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Abstract

In this paper we discuss the multi-D inverse scattering internal multiple attenuation algo-
rithm focusing our attention on the prediction mechanisms. Roughly speaking, the algorithm
combines amplitude and phase information of three different arrivals (sub-events) in the data
set to predict one interbed multiple. The three events are conditioned by a certain relation
which requires that their pseudo-depths, defined as the depths of their turning points relative
to the constant background velocity, satisfy a lower-higher-lower relationship. This implicitly
assumes a pseudo-depth monotonicity condition, i.e. the relation between the actual depths and
the pseudo-depths of any two sub-events, is the same. We study the lower-higher-lower relation
in pseudo-depth and show that it is directly connected with a similar longer-shorter-longer re-
lationship between the vertical or intercept times of the sub-events and hence the pseudo-depth
monotonicity is equivalent to a vertical time monotonicity condition. The paper also provides
the first pre-stack analysis of the algorithm with analytical data showing how the sub-events are
selected and combined to exactly predict the time and well approximate the amplitude of an
interbed multiple. Among other results we show that the construction of internal multiples is
performed in the plane waves domain and, as a consequence, the internal multiples with head-
waves sub-events are also predicted by the algorithm. Furthermore we analyze the differences
between the time monotonicity condition in vertical or intercept time and total travel time and
show a 2D example which satisfies the former (and hence is predicted by the algorithm) but not
the latter. Finally we discuss one case in which the monotonicity condition is not satisfied by
the sub-events of an internal multiple which, as a consequence, will not be predicted. For these
cases, the monotonicity condition turns out to be too restrictive and we discuss ways of lowering
these restrictions and hence expanding the algorithm to address these types of multiples.

Introduction

The inverse scattering series is presently the only multidimensional method for inverting for the
properties of an unknown medium without adequate information about that medium. When the
series converges it achieves full inversion given the whole data set (including free surface and inter-
nal multiples) and information about a chosen reference medium. Carvalho (6) tested numerically
the convergence properties of the full inverse scattering series and found that the series converges
only when the reference medium of choice is within 11% from the actual medium, a non-realistic
situation. In the ’90’s, Weglein and collaborators developed the “subseries method” (for a history
and description see (20)) which consists in identifying task specific subseries in the full series, with
targeted usefulness and better convergence properties than the whole series. These subseries were
imagined to be a sequence of steps, similar to the processing steps undertaken in geophysical explo-
ration, which would achieve 1. Free surface multiple elimination; 2. Internal multiple elimination;
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3. Imaging in depth; and 4. Inversion for the medium properties. It is reasonable to assume,
and the experience showed this assumption to be true, that since the full series only requires data
and information about a reference medium to invert, the same holds for any of the four specific
subseries.

The inverse scattering series, and the subsequent task specific subseries, assume that the input data
satisfies several pre-requisites. First, it is assumed that the source signature or wavelet has been
deconvolved from the data. Second, both the source and receiver ghosts have been eliminated from
the collected data. Third, the collected data itself has an appropriate sampling or the data recon-
struction algorithms are able to improve the acquisition sampling to an appropriate degree. When
these prerequisites are not satisfied, the algorithms derived from this method will reach incorrect
conclusions/results e.g. false or no prediction of free-surface and internal multiples, incorrect loca-
tion of subsurface structures, and errors in parameter estimation. Last but not least we mention
that the algorithms are derived from a point-source point-receiver wave theory approach and any
deviations from that, e.g. source and receiver arrays, would have to be studied to understand how
they affect the algorithms.

In 1994, Araujo (2) identified the first term in the subseries for internal multiple elimination (see also
(19)). This first term by itself exactly predicts the time of arrival, or phase, and well approximates
the amplitude of internal multiples, without being larger than the actual amplitude, and hence it
represents an algorithm for attenuation. Weglein et al. (20) described the algorithm through an
analytic 1D example and 2D synthetic numerics. Field data tests were also performed showing
an extraordinary ability to predict difficult interbed multiples, e.g. superimposed primary and
multiple etc., where other methods have failed.

