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Wavelet estimation for a multidimensional acoustic 
or elastic earth 

Arthur B. Weglein* and Bruce G. Secrest$ 

ABSTRACT 

A new and general wave theoretical wavelet estima- 
tion method is derived. Knowing the seismic wavelet 
is important both for processing seismic data and for 
modeling the seismic response. To obtain the wavelet, 
both statistical (e.g., Wiener-Levinson) and determin- 
istic (matching surface seismic to well-log data) meth- 
ods are generally used. In the marine case, a far-field 
signature is often obtained with a deep-towed hydro- 
phone. The statistical methods do not allow obtaining 
the phase of the wavelet, whereas the deterministic 
method obviously requires data from a well. The 
deep-towed hydrophone requires that the water be 
deep enough for the hydrophone to be in the far field 
and in addition that the reflections from the water 
bottom and structure do not corrupt the measured 
wavelet. None of the methods address the source 
array pattern, which is important for amplitude-ver- 
sus-offset (AVO) studies. 

This paper presents a method of calculating the total 

wavelet, including the phase and source-array pattern. 
When the source locations are specified, the method 
predicts the source spectrum. When the source is 
completely unknown (discrete and/or continuously 
distributed) the method predicts the wavefield due to 
this source. The method is in principle exact and yet 
no information about the properties of the earth is 
required. In addition, the theory allows either an 
acoustic wavelet (marine) or an elastic wavelet (land), 
so the wavelet is consistent with the earth model to be 
used in processing the data. To accomplish this, the 
method requires a new data collection procedure. It 
requires that the field and its normal derivative be 
measured on a surface. The procedure allows the 
multidimensional earth properties to be arbitrary and 
acts like a filter to eliminate the scattered energy from 
the wavelet calculation. The elastic wavelet estimation 
theory applied in this method may allow a true land 
wavelet to be obtained. Along with the derivation of 
the procedure, we present analytic and synthetic ex- 
amples. 

INTRODUCTION tic migration) an acoustic wavelet would be appropriate, 

I . . . whereas an elastic wavelet would be appropriate for elastic 
wave-equation data processing. In seismic exploration a man-made source ot energy 

produces a wave which propagates into the subsurface. The 
reflection data recorded on the surface depend on (1) the 
properties of the earth’s structure (2) the energy source and 
recording system. 

The purpose of seismic exploration is to extract informa- 
tion about the subsurface from these data. Consequently, it 
is important to attempt to identify and remove the effects of 
the source characteristics from this reflected energy. We 
suggest that a wavelet estimation method be applied which is 
theoretically consistent with the process to be applied to the 
reflection data. That is, for acoustic processing (e.g., acous- 

It has been shown [Loveridge et al. (1984)] that for 
amplitude-versus-offset (AVO) studies, the source array 
pattern can be important. We show a method of obtaining 
this array pattern. 

The recently published one-dimensional (1-D) acoustic 
wavelet estimation method of Loewenthal et al. (1985) 
assumes (1) that the medium above the receivers is known 
and (2) that both the field and the normal derivative are 
measured. Our method makes analogous assumptions for 
multidimensional acoustic and elastic media. In a related 

Manuscript received by the Editor March 6, 1989; revised manuscript received December 4, 1989. 
*Formerly BP Exploration, 5151 San Felipe, P.O. Box 4587, Houston, TX; presently ARC0 Oil and Gas Company, 2300 West Plano Parkway, 
Plano, TX 75075. 
SBP Exploration, 5151 San Felipe, P.O. Box 4587, Houston, TX. 
0 1990 Society of Exploration Geophysicists. All rights reserved. 



Wavelet Estimation 903 

paper, Sonneland et al. (1986) use the 1-D acoustic wave “2 w2 
equation with two independent vertical measurements of the 
pressure to perform a combined designature-dereverbera- ( ) V2 + 2 P = 2 09 + A(w)s(r - r,). (2) 

tion. Hargreaves (1984) has presented a wave-field extrapo- 
lation method for source signature identification. Although 
his method produced favorable results in some cases, e.g., 
deep water, he states a problem resulting from corruption 
due to the scattered field. The method in this paper directly 
addresses this problem, automatically filtering the scattered 
field from the wavelet calculation. 

