
The significance of incorporating a 3-D point source in the inverse scattering series internal multiple
attenuator for a 1-D subsurface
Xinglu Lin∗ and Arthur B. Weglein, M-OSRP/Physics Dept./University of Houston

SUMMARY

In this paper, the 3-D inverse scattering series (ISS) internal
multiple attenuation algorithm (Araújo et al., 1994; Weglein
et al., 1997, 2003) is modified for a one-dimensional subsur-
face to incorporate a 3-D point source in multiple predictions,
for improved realism and effectiveness. The new algorithm,
which assumes the earth is only varying in the z-direction (1-
D subsurface/earth, reasonable in many circumstances in Cen-
tral North sea (Duquet et al., 2013), on-shore Canada, and the
Middle East), represents more than a small increase in effec-
tiveness of predicting the shape and amplitude of multiples,
compared to a frequently employed 1.5-D ISS internal multi-
ple attenuator (assuming a 2-D line source and a 1-D earth).
The numerical tests are performed on a 3-D source synthetic
data set from a 1-D subsurface. The results demonstrate that
the new algorithm incorporating a 3-D point source can change
the prediction from ’causing harm’ to ’providing benefit’ in
comparison to an internal multiple attenuation algorithm that
assumes a 1-D earth and a line source.

INTRODUCTION

The current state of ISS algorithms provides a multidimen-
sional procedure that eliminates all free-surface multiples and
attenuates all internal multiples (Carvalho, 1992; Araújo et al.,
1994; Weglein et al., 1997, 2003). Yanglei Zou and Chao Ma
are pioneering new ISS capability for internal multiple removal
(Zou and Weglein, 2014; Liang et al., 2013; Ma and Weglein,
2014). This approach has its unique strengths in that it does not
require subsurface information and is even independent of the
earth model-type. These multidimensional methods, the ISS
internal multiple attenuation algorithm (Araújo et al., 1994;
Weglein et al., 1997) can predict the accurate time and approx-
imate amplitude of internal multiple (that are generated by the
reflectors below the free-surface). The data requirement of this
method depends on how many dimensions are assumed to be
spatially variable in the subsurface. For example, the original
2-D ISS internal multiple attenuation algorithm (assuming 2-
D line sources and 2-D line receivers) requires a collection of
shot records on a line. However, for a 3-D subsurface (assum-
ing 3-D point sources and 3-D point receivers), the algorithm
needs the sources everywhere on the measurement plane and
each source needs the receivers everywhere on the plane.

The implementations on this method have shown promising
results for marine (e.g. Ferreira, 2011; Matson and Weglein,
1996) and on-shore cases (e.g. Fu et al., 2010; Luo et al., 2011;
Terenghi et al., 2011). There are circumstances where it is rea-
sonable to assume a 1-D subsurface (e.g. Central North sea
(Duquet et al., 2013), on-shore Canada, and the Middle East).
Recently, the 1.5-D ISS internal multiple attenuator (the algo-
rithm reduced from a complete 2-D ISS internal multiple atten-

uation algorithm for a 1-D subsurface) has been successfully
applied on Saudi Aramco on-shore data (Luo et al., 2011) and
also produced a positive result for the Encana land data (Fu
and Weglein, 2014).

In this abstract, we will incorporate a 3-D point source into the
1-D subsurface ISS internal multiple attenuation algorithm to
develop a more realistic algorithm and to evaluate the signifi-
cance of including the 3-D source in the algorithm.

THE 3-D AND 2-D ISS INTERNAL MULTIPLE ATTEN-
UATION ALGORITHM

The ISS internal multiple attenuator was originally proposed
by Araújo et al. (1994) and Weglein et al. (1997). The prepa-
ration of the 3-D ISS internal multiple prediction starts from
data D(xg,yg,εg,xs,ys,εs, t), where (xg,yg,εg) and (xs,ys,εs)
are the receiver- and source-location, respectively. For the
fixed depth of sources and receivers (omit εs,εg), the b1 term
is defined by the data in wavenumber-frequency domain as
b1(~kg,~ks,qg +qs) =−2iqs ·D(~kg,~ks,ω), where the vertical

wavenumber is qi = sgn(ω)
√

(ω/c0)2− k2
xi
− k2

yi
, i ∈ {g,s}

and ~kg = (kxg ,kyg), ~ks = (kxs ,kys). The b1 term can be Fourier
transformed to the depth domain as b1(~kg,~ks,z), and corre-
sponds to an un-collapsed Stolt migration. The ISS internal
multiple attenuation algorithm in 3-D is

b3D
3 (kxg ,kyg ,kxs ,kys ;ω)

