
−RH

(
t− z′−a

c0
+ z−a

c1

)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
if (z′ < a and a < z).

(4.13)

Another important property of GDN
0 for a model with a single reflector is that, from both equa-

tions (4.12) and (4.13), GDN
0 for a < z and for a < z′ is the same even if the single reflector does not

exist††. Note that in this case the additional heterogeneity (i.e., the single reflector) is outside the
interval (z′, z), and it is obvious that the geologic complexity beyond the (z′, z) zone will not affect
the value of GDN

0 .

The independence of GDN
0 from the heterogeneity outside the interval (z′, z) agrees with the WKBJ

Green’s function. The WKBJ Green’s function is derived as an approximate solution for a smoothed
medium and is not a function of any heterogeneity outside (z′, z).

In the procedure to construct GDN
0 , we start from the causal solution in equation (4.3). Here the

last term is a reflection resulting from the up-going wave produced by the source. Note that this
term is canceled after adding the homogeneous solution φ in equation (4.8). Consequently, their
sum GDN

0 contains no reflection generated from the source.

It is well-known that reflections are omitted in both the WKBJ approximation and in many cur-
rent seismic imaging procedures that prefer a smooth and reflectionless velocity model. In many
current imaging algorithms, the velocity field is smoothed to minimize the reflections caused by
the velocity, whereas in the logic for Green’s function with double vanishing boundary conditions,
the discontinuous model is kept intact. Nevertheless, both approaches yield the same reflectionless
conclusion.

The procedure in this section to calculate GDN
0 for a simple single-reflector model is already very

tedious. The major difficulty is to find a homogeneous solution φ that will cancel both the downward
reflection originating from the source and the downward propagation of the source below the source
location. For more complicated geological models, the procedure will be much more demanding.

Fortunately, a much simpler procedure, easily generalizable to more complicated models, can be
derived from the fact that the values of GDN

0 are not affected by any heterogeneity outside the
interval (z′, z).

††This solution is the same as in equation (3.1) if (1) c0 is replaced by c1, and (2) the trivial density contribution
at the source ρ1 is added. And consequently this solution is equivalent with GDN

0 with a homogeneous velocity c1 and
constant density ρ1 that contains no reflector.
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Figure 5: The construction of GDN
0 for a medium with one reflector (the velocities above and below

the reflector are 1500m/s and 2700m/s, respectively). The source depth is 700m and is below the
single reflector at 500m. The left panel is the causal solution G+

0 , and the middle panel shows the
homogeneous solution that cancels with the left panel below the source. The right panel results
from summing the two panels on its left and is the desired Green’s function with double vanishing
boundary conditions.
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Figure 6: The diagram for upward continuation. A reflector is located at depth a, the medium
properties above and below the reflector are (ρ1, c1) and (ρ2, c2), respectively. In this case we
assume that the wave below the reflector A2e

ik2z′ +B2e
−ik2z′ is known, the objective is to compute

the wave above the reflector A1e
ik1z′ +B1e

−ik1z′ .

5 Upward continuation procedure: wave-theory approach

In the process of calculating GDN
0 with the source below many reflectors, we start from the wave

field of the layer that contains the source. The wave field in this layer can be calculated through
equation (4.1), and can be expressed as:

Ane
iknz′ +Bne

−iknz′ ,

where the source is assumed to be in the nth-layer (with velocity cn and density ρn, respectively),
kn = ω

cn
, An = − ρn

2ikn
e−iz, Bn = ρn

2ikn
eiz. The objective is to find the wave field at the (n−1)th layer:

An−1eikn−1z′ + Bn−1e−ikn−1z′ , as shown in Figure 6. The theory is listed below. The continuity of
the wave field and its derivatives requires:

A1e
ik1a +B1e

−ik1a = A2e
ik2a +B2e

−ik2a,
ik1
ρ1

(
A1e

ik1a −B1e
−ik1a

)
=

ik2
ρ2

(
A2e

ik2a −B2e
−ik2a

)
.

(5.1)

If we define: γ = ρ1k2
ρ2k1

= ρ1c1
ρ2c2

, equation (5.1) can be written in matrix form:

(
eik1a −e−ik1a
eik1a e−ik1a

)(
A1

B1

)
=

(
γ 0
0 1

)(
eik2a −e−ik2a
eik2a e−ik2a

)(
A2

B2

)
, (5.2)

with the solution:
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(
A1

B1

)
=

1

2

(
e−ik1a e−ik1a

−eik1a eik1a

)(
γ 0
0 1

)(
eik2a −e−ik2a
eik2a e−ik2a

)(
A2

B2

)
=

1

2

(
γe−ik1a e−ik1a

−γeik1a eik1a

)(
eik2a −e−ik2a
eik2a e−ik2a

)(
A2

B2

)
=

1

2

(
(1 + γ)ei(k2−k1)a (1− γ)e−i(k1+k2)a

(1− γ)ei(k1+k2)a (1 + γ)ei(k1−k2)a

)(
A2

B2
.

) (5.3)

Since 1+γ
2 = 1

2 +
ρ1c1
2ρ2c2

= ρ2c2+ρ1c1
2ρ2c2

= 1
1+R , and

1−γ
2 = 1

2 − ρ1c1
2ρ2c2

= ρ2c2−ρ1c1
2ρ2c2

= R
1+R , the above results

can be rewritten as:

(
A1

B1

)
=

1

1 +R

(
ei(k2−k1)a Re−i(k1+k2)a

Rei(k1+k2)a ei(k1−k2)a

)(
A2

B2

)
.

(5.4)

For example, for GDN
0 with z > a, the wave field immediately below the single reflector is

ρ1
2ik1

(
−eik1(z′−z) + eik1(z−z′)

)
. If it is expressed in the form A2e

ik1z′ + B2e
−ik1z′ , we have A2 =

−ρ1e−ik1z

2ik1
, B2 =

ρ1eik1z

2ik1
and consequently we have:

(
A1

B1

)
=

1

1 +R

(
ei(k1−k)a Re−i(k+k1)a

Rei(k+k1)a ei(k−k1)a

)
ρ1
2ik1

( −e−ik1z
eik1z

)
=

ρ1
2ik1

1

1 +R

( {
Reik1(z−a) − eik1(a−z)

}
e−ika{

eik1(z−a) −Reik1(a−z)
}
eika

)
.

(5.5)

From equation (5.5), we can easily produce the wave field above the reflector: A1e
ikz′ +B1e

−ikz′ =
ρ1
2ik1

{Reik1(z−a)−eik1(a−z)}eik(z′−a)+{eik1(z−a)−Reik1(a−z)}eik(a−z′)

1+R .

Compared with the previous section, the example above is a much simpler derivation of GDN
0 with

a single reflector above the source.

For example, for GDN
0 in a two-reflector model, the wave field immediately below the second reflector

is A3e
ik2z′+B3e

−ik2z′ = ρ2
2ik2

(
−eik2(z′−z) + eik2(z−z′)

)
. It is obvious that in this case A3 = −ρ2e−ik2z

2ik2
,

B2 =
ρ2eik2z

2ik2
and consequently, we have:
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(
A2

B2

)
=

1

1 +R2

(
ei(k2−k1)a2 R2e

−i(k1+k2)a2

R2e
i(k1+k2)a2 ei(k1−k2)a2

)
ρ2
2ik2

( −e−ik2z
eik2z

)
=

ρ2
2ik2

1

1 +R2

( {
R2e

ik2(z−a2) − eik2(a2−z)
}
e−ik1a2{

eik2(z−a2) −R2e
ik2(a2−z)} eik1a2

)
.

(5.6)

Renaming R = R1, and a = a1, the combination of equations (5.4) and (5.6) gives:

(
A1

B1

)
=

1

1 +R1

(
ei(k1−k)a1 R1e

−i(k+k1)a1

R1e
i(k+k1)a1 ei(k−k1)a1

)(
A2

B2

)
=

ρ2/(1 +R2)

2ik2(1 +R1)

(
ei(k1−k)a1 R1e

−i(k+k1)a1

R1e
i(k+k1)a1 ei(k−k1)a1

)( {
R2e

ik2(z−a2) − eik2(a2−z)
}
e−ik1a2{

eik2(z−a2) −R2e
ik2(a2−z)} eik1a2

)
=

ρ2
2ik2(1 +R1)(1 +R2)

×( [
eik1(a1−a2)

{
R2e

ik2(z−a2) − eik2(a2−z)
}
+ eik1(a2−a1)

{
R1e

ik2(z−a2) −R1R2e
ik2(a2−z)}] e−ika1[

eik1(a1−a2)
{
R1R2e

ik2(z−a2) −R1e
ik2(a2−z)}+ eik1(a2−a1)

{
eik2(z−a2) −R2e

ik2(a2−z)}] eika1
)
.

