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irect nonlinear Q-compensation of seismic primaries reflecting
rom a stratified, two-parameter absorptive medium
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ABSTRACT

Q-compensation of seismic primaries that have reflected
from a stratified, absorptive-dispersive medium may be
posed as a direct, nonlinear inverse scattering problem. If the
reference medium is chosen to be nonattenuating and homo-
geneous, an inverse-scattering Q-compensation procedure
may be derived that is highly nonlinear in the data, but which
operates in the absence of prior knowledge of the properties
of the subsurface, including its Q structure. It is arrived at by
�1� performing an order-by-order inversion of a subset of the
Born series, �2� isolating and extracting a component of the
resulting nonlinear inversion equations argued to enact Q-
compensation, and �3� mapping the result back to data space.
Once derived, the procedure can be understood in terms of
nonlinear interaction of the input primary reflection data: the
attenuation of deeper primaries is corrected by an operator
built �automatically� using the angle- and frequency varia-
tions of all shallower primaries. A simple synthetic example
demonstrates the viability of the procedure in the presence of
densely sampled, broadband reflection data.

INTRODUCTION

Certain problems of reflection seismic data processing, which
hen solved using linear algorithms require an accurate input model
f subsurface medium properties, have in recent years proven tracta-
le without that information. The cost of this improved capability is
hat the resulting algorithms are nonlinear in the input data. Surface-
elated multiple elimination-type methods are well-known example,
or which the cost often has proven very worthwhile. �For detailed
xamples and discussion, see Carvalho, 1992; Verschuur et al.,
992; Verschuur and Berkhout, 1997; Weglein et al., 1997; Weglein
t al., 2003; and Weglein and Dragoset, 2005.� The purpose of this
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V13
aper is to examine and assess the extent to which this is also true for
he problem of Q-compensation of primary reflections.

We begin with a particular definition of the problem, a necessary
tep, because the state-of-the-art and precise goals of deterministic
-compensation are difficult to neatly pin down. Recovery from the

esolution-compromising effects of absorption can occur within
any otherwise distinct procedures, such as inversion �e.g., Dahl

nd Ursin, 1992; Ribodetti and Virieux, 1998; Causse et al., 1999;
icks and Pratt, 2001; Dasios et al., 2004�, downward continuation/

maging �e.g., Mittet et al., 1995; Song and Innanen, 2002; Wang,
003; Mittet, 2007�, and deterministic deconvolution �e.g., Bickel
nd Natarajan, 1985; Hargreaves and Calvert, 1991; Wang, 2006;
hang and Ulrych, 2007�. We define Q-compensation as the estima-

ion of the primary reflection data set that would have been measured
n the absence of the absorptive component of wave propagation;
.e., we will pose it such that it is maximally isolated from the other
asks of seismic inversion, as recommended by Hargreaves and Cal-
ert �1991�.

Building on earlier studies �Innanen and Weglein, 2003, 2005; In-
anen and Lira, 2008�, we seek such an algorithm by making use of
nverse scattering, a framework capable of providing procedures
hat trade nonlinearity for subsurface information, for processing
oth multiples �as mentioned above� and primaries �Weglein et al.,
001, 2003; Amundsen et al., 2005; Shaw, 2005; Liu, 2006; Zhang,
006�. The end goal is to define a processing procedure, which �ab-
ent an input Q estimate� returns a Q-compensated, prestack primary
ata set due to waves reflecting from an anelastic medium with arbi-
rary variability in three dimensions. Here we derive and numerical-
y test a candidate algorithm which is appropriate for primaries re-
ecting from a simpler medium, a two-parameter absorptive medi-
m with arbitrary variability in depth. Because we do not take any
teps during the derivation that could not — at least in principle —
lso be taken under conditions of more complex heterogeneity or
odel type, this result may be regarded as a potentially useful way-

oint towards the end goal.

exas, U.S.A.; presently University of Calgary, Department of Geoscience,

.S.A. E-mail: j_eduardo_lira@yahoo.com.br.
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Inverse scattering, absent manipulation, takes as its input mea-
urements of a scattered field, and creates as its output the perturba-
ion that gave rise to the field. This runs counter to the goals of
-compensation as we have defined the procedure, because

� The scattered field in general contains all reflected events, in-
cluding primaries and multiples, whereas �because there exist
reliable methods for multiple removal that are not sensitive to
the elasticity/anelasticity of the subsurface� we will perform in-
verse operations on primaries only.

� Of all the processing steps enacted upon primaries within the
full inverse problem, we wish only one, the correction for ab-
sorptive propagation, to be actually carried out.

� We wish to estimate not the perturbation, a model-like quantity,
but rather a data-like quantity, a set of reflected primaries that
have been Q-compensated.

fter posing the scattering problem to accommodate absorptive me-
ia, most of the strategy in the algorithm development we present is
eared towards managing these three issues. Our route is as follows.

We begin by creating a forward-modeling procedure for absorp-
ive-dispersive primaries based on the Born series. The result is a
onlinear scattering-based series calculation of primaries only in a
ayered absorptive-dispersive medium, which is accurate for large,
xtended perturbations. This is useful for our current purposes, be-
ause such partial series may be inverted, order-by-order, in exactly
he same fashion as the full inverse scattering series, to generate non-
inear direct inversion procedures that take as their input data reflect-
d primaries. We continue by carrying out this inversion upon the ab-
orptive-dispersive primary series above. The resulting nonlinear in-
erse scattering equations, which construct approximations of the
ctual wavespeed and Q perturbations in the medium, are therefore
f a form that addresses item one above.