=
1

(2π)4

∫∫
dkx1 dkx2

∫∫
dky1 dky2 e−iq1(εg−εs)eiq2(εg−εs)

×
∫ +∞

−∞

dz1b1(kxg ,kyg ,kx1 ,ky1 ,z1)ei(qg+q1)z1

×
∫ z1−ε

−∞

dz2b1(kx1 ,ky1 ,kx2 ,ky2 ,z2)e−i(q1+q2)z2

×
∫ +∞

z2+ε

dz3b1(kx2 ,ky2 ,kxs ,kys ,z2)ei(q2+qs)z3 , (1)

where the qi = sgn(ω)
√

(ω/c0)2− k2
xi
− k2

yi
, i ∈ {g,1,2,s},

and b3D
3 (kxg ,kyg ,kxs ,kys ,ω) is a 3-D internal multiple attenu-

ator in wavenumber-frequency domain. The 3-D algorithm in
equation (1) assumes that the acquisition applies 3-D sources
and 3-D receivers for a 3-D subsurface. Two dimension space
and time inverse Fourier transforming b3D

3 (kxg ,kyg ,kxs ,kys ,ω)/
(−2iqs) can produce the 3-D space-time attenuator, which pre-
dict the internal multiple accurately in time and approximately
in amplitude. In addition, (b1 +b3)/(−2iqs) can generate the
result after multiple removal when it is returned to the space-
time domain.

Similarly, a set of 2-D data D(xg,xs, t) can be transformed into
wavenumber-frequency domain as D(kg,ks,ω), which defines
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the 2-D b1(kg,ks,qg +qs) =−2iqs ·D(kg,ks,ω). And then the
2-D ISS internal multiple attenuation algorithm is

b2D
3 (kg,ks;ω)

=
1

(2π)2

∫∫
dk1dk2e−iq1(εg−εs)eiq2(εg−εs)

×
∫ +∞

−∞

dz1b1(kg,k1,z1)ei(qg+q1)z1

×
∫ z1−ε

−∞

dz2b1(k1,k2,z2)e−i(q1+q2)z2

×
∫ +∞

z2+ε

dz3b1(k2,ks,z2)ei(q2+qs)z3 , (2)

where the vertical wavenumber is qi = sgn(ω)
√

(ω/c0)2− k2
i ,

i ∈ {g,1,2,s}, b1(kg,ks,z) is an un-collapsed Stolt migration
of a 2-D data (transform b1(kg,ks,qg + qs) back to depth do-
main) , and b2D

3 (kg,ks,ω) is a 2-D internal multiple attenua-
tor in wavenumber-frequency domain. The 2-D attenuator in
space-time domain can be obtained by inverse Fourier trans-
forming b2D

3 (kg,ks,ω)/(−2iqs). In contrast to the 3-D case,
algorithm in equation (2) assumes a 2-D subsurface, in which
the acquisition corresponds to 2-D line sources and 2-D line
receivers.

In the following sections, both the 3-D algorithm and 2-D al-
gorithm are reduced for the data from a 1-D subsurface, where
in the 3-D case the source is a 3-D point source and in the 2-D
case the source is a line source. For convenience, the super-
script 1DE represents the 1-D earth assumption for different
sources (For example, 2-D line source 1-D earth: 2D1DE; 3-
D point source 1-D earth: 3D1DE).