(5.7)

If we define: λ ≡ eik2(z−a2), μ ≡ eik(z
′−a1) and ν ≡ eik1(a2−a1), the Green’s function can be expressed

as:

[
ν−1(R2λ− λ−1) +R1ν(λ−R2λ

−1)
]
μ+

[
R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)

]
μ−1

2ik2(1 +R1)(1 +R2)/ρ2
(5.8)

6 Upward continuation: finite-difference approach

In order to demonstrate the general philosophy of our method, we study wave propagation in an
arbitrary acoustic medium c(z) (with only velocity variation). It can be extended to a medium with
density variation as well. First we have the equation for the causal Green’s function with source
located at depth zs:

(
∂2

∂z2
− 1

c2(z)

∂2

∂t2

)
G+

0 (z, zs, t) = δ(z − zs)δ(t). (6.1)

We then consider a homogeneous equation (without the source) in the same velocity field c(z):
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(
∂2

∂z2
− 1

c2(z)

∂2

∂t2

)
φ(z, t) = 0. (6.2)

Note that for a small positive number ε, and for z > zs + ε, the source term of equation (6.1)
vanishes: δ(z − zs)δ(t) = 0. Consequently, equation (6.1) is a homogeneous wave equation for
z > zs + ε, i.e., identical to equation (6.2).

In the aforementioned source-free region, the difference scheme (with second-order accuracy in both
space and time) is:

φm+1,n + φm−1,n − 2φm,n

(Δz)2
− 1

c2
φm,n+1 + φm,n−1 − 2φm,n

(Δt)2
= 0, (6.3)

where in the subscript, the variable m denotes the index for depth z, and the variable n denotes
the index for time t: φm,n = φ(mΔz, nΔt). If we define p

Δ
= cΔt

Δz , we have:

φm,n+1 = (2− 2p2)φm,n − φm,n−1 + p2(φm+1,n + φm−1,n), (6.4)

for forward marching in time, and

φm−1,n = (2− 2p−2)φm,n − φm+1,n + p−2(φm,n+1 + φm,n−1), (6.5)

for upward marching in depth. Since both difference schemes with second-order accuracy in equa-
tions (6.4) and (6.5) are of the same type, according to the analysis in Alford et al. (1974), equa-
tion (6.4) is stable for cΔt

Δz ≤
√
0.5, and equation (6.5) is stable for cΔt

Δz ≥
√
2.

Since the value of GDN
0 (z, z′) is completely determined by the medium in the interval (z′, z), if the

medium between z′ and z is homogeneous, we can extend the local homogeneous medium to the
entire space and we have a much simpler problem already solved in equation (14) of Weglein et al.
(2011b). In equation (6.5), the initial values are listed on the right-hand side of the formula, with
depth levels that have indices m and m+ 1, respectively. The field values for the depth level with
index m − 1 can be straightforwardly computed by using equation (6.5), and by using the values
at depth indices m − 1 and m, the field at depth index m − 2 can be likewise calculated. That
procedure is very similar to the scheme popularly implemented in finite-difference forward-modeling
algorithms that march forward in time.

The two levels of initial field values are from equation (14) of Weglein et al. (2011b), which satisfies
the double vanishing Green’s function at the lower boundary. These initial field values will not be
changed by the scheme in equation (6.5); all the complexity to match the boundary conditions at
the current level is carried on to the next depth level with index m − 1. It guarantees that both
Dirichlet and Neumann boundary conditions at z′ = B are satisfied.

Note that in equation (6.5), the velocity field c is a function of depth and can be arbitrary, enabling
the flexibility of the scheme for a medium with any spatially varying velocities.
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Figure 7: GDN
0 (z = 1100m, z′, t) for a homogeneous medium with velocity 1500m/s. The left panel

is generated through the finite-difference scheme from equation (6.5). The middle panel is computed
from the analytic method and is presented in equation (4.1). The difference between the left and
middle panels is shown in the right panel.

7 GDN
0 for a model with two reflectors

The GDN
0 in this case is for the medium listed in Table 2. The final result is:

GDN
0 (z, z′, ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0
2ik

(
eik|z−z′| − eik(z

′−z)
)

if (z < a1)

ρ1
2ik1

(
eik1|z′−z| − eik1(z

′−z)
)

if (z′ > a1 and a1 < z < a2)

R1eik1(z−a1)−eik1(a1−z)

2ik1(1+R1)/ρ1
eik1(z

′−a1)+
eik1(z−a1)−R1eik1(a1−z)

2ik1(1+R1)/ρ1
eik1(a1−z′) if (z′ < a1 and a1 < z < a2),

ρ2
2ik2

(
eik2|z−z′| − eik2(z

′−z)
)

if (a2 < z′ and a2 < z),

R2eik2(z−a2)−eik2(a2−z)

2ik1(1+R2)/ρ2
eik1(z

′−a2)+
eik2(z−a2)−R2eik2(a2−z)

2ik1(1+R2)/ρ2
eik1(a2−z′) if (a1 < z′ < a2 and a2 < z),

ρ2
2i(1+R1)(1+R2)

⎧⎪⎪⎨⎪⎪⎩
ν−1(R2λ− λ−1)μ

+R1ν(λ−R2λ
−1)μ

+R1ν
−1(R2λ− λ−1)μ−1

+ν(λ−R2λ
−1)μ−1

⎫⎪⎪⎬⎪⎪⎭ if (a2 < z and z′ < a1).

(7.1)
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Figure 8: GDN
0 (z = 1100m, z′, t) for a medium with a reflector at a depth of 600m. The velocities

above and below the reflector are 1500m/s and 2700m/s, respectively. The left panel is generated
through the finite-difference scheme from equation (6.5). The middle panel is computed from the
analytic method and is presented in equation (4.10). The difference between the left and middle
panels is shown in the right panel.

306



RTM M-OSRP12

Figure 9: GDN
0 (z = 1100m, z′, t) for a medium with two reflectors, located at depths of 300m

and 600m, respectively. The medium velocities are (from top to bottom) 1500m/s, 2700m/s, and
1500m/s. The left panel is generated through the finite-difference scheme from equation (6.5).
The middle panel is computed from the analytic method and is presented in equation (7.1). The
difference between the left and middle panels is shown in the right panel.
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In the equation above: λ ≡ eik2(z−a2), μ ≡ eik(z
′−a1), and ν ≡ eik1(a2−a1). The details of the above

result are listed below:

• Case 1, the source is above the first reflector (i.e., z < a1): the solution in this case is essentially
for a whole-space homogeneous medium with velocity c0 and density ρ0. The Green’s function
in this case is the simplest (identical to that for equation (4.1)) and has only two events.

• Case 2, the source is between the first and second reflectors and the receiver is below the first
reflector (i.e., a1 < z < a2 and a1 < z′): the solution in this case is exactly the same as that
for a simpler medium that lacks the shallower reflector. It is obtained from equation (4.1),
with (c0, ρ0) being replaced by (c1, ρ1), or the second case of equation (4.10). The GDN

0 in this
case has two events.

• Case 3, the source is between the first and second reflectors and the receiver is above the first
reflector (i.e., a1 < z < a2 and z′a1. It is the first case of equation (4.10). The GDN

0 in this
case has four events).

• Case 4, the source and receiver are both below the second reflector (i.e., a2 < z and a2 < z′):
the solution in this case is exactly the same as that for a simpler medium that lacks the
shallower reflectors. It is obtained from equation (4.1), with (c0, ρ0) being replaced by (c2, ρ2).

• Case 5, the source is below the second reflector and the receiver is between the first and second
reflectors (i.e., a2 < z and a1 < z′ < a2). It is obtained from equation (4.10) with (c1, ρ1)
being replaced by (c2, ρ2) and with (c0, ρ0) being replaced by (c1, ρ1). There are four events
in this situation.

• Case 6, the source is below the second reflector and the receiver is above the first reflector
(i.e., a2 < z and z′ < a1): this is the most complicated situation and contains eight events. It
is calculated by using equation (5.7).

8 Wave-field prediction with the RTM Green’s function

In this section, we demonstrate the behavior of the Green’s function that satisfies both Dirichlet
and Neumann boundary conditions at the deeper boundary. The study consists of three geological
models with progressive complexity.

8.1 Example I: homogeneous case

This example had already been documented in Appendix A of Weglein et al. (2011b) for an acoustic
medium without density variation; it is given here to make a smooth transition into more compli-
cated examples and to demonstrate the impact of density in the algorithms. With k = ω/c0, the
general solution of a wave propagating in the whole space homogeneous medium with velocity c0 is:
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P (z′, ω) = αeikz
′
+ βe−ikz

′
, (8.1)

where α and β can be any value. At the measurement surface z′ = A, we will detect the wave field
and its partial derivative over z′ as follows:

P (z′)
∣∣
z′=A = αeikA + βe−ikA,

∂P (z′, ω)
∂z′

∣∣∣∣
z′=A

= ik
(
αeikA − βe−ikA

)
.

