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SUMMARY

The inverse scattering series (ISS) direct non-linear inversion
and the iterative linear inversion for parameter estimation are
examined and compared. The convergence and the rate of con-
vergence of both the ISS inversion subseries and the iterative
inversion method are tested for different velocity contrasts on
a simple 1D one parameter acoustic model. The rate of con-
vergence of the ISS inversion method is analytically and nu-
merically studied. When the reflection coefficient R < 0.618,
the ISS inversion subseries monotonically term-by-term im-
proves the estimation of medium properties; when R > 0.618,
the ISS inversion subseries still converges, but not monotoni-
cally. Numerical tests show that when the velocity contrast is
small, both inversion methods converge and the ISS inversion
method converges faster than the iterative inversion method.
When the velocity contrast increases, the iterative inversion
method will not converge when R > 0.5, while the ISS inver-
sion method always converges.

INTRODUCTION

The objective of seismic inversion is to estimate the medium
properties of the subsurface from the recorded wavefield. Typ-
ically this begins with a chosen reference medium and the mea-
sured wavefield. Then an operator identity is called upon that
relates the difference between the medium and reference prop-
erties and the difference between the measured total wavefield
and the reference wavefield. This identity can be used to find
a direct solution to the forward problem or a direct solution to
the inverse problem for any type of medium.

If we seek the parameters of an elastic heterogeneous isotropic
subsurface, then the differential operator in the operator iden-
tity is the differential operator that occurs in the elastic, hetero-
geneous isotropic wave equation. The elastic isotropic model
is the base acceptable earth model-type for amplitude analy-
sis, for example, AVO and FWI. Taking the operator iden-
tity (called the Lippmann-Schwinger or scattering theory equa-
tion) and the elastic wave equation, we can obtain a direct in-
verse solution for the changes in elastic properties and den-
sity. The direct inverse solution specifies both the data re-
quired and the algorithm to achieve a direct solution. The
direct inverse (Zhang and Weglein, 2006; Li, 2014) requires
multi-component/PS data and prescribes how that data are uti-
lized for a direct parameter estimation solution. The direct
solution (Weglein et al., 2003, 2009) provides a solid frame-
work and firm math-physics foundation for the data require-
ment and algorithms to solve the problem that you are inter-
ested. There are many other issues that contribute to the gap
in FWI today, e.g., the need for broadband data. But starting
with and employing a framework that provides confidence of

the data and methods is a significant, fundamental, and practi-
cal contribution towards filling the gap (Weglein, 2015). Only
a direct solution can provide that clarity, confidence and ef-
fectiveness. The current industry standard FWI, using variants
of iterative linear inverse, correspondent to model matching
procedures, and iteratively linearly updating P data or multi-
component data does not correspond to, and will not produce,
a direct solution with its clarity and effectiveness.

The direct solution is in the form of a series, referred to as the
inverse scattering series (Weglein et al., 2003). It can achieve
all processing objectives within a single framework without
requiring any subsurface information. There are isolated-task
inverse scattering subseries, which can perform free-surface
multiple removal, internal multiple removal, depth imaging,
parameter estimation, and Q compensation. In this paper, we
focus on analyzing and examining the ISS inversion subseries
for parameter estimation. The distinct issues of: (1) data re-
quirements, (2) model-type, and (3) inversion algorithm for
the direct inverse are all important. For a normal incident wave
on a single horizontal reflector in an acoustic medium, we can
isolate and focus on the algorithm difference when mode-type
agrees and there is the same data, a single reflector acoustic P
wave. This allows us to focus on the algorithm issues.

A comparison between the ISS direct non-linear inversion and
the iterative inversion will be tested and shown on a 1D, one
parameter, and a single horizontal reflector model, where the
velocity is assumed to be known above the reflector and un-
known below the reflector. Their convergence and the rate
of convergence will be discussed and studied. In the ISS in-
version subseries, each term of the series works towards the
final goal. Sometimes when more terms in the series are in-
cluded, the estimation may be worse locally, but in fact it is
purposeful and essential in the contribution towards conver-
gence and the final goal. This property has also been indi-
cated by Carvalho (1992) in the free-surface multiple elimi-
nation subseries, e.g., what appears to make a second-order
free-surface multiple larger with a first-order free-surface al-
gorithm is actually preparing the second-order multiple to be
removed by the higher-order terms. This simple example pro-
vides a guide when we move on to the more complicated elas-
tic world.

