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SUMMARY

In multiple-removal methods, a multiple prediction is usu-
ally followed by an adaptive-subtraction step that attempts
to compensate for any shortcoming in the prediction and al-
lows an adjustment for bridging the difference between the
predicted multiple and actual multiple. For example, the ISS
internal-multiple-attenuation algorithm (which can predict in-
ternal multiples with accurate time and approximate ampli-
tude without requiring any subsurface information) is typically
combined with an energy-minimization adaptive subtraction.
That combination is the most capable method available to-
day for removing internal multiples. However, an adaptive-
subtraction process (e.g., based on energy-minimization crite-
ria) can also damage primaries when removing multiples, es-
pecially when the multiples interfere with primaries. There-
fore, under that type of circumstance, a more accurate mul-
tiple prediction is sought in order to reduce the dependence
on the adaptive-subtraction. The objective is to preserve pri-
maries and successfully remove multiples. The ISS internal-
multiple-elimination algorithm can predict internal multiples
with both accurate time and accurate amplitude, without re-
quiring any subsurface information and without an adaptive-
subtraction step. In this paper, using 1D prestack data where
internal multiples interfere with primaries, we examine the
internal-multiple-removal result by the ISS internal-multiple-
elimination algorithm. For the situation where a multiple in-
terferes with a primary, we compare (1) the result from the
ISS internal-multiple-elimination algorithm without adaptive
subtraction, and (2) the result from the ISS internal-multiple
attenuation with adaptive subtraction with (3) the actual pri-
maries in the data. We note that for the third item, modeling
primaries, wave-theoretic modeling methods (not ray theory)
can produce an accurate data set consisting of only primaries
(and is only available) for a 1D subsurface. That is the rea-
son this paper examines the efficacy of different elimination
approaches in 1D. The test results demonstrate that the ISS
elimination algorithm (with an accurate prediction of both time
and amplitude) can directly remove internal multiples that in-
terfere with primaries, without damaging primaries, whereas
the current most capable method to remove internal multiples
(i.e., the ISS internal-multiple-attenuation algorithm plus an
energy-minimization adaptive subtraction) can remove multi-
ples but often at the expense of damaging primaries.

INTRODUCTION

Multiple removal is a long-standing problem in seismic data
processing. Methods that attenuate multiples can be classi-
fied as belonging to two broad categories (Weglein, 1995): (1)

those that seek to exploit a feature or property that differenti-
ates primary from multiple (e.g., Thorson and Claerbout, 1985;
Foster and Mosher, 1992) and (2) those that predict and then
subtract multiples from seismic data (e.g., Araujo et al., 1994;
Weglein et al., 1997; Berkhout and Verschuur, 1997).

For multiple removal methods in the second category, a mul-
tiple prediction is usually followed by an adaptive-subtraction
step that attempts to compensate for any shortcoming in the
prediction and allows an adjustment for bridging the difference
between the predicted multiple and the actual multiple. For ex-
ample, the ISS internal-multiple-attenuation algorithm is typi-
cally combined with an energy-minimization adaptive subtrac-
tion. The energy-minimization adaptive subtraction can use an
L2 norm and assumes minimum energy after multiple removal.
The idea is that the “energy” in some interval of space and
time is less without the multiple than with the multiple. This
assumption can be violated in complex off-shore and most on-
shore plays where primaries and internal multiples often de-
structively interfere and, as a result, the energy can actually in-
crease, rather than decrease, after multiple removal. Primaries
can be easily damaged in that process.

For dealing with this challenging problem, Weglein (2015)
proposed a three-pronged strategy including (1) develop the
ISS prerequisites for predicting the reference wave field and
producing de-ghosted data; (2) develop internal-multiple-
elimination algorithms from ISS, and (3) develop a replace-
ment for the energy-minimization criteria for adaptive subtrac-
tion.

In this paper, we focus on the second aspect of the three-
pronged strategy. For a situation where a multiple interferes
with a primary, we compare the result from the ISS internal-
multiple elimination without adaptive subtraction and the re-
sult from the ISS internal-multiple attenuation with adaptive
subtraction to the actual primaries in the data. For the actual
primaries in the data, wave-theoretic modeling methods (e.g.,
reflectivity) can produce an accurate data set consisting of only
primaries for a 1D subsurface, hence, the comparison is exam-
ined in 1D.

