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Direct nonlinear Q-compensation of seismic primaries reflecting
from a stratified, two-parameter absorptive medium
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ABSTRACT

Q-compensation of seismic primaries that have reflected
from a stratified, absorptive-dispersive medium may be
posed as a direct, nonlinear inverse scattering problem. If the
reference medium is chosen to be nonattenuating and homo-
geneous, an inverse-scattering Q-compensation procedure
may be derived that is highly nonlinear in the data, but which
operates in the absence of prior knowledge of the properties
of the subsurface, including its Q structure. It is arrived at by
(1) performing an order-by-order inversion of a subset of the
Born series, (2) isolating and extracting a component of the
resulting nonlinear inversion equations argued to enact Q-
compensation, and (3) mapping the result back to data space.
Once derived, the procedure can be understood in terms of
nonlinear interaction of the input primary reflection data: the
attenuation of deeper primaries is corrected by an operator
built (automatically) using the angle- and frequency varia-
tions of all shallower primaries. A simple synthetic example
demonstrates the viability of the procedure in the presence of
densely sampled, broadband reflection data.

INTRODUCTION

Certain problems of reflection seismic data processing, which
when solved using linear algorithms require an accurate input model
of subsurface medium properties, have in recent years proven tracta-
ble without that information. The cost of this improved capability is
that the resulting algorithms are nonlinear in the input data. Surface-
related multiple elimination-type methods are well-known example,
for which the cost often has proven very worthwhile. (For detailed
examples and discussion, see Carvalho, 1992; Verschuur et al.,
1992; Verschuur and Berkhout, 1997; Weglein et al., 1997; Weglein
et al., 2003; and Weglein and Dragoset, 2005.) The purpose of this
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paper is to examine and assess the extent to which this is also true for
the problem of Q-compensation of primary reflections.

We begin with a particular definition of the problem, a necessary
step, because the state-of-the-art and precise goals of deterministic
Q-compensation are difficult to neatly pin down. Recovery from the
resolution-compromising effects of absorption can occur within
many otherwise distinct procedures, such as inversion (e.g., Dahl
and Ursin, 1992; Ribodetti and Virieux, 1998; Causse et al., 1999;
Hicks and Pratt, 2001; Dasios et al., 2004), downward continuation/
imaging (e.g., Mittet et al., 1995; Song and Innanen, 2002; Wang,
2003; Mittet, 2007), and deterministic deconvolution (e.g., Bickel
and Natarajan, 1985; Hargreaves and Calvert, 1991; Wang, 2006;
Zhang and Ulrych, 2007). We define Q-compensation as the estima-
tion of the primary reflection data set that would have been measured
in the absence of the absorptive component of wave propagation;
i.e., we will pose it such that it is maximally isolated from the other
tasks of seismic inversion, as recommended by Hargreaves and Cal-
vert (1991).

Building on earlier studies (Innanen and Weglein, 2003, 2005; In-
nanen and Lira, 2008), we seek such an algorithm by making use of
inverse scattering, a framework capable of providing procedures
that trade nonlinearity for subsurface information, for processing
both multiples (as mentioned above) and primaries (Weglein et al.,
2001, 2003; Amundsen et al., 2005; Shaw, 2005; Liu, 2006; Zhang,
2006). The end goal is to define a processing procedure, which (ab-
sent an input Q estimate) returns a Q-compensated, prestack primary
data set due to waves reflecting from an anelastic medium with arbi-
trary variability in three dimensions. Here we derive and numerical-
ly test a candidate algorithm which is appropriate for primaries re-
flecting from a simpler medium, a two-parameter absorptive medi-
um with arbitrary variability in depth. Because we do not take any
steps during the derivation that could not — at least in principle —
also be taken under conditions of more complex heterogeneity or
model type, this result may be regarded as a potentially useful way-
point towards the end goal.
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Inverse scattering, absent manipulation, takes as its input mea-
surements of a scattered field, and creates as its output the perturba-
tion that gave rise to the field. This runs counter to the goals of
Q-compensation as we have defined the procedure, because

1) The scattered field in general contains all reflected events, in-
cluding primaries and multiples, whereas (because there exist
reliable methods for multiple removal that are not sensitive to
the elasticity/anelasticity of the subsurface) we will perform in-
verse operations on primaries only.

2)  Of all the processing steps enacted upon primaries within the
full inverse problem, we wish only one, the correction for ab-
sorptive propagation, to be actually carried out.

3) We wish to estimate not the perturbation, a model-like quantity,
but rather a data-like quantity, a set of reflected primaries that
have been Q-compensated.

After posing the scattering problem to accommodate absorptive me-
dia, most of the strategy in the algorithm development we present is
geared towards managing these three issues. Our route is as follows.

We begin by creating a forward-modeling procedure for absorp-
tive-dispersive primaries based on the Born series. The result is a
nonlinear scattering-based series calculation of primaries only in a
layered absorptive-dispersive medium, which is accurate for large,
extended perturbations. This is useful for our current purposes, be-
cause such partial series may be inverted, order-by-order, in exactly
the same fashion as the full inverse scattering series, to generate non-
linear direct inversion procedures that take as their input data reflect-
ed primaries. We continue by carrying out this inversion upon the ab-
sorptive-dispersive primary series above. The resulting nonlinear in-
verse scattering equations, which construct approximations of the
actual wavespeed and Q perturbations in the medium, are therefore
of a form that addresses item one above.