Next we observe that, because of the direct, analytic nature of
hese inverse equations, it is possible to make informed conjectures
egarding where and how in the mathematics the correction for Q
akes place, and by extension, how to suppress all of the other non-
inear operations. Doing so, we argue, amounts to an extraction and
eparate execution of the Q-compensation part of the full inversion
f primary data; this addresses item two above.

Finally, we point out that given a homogeneous reference medi-
m, the relationship between the linear components of the parameter
erturbations and the data is very simple — essentially a Fourier
ransform. In the second step above, all nonlinear aspects of the pro-
essing �apart from those that we argue are concerned with Q-com-
ensation� have been suppressed. It follows that in all respects apart
rom absorption, the output maintains a simple, linear relationship
ith the data. We map the output trivially back to data space using

his relationship, which amounts to a change of variables and an in-
erse Fourier transform. The final result, which has addressed item
hree above, is deemed to be the Q-compensated data set.

DIRECT NONLINEAR Q-COMPENSATION

We define the reference medium such that the Green’s functions
or a source at xs and a receiver at x at angular frequency � obey the
calar �nonabsorptive� equation

��2�
�2

c0
2 �G0�x�xs;���� �x�xs� . �1�
he solution to equation 1 in 2D for a line source at �xs,zs� and a line
eceiver at �xg,zg�, is expressible analytically as, e.g.,

G0�xg,zg,xs,zs,���
1

2�
�dkx�e

ikx��xg�xs�
eiq��zg�zs�

i2q�
, �2�

here q��� /c0�1�c0
2kx�

2 /�2�1/2, and we take � to indicate ���
� . We

efine the wavefield in the actual medium as satisfying a two-param-
ter �nearly constant Q� absorptive wave equation:

��2�K2	G�x�xs;���� �x�xs�, �3�

here, following, e.g., Aki and Richards �2002�,

K

�

c�x��1�
F���
Q�x� �, �4�

nd

F����
i

2
�

1

�
ln� �

�r
� . �5�

n the inverse developments to follow, F is assumed known, and Q as
ssumed unknown. Treating the quantities in square brackets in
quations 1 and 3 as the operators L0 and L, respectively, �see, e.g.,
eglein et al., 2003�, and defining two dimensionless perturbation

uantities:

��x��1�
c0

2

c2�x�
, � �x��

1

Q�x�
, �6�

e arrive at a perturbation operator �defined as the difference be-
ween L0 and L� appropriate for this Q problem �Innanen and We-
lein, 2007; Innanen et al., 2008�:

L0�L

�2

c0
2 ���x��2F���� �x�	 . �7�

e next restrict the medium such that � and � vary in depth only,
nd use the above quantities to form a partial Born series:

� P�� 1�� 2�� 3 . . . , �8�

hose terms are judged, via arguments based on relative scattering
eometry, to construct reflected primaries that have been distorted
y Q. This is a two-parameter extension of the scalar acoustic con-
truction discussed by Innanen �2008�.At first order, for instance, af-
er Fourier transforming over xs, we have

� 1�ks,����dx��dz�G0�xg,zg,x�,z�,��

�
�2

c0
2 	 �z��G0�x�,z�,ks,zs,��

��
1

4 cos2 

�dz�ei2qsz�	 �z��,

here 	 �z����z��2F���� �z�, ks is the Fourier conjugate of xs,

s�� /c0�1�c0
2ks

2 /�2�1/2, and 
 �sin�1 ksc0

� , and for convenience,
e have set x �z �z �0.At second order, we have
g g s
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� 2�ks,����
��i2qs�
8 cos4 


�dz�ei2qsz�	 �z����
0

z�
dz�	 �z��� .

ontinuing with this program of retention and rejection at all orders,
he details of which are included in Appendix A, we produce the se-
ies � P. This forward-modeling expression can be evaluated with
ny source- and receiver depth by reinstating zg, zs�0. With zg�zs

0, we next identify � P with the primary data D arising from a re-
ection experiment:

D�ks,���
�1

4 cos2 

�dz�ei2qsz�	 �z��

� �
n�0

�
1

n!� �iqs

cos2 

�

0

z�
dz�	 �z���n

. �9�

omputing and summing a large number of terms in equation 9 gen-
rates an approximation of attenuated primary data appropriate for
arge and extended perturbations 	 .

We next form an inverse series for the perturbations � and � , in
hich the nth term is defined to be nth order in the primary data mod-

led above. Let this series be 	 �	 1�	 2� . . ., or, explicitly,

���z��2F���� �z�	� ��1�z��2F���� 1�z�	� ��2�z�

�2F���� 2�z�	� ¯ .

his is substituted into equation 9, and like orders are equated �In-
anen, 2008�, similarly to Carvalho’s derivation of the full inverse
cattering series �Carvalho, 1992; Weglein et al., 1997�. The inverse
olution is generated by sequentially solving for and summing con-
ributions to the perturbation over many orders. At first order, we
ave

D�ks,���
�1

4 cos2 

�dz�ei2qsz���1�z���2F���� 1�z��	 .