THEORY

Starting from the two basic differential equations (Weglein et al.,
2003), which govern wave propagation in actual medium and
reference medium

LG = δ and L0G0 = δ (1)

where L, L0 and G, G0 are the differential operators and Green’s
functions in actual and reference medium, respectively. Defin-
ing the perturbation V = L0−L, the forward modeling series
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(Born series) can be derived

G = G0 +G0V G0 +G0V G0V G0 + · · · (2)

from the Lippmann-Schwinger equation. Expanding V as a
series

V =V1 +V2 +V3 + · · · (3)

and substituting it into the equation 2, the inverse scattering
series is obtained as

D = [G0V1G0]ms (4)

0 = [G0V2G0]ms +[G0V1G0V1G0]ms (5)
...

where D is G−G0 on the measurement surface. The inverse
scattering series provides a direct method for obtaining the
subsurface information by inverting the series order-by-order
to solve for the perturbation operator V , using only the mea-
sured data D and a reference wave field G0, for any type of
medium.

On the other hand, the iterative linear method for estimating
the perturbation operator V starts with equation 4. We solve for
V1 and change the reference medium iteratively. The new dif-
ferential operator L′0 becomes and the new reference medium
G′0 satisfies

L′0 = L0−V1 and L′0G′0 = δ . (6)

Through the same equation 4 with different reference back-
ground

G′0V ′1G′0 = D′ = (G−G′0)ms, (7)

we can continually update L′0 and G′0, and finally solve the
perturbation operator V .

Considering a simple 1D case, the model consists of two half-
spaces with acoustic velocities c0 and c1 and an interface lo-
cated at z = a as shown in Figure 1. If we choose an acoustic
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Figure 1: 1D acoustic model with velocities c0 over c1

whole-space with velocity c0 as the reference medium, the per-
turbation V (Weglein et al., 2003) can be expanded as

V (z) =
ω2

c2
0
− ω2

c2(z)
=

ω2

c2
0
(1−

c2
0

c2(z)
) = k2

0α(z), (8)

where ω is the angular frequency, c(z) is the local acoustic ve-
locity, and k0 = ω/c0. Depending on V , α(z) can be expanded
as a series in terms of data, α(z)=α1(z)+α2(z)+α3(z)+ · · · .
Thus, we have

V1 = k2
0α1, V2 = k2

0α2, · · · . (9)

From the inverse scattering series (Equations 4 and 5), Shaw
et al. (2004) isolated the leading order imaging subseries and
the direct non-linear inversion subseries.

In this paper, we will focus on studying the convergence prop-
erties of the ISS inversion subseries. The inversion only terms
isolated from the inverse scattering series are

α(z) = α1(z)−
1
2

α
2
1 (z)+

3
16

α
3
1 (z)+ · · · . (10)

If the incidence angle is θ , Zhang (2006) showed that α1 can
be expressed as

α1(z) = 4R(θ)cos2
θH(z−a), (11)

where R is the reflection coefficient, and H represents Heav-
iside function∗. For the normal incidence case, we have R =
c1−c0
c1+c0

. When z > a,
α1 = 4R. (12)

Substituting α1 into equation (10), the ISS direct non-linear
inversion subseries in terms of R can be written as

α = 4R−8R2 +12R3 + · · ·= 4R
∞∑

n=0

(n+1)(−R)n. (13)

After solving α , the inverted velocity c(z) can be obtained
through c1 = c0/

√
1−α (equation 8).

Considering the convergence property of the series of α or the
inversion subseries, we can calculate the ratio test,∣∣∣∣αn+1

αn

∣∣∣∣= ∣∣∣∣ (n+2)(−R)n+1

(n+1)(−R)n

∣∣∣∣= ∣∣∣∣n+2
n+1

R
∣∣∣∣ . (14)

If lim
n→∞

∣∣∣αn+1
αn

∣∣∣< 1, this subseries converges absolutely. That is

|R|< lim
n→∞

n+1
n+2

= 1. (15)

Therefore, the ISS direct non-linear inversion subseries con-
verges when the reflection coefficient |R| is less than 1, which
is always true. Hence, for this example, the ISS inversion sub-
series will converge under any velocity contrasts between the
two media.