Next we observe that, because of the direct, analytic nature of
these inverse equations, it is possible to make informed conjectures
regarding where and how in the mathematics the correction for Q
takes place, and by extension, how to suppress all of the other non-
linear operations. Doing so, we argue, amounts to an extraction and
separate execution of the Q-compensation part of the full inversion
of primary data; this addresses item two above.

Finally, we point out that given a homogeneous reference medi-
um, the relationship between the linear components of the parameter
perturbations and the data is very simple — essentially a Fourier
transform. In the second step above, all nonlinear aspects of the pro-
cessing (apart from those that we argue are concerned with Q-com-
pensation) have been suppressed. It follows that in all respects apart
from absorption, the output maintains a simple, linear relationship
with the data. We map the output trivially back to data space using
this relationship, which amounts to a change of variables and an in-
verse Fourier transform. The final result, which has addressed item
three above, is deemed to be the Q-compensated data set.

DIRECT NONLINEAR Q-COMPENSATION

We define the reference medium such that the Green’s functions
for a source at X, and a receiver at X at angular frequency w obey the
scalar (nonabsorptive) equation

o2
V2 + = |Go(x[xg0) = 8(x — x,). (1)
Co

The solution to equation 1 in 2D for a line source at (x;,,z,) and a line
receiver at (x,,z,), is expressible analytically as, e.g.,
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define the wavefield in the actual medium as satisfying a two-param-
eter (nearly constant Q) absorptive wave equation:

[V + K2G(x|xg0) = 8(x — X,), (3)
where, following, e.g., Aki and Richards (2002),
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In the inverse developments to follow, F'is assumed known, and Q as
assumed unknown. Treating the quantities in square brackets in
equations 1 and 3 as the operators L, and L, respectively, (see, e.g.,
Weglein et al., 2003), and defining two dimensionless perturbation
quantities:
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we arrive at a perturbation operator (defined as the difference be-
tween L, and L) appropriate for this Q problem (Innanen and We-
glein, 2007; Innanen et al., 2008):

w2
Lo—L= ?[a(X) —2F(w)B(x)]. (7
0

We next restrict the medium such that & and 8 vary in depth only,
and use the above quantities to form a partial Born series:

bp=t¢+ b+ 5., (8)

whose terms are judged, via arguments based on relative scattering
geometry, to construct reflected primaries that have been distorted
by Q. This is a two-parameter extension of the scalar acoustic con-
struction discussed by Innanen (2008). At first order, for instance, af-
ter Fourier transforming over x,, we have

wl(ks’w) Jdx,de’GO(xg’Zg7x,7zl’w)
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4 cos’ 0
where y(z) = a(z) — 2F(w)B(z), k, is the Fourier conjugate of x;,
qs = w/co(1 — cik*/ 0?)"2, and 0 = sin"k"jco, and for convenience,

we have setx, = z, = z, = 0. At second order, we have
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Continuing with this program of retention and rejection at all orders,
the details of which are included in Appendix A, we produce the se-
ries ¢ p. This forward-modeling expression can be evaluated with
any source- and receiver depth by reinstating z,, z,# 0. With z, = z,
= 0, we next identify ¢ with the primary data D arising from a re-
flection experiment:

4 cos® 0
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Computing and summing a large number of terms in equation 9 gen-
erates an approximation of attenuated primary data appropriate for
large and extended perturbations vy.

We next form an inverse series for the perturbations « and 3, in
which the nth term is defined to be nth order in the primary data mod-
eled above. Let this seriesbe y = y, + vy, + ..., or, explicitly,

[a(z) = 2F(0)B(2)] = [a)(2) — 2F(w)B1(2)] + [@(2)
—2F(0)By(2)] + .

This is substituted into equation 9, and like orders are equated (In-
nanen, 2008), similarly to Carvalho’s derivation of the full inverse
scattering series (Carvalho, 1992; Weglein et al., 1997). The inverse
solution is generated by sequentially solving for and summing con-
tributions to the perturbation over many orders. At first order, we
have

D(k,.0) = f dz' ey ()
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(10)

Innanen and Weglein (2007) describe in detail how this equation can
be used to separately determine «; and 3, as functions of pseu-
dodepth. The process of linear separation requires the data to be
combined across sets of incidence angles & = {6,,6,,...}, and can
also involve a weighting scheme W, hence in general, the outputs
must be considered functions of these variables also:

a = al(Z|’8,W),
B = Bi(z[3.W). (11)

Quantities &, and 3, have qualitative interpretations that depend on
the size and extent of the actual perturbations « and . If the actual
perturbations are small and transient, and some scheme of averaging
(e.g., Clayton and Stolt, 1981) is invoked to manage the overdeter-
minedness of the problem, these quantities can be considered model-
like, and if interpreted as inverse Born-approximate model-parame-
ter estimates, represent an endpoint of the procedure. Alternatively,
if the perturbation is large and extended, which we assume is the case
in this paper, quantities «; and 3, bear scant resemblance to the actu-
al perturbations & and 8. In fact, they are data-like: they depend on
experimental variables, and they have amplitudes and discontinui-
ties that are only distantly and nonlinearly related to those of a and
B, while being closely and linearly related to those of the reflected

primary events. For this reason, in this paper we refer to the «,, 8,
quantities as being essentially linearly transformed and weighted
versions of the input primary data.

