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Abstract

Weglein and Secrest (1990) present a method for computing the scattered wavefield
between the measurement surface and free surface, and the reference wavefield below
the measurement surface, given both the pressure and its normal derivative along the
cable. Osen et al. (1998) and Tan (1992) show that the wavelet due to an isotropic
source can be determined from pressure on the measurement surface and an extra
hydrophone between the measurement surface and the free surface. Tan (1999) observes
that in practice it is possible to well-estimate the wavefield above single towed streamer
for points not directly under the source. Using the Tan (1999) wavefield prediction the
wavelet can in principle be estimated from only a single cable (Weglein et al. 2000).
However, the integral required for wavelet estimation requires data along the cable
including the region excluded by the Tan’s prediction. An approach to addressing that
problem is presented here that adopts a generalized inverse viewpoint to find a well
estimated approximation to the wavelet. First tests are encouraging and reported here;
others are planned.

In this paper we will review the theory and show a new approach to wavelet estima-
tion below the cable from only a single cable. Further work will focus on application

to deghosting and multiple attenuation.

1 Introduction

In wave-theoretic multiple attenuation methods (eg. Carvalho, 1992, Weglein et al. 1997,
Verschuur 1992), knowledge of the source wavelet is one of the requirements. The energy-
minimization criterion is often applied in practice to estimate the wavelet. Current methods
based on the energy minimization criterion have proven to be useful under many circum-
stances. However, under complex conditions, e.g., weak internal multiples proximal to weak
subsalt primaries, experience suggests that the energy minimization criterion is too blunt
an instrument for that degree of subtlety. This is the motivation for deriving new methods
to provide the source wavelet. The industry trend towards complex and costly plays raises
the bar of required effectiveness for wave theoretic multiple removal and imaging-inversion

techniques, and the prerequisites, such as the wavelet that needs to be provided.
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The goal of the research described here is to test and progress the development of new
wavelet estimation methods that can be estimated from only the pressure on the cable. In
the following we will first discuss extinction theorem; then we show how to predict the normal

derivatives of the wavefield above the measurement surface.

2 Extinction Theorem

The acoustic wave equation can be written in the following form in the frequency domain,
where r' is any point in a half space below the free surface, ry is the source location, A(w)
is the source signature, w is the angular frequency, c¢ is the actual velocity, and P is the
pressure field.

V2P (r',rg,w) + P(r',rg,w) = A(w)d (r' —rp) (1)

e (r')
Using scattering theory, the actual earth can be parameterized as a homogeneous velocity

reference medium with embedded reflectors. Hence we replace ¢ with ¢

1 1 ,
c2 (I") = [1 - (I‘ )] (2)

Co

where ¢; is the reference medium velocity, and a (r’) is called the scattered index, which is
used to characterize the difference between the actual and reference media. Considering the
Green’s function in a homogenous medium with Dirichlet boundary conditions at both the

free surface and the measurement surface due to point source at r , such that
] (.()2 ]
ViGHP (r,r,w) + S5 GPP (r,r,w) =0(r—r) (3)
i)

where GPP (r,r',w) is a 2-D Green’s function, which can be obtained by the method of images
based on Poisson sum formula (Morse and Feshbach, 1953, chapter 7 vol. 1). GPP (r,r',w)

converges rapidly in a numerical implementation of the following expression.

4 . OO , 1 . I
GODD(I‘, r',w) = % ;sin (%zn) sin (%n) Bezﬂmfw |

where r’ represents a source location, r represents a receiver location, H is the depth of

M.S., and @ , which controls whether or not the Green’s function is decaying exponentially
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or travel horizontally, is defined as following
= J(¥y2_ (Mo
B=y/Er-GD)

Applying Green’s theorem to equations (1) and (3)

OGP (r,r',w) OP (r',ro,w)

! ! 0 1t DD ! )0y
//ds [P (r',ro,w) o0 Gy~ (r,r',w) Y "
S

— [[[ &' [P 50,) VPGB (5, 0) — GEP (1,1',0) VP (Worow)] @)

Multiplying equation (3) by P (r',ro,w) , and equation (1) by GPP (r,r',w) , and then
substituting them into the right hand side of equation (4), we have

OGPP (r,r'|w OP (r',rg,w

) /S//dr/p@f,ro,w)g(r_r')
o[ @568 v at) P
/ / / dr' [-A () GPP (r,7',w) § (' — 19)] (5)

If we choose the integral volume V to be between the free surface (F.S.) and the measurement
surface (M.S.), then the second term on the right hand side of equation (5) will be zero since
the scatterer a (r') (i.e. Earth) is outside of the volume V. We then choose r above M.S.,

and applying the Delta function property,

J[[#pe-x70)= 1@

DD ! /
// ds' |:P (r', ro,w) Gy ” (r,r',w) _ GODD (r,r,w) OP (r',rp, w)
S

we have

on’ on’
= P (r,ro,w) - A(w)GODD(r’ rg,w)
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Finally, since we have chosen the Green’s function GP? (r, r’,w) to satisfy Dirichlet boundary
conditions on both F.S. and M.S., then

8G([,’D (r,r,w)

P (x,r0,w) — A(w)GPP(x, ro,w) = / / ds [P (', x0, ) SO0 (6)

S

where r is between F.S. and M.S. (figure 1).

3 Normal derivatives

As showed above in equation (6), G&P (r,r’,w) is critical in order to get the wavefield above
M.S. It is a function of the frequency and the depth of the measurement surface. Tan
(1999) discovered that GPP (r,r’,w) is vanishingly small for typical marine streamer depths
of approximately 6m and seismic frequency less than 125Hz (Figure 2). Therefore, the second
term on the left hand side of equation (6) can be ignored in comparison with the other terms.
Also we choose the Green’s function to satisfy Dirichlet boundary conditions on both F.S.
and M.S., and we assume that the pressure at F.S. will be vanishing. This results in the key

observation:

OGPP (r, v’ w)

P (r,10,w) ~ / / ds’ [P (' x0,0) SO0 (1)
MS

This equation will be used to predict the wavefield above M.S. through an integral over

the measurement surface once we obtain the Green’s function, then we can compute the
normal derivatives over the cable by a finite difference approximation, or by taking normal

derivatives directly from equation (7).

4 Wavelet estimation

Since we require the normal derivatives under the source for wavelet estimation, we modify
the idea of calculating the normal derivatives above the cable without dropping the wavelet

term A(w)GPP (r,r',w) . Hence
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Figure 1: Wavelet estimation from water depth 40m, 60m and 80m reflector respectively.
The wavelet estimated from water depth 80m reflector has least artifact; the final averaged

(red) of three estimated wavelets is close to the correct one (black).

0 B 9 _.pp 0 ) , OGP (r,r',w)
aP (r,ro,w) = A(w)aG0 (r,ro,w) + p // dr [P (r',ro,w) o (8)
Ms.

If we choose z — Z , which represents the depth of M.S., we approximate

0 0
ap (ra ro,(.U) ~ %P (I', I'O,LU) (9)

which will be used to estimate the normal derivatives required in wavelet estimation formula
(Weglein and Secrest, 1990).

Rewriting the wavelet estimation based on the Green’s function G (ry,r’,w) , which only

satisfies the Dirichlet condition on free surface,
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D P
—A(w)GE (ryro,w) = // ds | P (r,ro,w) Gy (rn,ryw) GP (rp,1,w) OP (r,r,w) (10)
’ On On
Ms
where r;, represents the location below M.S.(Figure 1)
Substitute (8) and (9) into above equation, and we can arrive at
. OGY (ry,r,w) oT (z,z,r,w)
[ dz fD(r,ro,w) OTJ — \GOD (rp,T,w) 3 ’
Alw) & A B (11)

—GP (rp,ro,w) + /d:EGOD (ry,r,w) R(Z, 2,10, w)

. S

C

Where
0

R(Z, z,rg,w) = —GODD(a”c,z, ro,w)

0z

0
%T (Z,2,r0,w) = /d:c' [P (2,2, 1o, w)

O’GPP (z,2,2', 7', w)
0207

In order to avoid the unstable due to denominator close to zero, we always choose z above
M.S. in equation (11).

The triangle relationship states that measured values of P(r,r,,w) and 2 P(r,r,,w) along
a cable and A(w) satisfy the exact equation (10). One might think Equ (8), when r is
evaluated on the cable, procides a second independent relationship that would allow A(w) to
be directly determined from P(r,r,,w) along the cable. However, Weglein and Amundsen
(2003) demonstrate that these are the same relationship. If you temporarily ignore this
fact, and substitute equation (8) into equation (10) to ’eliminate’ 2 P(r,r,,w), then when
r approaches cable, the expression in the denominator of equation (11) will be zero. The
inverse is 'unstable’. To avoid this instability in the inversion, what is being suggested here
is that values above the cable for 2 P(r,r,,w) and 2G§P(r,r,,w) are substituted for those
at the cable in the integral to avoid the singularity. This has the effect of avoiding a singular
division by solving a nearby perturbed problem with the anticipation that this will lead to

a stable approximate solution.
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Figure 2: On top is the correct wavelet (blue) and final averaged wavelet (pink); in the

middle are the amplitude spectra; and the bottom plot shows the phase spectra.

5 Synthetic example

We make three synthetic datasets with water depth 40m, 60m and 80m respectively. The
source is 2m below the free surface, receivers are 6m below the free surface, the receiver
interval is 2m (Figure 1). Then equation (10) was used to estimate the wavelet (figure 2).
The wavelet estimated from water depth 80m reflector has least artifact; the final averaged

of three estimated wavelets is close to the correct one.

Figure 3 shows the amplitudes and phases of correct wavelet and estimated one. We see

there are some errors in amplitudes around 40 Hz, and phase change at 8 Hz and 75 Hz.

10



Source wavelet estimation MOSRP02

6 Conclusions

A method for estimating the wavelet directly from the data on a towed streamer was recently
proposed by Weglein et al. (2002). That method proposed using the H. Tan (1999) wavefield
prediction method to approximate the needed normal derivative along the cable. However,
the wavelet method requires an integral over all receivers for a given shot, and the H. Tan
prediction is not accurate under the source. In this paper, we propose addressing this problem
by not dropping the term which is small only away from the source to achieve an algorithm

that is valid for all offsets needed in the integral.

An intrinsic instability in this approach is addressed by seeking an approximate solution that
replaces the unstable inversion by a “nearby” (i.e., perturbed) operation. Tests on synthetic

data are encouraging; further tests are planned for noise stability and other issues.
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Initial tests on deghosting
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Abstract

We present some initial tests on the deghosting algorithm given by Weglein et al.
(2002). Given the pressure field on a towed streamer and the wavelet, the algorithm
works very well. If the wavelet is not available, we present a way to approximate
the wavelet using pressure measurements on a single towed streamer. Numerical tests
show that, when using the approximated wavelet, the deghosting algorithm also works
well. To the current state of testing, we are encouraged to continue further testing
and analysis of the deghosting algorithm for towed streamer data. For ocean bottom
pressure measurements and an estimate of the wavelet, we are reporting that early
tests indiciate this method will be a stable method for deghosting without a geophone

measurement, and is insensitive to the depth of the pressure measurement.