(8.2)

From equation (4.1), the values of the Green’s function needed on the boundary z′ = A are:

GDN
0 (z, z′, ω)

∣∣
z′=A =

ρ(z)

2ik

[
eik|z−z

′| − eik(z
′−z)

]
z′=A

=
ρ0
2ik

[
eik|z−A| − eik(A−z)

]
,

∂

∂z′
GDN

0 (z, z′, ω)
∣∣∣∣
z′=A

=
ρ(z)

2

[
sgn(z′ − z)eik|z−z

′| − eik(z
′−z)

]
z′=A

=
ρ0
2

[
sgn(A− z)eik|z−A| − eik(A−z)

]
.

(8.3)

Using the boundary values of the wave field P and Green’s operator GDN
0 at the boundary z′ = A

(in equations (8.2) and (8.3)), we can predict the wave field as follows,

P (z, ω) =
1

ρ(z′)

[
P (z′, ω)

∂GDN
0 (z, z′, ω)
∂z′

−GDN
0 (z, z′, ω)

∂P (z′, ω)
∂z′

]z′=B
z′=A

= − 1

ρ0

[
P (z′, ω)

∂GDN
0 (z, z′, ω)
∂z′

−GDN
0 (z, z′, ω)

∂P (z′, ω)
∂z′

]
z′=A

= −αeikA + βe−ikA

2

[
sgn(A− z)eik|z−A| − eik(A−z)

]
+
αeikA − βe−ikA

2

[
eik|z−A| − eik(A−z)

]
.

(8.4)

For the purpose of predicting the wave field below the measurement surface z′ = A, we obviously
have the situation z > A. Consequently, the equation above can be simplified as,

P (z, ω) =
αeikA + βe−ikA

2

[
eik(z−A) + eik(A−z)

]
+

αeikA − βe−ikA

2

[
eik(z−A) − eik(A−z)

]
=αeikAeik(z−A) + βe−ikAeik(A−z)

=αeikz + βe−ikz.

(8.5)
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Figure 10: The incident, reflection, and transmission waves in example II. Here k = ω/c0, k1 = ω/c1,
and a is the depth of the single reflector. R = (ρ1c1−ρ0c0)/(ρ1c1+ρ0c0) is the reflection coefficient
for a down-going incident plane wave. eikz

′ is the incident wave. Reik(2a−z′) is the reflection data.
(1 +R)eikaeik1(z

′−a) is the transmission wave.

The above expression is exactly the actual wave field that we assumed in equation (8.1). In other
words, the original wave field, with both up-going and down-going waves, is perfectly reconstructed
at an arbitrary depth.

It would sound irrational that we can also perfectly predict the wave field if there are reflectors
below z. However, according to d’Alembert’s formula for a 1D wave equation for any interval,
the introduction of additional reflectors into the homogeneous reference medium below z will not
alter the possible type of waves between a and z, which remains homogeneous: αeikz + βe−ikz,
where α and β are arbitrary numbers. The examples of using this Green’s function derived from
homogeneous media for nonhomogeneous velocity models can be found in Examples II and III.

8.2 Example II: a single reflector

With the models listed in Table 1, an incident plane wave eikz′ will produce various waves, as shown
in Figure 10. Obviously the wave at the measurement surface is:

P (z′ = A, ω) = eikA +Reik(2a−A),

P (z′ = A, ω)
∂z′

∣∣∣∣
z′=A

= ik
(
eikA −Reik(2a−A)

)
.

(8.6)

First let us consider the simpler situation, predicting the wave field above the reflector: P (z, ω)
where z < a. The Green’s function can be found in equation (4.1). Note that in this case, we use a
reflectionless Green’s function to downward continue a reflection.
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GDN
0 (z, z′, ω)

∣∣
z′=A =

ρ(z)

2ik

[
eik|z−z

′| − eik(z
′−z)

]
z′=A

=
ρ0
2ik

[
eik(z−A) − eik(A−z)

]
,

∂

∂z′
GDN

0 (z, z′, ω)
∣∣∣∣
z′=A

=
ρ0
2

[
−eik(z−A) − eik(A−z)

]
.

(8.7)

In the equation above, we take advantage of the fact that sgn(A − z) = −1. With the boundary
values from equations (8.6) and (8.7), we can predict the wave field at arbitrary location z using
equation (2.5):

P (z, ω) =
eikA +Reik(2a−A)

2

[
eik(z−A) + eik(A−z)

]
+

eikA −Reik(2a−A)

2

[
eik(z−A) − eik(A−z)

]
=eikAeik(z−A) +Reik(2a−A)eik(A−z)

=eikz +Reik(2a−z).

(8.8)

Next let us predict the wave field below the reflector: P (z, ω), where z > a. The value of Green’s
function at the measurement surface, needed in equation (2.5), can be found in equation (4.10) and
is given as:

GDN
0 (z, z′, ω)

∣∣
z′=A =

ρ1
2ik1

{
Rλ− λ−1

1 +R
μ+

λ−Rλ−1

1 +R
μ−1

}
,

∂

∂z′
GDN

0 (z, z′, ω)
∣∣∣∣
z′=A

=
ρ1k

2k1

{
Rλ− λ−1

1 +R
μ− λ−Rλ−1

1 +R
μ−1

}
,

(8.9)

where λ ≡ eik1(z−a) and μ ≡ eik(A−a). With all the terms in equations (8.6) and (8.9), we can
predict the wave field below the reflector using equation (2.5):
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Depth Range Velocity Density
(−∞, a1) c0 ρ0
(a1, a2) c1 ρ1
(a2,∞) c1 ρ1

Table 2: The properties of an acoustic medium with two reflectors, at depth a1 and a2.

P (z, ω) =
1

ρ(z′)

{
P (z′, ω)

∂GDN
0 (z, z′, ω)
∂z′

−GDN
0 (z, z′, ω)

∂P (z′, ω)
∂z′

}∣∣∣∣z
′=B

z′=A

=
1

ρ(z′)

[
GDN

0 (z, z′, ω)
∂P (z′, ω)

∂z′
− P (z′, ω)

∂GDN
0 (z, z′, ω)
∂z′

]
z′=A

=
ρ1k

ρ0k1

{
λ−Rλ−1

1 +R
μ−1eikA − Rλ− λ−1

1 +R
μReik(2a−A)

}
=

ρ1k

ρ0k1
eika

{
λ−Rλ−1

1 +R
− R2λ−Rλ−1

1 +R

}
=

ρ1c1
ρ0c0(1 +R)

eika
{[

1−R2
]
λ+ [R−R]λ−1

}
=

ρ1c1
ρ0c0

(1−R)λeika =
ρ1c1
ρ0c0

2ρ0c0
ρ1c1 + ρ0c0

λeika =
2ρ1c1

ρ1c1 + ρ0c0
λeika

= (R+ 1)λeika = (1 +R)eikaeik1(z−a).

(8.10)

In the derivation above, we take advantage of the fact that μ · eik(2a−A) = μ−1eikA = eika. The
final result above is exactly the transmission wave in the second medium illustrated in Figure 10.
Note that the down-going incident wave and the up-going reflection data act together to produce
the down-going transmission data in the second medium, with correct amplitude and phase.

In the GDN
0 expression in equation (8.9), the λ terms are for the down-going wave, and the λ−1 terms

are for the up-going wave. In other words, both down-going and up-going energy is present in the
formalism. However, the action of the data cancels the up-going terms (i.e., the terms containing
λ−1) in the second medium, as it should.

