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Green’s theorem tutorial

Green’s theorem-derived methods

Wavefield
separation:
no subsurface
information
required

Predicting the reference wave
and the scattered wavefield
(the reflection data) from the
total wavefield

Predicting the source
signature and radiation
pattern

Source and receiver
deghosting
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Green’s theorem tutorial

Green’s theorem-derived methods
(continued)

Wavefield
prediction for
migration:
subsurface
information
required

One-way-wave pre-stack
Stolt FK migration

Two-way-wave
wave-equation-migration
RTM
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Green’s theorem tutorial

Green’s theorem and seismic processing
(wave separation or wave prediction)

By way of illustration, consider an inhomogeneous
acoustic medium[

∇2 +
ω2

c2(~r)

]
P(~r ,~rs , ω) = A(ω)δ(~r −~rs) (1)

Characterize the velocity field in terms of a reference, c0,
and a perturbation, α(~r).

1

c2(~r)
=

1

c2
0

(1− α(~r)) (2)

k =
ω

c0
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Green’s theorem tutorial

Green’s theorem and seismic processing
(wave separation or wave prediction)

[
∇2 +

ω2

c2
0

]
P(~r ,~rs , ω) = k2α(~r)P + A(ω)δ(~r −~rs) (3)

Define ρ(~r , ω) ≡ k2α(~r)P + A(ω)δ(~r −~rs) and
equation 2 becomes(

∇2 +
ω2

c2
0

)
P = ρ(~r , ω) (4)
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Green’s theorem tutorial

Green’s theorem tutorial (continued)

Introduce

(∇2 + k2)G0 = δ(~r −~r ′) (5)

Equation 4 can be solved in terms of the solution of
equation 5

P(~r , ω)
Causal

=

∫
∞

d~r ′ρ(~r ′, ω)G+
0 (~r ,~r ′, ω) (6)

~r in ∞ (anywhere)
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Green’s theorem tutorial

Green’s theorem tutorial (continued)

Green’s second identity∫
V

d~r ′(P∇2G0 − G0∇2P) =

∮
S

dS n̂ · (P∇G0 − G0∇P)

(7)

Substituting ∇2P and ∇2G0 from equations 4 and 5 in
equation 7
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Green’s theorem tutorial

Green’s theorem tutorial (continued)

P(~r , ω)
for ~r in V

=

∫
V

d~r ′ρG0 +

∮
S

dS n̂ · (P∇G0 − G0∇P) (8)

Valid for any choice G0 that satisfies equation 5.

Different choices of solutions for G0 will derive each
of the Green’s theorem applications we listed

If we choose G0 = G+
0 then equation 8 becomes

P
~r in V

=

∫
V

d~r ′ρG+
0 +

∮
S

dS n̂ · (P∇G+
0 − G+

0 ∇P)

(9)
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Models for migration

Models for migration

The earliest wave equation migration pioneers viewed the
backpropagation region as an infinite hemispherical half
space with known mechanical properties, whose upper
plane surface corresponded to the measurement surface,
as in, e.g., Schneider (1978) and Stolt (1978). See
Fig. 1.
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Models for migration

 

|𝑅| → ∞ 

MS 

Figure 1: The infinite hemispherical migration model. The
measurement surface is denoted by MS.
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Models for migration

Models for migration

There are several problems with the infinite
hemispherical migration model. That model assumes:
(1) that all subsurface properties beneath the
measurement surface (MS) are known, and
(2) that an anticausal Green’s function (e.g., Schneider
(1978)), with a Dirichlet boundary condition on the
measurement surface, would allow measurements (MS)
of the wave-field, P , on the upper plane surface of the
hemisphere to determine the value of P within the
hemispherical volume, V .
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Models for migration

Models for migration

The first assumption leads to the contradiction that we
have not allowed for anything that is unknown to be
determined in our model, since everything within the
closed and infinite hemisphere is assumed to be known.
Within the infinite hemispherical model there is nothing
and/or nowhere below the measurement surface where
an unknown scattering point or reflection surface can
serve to produce reflection data whose generating
reflectors are initially unknown and being sought by the
migration process.
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Models for migration

Models for migration

The second assumption, in early infinite hemispherical
wave equation migration, assumes that Green’s theorem
with wave-field measurements on the upper plane surface
and using an anticausal Green’s function satisfying a
Dirichlet boundary condition can determine the
wave-field within V . That conclusion assumes that the
contribution from the lower hemispherical surface of S
vanishes as the radius of the hemisphere goes to infinity.
That is not the case.
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Models for migration

Models for migration

The finite model for migration assumes that we know or
can adequately estimate earth medium properties
(velocity) down to the reflector we seek to image. The
finite volume model assumes that beneath the sought
after reflector the medium properties are and remain
unknown. The “finite volume model” corresponds to the
volume within which we assume the earth properties are
known and within which we predict the wave-field from
surface measurements.
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Models for migration

Models for migration

We have moved away from the two issues of the infinite
hemisphere model, i.e., (1) the assumption we know the
subsurface to all depths and (2) that the surface integral
with an anticausal Green’s function has no contribution
to the field being predicted in the earth. The finite
volume model takes away both assumptions. However,
we are now dealing with a finite volume V , and with a
surface S , consisting of upper surface SU , lower surface
SL and walls, SW (Fig. 2). We only have measurements
on SU .
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Models for migration