THE ISS INTERNAL MULTIPLE ATTENUATOR ASSUM-
ING A 2-D LINE SOURCE FOR A 1-D SUBSURFACE

In developing the algorithm for a 1-D earth pre-stack data, it
was natural that people started with the 2-D ISS internal mul-
tiple attenuation algorithm and then reduced it for a 1-D sub-
surface data. The data that occurs in the 2-D earth can be pre-
sented as D(xg,xs,ω) or D(xm,xh,ω) in space-frequency do-
main, where xm = xg + xs and xh = xg − xs. The data from
a 1-D earth, shown as D2D1DE(xh,ω), only depends on the
source-receiver offset (xh) and the frequency (ω). The Fourier
transform over the 2-D data for a 1-D earth, which is needed
for the algorithm, can be shown as,

D(kg,ks;ω) =

∫∫
eikgxg e−iksxs D2D1DE(xh,ω)dxgdxs

=
1
2

∫
eikhxh D2D1DE(xh,ω)dxh

∫
eikmxm dxm

= D2D1DE(kh,ω)(2π) ·δ (kg− ks), (3)

where kh =
kg+ks

2 and km =
kg−ks

2 . The data is independent
of xm and can come out of the integral. Consequently, the
Fourier transform integral over xm can produce a Dirac delta
function in km. b1 is defined as b1(kg,ks,qg + qs) = −2iqs ·

D(kg,ks,ω). The un-collapsed Stolt migration b1 can be ex-
pressed by b2D1DE

1 as,

b1(kg,ks,z) = b2D1DE
1 (kh,z)(2π) ·δ (kg− ks). (4)

By applying this 1-D earth b1 to the equation (2), the lateral in-
tegrals (

∫ ∫
dk1dk2) can be evaluated by the Dirac delta func-

tions. Then equation (2) produces the reduced 1.5-D internal
multiple attenuator as,

b2D1DE
3 (kh;ω) =∫ +∞

−∞

dz1b2D1DE
1 (kh,z1)ei2qz1

∫ z1−ε

−∞

dz2b2D1DE
1 (kh,z2)e−i2qz2

×
∫ +∞

z2+ε

dz3b2D1DE
1 (kh,z3)ei2qz3 , (5)

where kh = kg = ks (evaluating by the Dirac delta functions)

and q = sgn(ω)
√

(ω/c0)2− k2
h. Prediction D3 in the space

domain can be obtained by an inverse Fourier transform as,

D2D1DE
3 (xh;ω) =

1
2π

∫
b2D1DE

3 (kh;ω)/(−2iqs)eikhxh dkh.

(6)
The process following equations (5) and then (6) gives us the
ISS internal multiple attenuation algorithm assuming a 2-D
line source for a 1-D subsurface.

THE ISS INTERNAL MULTIPLE ATTENUATOR ASSUM-
ING A 3-D POINT SOURCE FOR A 1-D SUBSURFACE

The 3-D data generated by a 1-D earth only depends on the
source-receiver offset and the frequency, which has a spatial
circular symmetry in cylindrical coordinates (independence of
azimuth angle). This symmetry makes it convenient to study
the 1-D earth problem with cylindrical coordinates. The 3-
D vectors (x,y,z) and (kx,ky,kz) in Cartesian coordinates can
be transformed to (ri,θi,zi) and (kri,φi,kzi), i ∈ {g,1,2,s},
in cylindrical coordinates, which is characterized by a radial
length, an azimuth angle and a vertical position. The depen-
dence of a 3-D data for a 1-D earth can be expressed as D3D1DE

(|~rg −~rs|,ω) or D3D1DE(rh,ω), where the ~rg and ~rs are the
projection of receiver and source locations on x-y plane, re-
spectively. rh is the magnitude of the difference between ~rg
and ~rs. Due to the cylindrical symmetry, the 3-D source-1-D
subsurface data can be transformed to (kri,ω) domain as,

D(~kg,~ks;ω) = D3D1DE(krh;ω)(2π)2 δ (krg− krs)δ (φg−φs)

krg
,

(7)
where krh = krg. The receivers are required along the r-direction
as D3D1DE(rh,ω), because