8.3 Example III: a model with two reflectors: reconstruction of internal multi-
ples in the subsurface

As was chosen in Example II, the incident wave here is eikz
′ , and the reflection data contain two

primaries, corresponding to each reflector, and an infinite number of internal multiples. The mea-
surement at z′ = A is:
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P (z′ = A, ω) = eikA +R1e
ik(2a1−A)

+
(
1−R2

1

)
eik(2a1−A)

∞∑
n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)[a2−a1],

1

ik

P (z′ = A, ω)
∂z′

∣∣∣∣
z′=A

= eikA −R1e
ik(2a1−A)

− (1−R2
1

)
eik(2a1−A)

∞∑
n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)[a2−a1],

(8.11)

where R1 = ρ1c1−ρ0c0
ρ1c1+ρ0c0

and R2 = ρ2c2−ρ1c1
ρ2c2+ρ1c1

are the reflection coefficients for the first and second
reflectors, respectively. Since 1 + R1 and 1− R1 are the transmission coefficients for a down-going
and an up-going wave through the first reflector, respectively, 1−R2

1 = (1+R1)(1−R1) is the total
transmission loss for seismic energy passing through the first reflector. To predict the wave field in
the second medium (i.e., a1 < z′ < a2), the Green’s function can be found in equation (4.12) and
is:

GDN
0 (z, z′, ω)

∣∣
z′=A =

ρ1
2ik1

{
R1λ− λ−1

1 +R1
μ+

λ−R1λ
−1

1 +R1
μ−1

}
,

∂

∂z′
GDN

0 (z, z′, ω)
∣∣∣∣
z′=A

=
ρ1k

2k1

{
R1λ− λ−1

1 +R1
μ− λ−R1λ

−1

1 +R1
μ−1

}
,

(8.12)

where in the equation above λ ≡ eik1(z−a1) and μ ≡ eik(A−a1). With all the terms in equations (8.11)
and (9.34), we can predict the wave field below the reflector using equation (2.5):
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P (z, ω) =
1

ρ(z′)

{
P (z′, ω)

∂GDN
0 (z, z′, ω)
∂z′

−GDN
0 (z, z′, ω)

∂P (z′, ω)
∂z′

}∣∣∣∣z
′=B

z′=A

=
1

ρ(z′)

[
GDN

0 (z, z′, ω)
∂P (z′, ω)

∂z′
− P (z′, ω)

∂GDN
0 (z, z′, ω)
∂z′

]
z′=A

=
ρ1k

ρ0k1

{
λ−R1λ

−1

1 +R1
μ−1eikA − R1λ− λ−1

1 +R1
μR1e

ik(2a1−A)

}
− ρ1k

ρ0k1

{
R1λ− λ−1

1 +R1
μ
(
1−R2

1

)
eik(2a1−A)

∞∑
n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)[a2−a1]

}

=
ρ1k

ρ0k1
eika1

{
λ−R1λ

−1

1 +R1
− R2

1λ−R1λ
−1

1 +R1

}
− eika1

ρ1k

ρ0k1
(1−R1)

{
R1λ− λ−1

} ∞∑
n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)[a2−a1]

=
ρ1c1

ρ0c0(1 +R1)
eika1

{[
1−R2

1

]
λ+ [R1 −R1]λ

−1}
+ eika1

ρ1k

ρ0k1
(1−R1)

{
eik1(a1−z) −R1e

ik1(z−a1)
} ∞∑

n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)[a2−a1].

=
ρ1c1
ρ0c0

(1−R1)λe
ika1

+ eika1
ρ1k

ρ0k1
(1−R1)

{
eik1(a1−z) −R1e

ik1(z−a1)
} ∞∑

n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)[a2−a1].

= (1 +R1)e
ika1eik1(z−a1)

+ eika1
ρ1k

ρ0k1
(1−R1)

{
eik1(a1−z) −R1e

ik1(z−a1)
} ∞∑

n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)[a2−a1].

(8.13)

In the derivation above we take advantage of the fact that μeik(2a1−A) = eika1 . Also, many simplifi-
cations are detailed in the process of deriving equation (8.10). Since ρ1k

ρ0k1
(1−R1) =

ρ1c1
ρ0c0

2ρ0c0
ρ1c1+ρ0c0

=
2ρ1c1

ρ1c1+ρ0c0
= 1 +R1, the expression above can be simplified as:

P (z, ω) = (1 +R1)e
ika1eik1(z−a1)

+ eika1(1 +R1)
∞∑
n=0

(−1)nRn
1R

n+1
2 eik1[(2n+2)a2−(2n+1)a1−z]

+ eika1(1 +R1)

∞∑
n=0

(−1)n+1Rn+1
1 Rn+1

2 eik1[z+(2n+2)a2−(2n+3)a1].

(8.14)
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It is very interesting to look each term of the expression above.

• (1 +R1)e
ika1eik1(z−a1) is the down-going wave straight from the source.

• For the simplest case, n = 0, the results are:

eika1(1 +R1)R2e
ik1(2a2−a1−z) − eika1(1 +R1)R1R2e

ik1(z+2a2−3a1),

where the first term is the up-going primary reflected from the second reflector, and the second
term is the down-going leg of the first-order internal multiple.

• For the case n = 1, we have:

−eika1(1 +R1)R1R
2
2e

ik1(4a2−3a1−z) + eika1(1 +R1)R
2
1R

2
2e

ik1(z+4a2−5a1),

where the first term is the up-going leg of the first-order internal multiple, and the second
term is the down-going leg of the second-order internal multiple.

The details to predict the wave field below the second reflector are as follows:

GDN
0 (z, z′, ω)

∣∣
z′=A =

[
ν−1(R2λ− λ−1) +R1ν(λ−R2λ

−1)
]
μ+

[
R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)

]
μ−1

2ik2(1 +R1)(1 +R2)/ρ2
,

∂

∂z′
GDN

0 (z, z′, ω)
∣∣∣∣
z′=A

=

[
ν−1(R2λ− λ−1) +R1ν(λ−R2λ

−1)
]
μ− [R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)

]
μ−1

2k2(1 +R1)(1 +R2)/(kρ2)
,

(8.15)

where λ ≡ eik2(z−a2), μ ≡ eik(A−a1), and ν ≡ eik1(a2−a1). The wave field from Example III (i.e.,
equation (8.11)) can be rewritten as:

P (z′ = A, ω) = eikA +R1e
ik(2a1−A)

+
(
1−R2

1

)
eik(2a1−A)

∞∑
n=0

(−1)nRn
1R

n+1
2 ν2n+2,

1

ik

P (z′ = A, ω)
∂z′

∣∣∣∣
z′=A

= eikA −R1e
ik(2a1−A)

− (1−R2
1

)
eik(2a1−A)

∞∑
n=0

(−1)nRn
1R

n+1
2 ν2n+2.

(8.16)

After obtaining the values of the Green’s function and wave field at the shallower boundary, we can
use the Green’s theorem of equation (2.5), with input from equations (8.15) and (8.16), to predict
the wave field below the second reflector:
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P (z, ω) =
1

ρ(z′)

{
P (z′, ω)

∂GDN
0 (z, z′, ω)
∂z′

−GDN
0 (z, z′, ω)

∂P (z′, ω)
∂z′

}∣∣∣∣z
′=B

z′=A

=
1

ρ(z′)

[
GDN

0 (z, z′, ω)
∂P (z′, ω)

∂z′
− P (z′, ω)

∂GDN
0 (z, z′, ω)
∂z′

]
z′=A

=
ρ2k

ρ0k2
eika1

R1ν
−1(R2λ− λ−1) + ν(λ−R2λ

−1)
(1 +R1)(1 +R2)

− ρ2k

ρ0k2
eika1R1

ν−1(R2λ− λ−1) +R1ν(λ−R2λ
−1)

(1 +R1)(1 +R2)

− ρ2k

ρ0k2
eika1(1−R2

1)
∞∑
n=0

(−1)nRn
1R

n+1
2 ν2n+2 ν

−1(R2λ− λ−1) +R1ν(λ−R2λ
−1)

(1 +R1)(1 +R2)
.

(8.17)

Since ρ2k
ρ0k2

= ρ2c2
ρ0c0

= ρ1c1
ρ0c0

ρ2c2
ρ1c1

= 1+R1
1−R1

1+R2
1−R2

, the equation above can be simplified as:

P (z, ω) =
eika1

(1−R1)(1−R2)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
R1R2ν

−1 + ν
]
λ − [

R1ν
−1 +R2ν

]
λ−1

− [R1R2ν
−1 +R2

1ν
]
λ +

[
R1ν

−1 +R2
1R2ν

]
λ−1

− (1−R2
1)λ

∞∑
n=0

(−1)n [Rn
1R

n+2
2 ν2n+1 +Rn+1

1 Rn+1
2 ν2n+3

]
+ (1−R2

1)λ
−1

∞∑
n=0

(−1)n [Rn
1R

n+1
2 ν2n+1 +Rn+1

1 Rn+2
2 ν2n+3

]
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8.18)

Since
∞∑
n=0

(−1)n [Rn
1R

n+2
2 ν2n+1 +Rn+1

1 Rn+1
2 ν2n+3

]
= R2

2ν + (1−R2
2)

∞∑
n=0

(−1)nRn+1
1 Rn+1

2 ν2n+3, (8.19)

and

∞∑
n=0

(−1)n [Rn
1R

n+1
2 ν2n+1 +Rn+1

1 Rn+2
2 ν2n+3

]
= R2ν, (8.20)

equation (9.31) can be simplified as follows:
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P (z, ω) =
eika1(1−R2

1)ν

(1−R1)(1−R2)

(
λ−R2λ

−1 −R2
2λ+R2λ

−1 − (1−R2
2)λ

∞∑
n=0

(−1)nRn+1
1 Rn+1

2 ν2n+2

)

=
eika1(1−R2

1)(1−R2
2)

(1−R1)(1−R2)
λ

∞∑
n=0

(−1)nRn
1R

n
2ν

2n+1

= (1 +R1)(1 +R2)e
ika1eik2(z−a2)

∞∑
n=0

(−1)nRn
1R

n
2e

ik1(2n+1)(a2−a1).

