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SUMMARY

In the 1970’s Claerbout, Lowenthal and their colleagues
(Claerbout, 1971; Riley and Claerbout, 1976; Lowenthal et al.,
1985) introduced three imaging conditions : (1) the explod-
ing reflector model for zero offset data (2) the space and time
coincidence of up and down going waves and (3) predicting
a coincide source and receiver experiment at depth at time
equals zero. We refer to these as Claerbout Imaging Condi-
tion I, II and III, respectively. For a normal incident plane
wave on a single horizontal reflector they are equivalent. For
a shot record recorded above a single horizontal reflector or
more complicated situations they are no longer equivalent.
Claerbout III is superior to Claerbout I and II in that it pro-
vides the most quantitative and interpretable image amplitude.
Claerbout III is also extendable/generalizable to provide an an-
gle dependent reflection coefficient. Stolt and his colleagues
(Clayton and Stolt, 1981; Stolt and Weglein, 1985; Stolt and
Benson, 1986) originally formulated Claerbout III for one-way
waves. For imaging two way propagating waves, Whitmore
and his colleagues (Whitmore (1983)) launched from Claer-
bout II. Weglein, Fang and their colleagues (Weglein et al.,
2011a,b; Liu, 2013) extended Claerbout III for two way prop-
agating waves. In this paper, the first direct and detailed com-
parison of Claerbout II and III is carried out for the simplest
circumstance where they will produce a different result. The
differences are significant and substantive, with implications
far beyond the simple example that allows for transparent anal-
ysis and analytic evaluation and conclusions.

INTRODUCTION

Methods that use the wave equation to perform seismic migra-
tion have two ingredients: (1) a wave propagation component
and (2) an imaging principle or concept. Claerbout (Claer-
bout, 1971; Riley and Claerbout, 1976) was the initial and key
wave-equation-migration imaging-concept pioneer and algo-
rithm developer, together with Stolt (Stolt (1978)) and Lowen-
thal (Lowenthal et al. (1985)) and their colleagues, they intro-
duced imaging conditions for locating reflectors at depth from
surface-recorded data. The three key imaging conditions that
were introduced are:

I. the exploding-reflector model
II. time and space coincidence of up and downgoing waves
III. predicting a source and receiver experiment at a coincident-
source-and-receiver subsurface point, and asking for time equals
zero (the definition of wave-equation migration)

For a normal-incident spike plane wave on a horizontal reflec-

tor, these three imaging concepts are totally equivalent. How-
ever, a key point to make clear for this paper, is that for a
non-zero-offset surface seismic-data experiment, with either a
one-dimensional or a multi-dimensional subsurface, they are
no longer equivalent. Wave-equation migration is defined as
using the Claerbout Imaging Condition III, predicting a source
and receiver experiment at depth at time equals zero. Stolt
and his colleagues (Clayton and Stolt, 1981; Stolt and Weglein,
1985; Stolt and Benson, 1986; Stolt and Weglein, 2012; We-
glein and Stolt, 1999) extended and formulated the experiment-
at-depth concept to allow a separated source and receiver ex-
periment at time equals zero for one way propagating waves.
Weglein, Fang and their colleagues (Weglein et al., 2011a,b;
Liu, 2013) extended Claerbout III for two way propagating
waves. Claerbout III is superior to Claerbout I and II in that it
provides the most quantitative and interpretable image ampli-
tude. Claerbout III is also extendable/generalizable to provide
an angle dependent reflection coefficient. For the purpose of
determining quantitative information on the physical meaning
of the image, the clear choice is Claerbout Imaging Condition
III.

In this paper, we will compare the imaging results obtained by
Claerbout Imaging Condition II and III. The Claerbout Imag-
ing Condition III predicts a physical experiment with both source
and receiver at depth, allowing it to provide the imaging defini-
tiveness and physical interpretation that Claerbout Imaging Con-
dition II cannot match.

STOLT MIGRATION

Stolt migration represents Claerbout Imaging Condition III for
one-way propagating waves. Following Stolt and Weglein (2012),
given a 2D data D(xg,xs, t) with source location (xs,zs = 0) ,
receiver location (xg,zg = 0), and time t, we can perform a
Fourier transform over all coordinates:

D(kgx,ksx,ω) =

∫
dxg

∫
dxs

∫
dtD(xg,xs, t)ei(ksxxs−kgxxg+ωt).

(1)

where kgx, ksx and ω are Fourier conjugates of xg xs and t,
respectively.