For the iterative linear inversion, we will update the reference
velocity c′0 = c0/

√
1−α1 by using α1 = 4R. Then, the new

linear inversion velocity is calculated by α ′1 = 4R′, where R′ =
c1−c′0
c1+c′0

. The same procedure will be applied iteratively until we
achieve the final inversion result.

ANALYTIC EXAMPLE

The rate of convergence of the estimated α or the ISS inversion
subseries (equation 13) is analytically examined and studied
for a 1D normal incidence case. Since α is always convergent
when R < 1, the summation of this subseries is

α = 4R
∞∑

n=0

(n+1)(−R)n = 4R
1

(1+R)2 . (16)

∗The definition of Heaviside function is: H(x) =
{

0, x < 0,
1, x≥ 0.
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If the error between the estimated and the actual α is mono-
tonically decreasing, it means the subseries is a term-by-term
added value improvement towards determining the actual medium
properties. If this error is increasing before decreasing, it means
that the estimation becomes worse before it gets better. In
other words, the error for the first order and the error for the
second order have the relation,

|α−α1−α2|> |α−α1|, (17)

i.e.,

|4R
3R2 +2R3

(1+R)2 |> |4R
−R2−2R
(1+R)2 |. (18)

After simplification, it gives

R2 +R−1 > 0. (19)

We can solve it and obtain the reflection coefficient R< −1−
√

5
2

=−1.618 or R> −1+
√

5
2 = 0.618. Therefore, when R> 0.618,

the error increases first. Similarly, if the error for the third or-
der is greater than that for the second order, we get R > 0.667;
If the error for the fourth order is greater than that for the third
order, we obtain R > 0.721. In summary, when R > 0.618 the
error increases and the estimated α gets worse first. The green
dash line in Figure 2 shows that when the reflection coefficient
R is equal to 0.618, the error for the first order is equal to the
error for the second order. The detail of the numerical tests
will be discussed in the next section.

NUMERICAL TESTS

In this section, we will examine the convergence property and
the rate of convergence of α by using the ISS inversion sub-
series (equation 13) and the iterative linear inversion methods
to the velocity contrast in the 1D acoustic case. In addition,
the inversion results by these two methods is discussed and
compared.

Figure 2: The error (green dash line) of estimated α

at R = 0.618 and α = 0.9443.

In the simple 1D model (Figure 1), only one parameter (ve-
locity) varies and a plane wave propagates into the medium.

There is only a single reflector and we assume the velocity is
known above the reflector and unknown below the reflector.
We will compare the convergence of the perturbation α and
the inversion results by using the ISS direct non-linear method
and the iterative linear method. With the reference velocity
c0 = 1500m/s, four analytic examples with different velocity
contrasts for c1 = 2000, 3000, 4500, 9000m/s are examined.
In Figure 3, the red line represents the actual α that is calcu-

(a) c1 = 2000,R = 0.1429,α = 0.4375 (b) c1 = 3000,R = 0.3333,α = 0.7500

(c) c1 = 4500,R = 0.5000,α = 0.8889 (d) c1 = 9000,R = 0.7143,α = 0.9722

Figure 3: The estimated α: The horizontal axis is the orders
of the ISS suberies or the iterative numbers, and the vertical
axis shows the value. The red line shows the actual value of α .
The green and blue lines show the estimations of α by using
the ISS inversion method and the iterative inversion method.
The green and blue dash lines are their corresponding absolute
difference between the actual value and the estimations.

lated from our model for each velocity contrast. The horizontal
axis represents the orders of the ISS inversion subseries or the
iterative numbers. The vertical axis shows the value of α . The
green solid line represents the estimated value of α through the
ISS inversion method verse the summation of αn to nth order.
The green dash line represents the absolute value of the error
between the ISS estimated and the actual value of α . The blue
solid line represents the estimated value of α through the iter-
ative inversion method verse the iterative numbers. The blue
dash line represents the absolute value of the error between the
iterative estimated and the actual value of α .