�10�

nnanen and Weglein �2007� describe in detail how this equation can
e used to separately determine �1 and � 1 as functions of pseu-
odepth. The process of linear separation requires the data to be
ombined across sets of incidence angles � � �
 1,
 2, . . . �, and can
lso involve a weighting scheme W, hence in general, the outputs
ust be considered functions of these variables also:

�1��1�z�� ,W�,

� 1�� 1�z�� ,W� . �11�

uantities �1 and � 1 have qualitative interpretations that depend on
he size and extent of the actual perturbations � and � . If the actual
erturbations are small and transient, and some scheme of averaging
e.g., Clayton and Stolt, 1981� is invoked to manage the overdeter-
inedness of the problem, these quantities can be considered model-

ike, and if interpreted as inverse Born-approximate model-parame-
er estimates, represent an endpoint of the procedure. Alternatively,
f the perturbation is large and extended, which we assume is the case
n this paper, quantities �1 and � 1 bear scant resemblance to the actu-
l perturbations � and � . In fact, they are data-like: they depend on
xperimental variables, and they have amplitudes and discontinui-
ies that are only distantly and nonlinearly related to those of � and
, while being closely and linearly related to those of the reflected
rimary events. For this reason, in this paper we refer to the �1, � 1

uantities as being essentially linearly transformed and weighted
ersions of the input primary data.

Continuing next with the nonlinear components of the inversion
rocedure, at second order, we find a relationship between �1, � 1

nd �2, � 2:

1

4 cos2 

�dz�ei2qsz���2�z��� ,W��2F���� 2�z��� ,W�	

��
��i2qs�
8 cos4 


�dz�ei2qsz���1�z��� ,W�

�2F���� 1�z��� ,W�	

� ��
0

z�

dz���1�z��� ,W��2F���� 1�z��� ,W�	� .

his continues at third order, wherein a relationship between �1, � 1

nd �3, � 3 is determined. By this time, a pattern is discernable in the
athematics. Assuming the continuation of this pattern, we sum the

quations over all orders. Defining

�P�z�� ,W�
 �
n�0

�

�n�1�z�� ,W�

nd

� P�z�� ,W�
 �
n�0

�

� n�1�z�� ,W�,

here results a closed-form set of nonlinear equations

�P�kz,
 �� ,W��2F�kz,
 �� P�kz,
 �� ,W�

��dz�e�ikz�z��
1

2 cos2 

�0

z�dz���1�z��� ,W��2F�kz,
 �� 1�z��� ,W�	�
� ��1�z��� ,W��2F�kz,
 �� 1�z��� ,W�	, �12�

here kz 
�2qs is the Fourier conjugate of depth z, and F has been
ritten as a function of the reference plane-wave variables 
 and kz

ather than �. These equations constitute a direct inversion of the
rimary data, exact to within the accuracy of the primary approxima-
ion series in equation 9, and appropriate for a layered, two-parame-
er, absorptive-dispersive medium. Further details of the derivation
f equation 12 are included inAppendix B. The quantities �P and � P

re the nonlinearly determined profiles associated with c�z� and
�z�; each can, in principle, be individually determined via equation
2 if desired, which itself might be of independent interest. This is
hown inAppendix C.

However, our current goal is to carry out a single inverse task, that
f compensating for Q, and to ultimately recover a data set, not a set
f parameter perturbations. To accomplish this, we examine equa-
ion 12 more closely. We note that the outputs �P and � P would be re-
ated linearly to the inputs �1 and � 1, except that �1 and � 1 also ap-
ear in the argument of the exponential function in the integrand.All
f the nonlinearity of the inversion resides here. Then, we make the
ollowing statements. The principal role of �1 in the argument of the
xponential is to nonlinearly accomplish aspects of the inversion as-
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ociated with wavespeed deviations between the reference and actu-
l media �e.g., to correctly locate linearly misplaced reflectors at
epth�.And, the principal role of � 1 in the argument is to accomplish
spects of the inversion associated with deviations between refer-
nce and actual Q values — meaning, predominantly, compensa-
ion. The arguments for these statements are twofold. First, equation
2 is a two-parameter version of a scheme derived elsewhere for a
ne-parameter acoustic medium, i.e., involving � only �Innanen,
008�. Those one-parameter equations include an exponential func-
ion with an argument identical to the first ��1� term in the exponen-
ial of equation 12. Because the � 1 component of the exponential
unction appears only when absorptive inverse issues appear, we as-
ribe to it the role of managing these issues. Second, this component
f the exponential function �by virtue of the complex nature of the
oefficient F� is the only part of the function that grows exponential-
y, and therefore alone has the numerical capability to perform the
ill-conditioned� boosting of high frequencies characteristic of
-compensation. We will now permit these two arguments to lead us

o a proposed form of a Q-compensation algorithm, and discuss the
ossibility that they are only approximately true �and the conse-
uences of this� in the discussion section of this paper.

We set �1 in the argument of the exponential to zero, and suggest
hat as a consequence, �1� the �now-altered� outputs �P and � P un-
ergo nonlinear correction for the attenuation and dispersion associ-
ted with propagation in an absorptive medium, but �2� they undergo
inear treatment in all other respects.

Calling the partially treated outputs �Q and � Q, we have instead

�Q�kz,
 �� ,W��2F�kz,
 �� Q�kz,
 �� ,W�

��dz�e�ikz�z��
F�kz,
 �

cos2 

�0

z�dz�� 1�z��� ,W��
� ��1�z��� ,W��2F�kz,
 �� 1�z��� ,W�	 . �13�

y assumption, the form of these equations ensures that only
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igure 1. Two-interface absorptive-dispersive model.
-compensation �and not, say, any repositioning of reflectors away
rom their linearly-determined depths� takes place as the data
through �1 and � 1� are processed.