The inverse scattering internal multiple attenuation algorithm was found through a combination
of simple 1D models testing/evaluation and certain similarities between the way the data is con-
structed by the forward scattering series and the way arrivals in the data are processed by the
inverse scattering series. This connection between the forward and the inverse series was analyzed
and described by Matson (10), (11) and Weglein et al. (19), (20). Specifically, they showed that
an internal multiple in the forward scattering series is constructed by summing certain types of
scattering interactions which appear starting with the third order in the series. The piece of this
term representing the first order approximation to an internal multiple is exactly the one for which
the point scatterers satisfy a certain lower-higher-lower relationship in actual depth. Summing over
all interactions of this type in the actual medium results in constructing the first order approx-
imation to an internal multiple. By analogy, it was inferred that the first term in the subseries
for eliminating the internal multiples would be one constructed from events satisfying the same
lower-higher-lower relationship in pseudo-depth. The assumption that the ordering of the actual
and the pseudo depths of two sub-events is preserved, i.e.

zactual
1 < zactual

2 ⇐⇒ zpseudo
1 < zpseudo

2 , (1)

has been subsequently called “the pseudo-depth monotonicity condition”.

In this paper we further analyze this relation and show that it is equivalent to a vertical or intercept
time (here denoted by τ) monotonicity condition

zactual
1 < zactual

2 ⇐⇒ τ1 < τ2, (2)
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for any two sub-events. We also look at the differences between the time monotonicity condition in
vertical or intercept time and total travel time. The latter was pointed out by a different algorithm
derived from the inverse scattering series by ten Kroode (17) and further described by Malcolm and
M.V. de Hoop (9). We show a 2D example which satisfies the former (and hence is predicted by
the original algorithm) but not the latter. Finally we discuss one case in which the monotonicity
condition is not satisfied by the sub-events of an internal multiple in either vertical or total travel
time and consequently the multiple will not be predicted by either one of the two algorithms. For
these cases, the monotonicity condition turns out to be too restrictive and we discuss ways of
lowering these restrictions and hence expanding the algorithm to address these types of multiples.

In the context of the overall research efforts of M-OSRP, this paper represents a part of a project
to characterize, implement, and build on the internal multiple attenuation algorithm that is re-
ported on in this volume. Kaplan et al. (8) describe the development of a practical code to effect
numerical examples of this de-multiple procedure in 1D prestack and 2D regimes; they further
detail mathematically- and physically-based representations of the algorithm that lead to reduced
computation time. Ramı́rez and Weglein (13) meanwhile work to progress towards a method for
the elimination of interbed multiples through an analysis and incorporation of specific higher-order
terms that yet mimic the pseudo-depth relationships we discuss herein. Ramı́rez and Weglein (14)
concern themselves with the characterization of the attenuative nature of the algorithm. Here we
provide a characterization of a different sort, as summarized above.

The paper is structured as follows. In Section 2 we will discuss the definition of a multiple and its
evolution over time. In Section 3 we will describe the algorithm and show how a predicted multiple
is constructed from events in the data. A 1.5D example is analyzed in Section 4 with analytical
data and internal multiples with headwaves sub-events are shown to be predicted by the algorithm.
We further look in Sections 5 and 6 at several 2D examples to better understand the relationship
between the sub-events which are used by the algorithm to construct the phase and the amplitude
of the internal multiple. Some comments and conclusions are presented in the last section.

Definition of an internal multiple

The definition of an internal multiple evolved over time keeping in step with our understanding of
fundamental structure and processes that take place inside a medium. Once a certain definition is
in place, one can then start the development of algorithms which address the so called (and defined)
internal multiples to attenuate or even eliminate them. However, sometimes, after an algorithm
is developed, its analysis leads to new definitions or generalizations of the notions/concepts them-
selves. This was the case of the inverse scattering internal multiple algorithm and the definitions
resulted from it will be discussed in this section.

The early 1D models of a layered medium only allow up and down propagation and so it is easy
to imagine a primary as having only one upward reflection and a multiple as having two or more
upward reflection and one or more internal (i.e. not at the free surface) downward reflections.
Notice that the directions up and down are defined by the positioning of the measurement surface:
if an event is propagating towards the measurement surface it is said that it is moving upward. If
the event is moving away from the measurement surface it is said that it is moving downward. In
our discussion/pictures, we choose the x-axis to be along the measurement surface and hence the
up-down direction to coincide with moving backward and forward along the z-axis.
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Figure 1: An example of an upward, downward and a neutral reflection.

Figure 2: A more general definition of a primary and a multiple. The primary has one upward reflection and
any number of neutral reflections while the multiple has two or more upward reflections and any number of neutral
reflections.