1 Introduction

Deghosting (up/down-going wave field separation) plays an important role in seismic data
processing. In particular, it is a prerequisite for wave-theoretic free surface multiple removal
algorithms (e.g., Weglein et al. 1997). In turn, the removal of free surface multiples, is
a prerequisite for inverse scattering internal multiple attenuation, as well as most imaging

algorithms and AVO analysis.

In this paper, we analyze the algorithm presented by Weglein et al. (2002) for the towed
streamer case. The basic idea is to first use the data on the measurement surface (ms) to
predict the wave field and its derivative on a pseudo-measurement surface (mis), then plug
the predicted value into an integral which “generates” the deghosted data (or, up-going wave
field) on a new surface. The ms must be above the actual ms and then the deghosted data

is then output at any point above ms.

For the case when the source is positioned between the measurement surface and the free
surface, we have also tried to apply this deghosting algorithm without knowledge of the

source wavelet.

Calculations, have shown that, without knowledge of the source wavelet, the wave field is

well predicted, even directly under the source as long as ms is close to the actual ms; the
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predicted derivative of the wave field is good only for the positions with large offset. For
positions directly under the source, the result for the derivative of the field is poor. In
order to predict a good derivative of the wave field under the source, we provide a way to
approximate the wavelet that relies on the assumption that a term containing the integral

of the scattered field is relatively small compared to a similiar term containing the integral
of the direct wave field A(w)GE (", r,,w).

In the following, we briefly list the necessary formulae in the theory section and then present
the results of numerical tests.

2 Theory

The deghosting formula is (Weglein et al., 2002):

+ ! !
Pdeghosted(r’ rs,w) _ / (P(I‘I, rs;w)w — GBL(I‘, r"w)W) dsl (1)

ms

where G{ is the causal Green’s function in the reference medium. If we have the field and
its derivative on the measurement surface, then the integral in equation (1) provides the
deghosted field. However, in a conventional towed-streamer marine survey, we usually only
measure the field, and not its normal derivative. In this research, we are investigating the
effectiveness of equation (1) using data on the ms to predict the field and its derivative on
a new pseudo measurement surface (nis). If successful, we can perform deghosting using

equation (1) on ms.

The wavefield and its normal derivative predicted above the cable are (T.H. Tan, 1992 and
1999, A. Osen, 1998 and Weglein et al., 2002):

DD ! n
P(r’ r,,w) = A(w)GPP(x" r,,w) +/P(r1,rs,w)8G0 ((;lfr )

ms

ds' (2)

OGPP(r" s, w) O*GPP(r',r" | w)

8nll + /P(r 7r37 CL)) anlanll ds ) (3)

ms

respectively. In equations (2) and (3), the prediction needs the field on the ms and the
source wavelet, A(w). GPP is the Green’s function that vanishes both at the free surface
and the ms. In principle, the above formulae are exact. We will see in the numerical test

that using these formulae, we get very good deghosting results.
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In many cases the source wavelet, A(w), is not available. However, for cable depths ~ 6.0m,
and wave velocity ~ 1500m/s, and frequencies f < 125Hz, GPP and its derivative vanish
very quickly with increasing offset (T.H. Tan, 1999 and Weglein et al., 2002). So, at large
offsets, we can safely ignore the first terms in equations (2) and (3). That is,
n ! 8GDD ' " !
P row) ~ [ PO T (@
n

ms

OP(r"r,,w) , O*GPP(r',r" | w)
o’ /P(I' ) Tsy W) on' on” ds (5)

ms

where r’ is on mis and r' on actual ms, r is the deghosted output data point, r is above r,

7 1
and r is abover.

We have found, through analytic and numerical tests, that when ms is close to ms, equation
(4) works very well everywhere on the ms, including at positions directly under the source.
However, equation (5) for the derivative of the field works well only at large offsets. For
positions under the source, the first term on the right-hand side of equation (3) dominates
and so it can not be ignored. In order to work around this issue, we approximate the source
wavelet from the data on the measurement surface so that we can include this dominant

term.

Notice that the field in the integral in the above formulae consist of two parts: the direct
wave Py = A(w)GE and the scattered field P;.

DD 1 n
/P(r',rs,w)aGO ér:r ’w)ds'
n

ms

DD 1 n
= /[A(w)GOD(rI,rs,w) +P3(r1,r3,w)] 0Gq éll‘.’l:r ’w)ds'

ms

AGPP(r' 1", w)

— Aw) / G x ) 20T g

ms

DD ! n
+ /Ps(rl,rs,w)aGO é:lfr ’w)dsl (6)

ms

and
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O*GPP(r',r" w) O*GPP(xr',r" | w)

—Aw) [ 6P ro) s [ R )T e )

ms

In the next section, we show that for positions directly under the source on the ms, the effect
of P, is much larger than that of P,. In that case, we may assume the effect of P, is zero.
Then, since the left-hand side of equation (6) and (7) are known, we can get two estimates

of the wavelet, A(w): one from equation (6) and the other from equation (7).

For the case when the source is below the ms, equations (4) and (5) are exact and so
knowledge of the wavelet A(w) is not required. It may be easier to understand through the

derivation of equations (2) and (3).

3 Numerical test

We generate a synthetic data set described in Fig. 1. There are four sources in the model.
S1 corresponds to the actual air gun with wavelet A1(w). S2, S3 and S4 are passive sources,
with wavelet A2(w), A3(w) and A4(w) respectively, synthesized in order to give an up-going
field on the ms The free surface is modeled as a perfect reflector. The distance between
the ms and the free surface is b = 6.0 m. All calculations are performed in the frequency
domain and we present results for the single frequency k=0.3 m ! (or f ~ 74H z, for water
speed=1500m/s). In all cases, the distance between ms and ms is 0.1m and the deghosted
data ouput points are 0.1m above ms. In our calculations, we have chosen A(w) to be real

and equal to 1.0. Therefore, we compare only the real part of the P, $& and pdcghosted,

The total wave field on M.S and exact up-going field are shown in Fig. 2. Figure 3 is the
result of the deghosting algorithm using the wavelet Al(w) compared to the exact up-going
field. The results are very good.

However, if we don’t have the wavelet, we use equations (4) and (5) to approximate the field
and its derivative, and then use equation (1) to do deghosting. These results are showed
in Fig. 10. Why do we get such poor results? Figures 4 and 5 show the predicted wave
field and derivative of the wave field, respectively, when we don’t know the wavelet. From

these graphs, we see that the problem is the derivative of the wave field near the source. For
8GPL (r" ryw)
- en”
so we can’t ignore it in our prediction.

positions near the source, A(w) in equation (3) makes a large contribution and

In order to get a better derivative of the wave field near the source, we first try to get an
3G0DD (r” JTs,w)

o . As has been described, we

approximate wavelet so that we can include A(w)
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Synthetic model
A1=1.0; A2=0.08*A1; A3=0.2*A1;A4=A1; k=0.3

_ F.S.
S1(0,2) &
6m
P&P” Pseudo-M.S.
: M.S.

S2(7,8) g

£ S3(-20,15)
24 S4(0,50)

Figure 1: Synthetic model. S1 corresponds to the active source. S2, S3 and S4 are three
sources that generate the up-going field. Their (z,z) coordinates are given. All of the

calculations are restricted to one frequency k=0.3.

can get an approximation of the wavelet in Fig. 6 and Fig. 7 which show the first term
and the sum of the first term and the second term, respectively, in equations (6) and (7).
We find that for positions directly under the source, the first term dominates, especially in
equation (6). Hence, we can get an approximate value for the wavelet A = 0.9982 in Fig. 6
and A = 1.135 in Fig. 7., while the exact value is 1.0. Then we add the corresponding first
term in equations (2) and (3), respectively, to the predicted value from equations (4) and
(5). The new results for the predicted field and its derivative are presented in Fig. 8 and
Fig. 9. Using these new results, we do deghosting as before. The results, shown in Fig. 10,

are encouraging.
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Real part of P
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Figure 2: Red solid: Exact total field on ms. Blue dash: Exact up-going field on the surface

0.2m above the ms. z is the source-receiver offset along the ms.

4 Conclusion and discussion

In this paper we have presented some initial tests of the deghosting algorithm given by
Weglein et al. (2002). Using the source wavelet, this method works well. For the ocean
bottom case, if we have the pressure measurements and the source wavelet, we can use the
triangle relationship among pressure, derivative of pressure and the source wavelet to predict
the derivative of pressure (Amundsen et al. 1995). We anticipate that this algorithm will be

robust (insensitive to depth) and give useful results.

It’s important to note that we would like to keep the instrument response factor in the field
data and in estimation of the wavelet that derived from other measurements. So, the source
wavelet, pressure and the resulted derivative of pressure will have the same factor and the

deghosted data will have the same instrument response.
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Figure 3: Red solid: Exact up-going field on the surface 0.2m above the ms. Blue dash:
Deghosting algorithm results using exact source wavelet. x is the source-receiver offset along

the ms.

For towed streamer data if we don’t know the wavelet, we provide an approximation method
to get the wavelet using only measurements of pressure along the measurement surface.
Further tests will be needed before we deal with field data.
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Figure 4: Red solid: Exact field on ms. Blue dash: Predicted field on ms without using

wavelet.
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Initial analysis of the effect of receiver arrays on wavelet
estimation based on the Extinction Theorem

Lianzhong Feng, Jingfeng Zhang and Arthur B. Weglein

University of Houston

Abstract

We present initial numerical tests on the effect of receiver arrays on the wavelet
estimation method presented by Weglein and Secrest (1990). The numerical tests
demonstrate that for single sensor receivers, the estimation method is successful. How-
ever for group receivers, the results are unsatisfactory, especially when the intended

use is for the inverse scattering subseries that are non-linear in the wavelet.

1 Introduction

In 1990, Weglein and Secrest presented the following wavelet estimation formula:

1 — aG([)) (7_1"771(")) 4 ap (flalf;aw) 4

Aw) = 575" (er)—ﬁ,—GD<r Fw)—q, ds (1

() GP (r,7,,w) ]{ [p e on o\ on (1)
s

where G¥ is the Green’s function which vanishes at the free surface. 7 is any point under

the measurement surface and 7, is the position of the active source, which is above the

measurement surface. 77 is the unit vector on the measurement surface pointing towards the

free surface.

In principle, equation (1) is exact. Tests on synthetic data demonstrated its robustness
in the presence of finite aperture and sampling. But when equation (1) was applied to
field data with under-over cables and arrays, the results were unsatisfactory. A possible
explanation points to the effect of the receiver group. When the wave’s propagation direction
is near-horizontal, the combination of receivers suffers from the phase difference among the
individual receivers in a group (Figure 1). That is, the field and derivative of the field in the

above formula are both distorted resulting in a poor approximation of the wavelet.

In this report we provide numerical tests designed to establish whether this conjecture is
correct. These tests indicate excellent result for single sensor receivers but even for a short

array, harmful effects are observed.

We present the results of numerical tests in the following section which is followed by con-

clusions drawn from this exercise.
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Figure 1: The receiver array.
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Figure 2: Synthetic model.

2 Numerical test

The synthetic model is showed in Figure.2 where the depth of the measurement surface is
10.0m. There is a perfect reflection on the free surface and this study assumes an infinite
water column. The position of the active source is (0,6). We assume that we have the exact
field and its derivative everywhere on the measurement surface. We evaluated equation at
(0,100).