D3D1DE(krh;ω) = 2π

∫
∞

0
D3D1DE(rh;ω)J0(krhrh)rhdrh. (8)

The form of data in (kri;ω) domain (equation (7)) contains
the Dirac delta functions in cylindrical coordinates, which is
equivalent to δ (kxg−kxs)δ (kyg−kys) in Cartesian coordinates.
Similar to the 2-D case, b1 back to depth domain is,

b1(~kg,~ks,z) = b3D1DE
1 (krg,z)(2π)2 δ (krg− krs)δ (φg−φs)

krg
,

(9)
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which is a 3-D un-collapsed Stolt migration. Substitute this
term into the full 3-D ISS internal multiple attenuation algo-
rithm in equation (1) with arranging the integral variable from
dkxdky to krdkrdφ . The lateral integrals

∫∫∫∫
kr1dkr1dφ1

kr2dkr2dφ2 can be evaluated due to the Dirac delta functions,
as above. The reduced form of the 3-D algorithm is

b3D1DE
3 (krh;ω) =∫ +∞

−∞

dz1b3D1DE
1 (krh,z1)ei2qz1

∫ z1−ε

−∞

dz2b3D1DE
1 (krh,z2)e−i2qz2

×
∫ +∞

z2+ε

dz3b3D1DE
1 (krh,z3)ei2qz3 , (10)

where krh = krg = krs (evaluated by Dirac delta functions), ver-

tical wavenumber q= sgn(ω)
√

(ω/c0)2− k2
rh and εg = εs (re-

ceivers and sources are located at the same depth ). Equation
(10) has the same form as the reduced 2-D internal multiple
attenuator (equation (5)) for 1-D subsurface in wavenumber-
frequency domain.

b3D1DE
3 (krh;ω) needs to be transformed back to the space do-

main by an inverse Hankel transform (derived from two dimen-
sion Fourier transform due to the independence of the azimuth
angle), instead of an inverse Fourier transform. The internal
multiple prediction D3D1DE

3 (rh;ω) can be obtained by using,

D3D1DE
3 (rh;ω) =

1
2π

∫
∞

0
J0(krh · rh)

b3D1DE
3 (krh;ω)

−2iqs
krhdkrh.

(11)
We can rewrite the integral above using Bessel functions of the
third kind (Hankel function) H+

0 as,

D3D1DE
3 (rh;ω)=

1
4π

∫ +∞

−∞

H+
0 (krh ·rh)

b3D1DE
3 (krh;ω)

−2iqs
krhdkrh,

(12)

where q= sgn(ω)
√

(ω/c0)2− k2
rh. Considering the high com-

putational costs in this transform, we can use the approximate
asymptotic Hankel function to improve the efficiency. Then
the asymptotic Hankel transform is,

D3D1DE
3 (rh;ω)=

1
2π

∫ +∞

−∞

√
krh

i2πrh

b3D1DE
3 (krh;ω)

−2iqs
eikrhrh dkrh.

(13)
In a specified acquisition geometry that sources and receivers
are on the same streamer in 3-D survey, we can make r along
any angle in x-y plane, including r = x. The equation (10)
combining with equation (11) or (13) form the ISS internal
multiple attenuator assuming a 3-D point source for 1-D sub-
surface.

NUMERICAL RESULTS

The synthetic 3-D source data are generated based on a 1-
D acoustic layered model in Figure 1 using a broad band-
width. Since the data set is generated in (krh,q) domain by
reflectivity method, we assume that the data is transformed
from space-time domain to wavenumber-frequency domain by
space Fourier-Bessel transform (Hankel transform) and time

Fourier transform. The dataset is one pre-stack shot record
(see Figure 2 (a)) without free-surface multiple or ghost, which
satisfies the data requirements of both the ISS internal multi-
ple attenuation algorithm assuming a 2-D line source (equation
(5),(6)) and a 3-D point source (equation (10), (11) or (13)).

The comparisons between the original data, the 2-D line source
prediction and the 3-D point source predictions are shown in
four shot gather plots (see Figure 2). The original 3-D source
data from a 1-D earth is shown in Figure 2 (a), which con-
tains two primaries and one internal multiple events. Figure
2 (c) presents the internal multiple prediction assuming a 2-D
line source, in which the tail spread (a non-spherical wave) is
due to the impulse signature in a 2-D Green’s function. Both
Figure 2 (b) and (d) provides the predictions assuming a 3-D
point source. The difference is that the result in (d) employs
an asymptotic Bessel function (equation (13)) in order to trans-
form the prediction back to space domain, instead of doing a
Hankel transform (equation (11)) in the prediction shown in
(b). The reason is because the efficiency of a 3-D point source
prediction is the same as a 2-D line source prediction when an
asymptotic Bessel function is used.