Our purpose is to present a new general method of source 
signature identification which also requires two separate 
field measurements. It is applicable for an arbitrary inhomo- 
geneous multidimensional acoustic or elastic earth. Further- 
more, no information about the properties of the subsurface 
is required. Each shot record produces an effective acoustic 
or elastic wavelet for that particular shot record. The effec- 
tive wavelet can vary from one shot record to the next. The 
wavelet obtained is the source wavelet or driving function 
being imparted to the medium. In the second section, we 

We now proceed to derive two integral equations for p. One 
is the Lippmann-Schwinger integral equation and the other is 
derived from Green’s second identity. These two equations 
will lead to the desired relationship between the sought after 
A(w) and the measurements of p on the surface z = 0. 

Formally inverting the operator V2 + w2/ci = La = Cc’ 
in equation (2), we have the operator relationship 

lo* _ _ 
P=GoTaP+AGo 

co 

or, equivalently, 

P(r, rs9 01 = AblG~(r, rs, 4 

co= + 
present the general wavelet estimation procedure and show 

G&, r’, w) _r a(r’)P(r’, rs, O) dr’, (3) 
CO 

that the method relies only on the incident wave, effectively 
filtering the scattered energy from the integral. We illustrate where 
this procedure with an analytic example. The marine explo- 
ration environment is treated next. We show an application 
to a distributed source and the source array pattern, fol- G&, r’, w) = S(r - r’) 

lowed by an application of the method for a multidimen- 
sional elastic problem. Finally, we give numerical examples with outgoing wave-boundary conditions. 
which address the issues of time and spatial sampling, finite Equation (3) is the Lippmann-Schwinger integral equation 
aperture, approximations to the field derivative, and finding and is valid for all r. 
the source array pattern. A second integral equation for P is derived from Green’s 

The procedure (for either the acoustic or elastic model) second identity: 
derives and from a comparison of the Lippmann-Schwinger 
equation and Green’s theorem. The former originates in 
scattering theory and the latter in boundary-value problems. 

I 
(AV2B - BV’A) d3r = (AVB - BVA) . n ds, 

These two equations were compared, for a different purpose, V I s 

in Weglein and Silvia (1981) and Silvia and Weglein (1981). 
where S is the surface which encloses the volume V. Let 

METHOD FOR ACOUSTIC WAVELET A = P and B = Go in Green’s second identity: 

Consider a point source at the spatial position r,. The 
constant-density acoustic wave equation for the pressure s [h-‘, rs, w)V’*Go(r’, r, W) 

V 
field P due to a source A(t) at r,? is 

(y&g) 
- Go(r’, r, w)Vt2p(r’, rs, w)] dr’ 

P(r, rsr t) = A(t)G(r - r,). 

Taking the Fourier transform in time gives 
= [f%‘, rs, w)V’Go(r’, r, w) 

iJJ2 _ ( > V2 + - P(r, rs, w) = A(w)s(r - r,). (1) 
- Go(r’, r, o)V’P(r’, rs, w)] - n ds, (4) 

c’(r) where S is the surface illustrated in Figure 1. rs is located on 

In this context the wavelet estimation problem is to deter- or above the z = 0 boundary of the surface S. We choose the 

mine A(w). Characterize the velocity configuration c(r) in convention for the delta function to be 

terms of a reference value cn and a variation in the index of 
refraction (Y: 

/ 
6(r - a)f(r) dr =f(i), 

1 I 
V 

- = - [I - ff(r)]. 
c’(rj ci where P is strictly within the volume. For am outside the 

volume, or on the boundary, this integral vanishes. 
Equation (1) can then be rewritten as Substituting the equations 
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V’ ‘P(rl, r,5 , 

Lo2 
0) = -1 P(r’, r,s, 0) 

(‘0 

+ 1 a(r’)P(r’, r,, , 0) + A(w)S(r’ - r,) 
co 

and 

2 

Vf2Go(r’, r, w) = -q Go(r’, r, w) + S(r’ - r) 
co 

into equation (4) and taking r within the volume, we obtain 

s 2 

P(r, rs, 0) = Go(r, r’, co) ” a(r’)B(r’, r,, , o) dr’ 
v co’ 

+ [%-‘, rs, o)V’Go(r’, r, 01 

- G”(r’, r, w)V’P(r’, rr, o)] * n ds. (5) 

Thus, for r within the volume we have two expressions for 
p. These two integral equations [equations (3) and (5)] were 
studied in by Weglein and Silvia (1981). 

If the support of a is within the volume V, then 

7 

Go(r, r’, w) ” a(r’)&‘, rs, O) dr’ 
c; 

I 
w2 

= Go(r, r’, co) 1 a(r’)P(r’, r,, , w) dr’. 
m C6 

For points r within the volume and the support of (Y within 
the volume V, equations (3) and (5) give two expressions for 
the field in the reference medium. From these we obtain 

- Go(r’, r, o)V’&, r,r, w)] . n ds 

or 

FIG. 1. Subsurface volume V. 