For single sensor receivers with interval 1.0m (geometry 1 in Figure 3), the resulted wavelet

&
VVVVVVVVVYVIVVVVVVVVVV V... Geometry1

DX

YV VYV VYV V I VYOV YWT TG Y| Ceomely2

Figure 3: Receiver pattern.
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—— Original wavelet —— Estimated wawelet

Figure 4: Comparing the original wavelet with the calculated wavelet for geometry 1
(dx=1.0m).

from the equation (1) is compared with the exact wavelet in Figure 4. There is no visible

difference between these two signals.

For group receivers (geometry 2 in Figure 3), we consider the case that interval between
single receivers is 1.0m and there are 9 receivers in one group. Therefore the group interval
will be 9.0m. The results are shown in Figure 5. Clearly, the results are unsatisfactory. In
Fig.6, the exact wavelet is compared with the calculated wavelet divided by the number of

receivers in an array. The result is also unsatisfactory.

3 Conclusion

We have presented initial numerical tests showing that, even for a small array (9 receivers,
8 meters), using a receiver group can have a deleterious effect on the wavelet estimation
methods that are reconstructing the reference wave and canceling the scattered wavefield.
The industry trend toward ever-smaller receiver arrays and single sensors is an opportunity
to exploit those multidimensional wave theoretic wavelet estimation methods precluded by

earlier acquisition formats. For single sensor receivers, the results are acceptable as expected.
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—— Original wavelet —— Estim ated wavelet

Figure 5: Comparing the original wavelet with the calculated wavelet for geometry 2

(dx=1.0m, nine receivers, DX=9.0m).

—— Original wavelet —— Estimated wawvelet®

Figure 6: Comparing the original wavelet with the calculated wavelet for geometry 2 (the
calculated wavelet has been divided by the number of receivers in one group) (dx=1.0m,

nine receivers, DX=9.0m).
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Short note: GPP and GJ integral equations relation-
ships; The triangle relation is intact

Arthur B. Weglein! and Lasse Amundsen?

! University of Houston, 2 Statoil Research Center

Abstract

Weglein and Secrest (1990) established a relationship between the total pressure
wavefield measured on the cable, the vertical derivative of that wavefield and the source
signature. Amundsen et al (1995) and Corrigan et al (1991) use the triangle relationship
to solve for 4€ from A(w) and P along the cable. Tan (1992, 1999) and Osen et al.
(1998) establish a relationship between the pressure wavefield along the cable, a single
pressure measurement, between the free-surface and the cable, and the wavelet. We
demonstrate how these two formulations relate to each other, and in that process
establish that, in fact, they correspond to the same relationship between P and P/,

along the cable, and the wavelet, A(w).

1 Definition

We present this analysis for a 1D version of these extinction theorem applications, for es-
timating the wavelet, since we understand that a Fourier transform over the lateral spatial
variables in 2D and 3D leads to this precise 1D form (where k, = \/ (w/co)? — k2 — k2 would

substitute for k = w/cy in this paper) and z and 2z’ would be depth variables.

We begin by defining Gy, G¥ and GPP as the causal whole space Green’s function, the
Green’s function with Dirichlet boundary conditions on the free-surface, and the “double

Dirichlet” Green’s function vanishing on the free-surface and cable, respectively.

Go(z, 2',w) satisfies the differential equation

(j_; + k2) Go(z, 2, w) = 6(z — 2') (1)

for 0 < 2,2 < a where z = a is the measurement surface and z = 0 is the free surface. GODD
is the solution to equation (1) that vanishes at z = 0 and z = a. The general solution to (1)

for any boundary conditions is

ik|z—2'|

Ae'*?  Be = Sh = Go(z, 7', w) (2)
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for 0 < z, 2’ < a and imposing

Go(0,7,w) = 0 (3)
Go(a,z',w) = 0 (4)

we find GPP(z,2',w) (the double D superscript denotes Dirichlet boundary conditions on

two surfaces, z = 0 and z = a) to be

()

eik(z'fa) _ efik(z’fa) )
. . etk
etka _ o—ika

1
Gyl (2,7 \w) = ﬂ[

1 l gika (eikz’ _ eikz’)] N eiklz—2'|
—iKz
e + — .

2k etka _ g—ika 2ik

Equation (5) can be combined

DD 1 =2 2ikz’ 2ik(a—z)
GO :ﬂm(l—e )(1—6 ) (6)

The last expression for GPP is only for field point, z, below the source point z’. The Weglein-
Secrest (1990) G¥ result is

P(z,2,,w) =A(W)GE (2, 25, w)
d

GRG )|

— P'(a,25,w) G¥(z,a,w) (7

o

where G{(z, 2/,w) vanishes only at z = 0.

2 The Osen et al. and H. Tan result using G(l,)D

ForO0<z<a

P(z,25,w) = A(W)GPP (2, 2, w) + P (a, 25, w) [%GODD(Z, z',w)] (8)

z'=a

If we take the limit as z — a in (8) we find P (a, z;,w) = P (a, z5,w) since

lim [iGODD(z,z',w)} = 1.

z—a | dZ!

z'=a
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For the multi D case, it means that as the point above the cable approaches the cable, the
GPP vanishes and the =GPP becomes d-like. Hence, the field above the cable will only

depend on one point that approaches the cable. This is a reassuring result!

If we differentiate (8) by z

P'(z,25,w) = A(w)

dGPP(z, z5,w) d [ d
dz'

|2 DD /
B2 | Pla,zw) | Lot (z,z,ao} (9)

z'=a
and then take the limit as z — a

dGPP (2, 25, w d | d
P'(a,zs,w>=A<w>[ ol )} P (a,2) [d— [@GE%,zxw)} }

(10)
Equation (10) is a relationship between P (a, z5,w) , P’ (a, zs,w) and A(w). From (7), we can
evaluate as z — a

P(a,z,w) = Aw)G¥(a,z,w)+ P(a,z,w) [%GOD(CL, 2, w)] (11)

z'=a

—P'(a,z,,w) G¥(a,a,w)

Hence (10) and (11) are both relations between P (a,zs,w), P'(a,zs,w) and A(w). Are
equations (10) and (11) independent relationships between P, P’ and A(w)? E.g., if true, we

could derive an exact relationship for A(w) directly in terms of P. Or P’ from P exactly.

It is useful in comparing (10) and (11) to notice that

D
GBlouzue) (4 oo, 1, )

GP¥(a,a,w) dz

zZ=a
where

eik(zle) (1 _ e2ikz')
21k ’

again for z > 2’; it shows that these two integral expressions (11) and (10) are identical.

GOD(z,z',w) =

Hence, the triangle holds!

References

1. Amundsen, L., B.G. Secrest and B. Arntsen, 1995, Extraction of the normal component

of the particle velocity from marine pressure data: Geophysics, 60, 212-222.

34



Short note: The triangle relationship MOSRPO02

2. Corrigan, D., Weglein, A. B., and Thompson, D. D. “Method and apparatus for seis-
mic survey including using vertical gradient estimation to separate downgoing seismic
wavefields.” (Estimation of the vertical gradient of the wavefield from the wavefield
and wavelet) Assignee: Atlantic Richfield Co., (1991) U.S. Patent No. 5,051,961.

3. Osen, A., B.G. Secrest, L. Admundsen and A. Reitan, 1998, Wavelet estimation from

marine pressure measurements: Geophysics, 63, 2108-2119.

4. Tan, T.H., 1992, Source signature estimation: Presented at the Internat. Conf. And
Expo. Of Expl. And Development Geophys., Moscow, Russia

5. Tan, T.H., 1999, Wavelet spectrum estimation: Geophysics, 64, 6, 1836-1846

6. Weglein, A.B., and Secrest, B.G., 1990, Wavelet estimation for a multidimensional
acoustic or elastic earth. Geophysics, 55, 902-913.

35



Subtraction working team review

MOSRPO02

Subtraction working team review and update

Arthur B. Wegleint, Ray Abma*, Ken H. Matson*, Kristopher A. Innanen} and
Simon A. Shaw*{
tUniversity of Houston, *BP, {University of British Columbia

Abstract

The M-OSRP subtraction working team serves as an industry-academic forum for

discussing issues and ideas related to the prediction and subtraction of multiples. There

are a number of issues that impact our ability to remove multiples from seismic

data.

The effectiveness of multiple removal algorithms can be analyzed both on the basis of

the method’s underlying physics, and by the degree to which the method’s prerequisites

are satisfied.

In March 2002, the subtraction working team met at the University of Houston.

Weglein introduced the meeting by dividing the issues of multiple attenuation into

two categories: in-model and out-of-model. In-model issues need to be addressed even

when the method’s underlying physics are satisfied (e.g., source wavelet, dehosting,

etc.). Out-of-model issues arise when the method’s underlying physics are not realized

(e.g., near source extrapolation, 2-D algorithms). The objective of adaptive subtraction

methods is to remove multiples that have been imperfectly predicted. Talks on pattern

recognition and a comparison study between least-squares and pattern recognition were

presented by external speakers Simon Spitz (CGG) and Ray Abma (BP), respectively.

M-OSRP will continue the subtraction working team, serving as a forum for com-

munication and an agent for generating new approaches to this important problem.

1 Introduction

In principle, the inverse scattering free surface multiple series algorithm remowves all orders of

free surface multiple, and the inverse scattering internal multiple series attenuates all orders of

internal multiple. Both algorithms predict the correct times of the multiple events for a multi-

dimensional (3-D) heterogeneous Earth, and neither require any subsurface information,

event picking or interpretive intervention.

In the free surface multiple case, if all the prerequisites of the method are satisfied, then all

free surface multiples, including diffracted multiples, will be eliminated from the input data.

In order for these multi-dimensional algorithms to work most effectively, the dimension of the
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algorithm must match the dimension of the experiment. In other words, multiples generated
in a 3-D Earth, require a 3-D implementation of the algorithm, which in turn demands a

truly 3-D data acquisition (e.g., areal shooting).

Two important prerequisites of the inverse scattering multiple attenuation series algorithms

are

1. the source wavelet, amplitude and phase

2. source and receiver deghosted input data

In addition to these two prerequisites, the internal multiple attenuation algorithm requires
that free surface multiples have been removed. Methods that provide the prerequisites
for multiple attenuation have their own strengths and limitations. Frequently in practice,
deghosting, an unknown source wavelet, and higher order multiple amplitude errors that arise
when the series algorithms are truncated, are all handled through the energy minimization

criterion in an adaptive subtraction procedure.

Table 1 breaks the problem of multiple subraction into two categories: in-model issues and
out-of-model issues. In-model issues are present when all the assumptions of the method
(and when the assumptions of the procedures employed to satisfy the prerequisites) are
realized. Out-of-model issues arise when the assumptions of the underlying physics model

are violated.

2 In-model issues

2.1 Prediction

In practice, the removal of free surface and internal multiples are prediction and subtraction
methods. Even when the physics model of the theory is realized, then there are still in-model

issues to address.

In-model issues include getting a good estimate of the source wavelet, performing deghosting
and using sufficient terms in the series to properly predict the amplitudes of second and higher
order multiples in the data. It is neccesary to calculate the appropriate number of terms in
the series in order to correctly predict the amplitudes of all orders of free-surface multiples
in the data.
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Table 1: Issues that impact multiple removal can be separated into two categories: in-model

and out-of-model.