In the derivation above, we rewrite the trivial quantity 1 as the special case of (−1)nRn
1R

n
2ν

2n with
n = 0. The expression above is exactly the wave field in the deepest layer: only the down-going
wave is present with correct amplitude; the up-going waves cancel each other, as actually happened
in the subsurface.

9 Downward continuation of both source and receiver

The original Green’s theorem in this report is derived to downward continue the wave field (i.e.,
receivers) to the subsurface over a source-free region. It can also be used to downward continue the
sources down to the subsurface by taking advantage of reciprocity: the recording is the same after
the source and receiver locations are exchanged.

Assuming we have data on the measurement surface: D(zg, zs) (its ω dependency is ignored), we
can use GDN

0 (z, zg) to downward continue it from zg to the target depth z:

D (z, zs) =
1

ρ(zg)

{
∂D (zg, zs)

∂zg
GDN

0 (z, zg)−D (zg, zs)
∂GDN

0 (z, zg)

∂zg

}
. (9.1)

Taking the ∂
∂zs

operation on equation (9.1), we have a similar procedure to downward continue
D(zg ,zs)

∂zs
to the subsurface:

∂D (z, zs)

∂zs
=

1

ρ(zg)

{
∂2D (zg, zs)

∂zg∂zs
GDN

0 (z, zg)− ∂D (zg, zs)

∂zs

∂GDN
0 (z, zg)

∂zg

}
. (9.2)

With equations (9.1) and (9.2), we downward continue the data D and its partial derivative over
zs to the subsurface location z. According to reciprocity, D (z, zs) = E (zs, z), where E (zs, z) is
resulted from exchanging the source and receiver locations in the experiment to generate D at the
subsurface. The imaginary data E (zs, z) can be considered as the recording of receiver at zs for a
source located at z.
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For this imaginary experiment, the source is located at depth z, according to the Green’s theorem
which is derived for a source-free region, we can downward continue the recording at zs to any depth
Z ≤ z.

In seismic migration, we downward continue E (zs, z) to the same subsurface depth z withGDN
0 (z, zs)

to have an experiment with coincident source and receiver:

E (z, z) =
1

ρ(zs)

{
∂E (zs, z)

∂zs
GDN

0 (z, zs)− E (zs, z)
∂GDN

0 (z, zs)

∂zs

}
,

=
1

ρ(zs)

{
∂D (z, zs)

∂zs
GDN

0 (z, zs)−D (z, zs)
∂GDN

0 (z, zs)

∂zs

}
.

(9.3)

With the value of D (z, zs) and
∂D(z,zs)

∂zs
in equations (9.2) and (9.1), we can simplify equation (9.3)

as follows:

ρ(zg)ρ(zs)E (z, z) = D (zg, zs)
∂GDN

0 (z, zg)

∂zg

∂GDN
0 (z, zs)

∂zs
− ∂D (zg, zs)

∂zs

∂GDN
0 (z, zg)

∂zg
GDN

0 (z, zs)

+
∂2D (zg, zs)

∂zg∂zs
GDN

0 (z, zg)G
DN
0 (z, zs)− ∂D (zg, zs)

∂zg

∂GDN
0 (z, zs)

∂zs
GDN

0 (z, zg) .

(9.4)

If the zs < zg and there is no heterogeneity above zs, the ∂
∂zs

operation on D(zg, zs) is equivalent
to multiplying −ik, in this case, equation (9.5) can be simplified further:

E (z, z) = −
∂GDN

0 (z,zs)
∂zs

+ ikGDN
0 (z, zs)

ρ(zs)
D(z, zs).

As an example, the data in a 2-reflector model (with an ideal impulsive source located at zs, the
depth of receiver is zg > zs, the depth of reflector are a1 and a2, respectively) can be expressed as:

D(zg, zs) =
ρ0
2ik

{
eik(zg−zs) +R1e

ik(2a1−zg−zs)
}

+
ρ0
2ik

{(
1−R2

1

)
eik(2a1−zg−zs)

∞∑
n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)[a2−a1]

}
.

(9.5)
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Figure 11: The history of various events in equation (9.5).

If we define x = eikzs , y = eikzg , σ = eikz, β =
∞∑
n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)[a2−a1], and α =

eik(2a1)
(
R1 + (1−R2

1)β
)
, the data can be expressed as:

D(zg, zs) =
ρ0x

−1

2ik

{
y + αy−1

}
,

∂D(zg, zs)

∂zg
=

ρ0
2
x−1

{
y − αy−1

}
,

∂D(zg, zs)

∂zs
= −ρ0

2
x−1

{
y + αy−1

}
,

∂2D(zg, zs)

∂zg∂zs
=

ρ0k

2i
x−1

{
y − αy−1

}
.

(9.6)

9.1 Above the first reflector

For z < a1, the boundary values of the Green’s function are:
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GDN
0 (z, zg) = ρ0

eik(z−zg)−eik(zg−z)

2ik = ρ0
σy−1−σ−1y

2ik ,

GDN
0 (z, zs) = ρ0

σx−1−σ−1x
2ik ,

∂GDN
0 (z,zs)
∂zg

= ρ0
σy−1+σ−1y

−2 ,
∂GDN

0 (z,zs)
∂zs

= ρ0
σx−1+σ−1x

−2 .

(9.7)

We have:

D(z, zs) =
GDN

0 (z, zg)
∂D(zg ,zs)

∂zg
− ∂GDN

0 (z,zg)
∂zg

D (zg, zs)

ρ(zg)

=
ρ0x

−1

4ik

(
σ + ασ−1 − σ−1y2 − ασy−2

)
+

ρ0x
−1

4ik

(
σ + ασ−1 + σ−1y2 + ασy−2

)
=

ρ0x
−1

2ik

(
σ + ασ−1

)
,

(9.8)

and,

−1
ρ(zs)

(
∂GDN

0 (z, zs)

∂zs
+ ikGDN

0 (z, zs)

)
=

σx−1 + σ−1x
2

− σx−1 + σ−1x
2

= σ−1x. (9.9)

And consequently, we have:

E(z, z) = − 1

ρ(s)

(
∂GDN

0 (z, zs)

∂zs
+ ikGDN

0 (z, zs)

)
D(z, zs) =

1 + ασ−2

2ik/ρ0

=
ρ0
2ik

{
1 + eik(2a1−2z)

(
R1 + (1−R2

1)

∞∑
n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)[a2−a1]

)}
.

(9.10)

The result above can be Fourier transformed into the time domain to have:

E(z, z, t) = −ρ0c0
2

⎧⎪⎨⎪⎩
H(t) +R1H

(
t− 2a1−2z

c0

)
+(1−R2

1)
∞∑
n=0

(−1)nRn
1R

n+1
2 H

(
t− 2a1−2z

c0
− (2n+2)(a2−a1)

c1

)
⎫⎪⎬⎪⎭ . (9.11)

The terms in the expression above can be interpreted as follows:

• The overall factor −ρ0c0
2 is the amplitude of G+

0 in the first medium.
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Figure 12: The history of various events in equation (9.10).

• The first term H(t) = H
(
t− z−z

c0

)
is propagation phase for the direct wave traveling from

the source at z to a receiver coincide with the source at z. This term should be removed
before applying the imaging condition.

• The second term R1H
(
t− 2a1−2z

c0

)
is the first primary.

• The third term (1−R2
1)

∞∑
n=0

(−1)nRn
1R

n+1
2 H

(
t− 2a1−2z

c0
− (2n+2)[a2−a1]

c1

)
incorporate the sec-

ond primary and all the internal multiples.

Balancing out the −ρ0c0
2 factor, the data after removing the direct wave is denoted as

D(z, t)Δ= −2
ρ0c0

E(z, z, t)−H(t):

D(z, t) = R1H

(
t− 2a1 − 2z

c0

)
+(1−R2

1)

∞∑
n=0

(−1)nRn
1R

n+1
2 H

(
t− 2a1 − 2z

c0
− (2n+ 2)(a2 − a1)

c1

)
.