Continuing next with the nonlinear components of the inversion
procedure, at second order, we find a relationship between «;, 3,
and a,, B:
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This continues at third order, wherein a relationship between «, 3,
and a3, B; is determined. By this time, a pattern is discernable in the
mathematics. Assuming the continuation of this pattern, we sum the
equations over all orders. Defining

ap(Z 9. W)= 2, a, (2|9, W)
n=0

and

BP(Z|67W) = 2 Bn+1(z|ﬂ’W)’
n=0

there results a closed-form set of nonlinear equations

aplk., 0|0 W) — 2F(k..0)B plk..0] 9, W)

_ fdzre—ikz[z' +ﬁfﬁldz"[al(z"\ﬁ,w)—2F(kz,0)ﬁl(z"\1‘},w)]
4 cos

X [y ('[9 W) = 2F(k,,0) B.(z"[ ¢, W)], (12)

where k,= —2¢, is the Fourier conjugate of depth z, and F has been
written as a function of the reference plane-wave variables 6 and &,
rather than w. These equations constitute a direct inversion of the
primary data, exact to within the accuracy of the primary approxima-
tion series in equation 9, and appropriate for a layered, two-parame-
ter, absorptive-dispersive medium. Further details of the derivation
of equation 12 are included in Appendix B. The quantities a» and B p
are the nonlinearly determined profiles associated with ¢(z) and
Q(z); each can, in principle, be individually determined via equation
12 if desired, which itself might be of independent interest. This is
shown in Appendix C.

However, our current goal is to carry out a single inverse task, that
of compensating for O, and to ultimately recover a data set, not a set
of parameter perturbations. To accomplish this, we examine equa-
tion 12 more closely. We note that the outputs ap» and 8 would be re-
lated linearly to the inputs a; and B, except that «; and 3, also ap-
pear in the argument of the exponential function in the integrand. All
of the nonlinearity of the inversion resides here. Then, we make the
following statements. The principal role of «; in the argument of the
exponential is to nonlinearly accomplish aspects of the inversion as-
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sociated with wavespeed deviations between the reference and actu-
al media (e.g., to correctly locate linearly misplaced reflectors at
depth). And, the principal role of B, in the argument is to accomplish
aspects of the inversion associated with deviations between refer-
ence and actual Q values — meaning, predominantly, compensa-
tion. The arguments for these statements are twofold. First, equation
12 is a two-parameter version of a scheme derived elsewhere for a
one-parameter acoustic medium, i.e., involving « only (Innanen,
2008). Those one-parameter equations include an exponential func-
tion with an argument identical to the first («,) term in the exponen-
tial of equation 12. Because the B, component of the exponential
function appears only when absorptive inverse issues appear, we as-
cribe to it the role of managing these issues. Second, this component
of the exponential function (by virtue of the complex nature of the
coefficient F) is the only part of the function that grows exponential-
ly, and therefore alone has the numerical capability to perform the
(ill-conditioned) boosting of high frequencies characteristic of
Q-compensation. We will now permit these two arguments to lead us
to a proposed form of a Q-compensation algorithm, and discuss the
possibility that they are only approximately true (and the conse-
quences of this) in the discussion section of this paper.

We set «; in the argument of the exponential to zero, and suggest
that as a consequence, (1) the (now-altered) outputs ap and B, un-
dergo nonlinear correction for the attenuation and dispersion associ-
ated with propagation in an absorptive medium, but (2) they undergo
linear treatment in all other respects.

Calling the partially treated outputs v and 3, we have instead

a(k,, 0|9, W) — 2F(k.,0)B olk.,0]9,W)

F(k.,0) _
_ o —ik {z' - —=—rtd"B (z"\ﬁ,W)}
a sz e cos? 0 ° !

X [ay(2'[0,W) = 2F(k,0)B1(z'|9.W)]. (13)

By assumption, the form of these equations ensures that only
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Figure 1. Two-interface absorptive-dispersive model.

Q-compensation (and not, say, any repositioning of reflectors away
from their linearly-determined depths) takes place as the data
(through a, and B,) are processed.

Finally, we will argue for an approach to make the output of this
processing a data-like quantity. Equation 13 follows the basic tem-
plate

A= feBC. (14)

We proceed by comparing this template, and the associated elements
of equation 13, to equation 10. Evidently if 8, in the exponential
function were set to zero, we would exactly recover the data by car-
rying out the integral in equation 13. If our previous suggestion is
correct, i.e., that 8, # 0 in the exponential is responsible solely for
Q-compensation, then it would appear that the left-hand side is al-
ready a data-like quantity, different only from the input data set in
that its amplitudes have been corrected for absorption and disper-
sion.