In-model issues

Out-of-model issues

When underlying assumptions of

physics are satisfied

When underlying assumptions of

physics are not satisfied

e deghosting

e wavelet estimation by energy

minimization
e truncation of the series

e attenuation vs. elimination of

internal multiples

e all in-model issues plus ...

e missing data, especially crossline

and near-source

e wavelet estimation when energy

minimization fails

e depth sensitive deghosting

When the dimensions of the algorithm and of the acquired data are correct, then there are

techniques to determine deghosted data and source wavelet directly from towed streamer

data. Alternatively, we may use near field measurements and far field extrapolation to

determine the wavelet.

There are a number of projects within M-OSRP that are designed to improve our ability to

satisfy the prerequisites for multiple attenuation series algorithms. For example, variants of

the Extinction Theorem provide methods for estimating the source wavelet and performing
deghosting (e.g., Guo et al., 2003, Zhang and Weglein, 2003).

3 Out-of-model issues

3.1 Prediction

The quality of the prediction may be measured by the amplitude and phase of the predicted

multiples compared to those in the input data.

Timing errors are the most serious because

they can result in us adding back multiples to the data. These errors are most frequently

attributed to the use of a 2-D algorithm for an
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The physics of the free surface and internal multiple attenuation series assumes that the
dimension of the algorithm and the dimension of the acquisition are consistent with the

dimension of the subsurface structure that generates the multiples.

When the dimension is incorrect, this is the over-riding issue to address since it will impact
timing errors. For example, Fig. 1 shows an example of a free-surface multiple predic-
tion generated for synthetic data from a model with inline and crossline dip. When a 3-D

algorithm is used, then the multiples are predicted at the correct time.

Predicted multiples Input data Predicted multiples

P — A

2D algorithm 3D algorithm

Figure 1: The middle pannel shows input data from a synthetic dataset that has both inline
and crossline dip (i.e., from a 3-D Earth). The first and third panels are the results of 2-D
and 3-D free surface multiple prediction, respectively. The timing errors introduced in using

the 2-D algorithm are evident. All panels are common offset displays.

The project of data interpolation and extrapolation within M-OSRP is designed to improve
our ability to provide the algorithms with adequately sampled data in the cases when data

acquisition has not.
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3.2 Comparison of adaptive subtraction techniques
3.2.1 Introduction

When predicted multiples have some (time and amplitude) errors with respect to the mul-
tiples in the data, then they need to be be adaptively subtracted. Adaptive subtraction
techniques are designed to compensate for these errors. Methods that fit into the class of
adaptive subtraction techniques include match filtering (e.g., Robinson and Trietel, 1980)
and pattern recognition (e.g., Spitz 1999, 2000). In general, these methods assume that the
predicted multiples are in some sense close to the multiples in the data. Match filtering
techniques assume that the multiple estimate is close in time (and, e.g., offset for 2-D filters)

and pattern recognition techniques assume that the multiple estimate is close in dip.

The current industry standard match filtering methods employ the least-squares (L2) crite-
rion. For the adaptive subtraction of multiples, this assumes that when the multiples have
been successfully removed, the energy within a window is minimized. The L1 criterion,

assumes that the absolute value of the amplitudes is minimized.

Adaptive subtraction techniques have the potential to compensate for the unknown source
wavelet, and account for other errors, such as those errors in the multiple estimate generated

by using a 2-D implentation of the algorithm.

3.2.2 Methods

Non-deterministic adaptive subtraction methods are described and compared. Simple 1-D
match-filter adaptive subtraction is compared to a pattern-matching subtraction method

and to a 2-D filtering subtraction.

The pattern-matching approach suggested by Spitz (1999, 2000) was implemented as f-x
domain filters where each frequency slice in the multiple estimate has a filter designed to
remove the estimated multiples at that frequency. This filter was then applied to the data
to remove the actual multiples. This pattern-matching method filters out events with dips
found in the multiple estimate without regard to amplitude or timing. This technique allows
more independence from amplitude errors in the multiple estimate and frees the subtraction

from the least-squares constraints of the match-filtering approach.

In an effort to combine the match-filter and pattern-matching approaches to adaptive sub-

traction, we attempted to separate the signal and multiple with multi-dimensional filters.
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In the examples in the next section, a shaped 2-D filter is used to provide prediction within
a trace as well as predictions across traces (Abma, 1995, and Abma and Claerbout, 1995).
The 2-D filter is similar to the combined set of Spitz’s f-x filters, but it is a filter that is
shorter in time. The 2-D filter collapsed to one column is equivalent to a 1-D filter. This

suggests that a 2-D filter could retain advantages of both approaches.

When the free surface multiple removal series is truncated, as is often done in practice,
then different orders of multiples have different relative amplitudes. In this case, the 1-D
match-filter subtraction is inaccurate when different orders of multiples exist within one
design window. Pattern-matching and 2-D filtering, which are independent of the relative
amplitudes, are shown to attenuate the primaries as well as the multiples. Furthermore,
while the data is unavailable for presentation, it has been found that L1 subtraction provides
generally similar results to L2 subtraction, although small improvements have been found in

some parts of the data.

The pattern-matching filter used here is similar, but not identical to the approach used by
Spitz (1999). While Spitz uses a set of filters in the f-x domain, we use an approach that is
more like a projection filter, in that we take the multiple estimate in the f-k domain, generate
a weighting function in that domain to remove the multiples, and apply that weighting func-
tion to the data in the f-k domain. This approach has similar dip-attenuation characteristics
to the f-x approach. The 2-D filter subtraction is done by designing a 2-D t-x annihilation
filter on the multiple estimate, then applying that filter to the data.

3.2.3 Examples

Comparisons of 1-D match-filter, pattern-matching, and 2-D filter adaptive subtraction
methods are made using a simple synthetic and on the Pluto 1.5 dataset (Stoughton et
al., 2001). Figure 2 shows an example of linear signal and noise. In this case, the signal is
the horizontal event and the noise, which would correspond to multiples, is the set of dipping
events in Fig. 2(b). Note that the amplitudes of the two dipping events differ; the steepest

event’s amplitude is twice that of the event with the smaller slope.

Figure 2(b) is an approximation to the noise in Fig. 2(a). The two events in Fig. 2(b) are
equal in amplitude, while the amplitudes of the corresponding noise events in Fig. 2(a) differ.
The noise events in Fig. 2(b) are shifted slightly in time with respect to the corresponding
events in Fig. 2(a).

The least-squares match-filter subtraction method shown in Fig. 2(c) demonstrates the

limitations of this method. While the signal has been well preserved, the steepest event has
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been only partially attenuated, while the event with lower dip has been over attenuated and
now has a negative amplitude. This is the result of trying to fit the two equal amplitude
events seen in Fig. 2(b) to the unequal amplitude events in Fig. 2(a) with a 1-D filter.
This issue of matching events of different amplitude ratios is important for the multiple
attenuation problem, particularly when different orders of multiples are scaled as a function

of their order in the surface-related multiple prediction routines commonly used.

Figure 2(d) shows the result of pattern-matching subtraction. The result in this case is supe-
rior to that of the 1-D match filter. The amplitudes of the events are relatively unimportant
for pattern-matching, whereas the discrimination in the patterns of the dip is more signifi-
cant. The result is an almost perfect separation. In Fig. 2(e), the separation of signal and
noise was done with a 2-D annihilation filter calculated on the noise. The result is excellent,

with almost complete removal of the noise.

In a second synthetic example, Fig. 3(a) shows the data, the sum of a horizontal signal and
a diffraction-like noise event. Figure 3(b) shows the predicted noise. Once again, the noise
events in Fig. 3(b) are shifted slightly in time with respect to the corresponding event in
Fig. 3(a).

The 1-D least-squares technique does an excellent job of attenuating the multiple, as seen
in Fig. 3(c). This example is particularly suited to a 1-D match-filter since the filter only
needs to produce a small shift in the modeled noise to match the noise in the data, and the
signal is poorly correlated with the noise in time. The pattern-matching result shown in Fig.
3(d) is unsatisfactory. Both the noise and the signal are removed. The pattern-matching
removed both the noise and the signal in an effort to remove all the dips contained in the
diffraction-like event in the predicted noise. The signal dip overlaps the dip range of the
noise. The 2-D match-filter result in Fig. 3(e) shows both the signal and noise attenuated.
This is basically the same effect seen in the pattern-matching result in Fig. 3(d), except that
the small t-x filter size limited the amount of attenuation in the presence of the large range
of dips to be removed.

Finally, these methods were applied to the Pluto 1.5 dataset. The dataset is a 2-D elastic
finite-difference synthetic that is significantly more complicated than the previous examples.
Figure 4(a) shows a common-offset data section, which contains significant multiple energy.
The predicted multiples are seen in Fig. 4(b). The water bottom multiple appears with a
specular part and a multiple diffraction part. Figure 4(c) shows a least-squares subtraction.
The multiples are very well attenuated, and there is no obvious weakening of the primary

energy.
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The pattern-matching result seen in Fig. 4(d) shows the specular component to be well
attenuated, but the diffracted multiples still remain. The multiples of the diffractions remain,
since the specular components of the multiples dominate the filter calculations. The 2-D filter
result in Fig. 4(e) shows similar effects. The pattern-matching result shows attenuation of
the signal near the multiple energy. The 2-D filter result also shows attenuation of the signal,
but the attenuation of the multiples of the diffractions is poorer than that seen in the pattern-
matching result. In the pattern-matching and the 2-D filter methods, the independence of
the amplitudes of the estimated multiples from the amplitudes of the events in the data is
both a strength and a weakness. The independence from the amplitude of the predicted
multiples allows these methods to avoid the dependence on the exact amplitudes of the
estimated multiples, making the subtraction more robust. Unfortunately, this independence
also allows signal to be attenuated regardless of how the pattern of amplitudes on the multiple

estimate matches the pattern in the data.

3.2.4 L1 versus L2 subtraction

Calculating adaptive subtraction filters can be done using a least-squares method, but in
the presence of spiky noise, an L1 method might be preferable (Guitton and Verschuur,
2002). Although we found there was some improvement in the results on real data, the
differences were generally small, at least on the dataset we tried it on. Since the subtraction
is significantly more expensive with the L1 norm, it seems impractical at present. There may
be cases where noise other than the multiples contaminates the matching filter enough that
the L1 method is practical, but generally the multiples being considered are strong enough

to dominate the match filter calculations.

4 Discussion

At some cost, data acquisition can improve our ability to remove free surface and internal
multiples from seismic data. Recording near offsets, and having receivers positioned to collect
wider aperture data are two examples of this. A third is to use near-field measurements of
the source to estimate its signature. In short, money can improve prediction and lessen the

burden on subtraction techniques.

None of the adaptive subtraction methods tested will remove multiples under all conditions,

without modifying the primaries. While pattern-matching and multidimensional filtering
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methods offer the promise of independence from the requirement that the amplitudes of the
estimated multiples match those in the real data, these methods tend to attenuate signal
as well as multiples. Of the three methods tested, the 1-D match-filter is the most robust

under many conditions.