THE ISS INTERNAL-MULTIPLE-ATTENUATION AL-
GORITHM

The ISS internal-multiple-attenuation algorithm (Araujo et al.,
1994; Weglein et al., 1997), for 1D subsurface case and
prestack data, is expressed as follows:

D(x, t)+D3(x, t). (1)

D(x, t) is the input data in space-time domain, and consists of
primaries and internal multiples (the reference wave, ghosts



and free-surface multiples are assumed to have been removed,
and the wavelet has been deconvolved). D3(x, t) is the pre-
diction for the first-order internal multiples. It can be calcu-

lated using the input data as follows: D(x, t)
1©−−→ D(k,ω)

2©−−→

b1(k,z)
3©−−→ b3(k,2q)

4©−−→ D3(k,ω)
5©−−→ D3(x, t). Step 1 is the

Fourier transform of the input data from x, t to k,ω . Step 2
is an uncollapsed Stolt migration (Weglein et al., 1997) of the
transformed input data using a reference velocity c0. Step 3 is
the ISS internal-multiple prediction, shown below:

b3(k,2q) =
∫

∞

−∞

dze2iqzb1(k,z)
∫ z−ε

−∞

dz′e−2iqz′b1(k,z′)

×
∫

∞

z′+ε

dz′′e2iqz′′b1(k,z′′). (2)

In step 4, b3(k,2q) = 2iqD3(k,ω), where q =

sgn(ω)
√

ω2/c2
0− k2. Step 5 is the Inverse Fourier transform

of the prediction from k,ω back to x, t.

The predicted first-order internal multiples in D3 have the ac-
curate time and approximate amplitude (in opposite polarity)
compared with the actual internal multiples in the data D:

IMpred =−(AF)× IMactual . (3)

The amplitude difference between the actual and predicted in-
ternal multiple is represented by Attenuation Factor (AF) (We-
glein and Matson, 1998; Weglein et al., 2003). The data with
their first-order internal multiples attenuated are represented
by Equation 1.

THE ISS INTERNAL-MULTIPLE-ELIMINATION AL-
GORITHM

Weglein and Matson (1998) studied the attenuation factor and
provided the initial idea and algorithm to remove the attenua-
tion factor. Following their idea, Ramı́rez and Weglein (2005),
Herrera and Weglein (2013), Y. Zou and Weglein (2013, 2014,
2015), and Y. Zou et al. (2016) developed the ISS internal-
multiple-elimination algorithm for a 1D and multi-D earth, re-
spectively. For a 1D subsurface and prestack data, the ISS
internal-multiple-elimination algorithm is

bIM
E (k,2q) =

∫
∞

−∞

dze2iqzb1(k,z)
∫ z−ε

−∞

dz′e−2iqz′F [b1(k,z′)]

×
∫

∞

z′+ε

dz′′e2iqz′′b1(k,z′′), (4)

where

F [b1(k,z)] =
1

2π

∫
∞

−∞

∫
∞

−∞

dz′dq′
1

[1−|
∫ z′+ε

z′−ε
dz′′g(k,z′′)eiq′z′′ |2]

× e−iq′zeiq′z′b1(k,z′)

[1−
∫ z′−ε

−∞
dz′′′b1(k,z′′′)eiq′z′′′

∫ z′′+ε

z′′−ε
dz′′′g∗(k,z′′′)e−iq′z′′′ ]2

,

(5)

Layer 1 Layer 2 Layer 3 Layer 4
Velocity (m/s) 1500 3500 1000 1500
Thickness (m) 150 500 120 ∞

Table 1: The 1D acoustic model used to generated the syn-
thetic data in the first example.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
Vp (m/s) 1500 2000 1500 1500 2500
Vs (m/s) 400 1200 900 1500 1500
ρ (g/cm3) 1.0 3.0 2.1 1.5 1.8
Thickness (m) 300 500 1100 200 ∞

Table 2: The 1D elastic model used to generated the synthetic
data in the second example.

g(k,z) =
1

2π

∫
∞

−∞

∫
∞

−∞

dz′dq′

× e−iq′zeiq′z′b1(k,z′)

1−
∫ z′−ε

−∞
dz′′′b1(k,z′′′)eiq′z′′′

∫ z′′+ε

z′′−ε
dz′′′g∗(k,z′′′)e−iq′z′′′

.

(6)

b1(k,z) in Equation 4, 5, and 6 is the same as in Equation 2.
F [] in Equation 4 removes the attenuation factor and turns the
attenuation algorithm (i.e., Equation 2) into the elimination al-
gorithm (i.e., Equation 4).

NUMERICAL EXAMPLE

In this section, we show two numerical examples where pri-
maries and internal multiples interfere with each other. We
choose a 1D prestack example to test because wave-theoretic
(not ray-theory) based modeling can only produce a data set
exclusively with primaries when the subsurface is 1D acoustic
or 1D elastic.

Table 1 shows the subsurface parameters for the first exam-
ple of synthetic data generated using the reflectivity method.