Figure 2: A finite volume model
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Stolt FK migration from Green’s theorem

Stolt FK migration from Green’s theorem

Consider a 1D up-going plane wave-field P = Re−ikz propagating
upward through the 1D homogeneous volume without sources
between z = a and z = b (Fig. 3). The wave P inside V can be
predicted from

P(z , ω) =
∣∣∣b
z ′=a
{P(z ′, ω)

dG0

dz ′
(z , z ′, ω)

− G0(z , z ′, ω)
dP

dz ′
(z ′, ω)}, (10)

with the Green’s function, G0, that satisfies(
d2

dz ′ 2
+ k2

)
G0(z , z ′, ω) = δ(z − z ′), (11)

for z and z ′ in V .
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Stolt FK migration from Green’s theorem

Figure 3: 1D up-going plane wave-field
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Stolt FK migration from Green’s theorem

Stolt FK migration from Green’s theorem

We can easily show that for an upgoing wave,
P = Re−ikz , that if one chooses G0 = G+

0 (causal,
e ik|z−z ′|/(2ik)), the lower surface (i.e. z ′ = b) constructs
P in V and the contribution from the upper surface
vanishes. On the other hand, if we choose G0 = G−0
(anticausal solution e−ik|z−z

′|/(−2ik)), then the upper
surface z = a constructs P = Re−ikz in V and there is
no contribution from the lower surface z ′ = b.
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Stolt FK migration from Green’s theorem

Stolt FK migration from Green’s theorem

This makes sense since information on the lower surface
z ′ = b will move with the upwave into the region
between a and b, with a forward propagating causal
Green’s function, G+

0 . At the upper surface z ′ = a, the
anticausal G−0 will predict from an upgoing wave
measured at z ′ = a, where the wave was previously and
when it was moving up and deeper than z ′ = a.
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Stolt FK migration from Green’s theorem

Stolt FK migration from Green’s theorem

Since in exploration seismology the reflection data is typically
upgoing, once it is generated at the reflector, and we only have
measurements at the upper surface z ′ = a, we choose an anticausal
Green’s function G−0 in one-way wave back propagation in the finite
volume model. If in addition we want to rid ourselves of the need for
dP/dz ′ at z ′ = a we can impose a Dirichlet boundary condition on
G−0 , to vanish at z ′ = a. The latter Green’s function is labeled G−D0 .

G−D0 = −e−ik|z−z
′|

2ik
−
(
−e−ik|zI−z

′|

2ik

)
(12)

where zI is the image of z through z ′ = a.
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Stolt FK migration from Green’s theorem

Stolt FK migration from Green’s theorem

It is easy to see that zI = 2a − z and that

P(z) = −dG−D0

dz ′
(z , z ′, ω)

∣∣∣
z ′=a

P(a) = e−ik(z−a)P(a),(13)

in agreement with a simple Stolt FK phase shift for back
propagating an up-field. Please note that
P(z , ω) = −dG−D0 /dz ′(z , z ′, ω)|z ′=aP(a, ω) back
propagates P(z ′ = a, ω), not G−D0 . The latter thinking
that G−D0 back propagates data is a fundamental
mistake/flaw in many seismic back propagation
migration and inversion theories.
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The Green’s function

The Green’s function

For one-way wave propagation the double downward
continued data, D is

D(at depth) =

∫
Ss

∂G−D0

∂zs

∫
Sg

∂G−D0

∂zg
D dSg dSs , (14)

where D in the integrand = D(on measurement surface),
∂G−D0 /∂zs = anticausal Green’s function with Dirichlet
boundary condition on the measurement surface, s =
shot, and g = receiver.
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The Green’s function

The Green’s function

For two-way wave double downward continuation:

D(at depth) =

∫
Ss

[
∂GDN

0

∂zs

∫
Sg

{
∂GDN

0

∂zg
D +

∂D

∂zg
GDN
0

}
dSg

+ GDN
0

∂

∂zs

∫
Sg

{
∂GDN

0

∂zg
D +

∂D

∂zg
GDN
0

}
dSg

]
dSs ,(15)

where D in the integrands = D(on measurement surface). GDN
0 is

neither causal nor anticausal. GDN
0 is not an anticausal Green’s

function; it is not the inverse or adjoint of any physical propagating
Green’s function. It is the Green’s function needed for RTM.

Details can be found in Weglein et al. (2011a,b).
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The Green’s function

This Report is an attachment in this year’s Annual Report.

Fang Liu and Arthur B. Weglein

The first wave theory RTM, examples with a layered 
medium, predicting the source and receiver at depth 
and then imaging, providing the correct location and 
reflection amplitude at every depth location, and 

where the data includes primaries and all internal multiples
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The Green’s function

Figure 4: Imaging with primaries and internal multiples.

0
zg=zs

c0, ρ0

c1, ρ1

c2, ρ2

a

b

data    P(zg,zs,t)

P(z,z;t=0)                z=a‐ε

P(z,z;t=0) z=a+ε

P(z,z;t=0) z=b‐ε

P(z,z;t=0)  z=b+ε

R1

‐R1

R2

‐R2
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The Green’s function
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The Green’s function
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