(9.12)

If we use the t = 0 imaging condition, we have:

D(z, t) =
{

0 if (z < a1)
R1 if (z = a1)

(9.13)

In other words, we obtained the image of the first reflector at its actual depth a1 with its correct
reflection coefficient as amplitude.
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9.2 Between the first and second reflectors

For a1 < z < a2, we have:

GDN
0 (z, zg) =

ρ1
2ik1

1

1 +R1

(
(R1λ− λ−1)μ+ (λ−R1λ

−1)μ−1
)
,

∂GDN
0 (z, zg)

∂zg
=

ρ1k

2k1

1

1 +R1

(
(R1λ− λ−1)μ− (λ−R1λ

−1)μ−1
)
,

(9.14)

where λ = eik1(z−a1), μ = eik(zg−a1). Using equations (9.14) and (9.6), we have:

D(z, zs) =
1

ρ(zg)

(
GDN

0 (z, zg)
∂D (zg, zs)

∂zg
− ∂GDN

0 (z, zg)

∂zg
D (zg, zs)

)
=

ρ0
2ik

ρ1kx
−1

ρ0k1(1 +R1)

{
(λ−R1λ

−1)μ−1y − (R1λ− λ−1)μαy−1
}

=
ρ1x

−1

2ik1(1 +R1)

{
(λ−R1λ

−1)eika1 − (R1λ− λ−1)αe−ika1
} (9.15)

If we define: β =
∞∑
n=0

(−1)nRn
1R

n+1
2 ei(2n+2)[a2−a1], we have: α = e2ika1

(
R1 + (1−R2

1)β
)
, and the

equation above can be simplified as:

D(z, zs) =
ρ1x

−1eika1

2ik1(1 +R1)

{
(λ−R1λ

−1)− (R1λ− λ−1)
(
R1 + (1−R2

1)β
)}

=
ρ1x

−1eika1

2ik1

1−R2
1

1 +R1

{
λ− (R1λ− λ−1)β

}
=

ρ1x
−1eika1

2ik1
(1−R1)

{
λ+ (λ−1 −R1λ)β

}
=

ρ0
2ik

x−1eika1(1 +R1)
{
λ+ (λ−1 −R1λ)β

}
(9.16)

If we define: γ = 1−R1β =
∞∑
n=0

(−1)nRn
1R

n
2e

ik1(2n)(a2−a1), the expression above can be rewritten as:

D(z, zs) =
ρ0
2ik

(1 +R1)e
ik(a1−z) {λ−1β + λγ

}
. (9.17)
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The expression above can be verified as the following. The overall factor ρ0
2ik is the amplitude of the

G+
0 at the source. eik(a1−z) is the propagation from the source to the first reflector. 1 + R1 is the

transmission coefficient through the first reflector. The first term λ−1β can be expanded as:

λ−1β = eik1(a1−z)
∞∑
n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)(a2−a1)

= R2e
ik1(2a2−a1−z) −R1R

2
2e

ik1(4a2−3a1−z) + · · · ,
(9.18)

and incorporate all the up-going events. The second term λγ can be expanded as:

λγ = eik1(z−a1)
∞∑
n=0

(−1)nRn
1R

n
2e

ik1(2n)(a2−a1)

= eik1(z−a1) −R1R2e
ik1(z+2a2−3a1) +R2

1R
2
2e

ik1(z+4a2−5a1) + · · · ,
(9.19)

and incorporate all the down-going events. And,

GDN
0 (z, zs) =

ρ1
2ik1

1

1 +R1

(
(R1λ− λ−1)ξ + (λ−R1λ

−1)ξ−1
)
,

∂GDN
0 (z, zs)

∂zs
=

ρ1k

2k1

1

1 +R1

(
(R1λ− λ−1)ξ − (λ−R1λ

−1)ξ−1
)
,

(9.20)

where λ = eik1(z−a1), ξ = eik(zs−a1).

− 1

ρ(zs)

(
∂GDN

0 (z, zs)

∂zs
+ ikGDN

0 (z, zs)

)
=

kρ1
2k1ρ0

(λ−1 −R1λ)ξ + (R1λ
−1 − λ)ξ−1

1 +R1

+
kρ1
2k1ρ0

(λ−1 −R1λ)ξ − (R1λ
−1 − λ)ξ−1

1 +R1

=
kρ1
k1ρ0

(λ−1 −R1λ)ξ

1 +R1

(9.21)

We have:

− 1

ρ(zs)

(
∂GDN

0 (z, zs)

∂zs
+ ikGDN

0 (z, zs)

)
D(z, zs) =

ρ1
2ik1

{
λ−1β + λγ

}{
λ−1 −R1λ

}
=

ρ1
2ik1

{
βλ−2 −R1γλ

2 + γ − βR1

} (9.22)
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Let’s check the physical meaning of the terms above. The first term:

βλ−2 =

[ ∞∑
n=0

(−1)nRn
1R

n+1
2 eik1(2n+2)(a2−a1)

]
eik1(2a1−2z)

= R2e
ik1(2a2−2z) −R1R

2
2e

ik1(4a2−2a1−2z) +R2
1R

3
2e

ik1(6a2−4a1−2z) + · · ·
(9.23)

incorporates the upward reflections (from the second reflector) towards depth z from below (labeled
as event 2, 6, 10, · · · in Figure 13). And the second term :

−R1γλ
2 = −R1

[ ∞∑
n=0

(−1)nRn
1R

n
2e

ik1(2n)(a2−a1)
]
eik1(2z−2a1)

= −R1e
ik1(2z−2a1) +R2

1R2e
ik1(2z+2a2−4a1) −R3

1R
2
2e

ik1(2z+4a2−6z1) + · · ·
(9.24)

incorporate the downward reflections (from the first reflector) towards depth z from above (labeled
as event 1, 5, 9, · · · in Figure 13). The rest of events can be interpreted as follows:

γ − βR1 = 1− 2βR1 = 1− 2R1

∞∑
n=0

(−1)nRn
1R

n+1
2 eik(2n+2)(a2−a1)

= 1 + 2
[
−R1R2e

ik1(2a2−2a1)
]1

+ 2
[
−R1R2e

ik1(2a2−2a1)
]2

+ 2
[
−R1R2e

ik1(2a2−2a1)
]3

+ · · ·
(9.25)

where in the final expression above, the first term 1 is the propagation phase for the direct arrival
from the source (this term is a unit since the source and receiver coincide). The second term
2
[−R1R2e

ik(2a2−2a1)]1 represents two separate propagations labeled as event 3 and 4 in Figure 13,
both events with distinct propagation history share the same propagation time. The third term
2
[−R1R2e

ik(2a2−2a1)]2 represents two separate propagations labeled as event 7 and 8 in Figure 13,
and again both events with distinct propagation history share the same propagation time.

The final result can be Fourier transformed into the time domain as:

E(z, z, t) = −ρ1c1
2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
H(t) + 2

∞∑
n=1

(−1)nRn
1R

n
2H

(
t− 2n(a2−a1)

c1

)
+

∞∑
n=0

(−1)n+1Rn+1
1 Rn

2H
(
t− 2z+2na2−2(n+1)a1

c1

)
+

∞∑
n=0

(−1)nRn
1R

n+1
2 H

(
t− 2(n+1)a2−2na1−2z

c1

)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(9.26)
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Figure 13: The diagram of events for an experiment with both source and receiver coincide at depth
z which located between the first reflector at depth a1 and the second reflector at depth a2.

Balancing out the −ρ1c1
2 factor, the data after removing the direct wave is denoted as

D(z, t)Δ= −2
ρ1c1

E(z, z, t)−H(t):

D(z, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2
∞∑
n=1

(−1)nRn
1R

n
2H

(
t− 2n(a2−a1)

c1

)
+

∞∑
n=0

(−1)n+1Rn+1
1 Rn

2H
(
t− 2z+2na2−2(n+1)a1

c1

)
+

∞∑
n=0

(−1)nRn
1R

n+1
2 H

(
t− 2(n+1)a2−2na1−2z

c1

)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(9.27)

and after taking the t = 0 imaging condition, we have:

D(z, t) =
⎧⎨⎩
−R1 if (z = a1)
0 if (a1 < z < a2)
R2 if (z = a2)

(9.28)

Note that in the previous section, i.e., to image above the first reflector at a1, we obtain the
amplitude R1 when z approach a1 from above. In this section we image below the first reflector at
a1, the amplitude of the image is −R1 when z approaches a1 from below, as it should.

9.3 Below the second reflector

GDN
0 (z, z′)

∣∣
z′=zg

=

[
ν−1(R2λ− λ−1) +R1ν(λ−R2λ

−1)
]
μ+

[
R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)

]
μ−1

2ik2(1 +R1)(1 +R2)/ρ2
,

∂

∂z′
GDN

0 (z, z′)
∣∣∣∣
z′=zg

=

[
ν−1(R2λ− λ−1) +R1ν(λ−R2λ

−1)
]
μ− [R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)

]
μ−1

2k2(1 +R1)(1 +R2)/(kρ2)
,

(9.29)
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where λ ≡ eik2(z−a2), μ ≡ eik(zg−a1), and ν ≡ eik1(a2−a1).