Hence, after constructing the input C and the operator B by linear-
ly transforming and weighting the data, and computing the right-
hand side of equation 13, we use the linear relationship defined in
equation 10 to map not «; and S, but rather the left-hand side of
equation 13, back to the (k,,w) domain, through, in essence, a change
of variables. Our suggestion is that this mapped quantity is a
Q-compensated data set in the Fourier domain. That is, we define

1
Deomplk., 0|0, W) = —m[ag(kz,ﬂlﬂ,W)

— 2F(k.,0) Bk, 0|3, W)], (15)

where ¥ = 9(6,k.) and W = W(6,k,). Changing variables back to
ks, w and inverse Fourier transforming, the Q-compensated data set
is estimated as

1\? L
Dcomp(xs,t) = (;) ffdksdwelkyxselthcomp(ks,w|ﬁ’W).

(16)

SYNTHETIC EXAMPLE

To exemplify this procedure, we construct a simple synthetic pri-
mary data set corresponding to a suite of plane sources and line re-
ceivers over the two-interface absorptive-dispersive model in Figure
1. The resulting primary data (Figure 2a), generated analytically in
the frequency/wavenumber domain and numerically inverse Fourier
transformed to produce the plots, are used as input to the linear in-
verse scattering equations, which involves a transformation and
weighting thereof. Multiples are not modeled; we assume multiples
have been removed as a preprocessing step. Then these data-like
quantities are used to construct both the operator ¢? and the operand
C as in equation 14. The Q-compensated data set (Figure 2b) is
formed by transforming the result, A in equation 14, to the (k,,w) do-
main, and then performing straightforward inverse Fourier trans-
forms. The Q-compensated results are compared in detail with the
inputin Figure 3 for three offsets, (a) 0 m, (b) 170 m, and (c) 335 m.
For illustration purposes, after all processing is complete, we con-
volve the input and output with a Ricker wavelet, which is a cosmetic
step; the procedure assumes the source wavelet has been decon-
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volved from the input data. The dispersion correction, and the simi-
larity of the output to the idealized, nonattenuated test trace, indicate
that the algorithm is largely achieving its stated goal. We note a slight
undercorrection at large angle.

In equations 13 and 15, there are two sets of angles: an input set
(1) used to separate «; and B, and to construct the correction oper-
ator, and an output angle 6, which is varied to recover the full, cor-
rected prestack data set. Neither inverse scattering theory nor our
manipulations of it specifically impose any relationship between the
two. In the full inverse-scattering parameter-estimation problem
(Appendix C), this freedom might be exploited for purposes of regu-
larization, or to incorporate prior information. However, for the
problem at hand, we have used input angles © which “cluster”
around the output angle 6. Thatis, we have decided to correct partic-
ular angle and wavenumber components of the data using the data at
those same components and their immediate neighbors. In the exam-
ple above, the input set & = {6,0 + A6} (where A6 is the smallest
provided by the synthetic data after the change of variables) was
used for each 6 of corrected data. The angle pairs were weighted
equally (W = 1); little of the additional freedom W provides to pre-
condition the data has been explored as yet.

Noisy examples have not been included at this proof-of-concept
stage; we have found our approach to share the basic response to
noise of all standard Q-compensation schemes. We point out that (as
is often done in standard Q-compensation) with a straightforward al-
teration of the function F as it appears in the argument of the expo-
nential in equation 12, this algorithm may be transformed into a “dis-
persion compensation” procedure, which is well conditioned and
largely unaffected by noise.
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Figure 2. (a) Synthetic prestack input primary data from the model in
Figure 1 (decimated for purposes of display), and (b) Q- compensat-
ed output data (likewise decimated). The amplitude and phase signa-
ture of the shallower primary is caused by the strong absorptive re-
flection coefficient associated with the top interface.

DISCUSSION

We choose as the definition of Q-compensation, the estimation of
an output data set that is identical to the input, except that all ab-
sorptive propagation effects are absent. We present a candidate
scheme, based on nonlinear inverse scattering, whose output, we ar-
gue, fits this definition. In applying it, a correction operator is auto-
matically constructed from the data themselves, with no requirement
for an input estimate of subsurface medium parameters, including its
Q structure. Synthetic examples illustrate the scheme in action, and
provide proof-of-concept-level evidence of the validity of the ap-
proach.