Finally, we will argue for an approach to make the output of this
rocessing a data-like quantity. Equation 13 follows the basic tem-
late

A�� eBC . �14�

e proceed by comparing this template, and the associated elements
f equation 13, to equation 10. Evidently if � 1 in the exponential
unction were set to zero, we would exactly recover the data by car-
ying out the integral in equation 13. If our previous suggestion is
orrect, i.e., that � 1�0 in the exponential is responsible solely for
-compensation, then it would appear that the left-hand side is al-

eady a data-like quantity, different only from the input data set in
hat its amplitudes have been corrected for absorption and disper-
ion.

Hence, after constructing the input C and the operator B by linear-
y transforming and weighting the data, and computing the right-
and side of equation 13, we use the linear relationship defined in
quation 10 to map not �1 and � 1, but rather the left-hand side of
quation 13, back to the �ks,�� domain, through, in essence, a change
f variables. Our suggestion is that this mapped quantity is a
-compensated data set in the Fourier domain. That is, we define

Dcomp�kz,
 �� ,W�
�
1

4 cos2 

��Q�kz,
 �� ,W�

�2F�kz,
 �� Q�kz,
 �� ,W�	, �15�

here � �� �
 ,kz� and W�W�
 ,kz�. Changing variables back to
s, � and inverse Fourier transforming, the Q-compensated data set
s estimated as

Dcomp�xs,t��� 1

2�
�2��dksd�eiksxsei�tDcomp�ks,��� ,W� .

�16�

SYNTHETIC EXAMPLE

To exemplify this procedure, we construct a simple synthetic pri-
ary data set corresponding to a suite of plane sources and line re-

eivers over the two-interface absorptive-dispersive model in Figure
. The resulting primary data �Figure 2a�, generated analytically in
he frequency/wavenumber domain and numerically inverse Fourier
ransformed to produce the plots, are used as input to the linear in-
erse scattering equations, which involves a transformation and
eighting thereof. Multiples are not modeled; we assume multiples
ave been removed as a preprocessing step. Then these data-like
uantities are used to construct both the operator eB and the operand

as in equation 14. The Q-compensated data set �Figure 2b� is
ormed by transforming the result, A in equation 14, to the �ks,�� do-
ain, and then performing straightforward inverse Fourier trans-

orms. The Q-compensated results are compared in detail with the
nput in Figure 3 for three offsets, �a� 0 m, �b� 170 m, and �c� 335 m.
or illustration purposes, after all processing is complete, we con-
olve the input and output with a Ricker wavelet, which is a cosmetic
tep; the procedure assumes the source wavelet has been decon-
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olved from the input data. The dispersion correction, and the simi-
arity of the output to the idealized, nonattenuated test trace, indicate
hat the algorithm is largely achieving its stated goal. We note a slight
ndercorrection at large angle.

In equations 13 and 15, there are two sets of angles: an input set
� � used to separate �1 and � 1, and to construct the correction oper-
tor, and an output angle 
 , which is varied to recover the full, cor-
ected prestack data set. Neither inverse scattering theory nor our
anipulations of it specifically impose any relationship between the

wo. In the full inverse-scattering parameter-estimation problem
Appendix C�, this freedom might be exploited for purposes of regu-
arization, or to incorporate prior information. However, for the
roblem at hand, we have used input angles � which “cluster”
round the output angle 
 . That is, we have decided to correct partic-
lar angle and wavenumber components of the data using the data at
hose same components and their immediate neighbors. In the exam-
le above, the input set � � �
 ,
 ��
 � �where �
 is the smallest
rovided by the synthetic data after the change of variables� was
sed for each 
 of corrected data. The angle pairs were weighted
qually �W�1�; little of the additional freedom W provides to pre-
ondition the data has been explored as yet.

Noisy examples have not been included at this proof-of-concept
tage; we have found our approach to share the basic response to
oise of all standard Q-compensation schemes. We point out that �as
s often done in standard Q-compensation� with a straightforward al-
eration of the function F as it appears in the argument of the expo-
ential in equation 12, this algorithm may be transformed into a “dis-
ersion compensation” procedure, which is well conditioned and
argely unaffected by noise.
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igure 2. �a� Synthetic prestack input primary data from the model in
igure 1 �decimated for purposes of display�, and �b� Q- compensat-
d output data �likewise decimated�. The amplitude and phase signa-
ure of the shallower primary is caused by the strong absorptive re-
ection coefficient associated with the top interface.
DISCUSSION

We choose as the definition of Q-compensation, the estimation of
n output data set that is identical to the input, except that all ab-
orptive propagation effects are absent. We present a candidate
cheme, based on nonlinear inverse scattering, whose output, we ar-
ue, fits this definition. In applying it, a correction operator is auto-
atically constructed from the data themselves, with no requirement

or an input estimate of subsurface medium parameters, including its
structure. Synthetic examples illustrate the scheme in action, and

rovide proof-of-concept-level evidence of the validity of the ap-
roach.