D(z, zs) =
1

ρ(z′)

{
P (z′, ω)

∂GDN
0 (z, z′, ω)
∂z′

−GDN
0 (z, z′, ω)

∂P (z′, ω)
∂z′

}∣∣∣∣z
′=B

z′=zg

=
1

ρ(z′)

[
GDN

0 (z, z′, ω)
∂P (z′, ω)

∂z′
− P (z′, ω)

∂GDN
0 (z, z′, ω)
∂z′

]
z′=zg

=
ρ2
2ik2

eik(a1−zs)
R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)

(1 +R1)(1 +R2)

− ρ2
2ik2

eik(a1−zs)
ν−1(R2λ− λ−1) +R1ν(λ−R2λ

−1)
(1 +R1)(1 +R2)

{
R1 + (1−R2

1)β
}

(9.30)

Since ρ2k
ρ0k2

= ρ2c2
ρ0c0

= ρ1c1
ρ0c0

ρ2c2
ρ1c1

= 1+R1
1−R1

1+R2
1−R2

, the equation above can be simplified as:

D(z, zs) =
ρ0e

ik(a1−zs)/(2ik)
(1−R1)(1−R2)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
R1R2ν

−1 + ν
]
λ − [

R1ν
−1 +R2ν

]
λ−1

− [R1R2ν
−1 +R2

1ν
]
λ +

[
R1ν

−1 +R2
1R2ν

]
λ−1

− (1−R2
1)λ

∞∑
n=0

(−1)n [Rn
1R

n+2
2 ν2n+1 +Rn+1

1 Rn+1
2 ν2n+3

]
+ (1−R2

1)λ
−1

∞∑
n=0

(−1)n [Rn
1R

n+1
2 ν2n+1 +Rn+1

1 Rn+2
2 ν2n+3

]
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(9.31)

Since
∞∑
n=0

(−1)n [Rn
1R

n+2
2 ν2n+1 +Rn+1

1 Rn+1
2 ν2n+3

]
= R2

2ν + (1−R2
2)

∞∑
n=0

(−1)nRn+1
1 Rn+1

2 ν2n+3, (9.32)

and

∞∑
n=0

(−1)n [Rn
1R

n+1
2 ν2n+1 +Rn+1

1 Rn+2
2 ν2n+3

]
= R2ν, (9.33)

equation (9.31) can be simplified as follows:
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D(z, zs) =
ρ0e

ik(a1−zs)(1−R2
1)ν

2ik(1−R1)(1−R2)

(
λ−R2λ

−1 −R2
2λ+R2λ

−1 − (1−R2
2)λ

∞∑
n=0

(−1)nRn+1
1 Rn+1

2 ν2n+2

)

=
ρ0e

ik(a1−zs)(1−R2
1)(1−R2

2)

2ik(1−R1)(1−R2)
λ

∞∑
n=0

(−1)nRn
1R

n
2ν

2n+1

=
ρ0(1 +R1)(1 +R2)

2ik
eik(a1−zs)eik2(z−a2)

∞∑
n=0

(−1)nRn
1R

n
2e

ik1(2n+1)(a2−a1).

In the derivation above, we rewrite the trivial quantity 1 as the special case of (−1)nRn
1R

n
2ν

2n with
n = 0. The expression above is exactly the wave field in the deepest layer: only the down-going wave
is present with correct amplitude; the up-going waves cancel with each other as actually happened
in the subsurface. And the expression above can be simplified as:

D(z, zs) =
ρ0(1 +R1)(1 +R2)

2ik
eik(a1−zs)eik1(a2−a1)eik2(z−a2)γ

After the downward continuation of the receiver, we can use the Green’s theorem to downward
continue the source:

GDN
0 (z, z′)

∣∣
z′=zs

=

[
ν−1(R2λ− λ−1) +R1ν(λ−R2λ

−1)
]
ξ +

[
R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)

]
ξ−1

2ik2(1 +R1)(1 +R2)/ρ2
,

∂

∂z′
GDN

0 (z, z′)
∣∣∣∣
z′=zs

=

[
ν−1(R2λ− λ−1) +R1ν(λ−R2λ

−1)
]
ξ − [R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)

]
ξ−1

2k2(1 +R1)(1 +R2)/(kρ2)
,

(9.34)

where λ ≡ eik2(z−a2), ξ ≡ eik(zs−a1), and ν ≡ eik1(a2−a1).

− 1

ρ(zs)

(
∂GDN

0 (z, zs)

∂zs
+ ikGDN

0 (z, zs)

)
=

kρ2
k2ρ0

ν−1(λ−1 −R2λ) +R1ν(R2λ
−1 − λ)

(1 +R1)(1 +R2)
ξ,

and

− 1

ρ(zs)

(
∂GDN

0 (z, zs)

∂zs
+ ikGDN

0 (z, zs)

)
D(z, zs) =

kρ2
k2ρ0

ν−1(λ−1 −R2λ) +R1ν(R2λ
−1 − λ)

(1 +R1)(1 +R2)
eik(zs−a1)

· ρ0(1 +R1)(1 +R2)

2ik
eik(a1−zs)eik1(a2−a1)eik2(z−a2)γ
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The expression above can be simplified as:

E(z, z) =
ρ2
2ik2

eik1(a2−a1)eik2(z−a2)γ
{
ν−1(λ−1 −R2λ) +R1ν(R2λ

−1 − λ)
}

=
ρ2
2ik2

νλγ
{
ν−1(λ−1 −R2λ) +R1ν(R2λ

−1 − λ)
}

=
ρ2
2ik2

{
1−R2λ

2 +R1R2ν
2 −R1λ

2ν2
}
γ

=
ρ2
2ik2

{
1 +R1R2ν

2 −R2λ
2 −R1λ

2ν2
}
γ

Since:
(
1 +R1R2ν

2
)
γ =

(
1−R1R2ν

2
) ∞∑
n=0

[−R1R2ν
2
]n

= 1, and:

R2λ
2γ = R2λ

2
∞∑
n=0

(−1)nRn
1R

n
2ν

2n = R2λ
2 +R2λ

2
∞∑
n=1

(−1)nRn
1R

n
2ν

2n

= R2λ
2 −R2

2λ
2
∞∑
n=1

(−1)nRn
1R

n−1
2 ν2n+2,

R1λ
2ν2γ = R1λ

2ν2
∞∑
n=0

(−1)nRn
1R

n
2ν

2n = λ2
∞∑
n=0

(−1)nRn+1
1 Rn

2ν
2n+2,

{−R2λ
2 −R1λ

2ν2
}
γ = −R2λ

2 − (1−R2
2)λ

2
∞∑
n=0

(−1)nRn+1
1 Rn

2ν
2n+2.

The final downward continuation result can be expressed as:

E(z, z) =
ρ2
2ik2

{
1−R2λ

2 − (1−R2
2)λ

2
∞∑
n=0

(−1)nRn+1
1 Rn

2ν
2n+2

}

=
ρ2
2ik2

{
1−R2λ

2 + (1−R2
2)λ

2
∞∑
n=0

(−1)n+1Rn+1
1 Rn

2ν
2n+2

}

=
ρ2
2ik2

{
1−R2e

ik2(2z−2a2) + (1−R2
2)e

ik2(2z−2a2)
∞∑
n=0

(−1)n+1Rn+1
1 Rn

2e
ik1(2n+2)(a2−a1)

}
.

In the results above, ρ2
2ik2

is the overall amplitude of G+
0 in the third layer. The first term 1 is

the propagation phase of the wave traveling from the source and receiver coincide at depth z. The
second term −R2e

ik1(2a2−2a1) is the reflection from the second reflector at depth a2 (here it has
−R2 as its reflection coefficient since both the source and receiver are located below the reflector).
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The third term (1−R2
2)e

ik1(2a2−2a1)
∞∑
n=0

(−1)n+1Rn+1
1 Rn

2e
ik1(2n+2)(a2−a1) contains infinite number of

internal multiples generated between the first and second reflector.

E(z, z, t) = −ρ2c2
2

⎧⎨⎩ H(t)−R2H
(
t− 2z−2a2

c2

)
+(1−R2

2)H
(
t− 2z−2a2

c2
− (2n+2)(a2−a1)

c1

) ⎫⎬⎭ (9.35)

Balancing out the −ρ2c2
2 factor, the data after removing the direct wave is denoted as

D(z, t)Δ= −2
ρ2c2

E(z, z, t)−H(t):

D(z, t) =
⎧⎨⎩ −R2H

(
t− 2z−2a2

c2

)
+(1−R2

2)H
(
t− 2z−2a2

c2
− (2n+2)(a2−a1)

c1

) ⎫⎬⎭ (9.36)

and after taking the t = 0 imaging condition, we have:

D(z, t) =
{ −R2 if (z = a2)

0 if (a2 < z)
(9.37)

Note that in the previous section, i.e., to image between the first and second reflectors, we obtain the
amplitude R2 when z approach a2 from above. In this section we image below the second reflector
at a2, the amplitude of the image is −R2 when z approaches a2 from below, as it should.