The behavior of this algorithm can be interpreted in terms of data
events interacting nonlinearly. Consider again the schematic form

A= JeBC, (17)

where
A= aQ(kZ,0|1.‘},W) — 2F(kz,t9)ﬁQ(kz,t9|19,W),
Flk.0)
5= —it|e — D g row | as)
cos” 6
0
and

C = ay('|9,W) = 2F(k,0) B, (z'[ 9, W),

and recall that «; and B, are effectively linearly transformed,
weighted forms of the data in the pseudodepth domain (i.e., vertical
two-way traveltime scaled with the constant reference wavespeed
¢o). The quantity C is being operated on by [e” to produce A. One fre-

a)o2 b)o.2 ¢)oz2
=
0.af ] 03} | 03} 1
== =
o4 1 o4t 1 o4t |
) 2 @«
[0} [0} [0}
£ S S
= = =
0.5t ] 05} 1 0.5} 1
T y o =
==
0.6} ] 06} 1 0.6} 1
07 07 07

Figure 3. Detail of Q-compensation for three offsets of prestack
data: (a) 0-m offset, (b) 170-m offset, and (c) 335-m offset. The left-
hand trace in each panel is the input, the middle trace is the output,
and the right-hand trace, for benchmarking, is an idealized trace con-
structed without Q, and normalized to the maximum value of the
output traces. Because the benchmark traces involve no absorption,
their shallow primaries differ from their counterparts in that they do
not have the amplitude and phase signature associated with the ab-
sorptive reflection coefficient. The relevant events for comparison
are the deeper primaries.



Downloaded 10/27/13 to 99.10.239.75. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

V18 Innanen and Lira

quency-wavenumber component of the output data (w and &, via k.
and 6) A, comes from contributions from the input data C at all
pseudodepths. For each contributing depth, the C component is
boosted by ¢, which from equation 18 can be seen to be the cumula-
tive influence of the values of B, that are shallower than the contrib-
uting depth. The quantities 8, and B are constructed from the angle
and frequency dependence of the primaries in the input data. There-
fore, this Q-compensation operator, acting on a given primary, can
be understood to have been constructed from the cumulative angle
and frequency variations (i.e., the generalized AVO/AVA behavior)
of all shallower primaries.
We have made two major assumptions in deriving the scheme:

1) By suppressing certain components of the full nonlinear inver-
sion equations derived from inverse scattering, we isolate the
Q-compensation activity inherent to the inversion.

2)  With trivial linear transformation and changes of variable, the
output of this isolated inverse step can be treated as an equiva-
lent data set, different only from the input in the lack of absorp-
tion in the primary events.

The soundness of these assumptions is likely best argued for with
success in testing, some of which we have provided with our proof-
of-concept example. But, we might already anticipate that slightly
more sophisticated choices ultimately could lead to more accurate
results, in particular with respect to the first assumption above. Part
of the argument for isolating and extracting the Q-compensation
component of the inverse equations lay in comparing the two-pa-
rameter absorptive system of inverse equations with its one-parame-
ter acoustic counterpart. But the two-parameter linear inverse prob-
lem, by which we determine the correction operator, is subject to
phenomena not shared by one-parameter problems, for instance,
leakage, or the tendency for one parameter’s actual variations to be
accounted for with variations in multiple linearly estimated parame-
ters (discussed for the absorptive problem by Innanen and Weglein,
2007). Continued study of these issues may lead to a more sophisti-
cated program for isolation of the absorption compensation compo-
nent of the nonlinear equations.

CONCLUSIONS

Direct, nonlinear methods bring a greatly reduced requirement for
prior information as compared to their linear counterparts. But they
demand broadband, densely sampled, wide-aperture, deghosted, de-
convolved (of the source wavelet), and demultipled data in return.
Data fidelity, bandwidth, and coverage are the first requirements in
considering methods such as this one. The data set used in the syn-
thetic example is broadband and includes low (<1 Hz) frequencies
(although not close to zero frequency — the nearly constant Q model
we are using in fact diverges at and near that limit). The requirement
for this kind of data is typical of nonlinear, wave-theoretic inverse
methods. The best outcome will result from actual acquisition of
maximally low-frequency data, of course; however, various as-
sumptions (for instance that of a piecewise-constant overburden) ad-
ditionally can be made, removing the sensitivity to cutoff of low fre-
quencies.

Two other issues are at the forefront when it comes to contemplat-
ing field data application of an algorithm of this kind. The first has to
do with the way in which the data are interrogated for information in
constructing the operator, which is closely related to linear inver-
sion. Briefly, it is the frequency- and angle dependence of the trans-

mission-altered reflection coefficients of the primaries (as we have
stated above, loosely a brand of AVO/AVA behavior specific to ab-
sorptive-dispersive media) that drives the construction of the opera-
tor. That this behavior exists is a straightforward prediction of wave
theory. However, it may appear as subtle variations in field data. De-
tecting itis critical to the procedure.

The second is a consequence of the algorithm’s interest in ampli-
tude variations in the data. As it stands, the algorithm considers data
to be due to a layered, two-parameter (anacoustic), absorptive-dis-
persive medium. When that is true, as in our synthetic examples, the
results are of high quality. When that is (at best) only approximately
true, as in a seismic field data application, the results will presum-
ably suffer. The basic framework and arguments underlying this can-
didate direct nonlinear Q-compensation procedure have been pur-
posefully chosen never to fundamentally restrict the results to either
anacoustic or layered (1D) media. However, some specific aspects
of the procedure, for instance the availability of closed forms, are a
consequence of these simplifications. Two clear next steps are to al-
ter the construction of the corrective operator to be in accordance
with a more suitable anelastic and heterogeneous medium model,
and to reformulate the algorithm to allow attenuating reference me-
dia, although we anticipate a greater degree of algorithm complexity
as aresult.
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APPENDIX A

PRIMARIES IN A LAYERED
ABSORPTIVE MEDIUM

In this appendix, we take the scattering quantities defined in the
body of the paper, and use them to construct the first three terms in
the absorptive-dispersive Born series. Arguments from relative scat-
tering geometry are used to extract a subset of terms from this series,
which are judged to construct only the absorptive-dispersive prima-
ries. Patterns in these terms are used to deduce a full nonlinear ab-
sorptive-dispersive primary approximation.