When the medium is slightly more general, for example a 2D medium with only specular reflections,
a new type of reflection occurs which is neither upward nor downward (see Figure 1). We will call
this type of reflection a neutral reflection. For this situation we can easily generalize the definition
of a primary as an event which contains one upward reflection and any number of neutral reflections
and that of a multiple as an event which has two or more upward reflections, one or more downward
reflections and any number of neutral reflections (an example is shown in Figure 2). However this
definition does not cover the complexity of an arbitrary medium and there are events which do not
fit the definition of a multiple as given so far. For example, the events pictured in Figure 3 (a)(b) do
not have two upward reflections but a turning wave and a headwave respectively, while the event in
Figure 3(c) is even of a more complex nature consisting in a diffraction on one leg of the full event.
Recently, Weglein and Dragoset (21) have introduced more general definitions and designations for
primary and multiply reflected events, namely prime and composite events. According to those
definitions, a prime event is not decomposable into other recorded events such that those sub-
event ingredients combine by adding and/or subtracting time of arrival to produce the prime. A
composite event is composed of sub-events that combine in the above described manner to produce
the event. With these definitions, the events pictured in Figure 3 can be categorized as composite
events when their sub-events can be found in the recorded data. For example, the sub-events of the
event pictured in Figure 3(a) are the turning wave and the reflections from the shallow and deep
interfaces.

These definitions, which obviously generalize all the previous ones, and the notion of sub-events
where suggested by the inverse scattering internal multiple attenuation algorithm which is going
to be discussed in detail in the next sections.
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(b)(a)

(c)

Figure 3: Complex events difficult to include in a definition which only takes into account upward and downward
reflections

The inverse scattering series internal multiple attenuation algo-
rithm

The first term in the inverse scattering subseries for internal multiple elimination is (see e.g. (20))

b3(kg, ks, ω) =
1

(2π)2

∞∫
−∞

∞∫
−∞

dk1e
−iq1(εg−εs)dk2e

iq2(εg−εs)

∞∫
−∞

dz1e
i(qg+q1)z1b1(kg, k1, z1)

×
z1∫

−∞
dz2e

i(−q1−q2)z2b1(k1, k2, z2)

∞∫
z2

dz3e
i(q2+qs)z3b1(k2, ks, z3) (3)

where z1 > z2 and z2 < z3 and b1 is defined in terms of the original pre-stack data with free surface
multiples eliminated, D′, to be

D′(kg, ks, ω) = (−2iqs)−1B(ω)b1(kg, ks, qg + qs) (4)

with B(ω) being the source signature. Here ks and kg are horizontal wavenumbers, for source and
receiver coordinates xs and xg, and qg and qs are the vertical wavenumbers associated with them.
The b3 on the left hand side represents the first order prediction of the internal multiples. An
internal multiple in b3 is constructed through the following procedure.

The deconvolved data without free-surface multiples in the space-time domain, D(xs, xg, t) can be
described as a sum of Dirac delta functions

D(xs, xg, t) =
∑

a

Raδ(t − ta) (5)
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representing different arrivals (primaries and internal multiples). Here Ra represents the amplitude
of each arrival and it is a function of source and receiver position xs and xg and frequency ω. When
transformed to the frequency domain the transformed function D(xs, xg, ω) is a sum

D̃(xs, xg, ω) =
∑

a

R̃ae
−iωta . (6)

Here ta is the total traveltime for each arrival and it can be thought of as a sum of horizontal
and vertical times ta = τa + txa (see e.g. (7), (18)), where txa is a function of xg and xs. After
Fourier transforming over xs and xg, the data is D̃(ks, kg, ω). The transforms act on the amplitude
as well as on the phase of the data and transform the part of the phase which is described by the
horizontal time txa. Hence D(ks, kg, ω) can now be thought of as a sum of terms containing eiωτa

with τa being the vertical or intercept time of each arrival

D̃(ks, kg, ω) =
∑

a

R̃′
ae

−iωτa (7)

and where R̃′
a is the double Fourier transform over xg and xs of R̃ae

−iωtxa . The multiplication by
the obliquity factor, 2iqs, changes the amplitude of the plane wave components without affecting
the phase; hence b1(ks, kg, ω) represents an effective plane wave decomposed data and is given by

b1(ks, kg, ω) =
∑

a

R̃′′
ae

−iωτa (8)

where R̃′′
a = 2iqsR̃′

a and whose phase, eiωτa , contains information only about the recorded actual
vertical or intercept time.