I 

A(w) = Go(r, rs, co) 

* I [I%-‘, r,, w)V’Go(r’. r, w) 

5 

- COW. r, w)V’p(r’, r,, co)] * n ds. (6) 

The upper boundary of the volume V is defined by the 
measurement surface z = 0. Therefore the support of (Y 
within V means that the reference medium must only agree 
with the actual medium above the receiver plane. The 
numerator and denominator can be evaluated at any point 
inside the volume. In principle, one evaluation point will 
suffice to determine /i(w). However, in practice N such 
evaluations of the numerator and denominator will give N 
independent estimates of A(w) for each source location. A 
statistical weighting of these estimates could then be used to 
evaluate the wavelet optimally. Consequently, in practice 
the method would involve a combination of deterministic 
and statistical procedures. We show later that this redun- 
dancy can be used to solve for the source array pattern. 

The total field P and its normal derivative V’P . n depend 
on both the wavelet and the subsurface properties. How- 
ever. we have shown that 

[f%‘Go - GoV’P] - n ds 

depends only on the wavelet. The major conclusion is that 
measurement of ls and VP . n on the surface of the earth is 
sufficient to determine the source wavelet without requiring 
any information about the subsurface properties. We now 
show that the above integral depends only on the incident 
field by showing that the integral for the scattered wave is 
zero. Thus, since 

Go(r, r’, w) = 6(r - r’) 

and 

EARTH 

FIG. 2. The marine exploration geometry. 

AIR 

WATER 

Fto. 3. Background medium for marine case. 
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\ Gj Cci 

we have, by substituting into Green’s second identity, 

/ 
[P,V’G,, - GuV’P,] - n ds 

s 

I 

W2 
= p, - Go 7 a(r’)P dr’ = p,, - P, = 0, 

V C’iJ 

and thus the only contribution to the integral in equation (6) 
is the incident wave. 

We illustrate this method with 1-D and multidimensional 
examples. 

WAVELET ESTIMATION 

We now demonstrate the method with the analytic exam- 
ple of a point scatterer. Numerical examples of the method 
will be given later. 

One-dimensional example-Localized inhomogeneity 

We illustrate this method for the I-D model 

I 
- = _!- [l - h6(x -X0)], 
c’(r) co’ 

i.e., (Y = hS(x - x0). 
We evaluate equation (6) as 

[pV’GO - GOV’P] - n ds. 

The Green’s function Go is given by 

I 
Go = _ eikix 1’1 

2ik 

and satisfies 

d2Go 
dx2 + k2Go = 6(x -x’), 

where k = o/co and cg is the reference velocity. 
For an impulsive source at x,, the incident field is 

2ik . 

(8) 

OFFSET (FT) 

FIG. 4. Shot gather: point source, incident wave. 
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The total wave field P satisfies 

Weglein and Secrest 

d2P 

and P(.u, x,, O) from equation (1 la) becomes 

---Q + k2(1 - oi)P = A(o)S(x- - X,). (9) 

The problem is to determine the wavelet A(w) from the 
boundary measurements of P. The Lippmann-Schwinger 
equation, valid for all x, is 

or 

1 
+- 

2ik 
(~‘k’“~.“ik’a(x’)P(x’. x,~, w) dx’. 

For the localized scatterer, (Y = hF(x - x0), the total wave 
field is 

To find P(n-,,, x,\, w), set x = x0 in the last equation: 

or 

&I, x,s, w) = 
2ik 

ikh ’ 

l+y 

(1 la) 

A A(w)P iklx- roieikl.ro -xti 
-- 

4 ikX 

I+7 

(I lb) 

The total wave field p(x, x,, w) is a function of the wavelet 
A(w) and the medium. 

The second integral representation, derived from Green’s 
second identity, is 

where a < x,) < h. Using the differential equations (8) and (9) 
in the left-hand side of equation (12) leads to 

d'G,, d"P p---- 
dx2 

Go - 
dx2 

dx 

I h [P(x’, x,, , w)S(x - x’) 
0 

- k2a(x’)P(x’, x,~, o)Go(x, x’, co) 

- Go(x, x’, w)&o)S(x’ - x,~)] dx' 

b 

I( _ dGo di, 
1 pdx’-G,dx’ 

u 

For CI < x < b and x,~ < a, this last expression is 

= 1; (+G,, g), (12) 

FIG. 5. Wavelet reconstruction for shot gather in Figure 4 
with analytic derivative. 