There are other possible approaches to adaptive subtraction. In particular, the 2-D f-x
method and the 2-D filtering method may be extended into higher dimensions. The filters
may be designed as annihilation filters or as multi-dimensional match-filters. Another possi-
bility would be to use local slant stacks, or Radon transformations, to separate the multiples
and the data into dip components and compare the amplitudes in that domain. There are
more sophisticated methods that use inversion for the separation (Abma, 1995, Brown and
Clapp, 2000, and Guitton et al., 2001). Inversion methods tend to be expensive, and in
some cases they suffer from instabilities and sensitivities to weights applied as part of the

inversion.

The subtraction working team will continue to act as a forum for discussing issues related

to the prediction and subtraction of multiples.
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Figure 2: A simple synthetic example comparing different adaptive subtraction techniques.
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Abstract

This paper presents both an overview and a more detailed description of the key
logic steps and mathematical-physics framework behind the development of practical
algorithms for seismic exploration derived from the inverse scattering series.

We present both the rationale for seeking and methods of identifying uncoupled
task specific subseries that accomplish: (1) free-surface multiple removal; (2) internal-
multiple attenuation; (3) imaging primaries at depth; and (4) inverting for earth ma-
terial properties. A combination of forward series analogue and physical intuition are
employed to locate those subseries. We show that the sum of the four task specific sub-
series does not correspond to the original entire inverse series since terms with coupled
tasks are never considered or computed. This aspect of the program, i.e., inversion in
stages, with an isolated task followed by restarting the problem, provides tremendous
practical advantage, since the achievement of a task is a form of useful information
exploited in the redefined problem; and, the latter represents a critically important
step in the logic and overall strategy.

There are both tremendous symmetries and critical and subtle differences between
the forward scattering series construction and the inverse scattering series processing
of seismic events. These similarities and differences help explain the efficiency and

effectiveness of different inversion objectives. The individual subseries are analyzed
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and their strengths, limitations and prerequisites exemplified with analytic, numerical,

and field data examples.

1 Introduction and background

In exploration seismology, a man—made source of energy on (or near) the surface of the
earth (or in the ocean, in marine exploration) generates a wave that propagates into the
subsurface. When the wave reaches a rapid change in earth material properties, (i.e., a
reflector) a portion of the wave is reflected back upward the surface; and, in the marine
case, is recorded at numerous receivers along a towed streamer in the water column near the

air-water boundary.

ar

O N

water

\/ earth

Figure 1: Marine Seismic Exploration Geometry: * and 1/ indicate source and receiver,

respectively. The boat moves through the water with the source and receivers, and the ex-
periment is repeated. The collection of the different source-receiver wave field measurements

defines the seismic reflection data.

The objective of seismic exploration is to determine subsurface earth properties from the
recorded wavefield. The ultimate objective is to determine subsurface targets and then to

estimate the type and extent of rock and fluid properties for hydrocarbon potential.

The need for more effective and liable techniques for extracting information from seismic
data is driven by several factors including (1) the higher acquisition and drilling cost and

risk associated with the industry trend to explore and produce in deeper water; and (2) the
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serious technical challenges associated with either deep water, or imaging beneath a complex

and ill-defined overburden, above the target.

An event is a distinct arrival of seismic energy. Seismic reflection events are catalogued as
primary or multiple depending on whether the energy arriving at the receiver has experi-
enced one or more upward reflections, respectively. Multiples or multiply reflected events
are further classified by the location of the downward reflection between two upward reflec-
tions. For marine data, multiples that have experienced at least one downward reflection
at the air-water (free) surface are called free surface multiples. Multiples that have all of
their downward reflections below the free surface are called internal multiples. (See Fig.2).

Methods for extracting subsurface information from seismic data typically assume that the

ar

water

earth

Figure 2: 1, 2 and 3 are examples of primaries, free-surface multiples and internal multiples,

respectively.

data consists of primaries, since that model allows essentially one reflection process to be
associated with each recorded event. The latter primaries-only assumption simplifies the
processing of seismic data for determining the spatial location of reflectors and the local
change in earth material properties across a reflector. Hence, multiple removal is a requisite
to seismic processing. It is a long-standing problem and while significant progress has been
achieved over the past decade, conceptual and practical challenges remain. The inability to
remove multiples can lead to multiples masquerading or interfering with primaries causing

false or misleading interpretations; and, ultimately poor drilling decisions. The assump-
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tion of singly reflected (or scattered) data in seismic data analysis is an assumption shared
with other fields of inversion and non-destructive evaluation, e.g., it is common to medical
imaging, and ground penetrating radar, environmental hazards, and the violation of this
assumptions in practice, can lead to deleterious and serious consequences for medical diag-
nosis, hazard detection, and buried object and fluid location/identification, for tunnels and
caves. Even if multiples were to be removed from seismic reflection data, the challenges for
accurate imaging (locating) and inversion across reflectors are significant, especially when
the medium of propagation and the geometry of the target are complex and the contrast in
earth material properties is large. The latter large contrast property condition is all by itself

enough to cause linear inverse methods to bump up hard against their assumptions.

Specifically, the location and definition of hydrocarbon targets beneath salt, basalt, volcanics,
and karsted sediments are of high economic moment in the petroleum industry today, and
serious challenges to current imaging and inversion techniques that go beyond the daunt-
ing issues concerning the removal of multiples. For the latter geologic circumstances the
requirement of all current methods for the imaging-inversion of primaries for an accurate
(or at least adequate) model of the medium above the target, can often not be achievable in
practice, leading to erroneous, ambivalent or misleading prediction. These difficult imaging
conditions often occur in, e.g., the deep water Gulf of Mexico, where the confluence of large
hydrocarbon reserves beneath salt and the high cost of drilling in deep water, drives the
demand for more effective and reliable methods. In this Topical Review, we will describe
how the inverse scattering series has provided the promise of an entire new vision and level
of seismic capability and effectiveness. That promise has already been delivered for the
removal of free surface and internal multiples. We will also describe the recent research
progress and results on the inverse series for the processing of primaries. Our objectives in
writing this Topical Review are: (1) To provide both an overview and a more comprehen-
sive mathematical-physics description of these new seismic processing concepts and practical
industrial production strength algorithms, that derive from the inverse series and (2) To de-
scribe and exemplify the strengths and limitations of these seismic processing algorithms;
and to discuss open issues and challenges. (3) To explain how this work reflects a general
philosophy, and approach (strategy and tactics) to defining, prioritizing and choosing, and
then solving significant real-world problems, from developing new fundamental theory, to is-
sues with limitations with field-data, to satisfying practical prerequisites and computational

requirements.

The problem of determining earth material properties from seismic reflection data is an in-

verse scattering problem; and, specifically, a non-linear inverse scattering problem. Although,
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an overview of all seismic methods is well beyond the scope of this paper, it is accurate to say
that prior to the early 1990s, (when non-linear inverse scattering series methods were first
applied) (Weglein, Boyse and Anderson (1981) and practical algorithms first demostrated
Weglein et al. (1997)) all deterministic methods used in practice in exploration seismology
could be viewed as different realizations of a linear approximation to inverse scattering, the
inverse-Born approximation (see, e.g., Cohen and Bleistein (1997), Stolt and Weglein (1985),
Morley and Claerbout (1983)).

All scientific methods assume a model that starts with assumptions that include some (and
ignore other) phenomena and components of the reality. Among earth models used in seismic
exploration are: acoustic, elastic, heterogeneous, anisotropic and anelastic, and the experi-
mental description model for the characteristics of the man-made source, and the resultant
incident field, the character of the receivers, the dimension of variability of the earth and ge-
ometry of reflectors. The configuration and extent of the experiment, and the sampling rate
of sources and receivers that comprise the recorded seismic wave field need to be included

in the model and subsequent theory and algorithms.

Although 2D, 3D closed form complete integral equation solutions exist for the Schrodinger
equation (see, Newton (2002)) - there is no analogous closed form complete multi-dimensional
inverse solution for the acoustic or elastic equation. The push to develop complete multi-
dimensional non-linear seismic inversion methods came from a several directions: (1) The
need to remove multiples from a complex multidimentional earth and (2) the interest in a

more realistic model for primaries.

This absence of a closed form exact inverse (for a 2D acoustic or elastic earth) shifted
attention to non-closed or series forms. An inverse series can be written, at least formally,

for any differential equation expressed in a perturbative form.

This paper describes and illustrates the development of concepts and practical methods
from the inverse scattering series for multiple attenuation and, provides some recent new

promising conceptual and algorithmic results for primaries.

2 Seismic data and scattering theory

2.1 The scattering equation

Scattering theory is a form of perturbation analysis. In broad terms it describes how a pertur-

bation in the properties of a medium relates a perturbation to a wave field that experiences
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that perturbed medium. It is customary to consider the original unperturbed medium as
the reference, and, to consider the perturbation or alteration of properties turning the refer-
ence into the actual. The difference between the actual and reference media is characterized
by the perturbation operator. The corresponding difference between the actual and refer-
ence wavefields is called the scattered field. Forward scattering takes as input the reference
medium, the reference field, and the perturbation operator, and outputs the actual wave-
field. Inverse scattering takes as input the reference medium, the reference field and values of
the actual field on the measurement surface, and outputs the difference between actual and
reference medium properties, through the perturbation operator. Inverse-scattering-theory
methods typically assume the support of the perturbation to be on one side of the mea-
surement surface. In seismic application this condition translates to a requirement that the
difference between actual and reference media be non-zero only below the source-receiver
surface. Consequently, inverse scattering methods require, for seismic application, that the

reference medium agrees with the actual at and above the measurement surface.

For marine application the sources and receivers are located within the water column and
the simplest reference medium is a half-space of water bounded by a free surface at the
air-water interface. Since scattering theory relates the difference between actual and refer-
ence wavefields to the difference between their medium properties, it is reasonable that the
mathematical description begin with the differential equations governing wave propagation
in these media. Let

LG = —4(r —ry) (1)
and
LOGO = —(5(1‘ - I‘s) (2)

where L, Ly and G, Gy are the actual and reference differential operators and Greens
functions, respectively, for a single temporal frequency. Equations (1) and (2) assume that
the source and receiver signatures have been deconvolved. The impulsive source is ignited
at t = 0. G and Gy are the matrix elements of the Greens operator, G and Gg, in the
spatial coordinates and temporal frequency representation. G and Gy satisfy LG = —1 and
LoGg = —1, where 1 is the unit operator. The perturbation operator, V, and the scattered

field operator, ¥,, are defined as follows:

V=L-L,, (3)
U, =G -Gy . (4)
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W, is not itself a Green’s operator. The Lippmann-Schwinger equation, the fundamental
equation of scattering theory, is an operator identity that relates ¥,, Go, V and G, (see,
e.g., Taylor, 1972),

U, =G — Gy =G¢VG . (5)

In the coordinate representation, Eq. (5) is valid for all positions of r and r, whether or
not they are outside the support of V. A specific simple example of L, Lo, and V, when
G corresponds to a pressure field in an inhomogeneous acoustic medium (see, e.g., Clayton
and Stolt, (1981))

2 1
L0=“’—+v-(—v> ,

o (- 2) = ((-2)].

where K, kg, p and pg are the actual and reference bulk modulus and densities, respectively;

and

w is the temporal frequency. Other forms that are appropriate for elastic isotropic media
and a homogeneous reference, begin with the generalization of equations Egs. (1), (2) and

(5) where matrix operators e.g.:

and

express the increased channels available for propagation and scattering and

V — ‘/;919 ‘/PS
Vip Vs
is the perturbation in an elastic world. (see,e.g., Stolt and Weglein, 1985).
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2.2 Forward series in operator form

Equation (5) can be expanded in an infinite series
U, =G —-Gog=GoVGy+ Gy VG VGq + ... (7)
for W, in orders of the perturbation operater, V. Then Eq. (7) can be rewritten as
Uy = (Uo)1 + (Ps)2 + (Ys)3 + ... (8)

where (¥,), = Go(VGy)", and is the portion of ¥, that is n-th order in V. The inverse
series of Eq. (7) (or Eq. (8)) is an expansion for V in orders (or powers) of the measured
values of ¥, = (¥,),,. The measured values of ¥, = (¥,),, constitute the data, D. Expand

V as a series
V=V +Vy+V3+... 9)
where V,, is the portion of V that is nth order in the data, D.