Notice that for each planewave component of fixed ks, kg and ω we have

ωτa = kactual
z zactual

a (9)

where kactual
z is the actual, velocity dependent, vertical wavenumber and zactual

a is the actual depth
of the turning point of the planewave. Since the velocity of the actual medium is assumed to be
unkown, this relationship is written in terms of the reference velocity as

ωτa = kzza (10)

where kz is the vertical wavenumber of the planewave in the reference medium, kz =
√

ω
c0

− ks +√
ω
c0

− kg, and za is the pseudo-depth of the turning point. This implicit operation in the algorithm

is performed by denoting b1(ks, kg, ω) = b1(ks, kg, kz) with the latter having the expression

b1(ks, kg, kz) =
∑

a

R̃′′
ae

−ikzza . (11)

The next step is to Inverse Fourier Transform over the reference kz hence obtaining

b1(ks, kg, z) =

∞∫
−∞

eikzzb1(ks, kg, kz)dkz. (12)
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c0

c1

c2

321

Figure 4: The sub-events of an internal multiple: the green, blue and red are arrivals in the data which satisfy the
lower-higher-lower relationship in pseudo-depths z. The algorithm will construct the phase of the internal multiple
shown in black by adding the phases of the green and the blue primaries and subtract the one of the red primary.

Putting together equations (11) and (12)) we find

b1(ks, kg, z) =
∑

a

∞∫
−∞

R̃′′
ae

ikz(z−za)dkz (13)

which represents a sum of delta-like events placed at pseudo-depths za and hence the b1 from
the last equation is actually b1(ks, kg, za). This last step can also be interpreted as a downward
continuation on both source and receiver sides, with the reference velocity c0, and an imaging with
τ = 0, or, in other words, an un-collapsed F-K migration (see e.g. (15) and (16)). A discussion of
differences in imaging with τ and with t was given by Nita and Weglein (12).

Each internal multiple is constructed by considering three effective data sets b1 and searching, in
the horizontal-wavenumber–pseudo-depth domain, for three arrivals which satisfy the lower-higher-
lower relationship in their pseudo-depths, i.e. z1 > z2 < z3, (see Figure 4 for an example of three
such primary events). Having found such three arrivals in the data, the algorithm combines their
amplitudes and phases to construct a multiple by adding the phases of the two pseudo-deeper
events and subtracting the one of the pseudo-shallower ones and by multiplying their amplitudes.
One can then see (see e.g. (20)) that the time of arrival of an internal multiple is exactly predicted
and its amplitude is well approximated by this procedure.

As pointed out in the first section, the lower-higher-lower restriction was inferred from the analogy
with the forward scattering series description of internal multiples: the first order approximation
to an internal multiple (which occurs in the third term of the series) is built up by summing
over all scattering interactions which satisfy a lower-higher-lower relationship in actual depth.
The assumption that this relationship is preserved in going from actual depth to pseudo-depth is
called “the pseudo-depth monotonicity condition”. (Recall that a monotonic function f(x) satisfies
f(x1) < f(x2) ⇐⇒ x1 < x2, see also Figure 5; here, we regard the pseudo-depth as a function of
actual depth). Notice that the lower-higher-lower relationship in pseudo-depth can be translated,
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x1

x1f(  )

x2f(   )

x2

f(x)

x

Figure 5: A monotonic function.

from equation (10), in a similar longer-shorter-longer relationship in the vertical or intercept time
of the three events. Accordingly, the pseudo-depth monotonicity is also translated in a vertical time
monotonicity condition. Notice that this is different from the total time monotonicity assumed by
the algorithm introduced by ten Kroode (17). The latter is employing asymptotic evaluations of
certain Fourier integrals which result in an algorithm in the space domain, having a ray theory
assumption and the less inclusive total time monotonicity requirement. The justification for this
approach was the attempt to attenuate a first order approximation to an internal multiple built by
the forward scattering series. In contrast, the original algorithm is aimed at predicting and attenu-
ating the actual multiples in the data and hence it takes into consideration the full wavefield, with
no asymptotic compromises, and results in a more inclusive vertical time monotonicity condition.
In Section 5 we discuss a 2D example in which the geometry of the subsurface leads to the existence
of a multiple which satisfies the pseudo-depth/vertical-time but not the total time monotonicity
condition.

In the next section we analyze a simple 1.5D example and show analytically how it predicts internal
multiples by putting together amplitude and phase information from arrivals in the data satisfying
the above condition. During this analysis we also show that the internal multiples with headwaves
sub-events are attenuated by the algorithm.