FK. 6. Wavelet reconstruction for shot gather in Figure 4 
with Eulerian approximation to derivative. 
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- k= 
b 

Go(x, x’, w)a(x’)li(x’, xs, w) dx’ 

b 

II &‘, x, > 0) 
dGo(x, x’, 0) 

dx' 
0 

- Go(x, x’, 01 
dP(x’, x, > 01 

dx' I 
and, solving for P(x, xS, o), 

p(x, xs, CO) = k= 
b 

G,,(x, x’, w)a(x’)P(x’, xs, w) dx’ 

b 

Ii dGo(x, x’, w) 
+ &‘, x, 1 0) 

dx’ 
u 

- Gotx, x’, w) 

For this example, the support of a(x) is at x0, thus 

(13) 

I 
b 

Go(x, x’, w)k=a(x’)P(x’, x,, o) dx’ 
a 

s 

^a 
= Go(x, x’, o)k*a(x’)P(x’, x,~. w) dx’, 

--53 

and for x within the interval (a, b), it follows from equations 
(lla) and (13) that 

P(x’, x,, WI 
dGo(x, x’, co) 

dx’ 

- Go(x, I’, w) 
d&‘, x, , w) 

dx’ 

and 

$0) = 

dGo 
P(x’, x,, w) dx’ - Go(x, x’, w) 

drj(x’, x5, w) 

dx’ 

/gklx x, j (14) 

2ik 

OFFSET (FT) 

FIG. 7. Shot gather: point source, plane reflector. 
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This is obviously the 1-D reduction for our wavelet detcrmi- 
nation scheme, equation (6); i.e., 

Removing the absolute value signs with a < x < b, 

u i x0 < b, andx, < a, we arrive at 

I 
@Go - GoVf’) * n ds 

s k(o) = 
Cl, 

To complete the example, WC show that the right-hand 
side of equation (14) just reduces to k(w). Thus we evaluate 
the right-hand side of equation (14) for the case of a localized 
scatterer. We need the Green’s function. 

and its derivative, 

dGo 
&V mx’i 

-= 
dx’ 

~ SGN (x -x’). 
2 

From equation (lib), the wave field is 

c”l” --x,1 

and its derivative is 

SGN (x -x,) 

ik SGN (x -x,,) 

We now evaluate equation (14) to obtain 

2ik 

which was to be shown. Notice that although P and #Iian 
depend on the medium through co, h, and x,,, the integral 

is only a function of the source signature. 

WAVELET ESTIMATION IN A SPATIALLY 
VARIANT REFERENCE MEDIUM 

As stated in the Introduction, it is apparent that the 
method for obtaining the wavelet just described will hold for 
more general cases, in particular for a spatially variant 
reference medium. In a similar manner, an expression for the 
wavelet can be derived for the case where the acoustic 
velocity is characterized in terms of a spatially variant 
reference velocity. This spatially variant reference velocity 
will be required for the marine wavelet estimation. As 
before, the reference medium must agree with the actual 
medium above the receivers. 

Special case-Marine wavelet estimation 

The marine exploration configuration is illustrated in Fig- 
ure 2. The background medium for this application will 
consist of two homogeneous half-spaces illustrated in Figure 
3. 

b 

&‘, xs 7 WI 
dGo (x, x’, ~1 d&’ , x.7, ~1 

k(w) = 
dx’ 

- Go(x, x’, w) 
dx’ 

p+ --x., j 

a 2ik 

and thus, upon substituting for P, G, and their derivatives, 

2ik 

r 
eikb’ --xs h eiklY’ -rii~elk~il --x5 / eikl\ -x’/ 

~-- 

2ik 4 
~ SGN (x’ -x) 

2 

-~ 
2ik 

~ SGN (x’ -x,~) - ; 
2 iti 

ik SGN (x’ -x0) . 

l+2 II 
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For this geometry, G,, is given by the equation 

and dGo/dz,7 is given by 

dGo 
-= 
dz, I_: ii& 

- k," SGN (z, - z) 

Si( J(;)2-k;(z+z,y)) 

x (-id(,)I-k:)} dk,, 

where ct , c2 are the acoustic velocities of water and air, 
respectively, and A = (l/c:) - (l/c;). 

DISTRIBUTED SOURCE 

If the source consists of a sequence of localized point 
sources at r,v,, rs,, . . _ , r7 , each with same time depen- 
dence, then the wavelet A(‘;) is given by 

k(w) = 

&-‘,r,,w) 
%(r,r’,co) @r’, r,, ~1 

an -G~(r,r’,w) ds ’ 
an 

? 