To find Vy, V,, V3, ... and, hence, V, first substitute the inverse form Eq. (9) into the
forward Eq. (5)

q’s = GO(V1+V2+)G0+G0(V1+V2+)G0(V1+V2+)GO
+Go(V1i+Va+...)Go(Vi+Va+...)Go(V1+ Vo +...)Gyg
+... . (10)

Evaluate both sides of Eq. (10) on the measurement surface and set terms of equal order in

the data equal. The first order terms are
(¥s)m =D = (GoV1Go)m , (11)
the second order terms
0= (GoV2Go)m + (GoV1GoV1Go)m (12)
and the third order

0 = (G0V3G0)m + (G0V1G0V2G0)m
+(G0V2G0V1G0)m + (G0V1G0V1G0V1G0)m + ... (13)

and to n-th order

0 = (GoVnGo)m + (GoV1iGoV,_1Go)m +
+H(GV1GoV1iGe Vi ... GoViGo)ym - (14)
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(U,),, are the measured values of the scattered field ¥,. To solve these equations, start
with Eq. (11) and invert the G¢ operators that sandwich V;. Then substitute V; into Eq.
(12) and perform the same inversion operation as in Eq. (11) to invert the G¢ operators
that sandwich V5. Now substitute V; and V; found from equations (11) and (12), into Eq.
(13) and again invert the Gg operators that bracket V3 and in this manner continue this
program to compute any V,,. This method for determining V;, Vs, V3, ... and, hence,
V =YV, is an explicit direct inversion formalism that, in principle, can accommodate
a wide variety of physical phenomena, and concomitant differential equations, including
multidimensional acoustic, elastic, an certain forms of anelastic wave propagation. Because
a closed or integral equation solution is currently not available for the multidimensional
forms of the latter equations, and a multidimensional earth model is a minimal required
realism to develop relevant and differential technology, the inverse scattering series became a
focus of attention for those seeking significant added completeness and effectiveness beyond

linear, 1D, or small contrast techniques.

In the derivation of the inverse series equations (11)—(14) there is no assumption about the
closeness of Gg to G, nor of the closeness of V; to V, nor is V or V; assumed to be small
in any sense. V; is the portion of V that is linear in the data. That is all that is assumed.
Equation (11) is an exact equation for V;. If one were to assume that V; is close to V,
and then treat Eq. (11) as an approximate solution for V, then that would then correspond
to the inverse Born approximation. The latter assumption of V &~ V; is never made in the
formalism of the inverse scattering series. The inverse Born approximation inputs the data
D, and Gy, and outputs V; which is then treated as V.

All of current seismic processing methods for imaging and inversion are different incarnations
of using Eq. (11) to find an approximation for V(see Stolt and Weglein (1985)), hence,
the understandable and sustained effort to build ever more realism and completeness into
the reference differential operator, Lo and its impulse response, Go. As with all technical
approaches, the latter road (and current mainstream seismic thinking) eventually leads to
a stage of maturity where further sustained effort will no longer bring a commensurate
benefit. The inverse series methods provides a vennato achieve objectives beyond the reach
of linear methods for a given level of a-priori information. Several additional comments: (1)
the forward and inverse Born approximations are two separate and distinct methods: the
forward Born approximation for the scattered field, ¥,, uses a linear truncation of Eq. (7)
(and Eq. (8)) to estimate W,

¥, = GoVGy

and inputs Gy and V to find an approximation to ¥,; the inverse Born approximation inputs
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D and Gg and solves for V; as V which it approximates by inverting
(‘I’s)m = D = (G()VGO)m

(2) the inverse series is a separate and distinct procedure from iterative linear inversion.

Iterative linear inversion would start with Eq. (11) and solve for V;. Then a new reference
operator, Ly = Lo + Vi; impulse response, G{ (where LiG{ = —J); and data, D' =

(G — G{)n are input to a new linear inverse form
D' = (GyV1Go)m

where a new operator,Gy, has to now be removed (inverted) from both sides of V). These
linear steps are iterated, note that at each step a new and, in general, more complicated
operator (or matrix or frechetderivative) is required to be inverted. In contrast, the inverse-
scattering series Egs. (11)—(14) inverts the same and original input operator, Gy, at each
step. The inverse-scattering series methods were first developed by Moses (1956), Prosser
(1969), Razavy (1975), and transformed for application to a multi-dimensional Earth and
exploration seismic reflection data by Weglein, Boyse and Anderson (1981) and Stolt and
Jacobs (1980). The first question in considering a series solution is the issue of convergence
and if encouraging, followed closely by the question of rate of convergence. The important
pioneering work on convergence criteria for the inverse series by Prosser (1969) is given
as a condition which is difficult to translate into a statement on the size and duration
of the contrast between actual and reference media. Faced with that lack of theoretical
guidance, empirical tests of the inverse series were performed (Carvalho (1992)) for a 1D
acoustic medium, which indicated that, starting with no a-priori information, convergence
was observed but appeared to be restricted to small contrasts and duration (e.g., < 11%

difference between actual earth acoustic velocity and water (reference) speed).

Since the acoustic wave speed in the earth quickly gets further than 11% from the acoustic
wave speed in water ( 1500 m/sec) the practical value of the entire series, without a priori

information, appeared to be quite limited.

A reasonable response might seem to be to use seismic methods that estimate the velocity
trend of the earth to try to get the reference medium proximal to the actual, and that in

turn could allow the series to possibly converge.

The problem with that thinking was that velocity trend estimation methods assumed that
multiples were removed prior to that analysis. Furthermore, concurrent with these technical

strategic decisions (around 1990) was the loud and clear message heard from petroleum
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industry operating units that multiple removal was on increasingly prioritized and serious

problem and impediment to effectiveness.

Methods for removing multiples (at that time) assumed either: (1) the earth was 1D, (2), the
velocity model was known, (3) reflectors generating the multiples could be defined, different
patterns could be identified in waves from primaries and multiples, and (5) primaries were
random and multiples periodic. All of these assumptions were seriously violated in deep-
water and/or complex geology, and the methods based upon them often enough outright

failed to perform, or produced erroneous or misleading results.

This interest in multiples came in large part from the industry trend to explore in deep
water where the depth alone (> 1km) can cause, e.g., multiple removal methods based on
periodicity arguments to seriously violate their assumptions. Complex multidimensional
heterogeneous and hard to estimate geologic conditions and targets provided additional
challenges for multiple removal methods that relied on having 1D assumptions or access to

inaccessible details about the reflectors that were the source of these multiples.

The inverse scattering series was (and remains) the only multi-dimensional direct inversion
formalism that could accommodate arbitrary heterogeneity directly in terms of Go with

estimated rather than actual propagation properties.

The confluence of these factors lead to the development of thinking that viewed inversion as

a series of tasks or stages, and to view one of these as multiple removal.

2.3 Swubseries

A combination of factors: (1) that the inverse series represent the only multidimensional di-
rect seismic inversion; (2) numerical tests that suggested an apparent lack of robust conver-
gence of the overall series, ( when starting with no a-priori information), and, (3) the interest
in extracting something of value from this only formalism for complete multi-dimensional
inversion; and, (4) the industry need for more effective methods for removing multiply re-
flected events (multiples) from data collected over an unknown heterogeneous earth, all came
together to imagine inversion in terms of steps or stages with intermediate objectives towards
the ultimate goal of identifying earth material properties. The stages were each defined as
achieving a task or objective: (1) removing free-surface multiples; (2) removing internal mul-
tiples; (3) imaging (locating) reflectors in space; and (4) determining the changes in earth
material properties across those reflectors. The idea was to seek to identify within the over-

all series, and specific distinct subseries that performed these focused tasks and to evaluate
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those subseries for convergence, rate of convergence, data requirements and theoretical and
practical prerequisites. Perhaps a subseries for one specific task would have a more favor-
able attitude towards, e.g., convergence in comparison to the entire series. These tasks, if
achievable, could bring practical benefit on their own terms, and, if achievable, could be
realized from the inverse-scattering series directly in terms of the data, D, and reference
wave propagation, Gy and where Gy is not assumed to be proximal to the actual. At the
outset, many important issues were open (and some remain open) that could cause a pause
or hesitation in pursuing such a new task separation strategy. Among them are (1) does
the series in fact uncouple in terms of tasks, (2) if it does uncouple, then how to identify
those uncoupled task-specific subseries; (3) will the inverse series view multiples as noise to
be removed, or as signal to be used for helping to image/invert the target; and (4) will the
subseries derived require different algorithms (and computer codes) for different earth model
types (e.g., acoustic version and elastic version) how can you know or determine, in a given
application, how many terms in a subseries will be required to achieve a certain degree of
effectiveness. We will address and respond to these questions in this paper and list others
that are outstanding or the subject of current investigation. How to identify a task specific
subseries? The pursuit of task specific subseries used several different types of analysis with
testing of new concepts to evaluate, refine and develop embryonic thinking largely based on
analogues and physical intuition. To begin, the forward and inverse series Egs. (7) (8), and
Eqgs. (11)—(14) have a tremendous symmetry. The forward series produces the scattered
wavefield, ¥, from a sum of terms each of which is composed of the operator, Gy acting on
V. When evaluated on the measurement surface, the forward series creates all of the data,
(¥,),, = D and contains all recorded primaries and multiples. The inverse series produces
V from a series of terms each of which can be interpreted as the operator Gy acting on the
recorded data, D. Hence, in scattering theory the same engine, GG, that acts on V to create

data, acts on D to invert data. If we consider
< GoVGy >,=<Go(V1+ Va2 +V3+...)Go >n
and use equations (12)—(14) we find
< GoVGy >,,=< GoV1Gy >,, — < GgV1G VG >, +... (15)

there is a remarkable symmetry between the inverse series Eq. (15) and the forward series
Eq. (7)
(‘I’s)m =< GoVGq >, + < GoVGyVGg >,, +... (7)

In terms of diagrams, the inverse series for V, Eq. (15) can be represented as
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X N/ X \V4 X V4
G(\ /G() = Go\ /GO - GR GO /G0+ e
\Y Vi

Vl Vl

while the forward series, Eq. (7) for the data, (¥,),, = D, can be represented as