The behavior of this algorithm can be interpreted in terms of data
vents interacting nonlinearly. Consider again the schematic form

A�� eBC, �17�

here

A��Q�kz,
 �� ,W��2F�kz,
 �� Q�kz,
 �� ,W�,

B��ikz�z��
F�kz,
 �
cos2 


�
0

z�

dz�� 1�z��� ,W��, �18�

nd

C��1�z��� ,W��2F�kz,
 �� 1�z��� ,W�,

nd recall that �1 and � 1 are effectively linearly transformed,
eighted forms of the data in the pseudodepth domain �i.e., vertical

wo-way traveltime scaled with the constant reference wavespeed
0�. The quantity C is being operated on by �eB to produce A. One fre-
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igure 3. Detail of Q-compensation for three offsets of prestack
ata: �a� 0-m offset, �b� 170-m offset, and �c� 335-m offset. The left-
and trace in each panel is the input, the middle trace is the output,
nd the right-hand trace, for benchmarking, is an idealized trace con-
tructed without Q, and normalized to the maximum value of the
utput traces. Because the benchmark traces involve no absorption,
heir shallow primaries differ from their counterparts in that they do
ot have the amplitude and phase signature associated with the ab-
orptive reflection coefficient. The relevant events for comparison
re the deeper primaries.
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uency-wavenumber component of the output data �� and ks, via kz

nd 
 � A, comes from contributions from the input data C at all
seudodepths. For each contributing depth, the C component is
oosted by eB, which from equation 18 can be seen to be the cumula-
ive influence of the values of � 1 that are shallower than the contrib-
ting depth. The quantities � 1 and B are constructed from the angle
nd frequency dependence of the primaries in the input data. There-
ore, this Q-compensation operator, acting on a given primary, can
e understood to have been constructed from the cumulative angle
nd frequency variations �i.e., the generalized AVO/AVA behavior�
f all shallower primaries.

We have made two major assumptions in deriving the scheme:

� By suppressing certain components of the full nonlinear inver-
sion equations derived from inverse scattering, we isolate the
Q-compensation activity inherent to the inversion.

� With trivial linear transformation and changes of variable, the
output of this isolated inverse step can be treated as an equiva-
lent data set, different only from the input in the lack of absorp-
tion in the primary events.

he soundness of these assumptions is likely best argued for with
uccess in testing, some of which we have provided with our proof-
f-concept example. But, we might already anticipate that slightly
ore sophisticated choices ultimately could lead to more accurate

esults, in particular with respect to the first assumption above. Part
f the argument for isolating and extracting the Q-compensation
omponent of the inverse equations lay in comparing the two-pa-
ameter absorptive system of inverse equations with its one-parame-
er acoustic counterpart. But the two-parameter linear inverse prob-
em, by which we determine the correction operator, is subject to
henomena not shared by one-parameter problems, for instance,
eakage, or the tendency for one parameter’s actual variations to be
ccounted for with variations in multiple linearly estimated parame-
ers �discussed for the absorptive problem by Innanen and Weglein,
007�. Continued study of these issues may lead to a more sophisti-
ated program for isolation of the absorption compensation compo-
ent of the nonlinear equations.

CONCLUSIONS

Direct, nonlinear methods bring a greatly reduced requirement for
rior information as compared to their linear counterparts. But they
emand broadband, densely sampled, wide-aperture, deghosted, de-
onvolved �of the source wavelet�, and demultipled data in return.
ata fidelity, bandwidth, and coverage are the first requirements in

onsidering methods such as this one. The data set used in the syn-
hetic example is broadband and includes low �
1 Hz� frequencies
although not close to zero frequency — the nearly constant Q model
e are using in fact diverges at and near that limit�. The requirement

or this kind of data is typical of nonlinear, wave-theoretic inverse
ethods. The best outcome will result from actual acquisition of
aximally low-frequency data, of course; however, various as-

umptions �for instance that of a piecewise-constant overburden� ad-
itionally can be made, removing the sensitivity to cutoff of low fre-
uencies.

Two other issues are at the forefront when it comes to contemplat-
ng field data application of an algorithm of this kind. The first has to
o with the way in which the data are interrogated for information in
onstructing the operator, which is closely related to linear inver-
ion. Briefly, it is the frequency- and angle dependence of the trans-
ission-altered reflection coefficients of the primaries �as we have
tated above, loosely a brand of AVO/AVA behavior specific to ab-
orptive-dispersive media� that drives the construction of the opera-
or. That this behavior exists is a straightforward prediction of wave
heory. However, it may appear as subtle variations in field data. De-
ecting it is critical to the procedure.

The second is a consequence of the algorithm’s interest in ampli-
ude variations in the data. As it stands, the algorithm considers data
o be due to a layered, two-parameter �anacoustic�, absorptive-dis-
ersive medium. When that is true, as in our synthetic examples, the
esults are of high quality. When that is �at best� only approximately
rue, as in a seismic field data application, the results will presum-
bly suffer. The basic framework and arguments underlying this can-
idate direct nonlinear Q-compensation procedure have been pur-
osefully chosen never to fundamentally restrict the results to either
nacoustic or layered �1D� media. However, some specific aspects
f the procedure, for instance the availability of closed forms, are a
onsequence of these simplifications. Two clear next steps are to al-
er the construction of the corrective operator to be in accordance
ith a more suitable anelastic and heterogeneous medium model,

nd to reformulate the algorithm to allow attenuating reference me-
ia, although we anticipate a greater degree of algorithm complexity
s a result.
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APPENDIX A

PRIMARIES IN A LAYERED
ABSORPTIVE MEDIUM

In this appendix, we take the scattering quantities defined in the
ody of the paper, and use them to construct the first three terms in
he absorptive-dispersive Born series.Arguments from relative scat-
ering geometry are used to extract a subset of terms from this series,
hich are judged to construct only the absorptive-dispersive prima-

ies. Patterns in these terms are used to deduce a full nonlinear ab-
orptive-dispersive primary approximation.