We proceed assuming a nonabsorptive reference medium. For
waves at oblique incidence (i.e., a nonzero angle #) above a layered
absorptive medium, with reflected waves detected at a lateral receiv-
erlocation x,, the first-order term of the Born series is

P1(Xg.2g.k .25, 0) = JdX’fdz’Go(xg,zg,X’,z’,w)

X Ky (2)Golx' 2 kezpw)
2
— —lk—ze_iq,r(zg+zs)

4q

. eiksng dz' ey (2),  (A-1)

where y(z) = a(z) — 2F(w)B(z), and k = w/c,. This term con-
structs only primaries, and as such is kept in full as the first-order
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term in the primary series also. For convenience, we set x, = z, = z,
= 0 and rename the linear term ¢/, p:

1 o
b =~ [asernen )

cos” 6

The second-order term of the Born series also is needed in its entirety
in the primary approximation. We have, again withx, = z, = z, = 0,

dz’' iqsz' ’
16 cos* 6 2e y(2)

¢2P(km (1)) = -

X f dz"ei s = ly () et

8 cos

% ( f dz”y(z")). (A-3)
0

At third order, we begin with the full Born series term

1 o
= e 4ga ‘9(—1'2qs)fdz’elz"sZ y(2')

( _iZQJ)Z

d ’ iqxz’ ’
64 cos® 0 2t y(@)

l,/13(ks,(1)) ==
X de”@iqSlz, *z"\ ')’(Z”)
X f dz" e =y (et (A-4)

but reject the component for which the “middle” scattering location
7" is shallower than both z’ and z””, which begins the construction of
multiples (Weglein etal., 1997). This means rejecting one of the four
components of equation A-4 that arise when the absolute value bars
are evaluated case-wise. Retaining the other three components, we
have

( - 12q3)2

64cos® @ de'e™ y(2')

l/’?)P(kx,w) =
Z, ZN
XJ dZ”’}/(ZH)f dZm’)/(Zm)
0 0

(—i2g,)’ g, ¢ ’
=~ ey ()| | dv @
32 cos® 0 0

(A-5)

where again for convenience, x, = z, = z, = 0 (for cases involving
nonzero source and receiver depths, or several x, values, the simple
exponential factors outside the integrals may be easily reinstated).
The pattern visible from orders one to three persists at higher order.
Collecting all terms that fit the same pattern creates an approxima-
tion of primaries appropriate for large, extended absorptive-disper-
sive perturbations. The approximation is a straightforward extension

of the scalar (acoustic) approximation discussed by Innanen (2008).
Calling the approximation p, we have

le’P(ks’w) = 2 (r/fnP(kx’w)
n=0

1 o
= _——— | a7’ i2q.z ’
4 cos? Gf ©e v(@)
o1 iq, (¢ "
> —(— & f dz"y(z")) . (A6)
a—oh! cos” 6 J,

This may be summed to closed form, as was done in direct nonlinear
imaging by Shaw et al. (2004):

1
kw) = ———— | dz’
Vrlks,) 4 cos® Gf ¢

x e ~ameos o], (an)

In this paper, the summed form is of less significance, because our
aim will be to perform an order-by-order inversion. As the key result
of this appendix, then, we have the series in equation A-6, expressed
explicitly in terms of the wavespeed and Q perturbations « and 3:

i2qz'

Yplkyw) = — f dz'm[am —2F(0)B(z)]

X E ! (ﬂj} dz"[a(z")

o 2
a—on!\cos” 6/,

—2F (@B(Z”)]) . (A-8)

APPENDIX B

DIRECT NONLINEAR ABSORPTIVE INVERSION

In this appendix, we perform a direct, order-by-order inversion of
the absorptive-dispersive primary approximation derived in Appen-
dix A. We assume that the data (1) contain only primaries, (2) have
been deconvolved of the source wavelet, and (3) have been de-
ghosted. These assumptions are typical for direct nonlinear primary
algorithms based on the inverse scattering series (Weglein et al.,
2003). If this is the case, and if the perturbations a and 3 are of such
asize and extent that equation A-8 is accurate, we may write

1 o
Dlksw) = =37 f dz' ¢ [a(') — 2F(w)B()]

(_.2 S) 1 i2qg.7 ’ ’
- ﬁ dz' 1% [a(z') — 2F(0)B(z")]

’
z

“ f da() — 2F(@)B()]

0
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—i2a)?

- %f‘fie”“'[a(z’) —2F(w)B(z')]
2 2

X sz"[a(z”) —2F(@)B@E")]| + -,
0

(B-1)

where 6 and ¢, are particular arrangements of experimental vari-
ables k,and w:

k
6 =sin~! SCO,
15)
22
w kic
g:=—\1- ;2". (B-2)
0

The aim in the remainder of this appendix will be to directly invert
equation B-1.