(15) 

where P satisfies the differential equation 

V”P(r, I-~, w) + 1 [l - a(r’)]P(r’, r,T, w) 
Cl) 

=,4(w) i 6(r - r.5j) 

;=I 

and is th-e total fields due tom the ;r distributed point sourcesi 
However, if the localized point sources are each different, 
we can use the fact that r is arbitrary to obtain the system of 
equations 

J&h, r’, ~1 
= B(r’, r,, . . . ry,) , 0) an 

dP(r’, r,s, . . . rs, , 0) 
- GA-,, r’, 0) an 

ds’, 06) 

i=l,...m. 

This system of equations can be solved in a least-squares 
sense for the k,(w). 

Alternatively, the radiation pattern from a single effective 
point source could be determined by assuming that k(o) is 
also a function of the radius r, i.e., A(w)6(r - r,?) becomes 
the more general k(w, r), 

I 

co 
k(o, r’)G,,(r, r’, co) dr’ 

--(c 

ZZ 
I 

fib’, r,, w)V’G&‘, r, w) 
s 

- G,,(r’, r, o)V’P(r’, rs, co)] * n ds, (17) 

and thus the relative strength of the source field can be 
obtained by evaluating equation (17) for various r on a 
constant radius about the source. 

ELASTIC WAVELET ESTIMATION METHOD 

Below WC outline the generalization of the wavelet esti- 
mation method for elastic waves. As in the acoustic case, a 
comparison of the Lippmann-Schwinger equation and 
Green’s theorem is used to determine the wavelet. 

To derive the Green’s theorem for the elastic case, a rank 
two Green’s displacement tensor so is_ defined and in 
addition a rank three Green’s stress tensor $ is defined. In an 
analogous manner to the scalar case, a Green’s identity is 
obtained relating the displacement u(x, t) to a volume 
integral involving a body force and an integral over the 
enclosing surface which involves the displacement and its 
derivatives through the traction t. This Green’s theorem 
result [e.g., Pao and Varatharajulu (1976), equation (19)] for 
elastic waves is given by 
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/ 
pf(x’) * i&(x, x’) dx’ 

V 

+ I {t(x’) * &(x, x’) - u(x’) * [n’ - $(x1x’)]} cf.5 
s 

44 XEV 
zz 

0 x @ v, 
where u(x, t) is the displacement vector, t = n .‘f, where t 
is the traction on the surface, T is the stress tensor, n is the 
unit vector normal to the surface, f is the body force=per 
unit mass, CO is the Green’s displacement tensor and 7 is 
the third-rank Green’s stress tensor. 

Let GO be the response in a homogeneous medium and f 
the passive sources (the scattering centers) of the scattered 
displacement field originating from the inhomogeneities in 
the medium. The physical source is outside the volume V. In 
Pao and Varatharajulu, f represents the body force per unit 
mass and is inside the volume. They were considering an 
active physical source inside the homogeneous medium. We 

FIG. 9. Wavelet reconstruction for shot gathers in Figures 7 
and 8. 
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FIG. 8. Shot gather: point source, partial plane reflector. 
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are considering a physical source outside an inhomogeneous 
medium with passive scattering sources inside V. 

Let umn(x, x’) be the displacement at x in the n-axis 
direction due to a source at x’ in the m-axis direction. The 
source is A,(w)s(x - x’)II where II is the unit dyadic. In a 
manner similar to the acoustic case, the wavelet A,(o) can 
be determined from the Lippmann-Schwinger equation for 
elastic waves by dividing the surface term in equation (20) of 
Pao and Varatharajulu (the mnth component), 

{(Go - n’)(V’ * u) - (V’ * (&)(u * n’)} ds’ 

- PCS 
/ 

{& - (n’ x V’ x u) + (V’ x Go) - (n’ x u)} ds’ 

s n 

by G,,. 

NUMERICAL EXAMPLES 

Numerical examples are now used to investigate the effects 
of time and spatial sampling, finite aperture, approximations to 
the derivative of the field and the source array pattern. These 
examples are provided by solving a 2-D acoustic forward 
problem with a free surface, and a point source at xs. The 
wavelet estimation equation for this case is then 

dG~(r', r, ~1 aP 
&-‘, r, , 0) - Gob’, r, w) ; (r’, rs, 0) ds 

an 

Go@, rs, ~1 
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FIG. 10. Shot gather: distributed source, plane reflector. 
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source distribution. For the latter, no information about the ministic estimation of a wavelet using impedance type technique: 
nature of the source was required. Geophys. Prosp., 33, 956-969. 
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