From the estimated results of α for the different velocity con-
trasts, we can see that the smaller the contrast, the faster the
inversion results will converge as shown in Figure 3. In other
words, when the velocity contrast increases, the error of α es-
timation increases, therefore it takes more terms to deal with
the bigger contrast issue as shown in Figure 3d. Another im-
portant point is, when the velocity contrast is getting bigger,
at some point, the iterative inversion method is not convergent
(see the blue solid and dash lines in Figures 3c and 3d). From
the analysis, the iterative inversion method can not estimate the
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correct inversion result when R > 0.5, while the ISS inversion
method always produces useful results (see the green solid and
dash lines in Figures 3c and 3d). For the simple 1D one reflec-
tor example, it shows that the ISS direct non-linear inversion
subseries converges for all values of R. Comparing the errors
of α (green and blue dash lines in Figures 3a and 3b) by the
ISS inversion method and the iterative method, we can see that
at small contrast, both methods converge and the ISS inversion
method converges faster than the iterative inversion method.

From the green dash line in Figure 3, for a small contrast, the
error between the estimated and the actual α is monotonically
decreasing, in other words, the estimation of α is always a
term-by-term added value improvement towards determine c1;
when the contrast is very large (Figure 3d), the error is in-
creasing before decreasing. It means that the estimation of α

becomes worse before it gets better. However, when it starts to
add value, it getting better when each further term added to the
series. The green dash line in Figure 3 also shows that as more
terms are captured and added up, the error always approaches
zero, which means the correct estimation is always achieved.
Figures 3a, 3b and 3c show that when the reflection coefficient
R is smaller than 0.618, this inversion subseries is monoton-
ically term-by-term added value improvement towards deter-
mining c1. When the reflection coefficient R is equal to 0.618,
the error for the first order equals the error for the second order
as shown in Figure 2. When the reflection coefficient is larger
than 0.618 (Figure 3d), the series still converges, but the esti-
mation of α will become worse before it gets better. From the
analytic and numerical examples, we can see that each term in
the series works towards the final goal. Sometimes when more
terms in the series are included, the estimation looks worse lo-
cally, but once it starts to improve the estimation at a specific
order, the approximations never become worse again, every
single term after that order will produce an improved estima-
tion.

The convergence results are also presented for the velocity es-
timation as shown in Figure 4. At small velocity contrast, both
methods are convergent very fast and estimate the correct ve-
locity (Figures 4a and 4b). When the contrast increases, the
ISS inversion subseries always converges, but the iterative in-
version method does not converge (Figures 4c and 4d).

CONCLUSIONS

The ISS direct non-linear inversion and the iterative inversion
are examined and compared in a 1D, one parameter, and a sin-
gle horizontal reflector case, where the velocity is assumed to
be known above the reflector and unknown below the reflector.
The rate of convergence of the ISS inversion method is analyt-
ically and numerically studied. From the analytic example, we
show that when the reflection coefficients R < 0.618, the ISS
inversion subseries is a term-by-term improvement towards
determining medium properties; when R > 0.618, the inver-
sion subseries still converges, but the estimation will locally
be less accurate before it converges. Numerical results show
that when the velocity contrasts are small, i.e., the reflection
coefficients are small, both inversion methods converge and

(a) c1 = 2000,R = 0.1429 (b) c1 = 3000,R = 0.3333

(c) c1 = 4500,R = 0.5000 (d) c1 = 9000,R = 0.7143

Figure 4: The ratio of the estimated velocity and the actual
velocity: The horizontal axis is the order of the ISS suberies
or the iterative numbers, and the vertical axis shows the value.
The red line is the actual ratio, which is 1. The green and blue
lines show the ratios by using the ISS inversion method and
the iterative inversion method.

the ISS inversion method converges faster than the iterative in-
version method. When velocity contrasts increase, the reflec-
tion coefficients get larger, the iterative inversion method will
not converge when R > 0.5, while the ISS inversion method
still converges. Hence, for the simplest situation, the iterative
linear inversion is not equivalent to the direct non-linear solu-
tion provided by the inverse scattering series. For more com-
plicated circumstances (e.g., the elastic non-normal incidence
case), the difference is much greater, not just on the algorithms,
but also on data requirements and on how the band-limited
noisy nature of the seismic data impact the inverse operators
in iterative linear inversion but not in the ISS direct inversion.
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