X V4 X N X \V4
D= (%\ /G: GO\ %0 +GA\ GO /Go+
\Vj \Vj V V

and, therefore, this diagram comparison indicates further opportunities for relating forward
and inverse processes. The symbols X and 1/ indicate a source and receiver, respectively.
However, we know that the forward and inverse problems are not “inverses” in some more
formal sense - meaning that the forward creates data but the inverse doesn’t annihilate data,
it inverts data. Never-the-less, the inverse scattering task specific subseries were thought to
act on only specific subsets of the data, e.g., free surface multiples, internal multiples, and,
imaging and inverting primaries. Hence, the guess was that if we could figure out how those
events were created in the forward series in terms of Gy and V, perhaps we could figure
out how those events were processed in the inverse series when once again Gy was acting on
D. That intuitive leap was later provided with a somewhat rigorous basis for free surface
multiples, but the more challenging internal multiple attenuation subseries and the distinct
subseries that image and invert primaries at depth without the velocity model while hav-
ing attracted some insightful mathematical-physics rigor (Ten Kroode (2002)), remain with
certain key steps in their logic based on plausibility, empirical tests, and physical intuition.
In fact, for internal multiples understanding how the forward scattering series produces an
event only hints at where the inverse process might be located. That ’hint’ required and
presently remains indebted to intuition, testing and subtle refinement of concepts to go to
the location of the inverse operation. This is further internal. This last statement is neither
an apology nor an expression of hubris, but a normal and expected stage in the development

and evolution of new fundamentally concepts.
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3 The marine case

For the marine case, with sources and receivers in the water column, the simplest reference
medium is a half-space of water bound by a free surface at the air-water interface. The

reference Green’s function, Gy, consists of two parts
Go = Go? + Go™* | (16)

where G¢? is the direct propagating, causal, whole-space Green’s function in water and
GoF¥ is the additional part of the Green’s function due to the presence of the free surface

(see Fig. 3). G corresponds to a reflection off the free surface. In the absence of a free

free surface

Figure 3: The marine configuration and reference Green’s function.

surface, the reference medium is a whole-space of water and Gg? is the reference Green’s
function. In this case, the forward series equation (7) describing the data is constructed from
the direct propagating Green’s function, Go?, and the perturbation operator, V. With our
choice of reference medium, the perturbation operator characterizes the difference between
earth properties and water; hence, the support of V begins at the water bottom. With the
free surface present, the forward series is constructed from Go = Go? + GoF° and the same
perturbation operator, V. Hence, GoF* is the sole difference between the forward series with
and without the free surface; therefore Gy is responsible for generating those events that
owe their existence to the presence of the free surface, i.e., ghosts and free-surface multiples.
Ghosts are events that either start their history propagating from the source up to (and
reflecting down from) the free-surface or end their history as the downgoing portion of the
recorded wavefield at the receiver, having its last experience as a downward reflection at the

free surface (see Fig.3).
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Figure 4: 1 and 2 correspond to source and receiver ghosts, respectively.

In the inverse series, equations (11)-(14), it is reasonable to infer that Go™® will be responsi-
ble for all the extra tasks that inversion needs to perform when starting with data containing
ghosts and free-surface multiples rather than data without those events. Those extra inverse
tasks include deghosting and the removal of free-surface multiples. In the section on the
free-surface demultiple subseries that follows, we describe how the extra portion of the ref-
erence Green’s function due to the free surface, Go™®, performs deghosting and free-surface

multiple-event removal.

X (2) e

S

Figure 5: Deghosted Marine Data: 1, 2 and 3 represent deghosted primaries, free surface

multiples and internal multiples, respectively.

Once the events associated with a free surface are removed, the remaining measured field
consists of primaries and internal multiples. For a marine experiment absent of a free surface,
the scattered field, ¥’,, can be expressed as a series in terms of a reference medium consisting

of a whole-space of water, the reference Green’s function, G¢?, and the perturbation, V, as
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follows:

U, = Go'VGo® + Go?VG'VGy® + Go?VG' VG VG + ...
= (W) 4 (W) + (¥)s. . (17)

The values of ¥/, on the measurement surface, D', are the data, D, absent of free-surface

events; i.e., D' consists of primaries and internal multiples
D'=D\+Dy+Ds+...+D) +...

where D! is the projection of (¥'y),, on the measurement surface. Unfortunately, the free-
space Green’s function, Go?, doesn’t separate into a part responsible for primaries and a part
responsible for internal multiples; a new concept was necessary to be introduced to separate
the tasks associated with Go? (Weglein et al., (1997)).

A seismic event represents the measured arrival of energy that has experienced a specific set
of actual reflections, R, and transmissions, 7, at reflectors and propagation, p, governed by
medium properties between reflectors. A complete description of an event would typically
consist of a single-term expression with all the actual episodes of R, T', and p in its history.
The classification of an event in D’ as a primary or an internal multiple depends on the

number and type of actual reflections it has experienced.

In contrast, forward scattering describes data, D', in terms of a series. Each term of the
series corresponds to a sequence of reference medium propagations, G, and scatterings
off the perturbation, V. The scattering theory description of any specific event in D’ also
requires an infinite series necessary to build the actual R, T, and p’s in terms of reference
propagation, Go%, and the perturbation operator, V. That is, R, T, and p are nonlinearly
related to Go% and V. We will illustrate this with a simple example later in this section.
Hence two chasms need to be bridged to determine e.g., the subseries that removes internal
multiples. The first requires a map between primary and internal multiples in D’ and their
description in the language of forward scattering theory, Go? and V; the second requires
a map between the construction of internal multiple events in the forward series and the

removal of these events in the inverse series.

The internal multiple attenuation concept requires the construction of these two dictionaries:
one relates seismic events to a forward-scattering description, the second relates forward
construction to inverse removal. The task separation strategy requires that those two maps
to be determined . Both of these multidimensional maps were originally derived using

arguments of physical intuition and mathematical reasonableness. Subsequently, Matson
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(1996) provided, for 1-D constant-density acoustic media, a mathematically rigorous map of
the relationship between seismic events and the forward scattering series. Recent work by
Nita et al. (2003), and Innanan and Weglein (2003), extend that work to prestack analysis
and absorptive media, respectively. Within the context of the important Matson paper, his
results agree with and confirm the original intuitive arguments. The second map, relating
forward construction and inverse removal, remains largely based on its original foundation
of reasonableness. Recently, Ten Kroode (2002) presented a formal mathematical map for
certain important aspects of the forward to inverse internal multiple map based on a leading
order definition of internal multiples. For the purpose of this paper, we present only the
key logical steps of the original arguments that lead to the required maps; the argument of
the first map is presented here; the second map, relating forward construction and inverse

removal, is presented in the next section.

To understand how the forward scattering series describes a particular event, it is useful to
recall that the forward series for D’ is a generalized Taylor series in the scattering operator,
V (Keys and Weglein, 1983). But what is the forward scattering subseries for a given event
in D'? Since a specific event consists of a set of actual R, T', and p factors, it is reasonable
to start by asking how these individual factors are expressed in terms of the perturbation
operator. Consider the simple example of one-dimensional acoustic medium consisting of a
ikz

single interface and a normal-incidence plane wave, e***, illustrated in Fig. 6.

Let the reference medium be a whole-space with acoustic velocity, ¢o. The actual and

reference differential equations describing the actual and reference wave fields, P and P,

are:
d? w?
[@ + 02(2):| P(z,w) =0 ,
and
az  W?
[@‘i‘ %] PO(Z,CU) =0 ,
where ¢(z) is the actual velocity.
The perturbation operator, V, is
w? w?
V=L-ILy=————.
T k) 4
Characterize c(z) in terms of ¢y and the variation in index of refraction, a,
1 1
= —|1 .
i = gl tele)
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Figure 6: The 1-D plane-wave normal-incidence acoustic example.

In the lower half-space
1 1 1+ al
_— = — o
ad ’

a; essentially represents (within a constant factor of w?/c2) the change in the perturbation
operator at the interface. The reflection and transmission coefficients and the transmitted

wave propagating in the lower half-space are

€1 —Co
Rai =
01 o1+ o
2
Ty = —
C1 + Co
and
P, =Tye'a® = To1ps
Using
C 1
a = —Ol ¢ |[l—-a+hp(a)|
(1+a):z 2

these R, T, and p quantities are expandable as power series in the perturbation, a; (h.p.
denotes “higher powers of”).

1
Ry = —zet h.p-(a) ,
T01 = 1+ hp(a) y
p = ea’=¢éw” +hp(a)

= po+hp(a).
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Thus, to lowest order in an expansion in the local perturbation, the actual reflection is
proportional to the local change in the perturbation, the transmission is proportional to
1, and the actual propagation is proportional to the reference propagation. An event in
D’ consists of a combination of R, T' and p episodes. The first term in the series that
contributes to this event is determined by collecting the leading-order contribution (in terms
of the local change in the perturbation operator) from each R, T' and p factor in its history.
Since the mathematical expression for an event is a product of all these actual R, T' and
p factors, it follows that the lowest order contribution, in the powers of the perturbation
operator, will equal the number of R factors in that event. The fact that the forward series,
Eq. (17), is a power series in the perturbation operator then allows us to identify the term
in Eq. (3) that provides the first contribution to the construction of an event. Since by
definition all primaries have only one R factor, their leading contribution comes with a
single power of the perturbation operator; hence, from the first term of the series for D’'.
First-order internal multiples, with three factors of reflection, have their leading contribution
with three factors of the perturbation operator; hence, the leading-order contribution to a
first-order internal multiple comes from the third term in the series for D'. All terms in
the series beyond the first make second-order and higher contributions for the construction
of the R, T' and p’s of primaries; similarly, all terms beyond the third provide higher-order
contributions for constructing the actual reflections, transmissions and propagations of first-
order internal multiples. How do we separate the part of the third term in the forward
series that provides a third-order contribution to primaries from the portion providing the

leading-term contribution to first-order internal multiples?

The key to the separation resides in recognizing that the three perturbative contributions
in Dj are located at the spatial location of reflectors. For a first-order internal multiple
the leading-order contribution (illustrated on the right-hand-member of Fig. 7), consists of
perturbative contributions located at the spatial location (depth) of the three reflectors where
reflections occur. Specifically for the example in Fig. 7, the three linear approximations to
Rq5, Ry, R19, that is, as — a1, a1, ag — a; are located at depths 21, 29, z3 where z; > 29 and
23 > 2. In this single layer example z; = z3. In general, Dj consists of the sum of all three
perturbative contributions from any three reflectors at depths z;, 22, and z3. The portion of
D} where the three reflectors satisfy z; > 22 and z3 > 25 corresponds to the leading order
construction of a first-order internal multiple involving those three reflectors. The part of
Dj corresponding to the three perturbative contributions at reflectors that do not satisfy
both of these inequalities, provide third-order contribution to the construction of primaries.

A simple example is illustrated in Fig. 8.
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Figure 7: The left-hand-member of this diagram represents a first-order internal multiple;
and the right-hand-member illustrates the first series contribution, from Dj, to its construc-

tion. a; and as — a; are the perturbative contributions at the two reflectors; cg, ¢; and ¢y

are the acoustic velocities and 1/c3 = 1/c3(1 + aa), 1/2 = 1/c3(1 + o).