Attenuation of internal multiples with headwaves sub-events: a
1.5D example

The model in this experiment is a 2D vertically varying medium. We consider one of the simplest
cases which allow the existence of internal multiples, namely one layer between two semi-infinite
half-spaces separated by horizontal interfaces (see Figure 6). The velocity only varies across the
interfaces located at z = za and z = zb and has the values c0, c1 and c2 respectively. The sources
and receivers are located at the same depth z = 0. The data for such a model is given in the
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c0

c1

c2

za

zbz

x z=0 MS

Figure 6: The model for the 1.5D example.

frequency ω domain by (see e.g. (1))

D(xh, 0;ω) =
1
2π

∞∫
−∞

dkh
R01 + T01R12T10e

iν1(zb−za) + . . .

iqs
eikhxheikzza (14)

where kz = qg + qs, kh = kg + ks, xh =
xg − xs

2
and ν1 = q1g + q1s. The reflection and transmission

coefficients at the corresponding interfaces R01, T01, R12 and T10 are all functions of kh and ω. Only
the primaries from the top and the bottom interfaces are written out explicitly in this equation;
the dots “ . . . ” stand for other multiple arrivals. For simplicity we will drop the writing of the dots
for the rest of this example; this will effect in the prediction of the first order internal multiple only.

Notice that the expression (14) represents both pre-critical and post-critical arrivals, as well as, for
large offsets, headwaves along both interfaces. For a discussion of how to obtain the headwaves
solutions from integrating Equation (14) see e.g. Aki and Richards (1) Chapter 6. The first order
internal multiple that we seek to predict has the expression

IM1st
actual(xh, 0;ω) =

1
2π

∞∫
−∞

dkh
T01R

2
12T10R10e

2iν1(zb−za)

iqs
eikhxheikzza . (15)

This analytic formula contains both small and large offsets first order internal multiples arrivals
including the multiples containing headwaves along the second interface as sub-events.

Fourier transforming the data given by equation (14) over xh and xm we find

D(kh, 0;ω) =
R01 + T01R12T10e

−iν1(zb−za)

iqs
e−ikzzaδ(kg − ks). (16)

Then b1(kh, 0;ω) = iqsD(kh, 0;ω) is

b1(kh, 0;ω) =
[
R01 + T01R12T10e

−iν1(zb−za)
]
e−ikzzaδ(kg − ks). (17)

or
b1(kh, 0;ω) =

[
R01e

−ikzza + R′
12e

−iν1(zb−za)e−ikzza
]
δ(kg − ks) (18)
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zb

qs

ks

c0ω/

θ

(a) The geometry of the first
primary in the data.

zb

za
q1s

c0ω/qs

ks

ks
ω/c1

θ

ϕ

(b) The geometry of the second primary in
the data.

Figure 7: Geometrical representation of the two primaries.

where, for simplicity, we denoted T01R12T10 = R′
12.

For the first primary we can write (see Figure 7(a)) cos θ =
qs

ω/c0
which implies

qs =
ω

c0
cos θ (19)

or, noticing that
c0

cos θ
= c1

v, the vertical speed in the first medium,

qsza =
ω

c0
za cos θ = ω

τ1

2
(20)

where τ1 represents the intercept or vertical time of the first event. Similarly, on the receiver side
we have

qgza = ω
τ1

2
. (21)

Summing the last two equations we find for the first primary arrival (compare with equation 10)

kzza = ωτ1 (22)

where we emphasize again that on the left hand side of the equation is the reference kz and the
pseudo-depth, which in this case coincides with the actual depth of of the reflector, za and on the
right hand side we have the phase information contained in the recorded data. For the second
event we can find, as before, that, for the portion propagating through the space in between the
measurement surface and the depth za, we have

kzza = ωτ1, (23)

where τ1 is the vertical time through the first medium. For the part that is propagating through
the second medium we can write cosϕ =

q1s

ω/c1
which implies

qs1 =
ω

c1
cosϕ, (24)

112



Internal multiple attenuation: algorithm analysis MOSRP04

or, noticing that
c1

cosϕ
= c2

v, the vertical speed in the layer,

q1s(zb − za) =
ω

c1
(zb − za)cosϕ = ω

τ2

2
(25)

where τ2 is the vertical time through the layer for this event. Similarly, on the receiver side we have

q1g(zb − za) = ω
τ2

2
. (26)

Summing the last two equations we find

ν1(zb − za) = ωτ2. (27)

Summarizing, for the second primary we found from equations (23) and (27)

kzza + ν1(zb − za) = ωτ2 (28)

where τ2 is the total vertical time for the second event.