We proceed assuming a nonabsorptive reference medium. For
aves at oblique incidence �i.e., a nonzero angle 
 � above a layered

bsorptive medium, with reflected waves detected at a lateral receiv-
r location xg, the first-order term of the Born series is

� 1�xg,zg,ks,zs,����dx��dz�G0�xg,zg,x�,z�,��

� k2	 �z��G0�x�,z�,ks,zs,��

��
1

4

k2

qs
2e�iqs�zg�zs�

� eiksxg�dz�ei2qsz�	 �z��, �A-1�

here 	 �z����z��2F���� �z�, and k�� /co. This term con-
tructs only primaries, and as such is kept in full as the first-order
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erm in the primary series also. For convenience, we set xg�zg�zs

0 and rename the linear term � 1P:

� 1P�ks,����
1

4 cos2 

�dz�ei2qsz�	 �z�� . �A-2�

he second-order term of the Born series also is needed in its entirety
n the primary approximation. We have, again with xg�zg�zs�0,

� 2P�ks,����
�� i2qs�
16 cos4 


�dz�eiqsz�	 �z��

��dz�eiqs�z��z��	 �z��eiqsz�

��
1

8 cos4 

��i2qs��dz�ei2qsz�	 �z��

� ��
0

z�
dz�	 �z��� . �A-3�

t third order, we begin with the full Born series term

� 3�ks,����
��i2qs�2

64 cos6 

�dz�eiqsz�	 �z��

��dz�eiqs�z��z��	 �z��

��dz�eiqs�z��z��	 �z��eiqsz�, �A-4�

ut reject the component for which the “middle” scattering location
� is shallower than both z� and z�, which begins the construction of
ultiples �Weglein et al., 1997�. This means rejecting one of the four

omponents of equation A-4 that arise when the absolute value bars
re evaluated case-wise. Retaining the other three components, we
ave

� 3P�ks,����
��i2qs�2

64 cos6 

�dz�ei2qsz�	 �z��

��
0

z�
dz�	 �z���

0

z�
dz�	 �z��

��
��i2qs�2

32 cos6 

�dz�ei2qsz�	 �z����

0

z�
dz�	 �z���2

,

�A-5�

here again for convenience, xg�zg�zs�0 �for cases involving
onzero source and receiver depths, or several xg values, the simple
xponential factors outside the integrals may be easily reinstated�.
he pattern visible from orders one to three persists at higher order.
ollecting all terms that fit the same pattern creates an approxima-

ion of primaries appropriate for large, extended absorptive-disper-
ive perturbations. The approximation is a straightforward extension
f the scalar �acoustic� approximation discussed by Innanen �2008�.
alling the approximation � P, we have

P�ks,��� �
n�0

�

� nP�ks,��

��
1

4 cos2 

�dz�ei2qsz�	 �z��

� �
n�0

�
1

n!��
iqs

cos2 

�

0

z�
dz�	 �z���n

. �A-6�

his may be summed to closed form, as was done in direct nonlinear
maging by Shaw et al. �2004�:

P�ks,����
1

4 cos2 

�dz�

� ei2qs�z���1/2�cos�2
 �0
z�dz�	 �z��		 �z�� . �A-7�

n this paper, the summed form is of less significance, because our
im will be to perform an order-by-order inversion.As the key result
f this appendix, then, we have the series in equation A-6, expressed
xplicitly in terms of the wavespeed and Q perturbations � and � :

� P�ks,�����dz�
ei2qsz�

4 cos2 

���z���2F���� �z��	

� �
n�0

�
1

n!� � iqs

cos2 

�

0

z�
dz����z��

�2F���� �z��	�n

. �A-8�

APPENDIX B

DIRECT NONLINEAR ABSORPTIVE INVERSION

In this appendix, we perform a direct, order-by-order inversion of
he absorptive-dispersive primary approximation derived in Appen-
ix A. We assume that the data �1� contain only primaries, �2� have
een deconvolved of the source wavelet, and �3� have been de-
hosted. These assumptions are typical for direct nonlinear primary
lgorithms based on the inverse scattering series �Weglein et al.,
003�. If this is the case, and if the perturbations � and � are of such
size and extent that equation A-8 is accurate, we may write

D�ks,����
1

4 cos2 

�dz�ei2qsz����z���2F���� �z��	

�
��i2qs�
8 cos4 


�dz�ei2qsz����z���2F���� �z��	

� ��
0

z�

dz����z���2F���� �z��	�
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�
��i2qs�2

32 cos6 

�dz�ei2qsz����z���2F���� �z��	

���
0

z�

dz����z���2F���� �z��	�
2

� ¯ ,

�B-1�

here 
 and qs are particular arrangements of experimental vari-
bles ks and �:


 �sin�1 ksc0

�
,

qs�
�

c0

�1�
ks

2c0
2

�2 . �B-2�

he aim in the remainder of this appendix will be to directly invert
quation B-1.

n inverse series for absorptive primaries

We form an inverse series for the perturbations � and � , in which
he nth term is defined to be nth order in the primary data modeled in
quation A-8. Let this series be

���z��2F���� �z�	� ��1�z��2F���� 1�z�	

� ��2�z��2F���� 2�z�	� ¯ .