Figure 1(a) shows the tested input data. Notice that, only
three primaries (P1, P2, and P3) and one first-order internal
multiple generated by the first two reflectors (IM212) are con-
sidered. Figures 1(b) and 1(c) show the predictions of inter-
nal multiples by the ISS attenuation algorithm and elimina-
tion algorithm, respectively. Figures 1(d) and 1(f) show the
results after internal multiple removal, by direct addition of
the two prediction results (i.e., 1(b), 1(c)) to the data. Fig-
ure 1(e) shows the result after internal-multiple removal using
the prediction result from the attenuation algorithm (i.e., 1(b))
plus energy-minimization adaptive subtraction. Please notice
that we use a single-channel matching filter for the adaptive
subtraction process and the subtraction operator is calculated
assuming that the predicted multiple only has a scalar differ-
ence with the actual multiple (Equation (2) and (3) in Wang,
2003). Figure 1(g) shows the wiggle plot of the region where
P3 and IM212 interfere (offset: 400m–2500m, time: 0.6s–1.2s).
Notice that only P3 and IM212 are plotted in Figure 1(g). Fig-
ures 1(h) and 1(i) show the actual P3 and actual IM212 in the
data, respectively. Figures 1(j), 1(l), and 1(k) show the wiggle
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Figure 1: Results in the first example. See text for detailed explanation.

plots of that region corresponding to the Figures in 1(d), 1(f),
and 1(e). Examining the results in Figure 1(j), it is noticed
that, the ISS internal-multiple-attenuation prediction (with ac-
curate time and approximate amplitude) can be directly added
onto the data to attenuate internal multiples and partially re-
cover primaries around 1000m offset (where primaries and
internal multiple destructively interfere). However, with this
approximate amplitude, there are residues left, especially at

far offsets (2000m–2500m). The reason is that the attenu-
ation factor becomes smaller as offset increases, hence, the
residue after applying the attenuation increases as offset in-
creases. Combining this prediction result from the attenuation
algorithm with the energy-minimization adaptive-subtraction
criterion, the residue will be removed in the region where P3
and IM212 do not interfere, as shown in Figure 1(k). However,
in the region where they do interfere, the primary is damaged
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Figure 2: Results in the second example. See text for detailed explanation.

and shows distortions. With the improved amplitude predic-
tion from the ISS internal-multiple-elimination algorithm, the
internal multiple is cleanly removed, and the primary can be
recovered in the interfering region as shown in Figure 1(l).

In the second example, we generate the synthetic data using a
four-reflector elastic model (Table 2). Figure 2(a) shows the
synthetic data we used in this example; only the PP compo-
nent of the wavefield is shown. We focus on one of the regions
in the data where primaries and internal multiples interfere,
shown in Figure 2(b) (Offset: 500m–1500m, Time: 2.75s–
3.05s). Figure 2(c) shows the actual primaries in the data in
that region. Figures 2(d), 2(e), and 2(f) show the result af-
ter internal-multiple removal using the current ISS attenuation
algorithm with (Figure 2(d)) and without (Figure 2(e)) adap-
tive subtraction, and the ISS elimination algorithm (Figure
2(f)) and without adaptive subtraction, respectively. Similar
to the first example, the predicted multiple is assumed to only
have a scalar difference with the actual multiple, and a single-
channel matching filter for the adaptive-subtraction process is
used. Examining the results and comparing them with the ac-
tual primaries in the data, we can see the elimination algorithm
can effectively recover primaries which interfere with inter-
nal multiples, whereas the attenuation algorithm plus energy-
minimization adaptive subtraction could damage primaries.

CONCLUSIONS

A three-pronged strategy is proposed by (Weglein, 2015) for
dealing with the internal-multiple-removal challenges where
internal multiples interfere with primaries. In this paper, we
focus on the second aspect of the strategy (developing internal-
multiple-elimination algorithms from ISS). The ISS internal-
multiple-elimination algorithm provides a new capability of

predicting exactly the time and amplitude of all first-order in-
ternal multiples to directly address the current industry chal-
lenge (proximal and interfering multiples and primaries) and
surgically remove (eliminate) the multiples directly, and with-
out subsurface information, and without damaging primaries.
In this paper, we compare the new ISS internal-multiple-
elimination algorithm and the industry-standard ISS internal-
multiple-attenuation algorithm plus adaptive subtraction when
primaries and internal multiples interfere and where we can
evaluate the efficacy by using wave-theoretical accurate data
consisting of only primaries. The tests on the 1D prestack data
demonstrate this new capability to reduce our dependence on
energy-minimization adaptive subtraction in the case of inter-
fering primaries and internal multiples. We provide it as a new
internal-multiple-removal capability in the multiple removal
toolbox that can remove internal multiples that interfere with
primaries without subsurface information and without damag-
ing primaries.

In addition to the second aspect of the three-pronged strategy,
progress has been made and will continue to be made for the
other two aspects (developing the ISS prerequisites for pre-
dicting the reference wave field and producing de-ghosted data
and developing a replacement for the energy-minimization cri-
teria for adaptive subtraction). For example, a candidate for a
replacement for energy-minimization adaptive subtraction for
free-surface multiples is given in Weglein (2012). A similar
adaptive criteria will be developed for internal multiples.
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