Since the velocity of the second medium is not known, we can write ωτ2 in terms of c0 only as
follows (see Equation (10)

ωτ2 = kzz
′
b (29)

where z′b is a pseudo-depth which can be calculated in terms of the vertical time τ2 and the vertical
speed of the first medium. With these remarks, the expression (18) for b1 becomes

b1(kh, 0;ω) =
[
R01e

−ikzza + R′
12e

−ikzz′b
]
δ(kg − ks) (30)

To calculate b1(kh, z) we first downward continue/extrapolate,

b1(kh, z;ω) =
[
R01e

ikz(z−za) + R′
12e

ikz(z−z′b)
]
δ(kg − ks), (31)

and then integrate over kz (imaging) to obtain

b1(kh, z) =

∞∫
−∞

dkzb1(kh, kz; ω). (32)

Notice that the reflection and transmission coefficients in the expression (31) are functions of ω
and hence functions of kz. Explicitly,

R01(kh, ω) =

√
4ω2

c2
0

− k2
h −

√
4ω2

c2
1

− k2
h√

4ω2

c2
0

− k2
h +

√
4ω2

c2
1

− k2
h

. (33)

The integration over kz in (32) hence amounts to an inverse Fourier transform of R01 and R′
12 over

kz. This Fourier transform is difficult to write as an analytic result and hence the example can no
longer continue in the (kh, ω) domain.
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ω ω
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Figure 8: The mapping (kh, ω) to (p, ω)

The imaging of the data can also be achieved in the (p, ω) domain with better analytical results and
more meaningful amplitude analysis (see Bruin et al (1990)). To this end we map the data from
the (kh, ω) to (p, ω) domain. This mapping has been studied extensively by Bracewell (1956) and
Bracewell and Riddle (1967). It mainly consists in reading the data along the lines going through
the origin of the (kh, ω) coordinate system instead of the original (kh, ω) grid (see Figure 8). Notice
that, if this mapping is performed, the reflection and the transmission coefficients are no longer
dependent of the frequency ω or kz. Explicitly, in the formula (33) for R01 we can factor ω and
then divide by it and so the expression becomes

R01(p) =

√
4
c2
0

− p2 −
√

4
c2
1

− p2

√
4
c2
0

− p2 +

√
4
c2
1

− p2

. (34)

Similarly it can be shown that R′
12 is mapped to a function of p only.

In this new coordinate system the imaging step reads

b1(p, z) =

∞∫
−∞

dkzb1(p, kz; ω) =
[
R01(p)δ(z − za) + R′

12(p)δ(z − z′b)
]
δ(kg − ks). (35)

Numerical results comparing imaging in (kh, ω) and (p, ω) were shown and discussed in Bruin et
al. (1990). The imaged data written in equation (35) is next taken through the internal multiple
algorithm described in equation (3).

Given the data in the form (35), the algorithm performs similarly to the 1D normal incidence case.
In the following, we are denoting by p1, p2 and p3 the horizontal slownesses associated with kg +k1,
k2 + ks and kg + ks respectively. The horizontal slowness associated with ks + kg is also denoted by
p. The four slownesses defined above are not independent, in fact we have that p3 = (p1 + p2)− p.
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The inner most integral towards calculating b3 in the internal multiple algorithm is

∞∫
z′2+ε1

dz′3e
ikzz′3

[
R01(p2)δ(z′3 − za) + R′

12(p2)δ(z′3 − z′b)
]
δ(k2 − ks) (36)

=

∞∫
−∞

dz′3H(z′3 − (z′2 + ε1))eikzz′3
[
R01(p2)δ(z′3 − za) + R′

12(p2)δ(z′3 − z′b)
]
δ(k2 − ks)

=
[
H(za − (z′2 + ε1))R01(p2)eikzza + H(z′b − (z′2 + ε1))R′

12(p2)eikzz′b
]
δ(k2 − ks).