Then we can predict the data from an experiment where the
sources and receivers are all at depth z,

P(kgx,z,ksx,z,ω) = D(kgx,ksx,ω)ei(kgz−ksz)z, (2)

where the vertical wavenumber component kgz and ksz are de-



fined as
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If we make two inverse Fourier transform of kgx and kxs to
the same x, we can predict the data of an experiment where a
source and a receiver are both at location (x,z),

P(x,z,x,z,ω) =
1

(2π)2

∫
dksxe−iksxx

∫
dkgxeikgxxP(kgx,z,ksx,z,ω)

=
1

(2π)2

∫
dksxe−i(kszz+ksxx)

×
∫

dkgxei(kgzz+kgxx)D(kgx,ksx,ω) (4)

Next, predict the coincident source and receiver at time equals
zero, we obtain the 2D Stolt migration result,

MStolt(x,z) =
1

2π

∫
dωe−iωtP(x,z,x,z,ω)|t=0

=
1

(2π)3

∫
dω

∫
dksxe−i(kszz+ksxx)

×
∫

dkgxei(kgzz+kgxx)D(kgx,ksx,ω) (5)

where MStolt(x,z) is the image function ∗.

REVERSE TIME MIGRATION

RTM (Reverse Time Migration) is a kind of migration adopt-
ing Claerbout Imaging Condition II for primaries in a medium
where waves are two way propagating. In RTM, the source
wavefield is forward propagated to the subsurface and the re-
ceiver wavefield is backward propagated to the subsurface; the
imaging result is obtained by cross-correlation, i.e., the space
and time coincidence of up and down waves. The Claerbout
Imaging Condition II RTM formula (Baysal et al., 1983; Whit-
more, 1983; McMechan, 1983) is

I(~r) =
∑

xs

∑
ω

S∗(~r,xs,ω)R(~r,xs,ω) (6)

where R is the back-propagated reflection data, S is the forward-
propagated source wavefield, S∗ is the complex conjugate of S.
The zero-lag cross-correlation is indicated by the sum over an-
gular frequency, ω , and the sum over sources adds candidate-
image travel-time trajectories.

∗In Stolt and Weglein (2012), the image function MStolt (x,z) has a half-integral filter. In
this section we do not include the half-integral filter.

EXAMPLE

In this section, we will show the images generated by Reverse
Time Migration (Claerbout Imaging Condition II) and Stolt
migration (Claerbout Imaging Condition III ) for a single hor-
izontal reflector.

Figure 1: model

Figure 2: image result (one shot gather) following Claerbout
Imaging Conidtion II. The figure below is a zoom of the upper
figure. The Claerbout II image shows an inconsistent ampli-
tude and shape of the image along the single reflector.



Figure 3: image result following Claerbout Imaging Condition
III. The figure below is a zoom of the upper figure. The Claer-
bout III image in this figure shows an amplitude and shape
consistent image. The exact same data was used in the sim-
plest 1D earth prestack Claerbout II and Claerbout III tests and
comparisons, indicating their intrinsic and substantive differ-
ences even in the simplest circumstances. As pointed out in
Weglein (2015) the differences are much more serious when
the target is complicated and imaging through and beneath a
rapidly changing velocity.

Figure 1 shows the one-reflector model we used for this test.
Figure 2 shows the image generated by Reverse Time Migra-
tion with a single shot gather (one source); we observe that
there is a blur on the image as well as some artifacts generated
by the limited aperture†. In practice, a sum over all sources
is taken with the assumption that the blur and artifacts will
go away. However, summing over all sources does not have
a clear physical meaning and it is not guaranteed that all the
blur and artifacts will go away. Figure 3 shows the image gen-
erated by Stolt migration with exactly the same data. We can
observe that the image is flat and with few artifacts. The sum
over sources in Stolt migration brings the source down to a
point in the subsurface, while the sum over sources in RTM
(equation 6) seeks to mitigate intrinsic artifacts in Claerbout II
imaging. More importantly, every step in Stolt migration has
a clear physical meaning. We can readily obtain interpretable
amplitude information, such as angle dependent reflection co-
efficient, from Stolt migration (see Zou (2015) for more de-
tail).

CONCLUSION

In this paper we compared the Claerbout Imaging Conidtion
III - Stolt migration, and Claerbout Imaging Conidtion II- uti-
lized in Reverse Time Migration, in the simplest 1D earth,
with exactly the same prestack data. This result shows that the
Claerbout Imaging Conidtion III (wave equation migration) -
Stolt migration, and Claerbout Imaging Conidtion II- Reverse

†In this test, we used a very large aperture to minimize the aperture artifacts. However, we
can still observe this kind of artifacts on the image.

Time Migration, are intrinsically and substantively different
even in the simplest circumstances. The Claerbout II image
(one shot gather) shows an inconsistent amplitude and shape of
the image along the single reflector. The Claerbout III image
shows an amplitude and shape consistent image. As pointed
out in Weglein (2015) the differences are much more serious
when the target is complicated and imaging through and be-
neath a rapidly changing velocity. Claerbout Imaging Con-
dition III (the wave equation migration) can provide a clear
physics meaning with predicting a source and receiver exper-
iment at depth. Thus we can readily obtain interpretable am-
plitude information, such as angle dependent reflection coeffi-
cient, from Claerbout imaging conidtion III. And in evaluating
the role of multiples in imaging in Weglein (2015) a two way-
wave propagation form of Claerbout III was called upon to
provide a definition response to the question ”multiples: sig-
nal or noise?”. (see also (Weglein et al., 2011a,b; Liu, 2013))
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