10 Conclusions

A general and efficient procedure to compute the Green’s function with vanishing Dirichlet and
Neumann boundary conditions has been derived for a 1D medium of arbitrary complexity, and its
effectiveness has been demonstrated with numerical examples that accurately predict the up-going
and down-going wave field at depth using only the data on the shallower measurement surface. The
density contribution to the Green’s theorem and Green’s function is accurately studied to better
understand its role in imaging. In order to generalize the idea in this paper to a multidimensional
earth, a finite-difference scheme is derived and validated by comparison with an analytic benchmark.

Several remarkable properties of the Green’s function with double vanishing boundary conditions
have been identified:

• The vanishing property of GDN
0 for z > a unequivocally states that it is not necessary to know

the medium’s properties below a target to achieve the target’s depth image. This conclusion
is also stated in the paper “Finite volume model for migration” by Weglein et al. (2011a).
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• GDN
0 contains no internal multiple and no source-generated reflections; this property agrees

perfectly with not only the reflectionless approximation of WKBJ Green’s function, but also
with the idea of avoiding reflections and multiples in many current seismic imaging procedures.

We also have reported some very early and very positive news on the first wave theory RTM
imaging tests, with a discontinuous reference medium and images that have the correct depth
and amplitude (that is, producing the reflection coefficient at the correctly located target) with
primaries and multiples in the data. That is an implementation of Weglein et al. (2011a;b) with
creative implementation and testing and analysis.
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12 Appendix A: Classical Reflection Problem

In this appendix we derive and list the solution of the classical acoustic reflection problem. The
medium properties are listed in Table 1. We denote k = ω/c0, k1 = ω/c1, and the incident wave
is eikz

′ . We assume the reflection and transmission waves are Ae−ikz′ and Beik1z
′ , respectively.

In order to have a minimal framework for derivation, the philosophy here is to use the simplest
possible form for the incident, reflection, and transmission waves. The complexities caused by
flexible reflector depth are transferred to the parameters: A and B.

The boundary condition at the boundary z′ = a requires that:

eika +Ae−ika = Beik1a,

(ik/ρ0)e
ika + (−ik/ρ0)Ae−ika = (ik1/ρ1)Beik1a.

(12.1)

The equations above can be simplified as:

eika +Ae−ika = Beik1a,

eika −Ae−ika =
ρ0k1
ρ1k

Beik1a.
(12.2)

Since ρ0k1
ρ1k

= c0ρ0
c1ρ1

, we have:
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Figure 14: The solution of the two acoustic reflection problems in this appendix. Left: The down-
going incident wave from the medium above; right: the up-going incident wave from the medium
below.

eika +Ae−ika = Beik1a,

eika −Ae−ika =
ρ0c0
ρ1c1

Beik1a.
(12.3)

Solving the above equations, we have:

A =
c1ρ1 − c0ρ0
c1ρ1 + c0ρ0

eik(2a) = Reik(2a),

B =
2c1ρ1

c1ρ1 + c0ρ0
ei(k−k1)a = Tei(k−k1)a.

(12.4)

If the incident wave comes from the second medium: e−ik1z′ , similarly we can assume the reflection
wave being of the form Aeik1z

′ and the transmission wave of the form Be−ikz′ .

e−ik1a +Aeik1a = Be−ika,

(−ik1/ρ1)e−ik1a + (ik1/ρ1)Ae
ik1a = (−ik/ρ0)Be−ika.

(12.5)

After a straightforward simplification we have:
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e−ik1a +Aeik1a = Be−ika,

e−ik1a −Aeik1a =
kρ1
k1ρ0

Be−ika.
(12.6)

Remove the ω dependency in kρ1
k1ρ0

, to have:

e−ik1a +Aeik1a = Be−ika,

e−ik1a −Aeik1a =
ρ1c1
ρ0c0

Be−ika.
(12.7)

The solution of the above equations is:

A =
c0ρ0 − c1ρ1
c0ρ0 + c1ρ1

e−ik1(2a) = Re−ik1(2a),

B =
2c0ρ0

c1ρ1 + c0ρ0
ei(k−k1)a = Tei(k−k1)a.

(12.8)

13 Appendix B: Confirmation that the Green’s function (4.10) is the solu-
tion of the wave equation with vanishing Dirichlet and Neumann boundary
conditions at the deeper boundary

In this case we have: A < a < B, and the acoustic wave equation is:

{
ρ(z′)

∂

∂z′

(
∂

ρ(z′)∂z′

)
− ω2

c2(z′)

}
G0(z, z

′, ω) = δ(z − z′). (13.1)

Here we prove that the boundary conditions at the reflector are satisfied. First is the continuity
of pressure. According to equation (4.10), the pressure immediately below the reflector can be
obtained by setting z′ in the expression for z′ > a (i.e., the second case) to a:

G0(z, a+, ω) = ρ1
eik1(z−a) − eik1(a−z)

2ik1
. (13.2)

while the pressure immediately above the reflector can be obtained by setting z′ in the expression
for z′ < a (i.e., the first case) to a:

G0(z, a−, ω) = ρ1
2ik1

{
Reik1(z−a) − eik1(a−z)

1 +R
+

eik1(z−a)−Reik1(a−z)

1 +R

}
. (13.3)
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We can simplify the expression above as follows:

G0(z, a−, ω) = ρ1
2ik1

{
(1−R)eik1(z−a) +

−1−R

1 +R
eik1(a−z) +

R+R2

1 +R
eik1(z−a)

}
=

ρ1
2ik1

{
(1−R+R)eik1(z−a) − eik1(a−z)

}
=

ρ1
2ik1

{
eik1(z−a) − eik1(a−z)

}
= G0(z, a+, ω).

(13.4)

On the other hand, the continuity of 1
ρ
∂GDN

0
∂z′ across the boundary can be verified in a similar fashion.

The value of 1
ρ
∂GDN

0
∂z′ immediately below the reflector is:

1

ρ1

∂G0(z, z
′, ω)

∂z′

∣∣∣∣
z′=a+

=
−1
ρ1

{
eik1(z−a) + eik1(a−z)

}
. (13.5)

while the value of 1
ρ
∂GDN

0
∂z′ immediately above the reflector can be obtained by setting z′ in the

expression for z′ < a (i.e., the first case) to a:

1

ρ0

∂G0(z, z
′, ω)

∂z′

∣∣∣∣
z′=a−

=
c1
ρ0c0

{
Reik1(z−a) − eik1(a−z)

1 +R
+

Reik1(a−z)−eik1(z−a)

1 +R

}
. (13.6)

We can simplify the expression above as follows:

1

ρ0

∂G0(z, z
′, ω)

∂z′

∣∣∣∣
z′=a−

=
c1
ρ0c0

{
(R− 1)eik1(z−a) +

R−R2

1 +R
eik1(z−a) +

R− 1

1 +R
eik1(a−z)

}
=

c1
ρ0c0

{
R− 1

R+ 1
eik1(z−a) +

R− 1

R+ 1
eik1(a−z)

}
=

c1
ρ0c0

R− 1

R+ 1

{
eik1(z−a) + eik1(a−z)

}
=
−1
ρ1

{
eik1(z−a) + eik1(a−z)

}
=

1

ρ1

∂G0(z, z
′, ω)

∂z′

∣∣∣∣
z′=a+

.

(13.7)
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The derivation above takes advantage of the following relations: since R = ρ1c1−ρ0c0
ρ1c1+ρ0c0

, we have:

c1
ρ0c0

R− 1

R+ 1
=

c1
ρ0c0

ρ1c1−ρ0c0
ρ1c1+ρ0c0

− 1
ρ1c1−ρ0c0
ρ1c1+ρ0c0

+ 1
=

c1
ρ0c0

−2ρ0c0
2ρ1c1

=
−1
ρ1

.

14 Appendix C: The causal acoustic Green’s function used in this report

The analytic solution of the Green’s function in equation (2.2) is available if both the velocity c(z′)
and density ρ(z′) fields are constant: i.e., if c(z′) = c0 and ρ(z′) = ρ0. In this case the term
1/ρ(z′) = 1/ρ0 becomes a constant and can be moved to the front of the ∂/∂z′ operator, to have:

1

ρ0

{
∂

∂z′
∂

∂z′
+

ω2

c20

}
G0(z, z

′, ω) = δ(z − z′).

Both terms on the left-hand side of the equation above contain the 1
ρ0

factor and the equation can
be more succinctly written as:{

∂

∂z′
∂

∂z′
+

ω2

c20

}
G0(z, z

′, ω) = ρ0δ(z − z′). (14.1)

Note that the equation above is identical to equation (27) of Weglein et al. (2011a), except for the
extra density factor ρ0 on the right-hand side, and the solution for equation (27) of Weglein et al.
(2011a) is eik(z−z′)

2ik where k = ω/c0; our Green’s function in equation (14.1) is:

G0(z, z
′, ω) =

ρ0
2ik

eik|z−z
′|, (14.2)

where again, k = ω/c0.
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