Aninverse series for absorptive primaries

We form an inverse series for the perturbations « and 3, in which
the nth term is defined to be nth order in the primary data modeled in
equation A-8. Let this series be

[a(z) — 2F(w)B(2)] = [a)(z) — 2F(w)B,(2)]
+ [ay(2) — 2F(w)Br(z)] + - --.
(B-3)

This is substituted into equation B-1, and like orders are equated (In-
nanen, 2008) in a manner similar to Carvalho’s derivation of the full
inverse scattering series (Carvalho, 1992). At first order, we have

D(k,0) = — f dz' 1 [y (2') — 2F(0) B,(z)].

(B-4)

4 cos 0

At second order, we have

J‘dz’eiij'z,[az(Z’) — 2F(@)B,(z")]

4 cos’ 0
-2 . )
- _z(a ot ; dz' e [ (2') = 2F(0) (2]
X fdzﬂ[al(zﬂ) _ ZF(w)ﬁl(Z”)] . (B—S)
0

At third order, we have

1 - !
mf dg' e [a(2') = 2F () B5(2")]

—i2 s 1 i2q.7 ! '
= —% dz' e [, (') — 2F(0) B, ()]

_
Z

“ f d2Tas(") — 2F(@)Br()]
0
( - lZQY)

~ Soost g | € @) = 2F(@)Balc")]

’
4

“ f dTan(") — 2F(0)B1()]
0
(_.2 x)z 1 i2g.7" ’ ’
_% dz' ¢ [a(2') — 2F(0)B:1(z")]
2 2
y f i)~ 2F@B(] | . (B-6)
0

This continues. Just as in the full inverse scattering series, the se-
quential direct solution for perturbation components at each order,
followed by their summation, produces the desired solution. Our ap-
proach will be to carry out the inversion explicitly on the first three
orders only, thereafter deducing a pattern that holds over all orders.

First order

The construction of the first-order components of the absorptive-
dispersive perturbations «; and 3, from the data (i.e., the solution of
equation B-4), and the resulting issues of conditioning, detectability,
and relationships with the actual medium perturbations, have been
described in detail by Innanen and Weglein (2007), and will not be
reviewed extensively here. Briefly put, two profiles a,(z| 9, W) and
B1(z| ¥, W), over layered absorptive media, may be constructed giv-
en a single shot record or receiver record of reflected primary data
and the acoustic reference wavespeed c,, which is assumed to agree
with the actual medium at and above the sources and receivers. Be-
cause two or more plane-wave incidence angles are required to sepa-
rately construct the profiles, but many varied sets of these angles
may do so, we define the quantity 9 = {6,,6,,...} to represent the
particular set of angles used. In addition, because the freedom also
exists to weight the data at each angle, we define W to represent the
particular weighting scheme (if any) chosen. The profiles are then
functions of these quantities also. Summarizing, we establish a map-
ping between D(k,,w) and a(z| 3,W), B,(z| &,W). The mapping is
simple, generally a linear combination of Fourier components of the
data.

Second order

The second-order term in equation B-5 is close to a form suitable
for the direct nonlinear inverse equations. Because the relationships
in equations B-4—B-6 hold for all k£, and w, by comparing integrands
in equation B-5, we see that instances of &, — 2F[3, occurring under
Fourier integrals may be replaced by
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0:(0) ~ 2F(@)Ble) = — B e 2) — 2F(w)B, (2]
cos” 0

z

. sz,[al(zl)_ZF(w)ﬁl(Z,)] .
0
(B-7)

This will be useful for manipulations at third order. We further
change variablesto 6 and k, = —2¢:

f dz'e ™ [ay (& |[9.W) — 2F (k..0) Bo(=' | 9. W)]

ik,
2 cos? 6

— 2F(k.,0)8,(z'|9,W)]

fdz’e‘”‘zzl[al(z'w,W)

’
Z

X f d7"la,(Z"|9,W) — 2F(k,,0) B,(Z"| 9, W)] |,
0
(B-8)

where we have employed the specific forms for «; and 8, derived
above, including the set of angles ¥ and weights W. Because the
first-order input to the second-order term has these dependences, so
also must the second-order perturbations a, = a,(z|9,W) and 8,
= :3 Z(Z | ﬁ’W)

Third order
The third-order problem requires a greater level of manipulation.

Using equation B-7 and the relationship

2

ff(z’)ff(z”)dz"dz’ =% ff(z’)dz' , (B-9)

the first two terms on the right-hand side of equation B-6 are seen to
be of the same form as the third, albeit with different constant fac-
tors. After adding these three terms together, equation B-6 becomes

1

4 cos’ 0
_ (_izqv)z
" 16cos 6

4 2

f dz’ 24k [ (') — 2F(w) Ba(2)]

dz' e [a,(2') — 2F(0) B,(2)]

X fdz”[al(z”)—2F(w)ﬁ1(z”)] . (B-10)

0

Simplifying, and changing variables to k, and 8, we have

fdz'eikfz’[as(Z’W,W) — 2F(k,0)B5(2'[0.W)]

—ik.)? o
_ ( l z) de’elkzz [al(z,h&’w)

~ 4cost B

zI

— 2F(k,,0)B,(z'|9,W)] de"[al(Z"lﬂ,W)
0
2

— 2F(k,0),(2"[0.W)] | . (B-11)

Again, because at first and second orders the outputs are functions of
the set of angles and weights used in the first-order procedure,
so must the third-order terms, i.e., a; = as(z’'|9,W) and B; =
,83(2' | 0 ,W).