The second integral in the algorithm is

z′1−ε2∫
−∞

dz′3e
ikzz′2

[
R01(p3)δ(z′2 − za) + R′

12(p3)δ(z′2 − z′b)
]
δ(k1 − k2) (37)

×
[
H(za − (z′2 + ε1))R01(p2)eikzza + H(z′b − (z′2 + ε1))R′

12(p2)eikzz′b
]
δ(k2 − ks)

= R01(p2)R01(p3)H(za − (z′1 + ε2))H(za − (za + ε1))eikzzae−ikzzaδ(k1 − k2)δ(k2 − ks)

+ R01(p2)R′
12(p3)H((z′1 − ε2) − za)H(z′b − (za + ε1))eikzz′be−ikzzaδ(k1 − k2)δ(k2 − ks)

+ R′
12(p2)R01(p3)H((z′1 − ε2) − z′b)H(za − (z′b + ε1))eikzzae−ikzz′bδ(k1 − k2)δ(k2 − ks)

+ R′
12(p2)R′

12(p3)H((z′1 − ε2) − z′b)H(z′b − (z′b + ε1))eikzz′be−ikzz′bδ(k1 − k2)δ(k2 − ks)

where all the underlined terms are zero.

The last integral over depth z in the calculation of b3 is

∞∫
−∞

eikzz′1
[
R01(p1)δ(z′1 − za) + R′

12(p1)δ(z′1 − z′b)
]
δ(kg − k1) (38)

× R01(p2)R′
12(p3)H((z′1 − ε2) − za)H(z′b − (za + ε1))eikzz′be−ikzzaδ(k1 − k2)δ(k2 − ks)

= R01(p1)R01(p2)R′
12(p3)H(−ε2)H(z′b − (za + ε1))eikzzaδ(kg − k1)δ(k1 − k2)δ(k2 − ks)

+ R′
12(p1)R01(p2)R′

12(p3)eikz(2z′b−za)H(z′b − (za + ε2))H(z′b − (za + ε1))δ(kg − k1)δ(k1 − k2)δ(k2 − ks)

= R′
12(p1)R01(p2)R′

12(p3)e2ikzz′be−ikzzaδ(kg − k1)δ(k1 − k2)δ(k2 − ks)

where we have used the fact that the underlined term is zero and that the last two Heaviside
functions are identically equal to 1.

The result for the b3, and hence the predicted first order internal multiple, is

b3(p, ω) = e2ikzz′be−ikzza

∞∫
−∞

dk1

∞∫
−∞

dk2R
′
12(p1)R01(p2)R′

12(p3)δ(kg − k1)δ(k1 − k2)δ(k2 − ks), (39)

or, after evaluating the integrals and using the relationship between p1, p2, p3 and p,

b3(p, ω) = R′2
12(p)R01(p)δ(kg − ks)e2ikzz′be−ikzza . (40)
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Figure 9: A 2D earth model with an internal multiple satisfying the time monotonicity in the vertical time but not
in the total travel time

Recalling that R′2
12(p) = T01(p)R2(p)T10(p) we find the final result to be

b3(p, ω) = T 2
01(p)R2

2(p)T 2
10(p)R01(p)δ(kg − ks)e2ikzz′be−ikzza (41)

consistent with the 1D normal incident result of (20). Integrating over kh gives the prediction of
the first order internal multiple in space frequency domain

IM1st
predicted(xh, 0;ω) =

1
2π

∞∫
−∞

dkh
T 2

01R
2
12T

2
10R10e

2iν1(zb−za)

iqs
eikhxheikzza . (42)

Comparing this expression with Equation (15) for the actual multiple we see that the predicted
multiple has the correct total time and a well approximated amplitude. The amplitude of the
predicted multiple in the p-domain is within a T01(p)T10(p) factor, a factor which is always close
to, but always less than, 1. An integration over the horizontal wavenumber kh will average these
amplitudes and will result in the predicted amplitude in the space domain which again is going to
be lower than, but close to, the actual amplitude of the internal multiple. In addition, since the
phase and amplitude construction is performed in the plane waves domain, the internal multiples
with headwaves sub-events are also predicted by the algorithm.

In the next section we will further discuss the lower-higher-lower relationship between the pseudo-
depths of the sub-events and the similarities and differences of this relationship in total travel time
and vertical or intercept time.