All the predictions here produce an accurate time of the in-
ternal multiple, but different wavelet shape (Figure 2 (c)) or
amplitude (Figure 2 (b) (c) (d)) from the original internal mul-
tiple. In a further step, we explore the effectiveness of differ-
ent predictions by comparing results in near-offset (Figure 3
(a) (b), trace 2) and far-offset (Figure 3 (c) (d), trace 60).

Figure 3 (a) and (c) demonstrate that the 2-D line source pre-
diction (blue line) can generate a deviated wavelet and a much
larger amplitude than original internal multiple (red line). In
this case, direct subtracting the prediction from the data can
produce a larger multiple event in the de-multipled result, which
is harmful to the subsequent processing. Meanwhile, the 3-D
source predictions (black line, green line) always will be an
attenuator as expected, for both near- and far- offset (smaller
amplitude compared to original internal multiple (red line)).

Figure 1: Acoustic model used to generate synthetic 3-D point
source data.

Figure 3 (b) and (d) presents the difference between the origi-
nal data (red line) and the 3-D source predictions on near- and
far-offset traces, respectively. The wiggle plots (corresponding
to the time slot in red box in Figure 3 (a) and (c) ) are shown in
a larger scale. The results demonstrate that the predictions as-
suming a 3-D source are always attenuators, which is the char-
acteristic of the ISS internal multiple attenuation algorithm.
For a near-offset trace (see Figure 3 (b)), the prediction using
an asymptotic Bessel (green line), which is a far-field approx-
imation, is not as effective as the prediction retaining Hankel
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Figure 2: (a) One shot gather of a 3-D source-1-D earth
data; (b) ISS internal multiple prediction assuming a 3-D point
source; (c) ISS internal multiple prediction assuming a 2-D
line source; (d) ISS internal multiple prediction assuming a 3-
D point source using an asymptotic Bessel function.

transform in it (black line). Nevertheless, for the far-offset
trace (see Figure 3 (d)) the amplitudes of these two predictions
tend to be the same. Please notice that when the asymptotic
Bessel function is applied to a 3-D point source attenuator for
1-D subsurface, the computational cost of it can be reduced to
the same as the cost of a 1.5-D line source attenuator, which
can finish its prediction in the order of seconds for this small
size experimental data.

CONCLUSION

In this paper, a reduced and modified 3-D source ISS inter-
nal multiple attenuator has been proposed for a 1-D subsur-
face, which enhances the effectiveness of predicting the shape
and amplitude of the internal multiples. Numerical tests and
analysis illustrate that with the data generated by a 3-D point
source it is important to incorporate that source dimension in
the ISS internal multiple attenuation algorithm. That incorpo-
ration will always reduce the internal multiple. Using an inter-
nal multiple predictor that assumes a 2-D line source on data
from a 3-D point source can make the multiple larger ampli-
tude. Therefore, it is essential to incorporate a 3-D point source
in internal multiple algorithms when the subsurface is 1-D, 2-
D or 3-D. Ignoring the 3-D source inclusion on real data can
result in an effective and useful algorithm making the multiple
problem worse. That was an interesting and surprising result
for the important role that a 3-D source accommodation is for
internal multiple prediction effectiveness.
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(a) Wiggle comparison of trace 2

(b) Plot the slot in the red box in (a) without the 2-D source prediction
in a larger scale

(c) Wiggle comparison of trace 60

(d) Plot the slot in the red box in (c) without the 2-D source prediction
in a larger scale

Figure 3: Wiggle comparison of trace 2 (a) (b) and trace 60 (c)
(d); Red line: original 3-D source-1-D earth data; Blue line:
ISS internal multiple prediction assuming a 2-D line source;
Black line: ISS internal multiple prediction assuming a 3-D
point source; Green line: ISS internal multiple prediction as-
suming a 3-D point source using an asymptotic Bessel func-
tion.
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