Direct nonlinear absorptive inversion equations

A pattern is discernible in equations B-8 and B-11, whose form,
like in the forward case, persists at higher order. In fact, @, and
B.+1arerelated to a; and B via

fdz'eikf‘""[aw 1@ |0, W) = 2F(k,,0)B,,11(2"[ 9, W)]

1 —ik, \" -
_ _(#) fdzlg—lkzz [a’l(ZI|’ﬂ,W)

n!\ 2 cos’ 0

’
2z

= 2F(k,0)B,(z'|9,W)] fdz"[al(z"W,W)
0

n

—2F(k.,0)B, ("9, W] | . (B-12)

Defining

ap(z| 8 W)= 2 @, (2'|9,W),
n=0

Br(e 8 W)= 2 B,y 12 |[9.W), (B-13)
n=0

creating an instance of equation B-12 for every value of n=0, and
summing, we obtain

ap(kz, 6

9,W) — 2F(k..0)B (k.0

ﬂ’W)
_ J 2z’ e*ikz[z’+ﬁfgdz"[al(z"\ﬂ,w)f2F(kz,0)B1(z"\ﬂ,W)]]
COS

X [a)(2'|9,W) = 2F(k.,0)3,(z'| 9. W)], (B-14)

having recognized the integral on the left-hand side as a Fourier
transform.
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APPENDIX C

ABSORPTIVE MODEL CONSTRUCTION
VIA NONLINEAR DIRECT INVERSION

The aims of inverse scattering procedures vary from the con-
struction of spatial distributions of perturbation quantities to the
construction of processed data sets. The direct nonlinear primary in-
version quantities derived in Appendix B lend themselves to either
goal. In this appendix, we will address the former of these aims for
layered, two-parameter absorptive-dispersive media.

‘We begin by rewriting equation B-14

apll| 9, W) — 2F(k..0) B (k.| &, W) = A(k..0] 9, W),
(C-1)
where we define

A(k,,0|9,W)

. 1 z'
= f dz'e - zkz[z' + —— GIO d"[e;(Z"|9,W) 72F(kz,0),3|(z”|19,W)]

X [a, ('[9, W) — 2F(k,,0)8,(z'|9,W)]. (C-2)

We wish to separately calculate ap and B at each relevant depth
wavenumber k_; given at least two angles per depth wavenumber k.,
and if desired, an additional weighting scheme, this is an overdeter-
mined problem. Some notational care will be required, because as
we see in equations C-1 and C-2 earlier sets of angles and weights,
¥ ={6,,0,,...} and W are already in play.

We proceed by defining a new set of angles 3 = {6,,6,,...} # O
and weights W # W. There is no formal requirement that 9 and Wbe
related to ¥ and W, although intuition and common sense might lead
us in one direction or another. During the numerical application of
the direct Q-compensation algorithms in this paper, we have argued
towards a relationship for that specific situation, but here we will
leave them distinct and unrelated. The solutions in this appendix
therefore are considered to be functions of both.

Given the N > 2 angles I, the N resulting instances of equation
C-1 can be written in matrix form:

~ ap(kz|'l‘},W) ~
F(k,d) = Ak, 9|9, W), (C-3)
ﬁP(kz|ﬁ’W)
where
I —2F(k,0))
_ 1 — )
Fl.d)=| . (k02 (C-4)
|1 —2F(k,,6)) |
and
Alk,.0,|9,W)
Ak, 9|9,W) = A(k”a?'ﬁ’w) (C-5)
Alk,,05| 0, W)

A new weighting scheme W can be brought in via whatever choices
are made in inverting F(kz,g). Thatis, F~'=F "(kz,g,VT/). Now
this means that the outputs a» and B are dependent on £, but also on
(1) the weights and angles, ¥ and W, used to create the linear output
and on (2) the weights and angles, 9 and W, used above to create the
nonlinear output. That s,

C(P(kz|’l§,‘;i’/,”&,W)

o =F 'k, 0, W)A(k,, |, W).
Bplk )W, 8, W)

(C-6)

Finally, profiles may be generated through inverse Fourier trans-
forms:

AR, — L ik.z 3 W
ap(z|9,W,9,W) = . dk.e™Zap(k,|d,W,3,W),

- ~ 1 . -~ ~
BP(Z|193W7199W) = ;fdkzelkzzﬂP(kth’W,ﬁ,W)'

(C-7)

The freedom to twice choose both the subsets of the data we use and
their weights, during the calculation of the profiles in equation C-7,
suggests a large range of types of inverse result is possible.
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