�B-3�

his is substituted into equation B-1, and like orders are equated �In-
anen, 2008� in a manner similar to Carvalho’s derivation of the full
nverse scattering series �Carvalho, 1992�.At first order, we have

D�ks,����
1

4 cos2 

�dz�ei2qsz���1�z���2F���� 1�z��	 .

�B-4�

t second order, we have

1

4 cos2 

�dz�ei2qsz���2�z���2F���� 2�z��	

��
��i2qs�
8 cos4 


�dz�ei2qsz���1�z���2F���� 1�z��	

� ��
0

z�

dz���1�z���2F���� 1�z��	� . �B-5�

t third order, we have

1

4 cos2 

�dz�ei2qsz���3�z���2F���� 3�z��	

��
��i2qs� �dz�ei2qsz��� �z���2F���� �z��	

8 cos4 


1 1
� ��
0

z�

dz���2�z���2F���� 2�z��	�
�

��i2qs�
8 cos4 


�dz�ei2qsz���2�z���2F���� 2�z��	

� ��
0

z�

dz���1�z���2F���� 1�z��	�
�

��i2qs�2

32 cos6 

�dz�ei2qsz���1�z���2F���� 1�z��	

� ��
0

z�

dz���1�z���2F���� 1�z��	�
2

. �B-6�

his continues. Just as in the full inverse scattering series, the se-
uential direct solution for perturbation components at each order,
ollowed by their summation, produces the desired solution. Our ap-
roach will be to carry out the inversion explicitly on the first three
rders only, thereafter deducing a pattern that holds over all orders.

irst order

The construction of the first-order components of the absorptive-
ispersive perturbations �1 and � 1 from the data �i.e., the solution of
quation B-4�, and the resulting issues of conditioning, detectability,
nd relationships with the actual medium perturbations, have been
escribed in detail by Innanen and Weglein �2007�, and will not be
eviewed extensively here. Briefly put, two profiles �1�z �� ,W� and

1�z �� ,W�, over layered absorptive media, may be constructed giv-
n a single shot record or receiver record of reflected primary data
nd the acoustic reference wavespeed c0, which is assumed to agree
ith the actual medium at and above the sources and receivers. Be-

ause two or more plane-wave incidence angles are required to sepa-
ately construct the profiles, but many varied sets of these angles
ay do so, we define the quantity � � �
 1,
 2, . . . � to represent the

articular set of angles used. In addition, because the freedom also
xists to weight the data at each angle, we define W to represent the
articular weighting scheme �if any� chosen. The profiles are then
unctions of these quantities also. Summarizing, we establish a map-
ing between D�ks,�� and �1�z �� ,W�, � 1�z �� ,W�. The mapping is
imple, generally a linear combination of Fourier components of the
ata.

econd order

The second-order term in equation B-5 is close to a form suitable
or the direct nonlinear inverse equations. Because the relationships
n equations B-4–B-6 hold for all ks and �, by comparing integrands
n equation B-5, we see that instances of �2�2F� 2 occurring under
ourier integrals may be replaced by
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2�z��2F���� 2�z���
��i2qs�
2 cos2 


��1�z��2F���� 1�z�	

� ��
0

z

dz���1�z���2F���� 1�z��	� .

�B-7�

his will be useful for manipulations at third order. We further
hange variables to 
 and kz��2qs:

�dz�e�ikzz���2�z��� ,W��2F�kz,
 �� 2�z��� ,W�	

�
�ikz

2 cos2 

�dz�e�ikzz���1�z��� ,W�

�2F�kz,
 �� 1�z��� ,W�	

���
0

z�

dz���1�z��� ,W��2F�kz,
 �� 1�z��� ,W�	�,

�B-8�

here we have employed the specific forms for �1 and � 1 derived
bove, including the set of angles � and weights W. Because the
rst-order input to the second-order term has these dependences, so
lso must the second-order perturbations �2��2�z �� ,W� and � 2

� 2�z �� ,W�.

hird order

The third-order problem requires a greater level of manipulation.
sing equation B-7 and the relationship

�
��

z

f�z���
��

z�

f�z��dz�dz��
1

2��
��

z

f�z��dz��
2

, �B-9�

he first two terms on the right-hand side of equation B-6 are seen to
e of the same form as the third, albeit with different constant fac-
ors.After adding these three terms together, equation B-6 becomes

1

4 cos2 

�dz�ei2qs�ks,��z���3�z���2F���� 3�z��	

�
��i2qs�2

16 cos6 

�dz�ei2qsz���1�z���2F���� 1�z��	

���
0

z�

dz���1�z���2F���� 1�z��	�
2

. �B-10�

implifying, and changing variables to k and 
 , we have
z
�dz�e�ikzz���3�z��� ,W��2F�kz,
 �� 3�z��� ,W�	

�
��ikz�2

4 cos4 

�dz�e�ikzz���1�z��� ,W�

�2F�kz,
 �� 1�z��� ,W�	��
0

z�

dz���1�z��� ,W�

�2F�kz,
 �� 1�z��� ,W�	�
2

. �B-11�

gain, because at first and second orders the outputs are functions of
he set of angles and weights used in the first-order procedure,
o must the third-order terms, i.e., �3��3�z� �� ,W� and � 3�

3�z� �� ,W�.

irect nonlinear absorptive inversion equations

A pattern is discernible in equations B-8 and B-11, whose form,
ike in the forward case, persists at higher order. In fact, �n�1 and

n�1 are related to �1 and � 1 via

�dz�e�ikzz���n�1�z��� ,W��2F�kz,
 �� n�1�z��� ,W�	

�
1

n!
� �ikz

2 cos2 

�n�dz�e�ikzz���1�z��� ,W�

�2F�kz,
 �� 1�z��� ,W�	��
0

z�

dz���1�z��� ,W�

�2F�kz,
 �� 1�z��� ,W�	�
n

. �B-12�

efining

�P�z�� ,W�
 �
n�0

�

�n�1�z��� ,W�,

� P�z�� ,W�
 �
n�0

�

� n�1�z��� ,W�, �B-13�

reating an instance of equation B-12 for every value of n�0, and
umming, we obtain

�P�kz,
 �� ,W��2F�kz,
 �� P�kz,
 �� ,W�

��dz�e�ikz�z��
1

2 cos2 

�0

z�dz���1�z��� ,W��2F�kz,
 �� 1�z��� ,W�	�
� ��1�z��� ,W��2F�kz,
 �� 1�z��� ,W�	, �B-14�

aving recognized the integral on the left-hand side as a Fourier
ransform.



s
c
v
g
l

w

�

W
w
a
m
w
�

a
r
u
t
t
l
t

C

w

a

A
a
t
�

a
n

F
f

T
t
s

A

A

B

C

C

C

D

D

H

H

I

I

I

I

—

—

L

V22 Innanen and Lira

D
ow

nl
oa

de
d 

10
/2

7/
13

 to
 9

9.
10

.2
39

.7
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

APPENDIX C

ABSORPTIVE MODEL CONSTRUCTION
VIA NONLINEAR DIRECT INVERSION

The aims of inverse scattering procedures vary from the con-
truction of spatial distributions of perturbation quantities to the
onstruction of processed data sets. The direct nonlinear primary in-
ersion quantities derived in Appendix B lend themselves to either
oal. In this appendix, we will address the former of these aims for
ayered, two-parameter absorptive-dispersive media.

We begin by rewriting equation B-14

�P�kz�� ,W��2F�kz,
 �� P�kz�� ,W����kz,
 �� ,W�,

�C-1�

here we define

�kz,
 �� ,W�


�dz�e�ikz�z��
1

2 cos2 

�0

z�dz���1�z��� ,W��2F�kz,
 �� 1�z��� ,W�	�
� ��1�z��� ,W��2F�kz,
 �� 1�z��� ,W�	 . �C-2�

e wish to separately calculate �P and � P at each relevant depth
avenumber kz; given at least two angles per depth wavenumber kz,

nd if desired, an additional weighting scheme, this is an overdeter-
ined problem. Some notational care will be required, because as
e see in equations C-1 and C-2 earlier sets of angles and weights,
� �
 1,
 2, . . . � and W are already in play.
We proceed by defining a new set of angles �̃ � � 
̃ 1,
̃ 2, . . . ���

nd weights W̃�W. There is no formal requirement that �̃ and W̃ be
elated to � and W, although intuition and common sense might lead
s in one direction or another. During the numerical application of
he direct Q-compensation algorithms in this paper, we have argued
owards a relationship for that specific situation, but here we will
eave them distinct and unrelated. The solutions in this appendix
herefore are considered to be functions of both.

Given the N � 2 angles �̃ , the N resulting instances of equation
-1 can be written in matrix form:

F�kz,�̃ ���P�kz�� ,W�
� P�kz�� ,W� ����kz,�̃ �� ,W�, �C-3�

here

F�kz,�̃ ���
1 �2F�kz,
̃ 1�

1 �2F�kz,
̃ 2�
] ]

1 �2F�kz,
̃ N�
� �C-4�

nd

��kz,�̃ �� ,W���
��kz,
̃ 1�� ,W�

��kz,
̃ 2�� ,W�
]

��k ,
̃ �� ,W�
� . �C-5�
z N
new weighting scheme W̃ can be brought in via whatever choices
re made in inverting F�kz,�̃ �. That is, F�1�F�1�kz,�̃ ,W̃�. Now
his means that the outputs �P and � P are dependent on kz, but also on
1� the weights and angles, � and W, used to create the linear output
nd on �2� the weights and angles, �̃ and W̃, used above to create the
onlinear output. That is,

��P�kz��̃ ,W̃,� ,W�

� P�kz��̃ ,W̃,� ,W�
��F�1�kz,�̃ ,W̃���kz,�̃ �� ,W� .

�C-6�

inally, profiles may be generated through inverse Fourier trans-
orms:

�P�z��̃ ,W̃,� ,W��
1

2�
�dkze

ikzz�P�kz��̃ ,W̃,� ,W�,

� P�z��̃ ,W̃,� ,W��
1

2�
�dkze

ikzz� P�kz��̃ ,W̃,� ,W� .

�C-7�

he freedom to twice choose both the subsets of the data we use and
heir weights, during the calculation of the profiles in equation C-7,
uggests a large range of types of inverse result is possible.
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