Vertical time and total travel time monotonicity: a 2D example

Consider the earth model shown in Figure 9. For simplicity we assume that only the density ρ varies
at the interface and it has the value ρ0 in the reference medium and ρ1 in the actual medium. The
velocity is constant c0. The actual internal multiple is shown in black and the sub-events composing
the multiple are shown in green, blue and red. First, notice that the total traveltime of the shallower
reflection (the red event) is bigger than both deeper reflection (green and blue) due to the large
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Figure 10: A 2D earth model with an internal multiple satisfying the time monotonicity in the vertical time but not
in the total travel time

offsets needed to record such an event. This implies that the longer-shorter-longer relationship is
not satisfied by these particular sub-events in the total traveltime.

Next we calculate the vertical times for individual sub-events. The vertical time for the red event
along the left leg is (see Figure 10)

τ1
red = z1

cos θin

c0
(43)

and along the right leg is

τ2
red = z1

cos θout

c0
. (44)

Summing the two legs we find the total vertical time along the red event to be

τred =
z1

c0
(cos θin + cos θout) . (45)

Similarly, for the green event we have

τgreen =
z2

c0
(cos φin + cos φout) . (46)

Since the velocity is constant, θout = φout; we also have that φin < θin, and hence cosφin > cos θin,
and z2 > z1 which results in

τgreen > τred. (47)

It is not difficult to see that similarly, for this example, we have

τblue > τred (48)

where τblue is the vertical time of the blue primary in Figure 10.

The conclusion is that for this model and particular internal multiple, the longer-shorter-longer
relationship is satisfied by the vertical or intercept times of the three subevents but not by their
total traveltimes. According to equation (10), this relation translates into the lower-higher-lower
relationship between the pseudo-depths of the sub-events and hence the internal multiple depicted
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Figure 11: A 2D earth model with an internal multiple containing sub-events which do not satisfy the time mono-
tonicity in either total traveltime or vertical time.

in Figure 9 will be predicted by the inverse scattering internal multiple attenuation algorithm in
Equation (3).

In the next section we discuss an earth model and a particular internal multiple in which the
longer-shorter-longer relationship in vertical and total travel time is not satisfied.

Breaking the time monotonicity: a 2D example

Consider the earth model shown in Figure 11 where c0 < c1. A high velocity zone, in which the
propagation speed c3 is much higher than c0, intersects one leg of the internal multiple and hence
one leg of one of the sub-events (the blue primary in Figure 11). Due to this high velocity zone
and the fact that c0 < c1, one can easily imagine a situation in which both the total and the
vertical time of the blue primary are shorter than the total and vertical times respectively of the
red primary. In this case the lower-higher-lower relationship between the pseudo-depths of the sub-
events is not satisfied and hence the internal multiple shown in the picture will not be predicted.
The monotonicity is in consequence broken, since even though the actual depths still satisfy a
lower-higher-lower relationship, the pseudo-depths, vertical times or total times of the sub-events
do not.

To better understand the multiples which do not satisfy the pseudo-depth/vertical-time mono-
tonicity condition and to expand the algorithm to address them, one has to study their creation
in the forward scattering series. As indicated by Matson (10) (11) and Weglein et al. (20) the
lower-higher-lower relationship in pseudo-depth z was pointed to by the forward scattering series:
the first order approximation to an internal multiple is constructed in the forward scattering series
from interactions with point scatterers which satisfy the lower-higher-lower relationship in actual
depth. It would be interesting to analyze how a multiple that breaks the monotonicity assumption
is constructed by the forward series and to determine if an analogy between the forward and the
inverse process would be useful to expand the algorithm to address these kind of events. This
particular issue and others will be the subject of future research.
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Conclusions

In this paper we presented an analytic analysis of the inverse scattering internal multiple attenuation
algorithm for multi dimensional media. We particularly focused on the mechanism of predicting
amplitude and phase properties of an interbed multiple. We have presented the first prestack
analysis with analytical data which shows the ability of the algorithm to exactly predict the time
and well approximate the amplitude of internal multiples, including the ones with headwaves sub-
events. We have discussed in detail the pseudo-depth/vertical-time monotonicity condition and
compared it with a similar total traveltime relation. Furthermore, we showed that this restriction
on the sub-events can be too strong and could prevent the prediction of some complex internal
multiples.

This research is an important step forward in better understanding the inverse scattering series and
the internal multiple attenuation algorithm derived from it. The analytic analysis presented, targets
internal multiples which occur in complex multi-dimensional media. Having a better understanding
of the structure and definition of such internal multiples opens up new possibilities of identifying,
predicting and subtracting them from the collected data. The inverse scattering series is presently
the only tool that can achieve these objectives without any knowledge about the actual medium.
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