23

22

21

Figure 8: Diagram representing a portion of Dj that makes a third-order contribution to the

construction of a primary.
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The sum of all the contributions in Dj that satisfy z; > 29 and z3 > 29 for locations of the
three successive perturbations, is the sum of the leading contribution term for all first-order
internal multiples. Similarly, second, third, - -- , n-th order internal multiple find their initial
contribution in the fifth, seventh, --- | (2n + 1)-th term of the forward series. We use this
identified leading-order contribution to all internal multiples of a given order in the forward
series to suggest a map to the corresponding leading-order removal of all internal multiples
of that order in the inverse series.

The forward map between the forward scattering series Eqgs. (7) and (8) for (¥y),, and the
primaries and multiples of seismic reflection data works as follows. The scattering series
builds the wavefield as a sum of terms with propagations Gy and scattering off V. Scat-
tering occurs in all directions from the scattering point V and the relative amplitude in a
given direction determined by the isotropy (or anisotropy) of the scattering operator. An
scattering operator being anisotropic is distinct from physical anisotropy, the latter of course
means that the wave speed in the actual medium at a point is a function of the direction
of propagation of the wave at that point. A two-parameter acoustic (isotropic) medium has
an anisotropic scattering operator. (see Eq. (6)). In any case, since primaries and multiples
are defined in terms of reflections, we imagine that primaries and internal multiples will be
distinguished by the number of reflection like scatterings in their forward description. A
reflection-like scattering is where the incident wave moves away from and the wave emerging

from the scattering point moves towards the measurement surface. Every reflection event in

\"
Primaries = \/+ \//"‘ \/+\/+
Y%
J \"
\Y4 \Y4 Vv v
_ v v M
(first order = one _
= + + + ...
downward reflection) \" v \'AY
v v
A4 \Y

2nd order
=(2 downward reflections —>
2 downward scatterings)

Internal
multiples

Figure 9: A scattering series description of primaries and internal multiples.

seismic data requires contributions from an infinite number of terms in the scattering theory
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description. Even with water as reference speed the simplest primaries, i.e., the water bot-
tom reflection, requires an infinite number of contributions to take the scattering ingredients
G and V into Gg and R where V and R correspond to the perturbation operator change
and reflection coefficient at the water bottom, respectively. For a sub-water bottom primary
the series has further issues to deal with beyond turning the local value of V into the local
reflection coefficient, R. For the latter case the reference Green’s function, Gy, no longer
corresponds to the propagation down to and back from the reflector (G # Gy) , and the
terms in the series beyond the first, GoVGg, are required to correct, e.g., for the timing

errors, and for ignoring transmission coeflicients, in addition to taking V into R.

The remarkable fact is that all primaries are constructed in the forward series by portions of
every term in the series. The contributing part has one and only one upward reflection-like
scattering. Furthermore, internal multiples of a given order (order is defined by the number
of downward reflections, independent of the location of that reflector) have contributions
from all terms that have exactly a number of reflection-like scatterings corresponding to the

order of that internal multiple.

Figure 10: a)A reflection-like scattering for a primary. b)Three reflection-like scatterings

contributing to a first order internal multiple.

The first term in the forward series for the data equations Egs. (7) and (8),

(e)m)1 = (GoVGo)m

where

is an integral over the entire subsurface, where V resides, and approximates all primaries
at once, as well as a single scattering model case, independent of depth. Of course the

quality of the approximation represented by (¥,);, depends on how many issues (e.g., phase,
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transmission coefficients and reflection coeflicient) starting with Gy, V into G and R are

required by any particular event.

All internal multiples of first order begin their creation in the scattering series in the portion
of the third term of [(¥),]m, [[(¥)s]m]3, With three reflection like scatterings. All terms in
the fourth and high terms of (¥,),, that consist of three and only three reflection—like
scattering, plus any number of transmission—like and self—interactions also contribute to

the construction of first order internal multiples.

G G,

(b)

VvV

Figure 11: Examples of transmission (a) and self-interaction (b) scattering diagrams.

As mentioned, all of these conclusions were originally deduced based on physically intuitive
arguments and later confirmed by analysis of the relationship between seismic events and
the forward series for 1D media (Matson, 1996). Further research in the scattering theory
descriptions of seismic events is warranted, and underway, and will strengthen the first of the
two key logic links (maps) required for developments of more effective and better understood

task specific inversion procedures.

Map I takes data into scattering series forward description. Map II takes scattering series
description of seismic events to the inverse scattering series processing that are performed
on those events. If you know how Gy and V make primaries and multiples, then perhaps

you can figure out how Gy and D(t) processes those same events.

4 The inverse series and task separation: terms with

coupled and uncoupled tasks

As we mentioned, the fact that: (1) in the forward series Go™® is the agent that creates
all events that come into existence due to the presence of the free surface (i.e., ghosts and
free-surface multiples) and (2) that the inverse series starting with data that includes those

free-surface related events - has additional tasks to perform (i.e., deghosting and free surface
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Figure 12: Two maps for inverse scattering subseries. a) D(t) = (¥,),, consisting of primaries
Py, P, ... and multiples, M, .... b) (¥,),, = D(¢) as a forward series in terms of Gy and
V. c¢) The inverse series for < GoVGg >,n=< GoV1Gg > — < GoV1GV1Go > +-..
Map (I) takes seismic events to a scattering series description. Map (II) takes forward

construction of events to inverse processing of those events.

multiple removal) on the way to constructing the perturbation, V, and (3) that the forward
and inverse engine, the reference Green’s function, Gy, consists of Go? plus G, for the
marine case, would be taken together imply that Go® would, in the inverse series, be the

removal machine for the events it is responsible for having created in the forward series.

How to go from that thought to a deghosting and free surface multiple removal subseries?
The inverse series expansions (11)-(14), in the marine case, consists of terms < GoV,, Go >,
with Gg = Go%+ G,5. Deghosting is realized by removing the two outside Go = Gol+
G, functions and replacing them with G¢?, a downgoing wave from source to V and an

upgoing wave from V to the receiver. Details are provided in section 10.

After that deghosting operation D =< GoV; Gg >,, to D =< Go%V; Go? >,, where D and
D are (¥,), = (G — Gy),, and the source and receiver deghosted data, respectively. The

objective is to remove free surface multiples from the deghosted data, D.

The terms in the series equations (11)-(14), with input D replacing D, contain both Gg?

and Go™° between the operators V. The terms in the series are of three types, e.g.,

Typel (GodVlGopsleoFsvlgod)mS
Type2 : (GOdV1G0F8V1G0dV1G0d)m§
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and
Typ€3 : (ngVngdVngdVl God)m

From an isolated task point of view we interpret these types of terms as: Type (1) when only
G, appears between two V; contributions then the term removes free surface multiples
(when added to D) and no other task is to be performed; Type (2): when both G¢? and
G,oT appear between two V; contributions, then a free surface multiple removal plus a task
associated with G are both to be performed and; Type (3), when only G¢* appears between
two V; contributions, then no free surface multiples are removed by that term. The two

outside GZ merely denotes that the data has been deghosted.

The idea behind task separated subseries is two fold: (1) isolate the terms in the overall
series that perform a given task as if no other task exists (i.e., Type 1 above) and (2) do
not return to the original inverse series with its coupled tasks involving Go™® and G¢¢, but
rather restart the problem with an input data, D', (equation (11”)), absent of free surface

multiples. Collecting all Type 1, Gof® terms we have

.Dll = D=(G0dV1G0d)m (11,)
Dy = —(Go*V1G™V1Gy?) (12"
Dy = +(Go*ViGo™ViGe™V1GyY) (13")

and D' = ) ° D} is the deghosted and free-surface multiple removed data. The data D’
consists of primaries and internal multiples and an inverse series for V. = )"° 'V} where V]

is the portion of V first order in primaries and internal multiples

DI — (GodvllGOd)m (11”)
(GOdeOd)m - _ (GOdVIIGOdVIIGOd)m (12”)
(GOd‘/SIGOd)m - _ (GOdVIIGOdVIIGOdVIIGOd)m

. (GOdvllGOd‘/QIGOd)m
— (Go?Vy'Go*V{'Gy?) (13")

G? creates primaries and internal multiples in the forward series and is responsible for

inverse tasks on the same events in the inverse.
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We repeat this process for removing internal multiples seeking to isolate terms that only
care about this one and only responsibility of Go?. No coupled task terms (e.g., that involve

tasks concerned with both internal multiples and primaries) are included.

After that is accomplished and internal multiples are attenuated, restart the problem, once
again, to write an inverse series whose input consists only of primaries. This task isolation
and restarting the definition of the inversion procedure strategy has several advantages over
a rigid fixation with the original series. Those advantages includes the recognition that a
task has already been accomplished is a form of new information and makes subsequent tasks
in our list that are often progressively more difficult, considerably less daunting, especially
compared to the original all-inclusive data series approach. For example, after removing mul-
tiples with a reference medium of water speed, it is easier to estimate a variable background
to aid. Transforming to a simpler data with fewer tasks to perform has serious advantages

over the strict adherence to the original series for

Note that the V the difference between water and earth properties is the same in V =
Yo Viand V =37 Vi but V; # V; since V; assumes the data is D (primaries and all
multiples) and V' assumes the data is D’ (primaries and only internal multiples),e.g., V; is
linear in all primaries, free surface and internal multiples, while V7 is linear in all primaries

and internal multiples.

5 An analysis of the Earth model-type and the inverse

series and sub-series

To invert for medium properties requires choosing a set of parameters that you seek to
identify. The chosen set of parameters (e.g. P and S wave velocity and density) defines an
Earth model-type (e.g. acoustic, elastic, isotropic, anisotropic earth), and the details of the
inverse series will depend on that choice. Choosing an earth model-type defines the form of
L, Ly and V.

On the way towards identifying the earth properties, (for a given model type), intermediate
tasks are performed, such as the removal of free surface and internal multiplies and the

location of reflectors in space.
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It will be shown below that the free surface and internal multiple attenuation sub-series
not only do not require subsurface information for a given model type, they are even inde-
pendent of earth model type for a very large class of models. The meaning of model type
independent task specific subseries is that the defined task is achievable with precisely the
same algorithm for an entire class of earth model-types. The members of the model type
class we are considering satisfy the convolution theorem, and include acoustic, elastic and

certain anelastic media.

In this section, we provide a more general and complete formalism for the inverse series
and especially the sub-series that has appeared in the literature to-date. That formalism
allows us to examine the issue of model-type and inverse scattering objectives. Finally,
when we discuss the imaging and inversion subseries in §7, we use this general formalism as
a framework for defining and addressing the new challenges we face in developing subseries
that perform imaging at depth without the velocity and inverting large contrast complex
targets. All inverse methods for identifying an objective function or medium properties
require specification of the parameters to be determined, i.e., of the assumed earth-model

type that has generated the scattered wavefield.

To understand how the free surface multiple removal and internal multiple attenuation task
specific subseries avoid this requirement, it is instructive to examine the mathematical-
physics and logic behind the classic inverse series and see precisely the role model type plays

in the derivation.

References for the inverse series include: Moses, H. E. 1956, Razavy, M., 1975, Weglein,
A.B., Boyse, W.E., and Anderson, J.E., 1981, Stolt, R.H., and Jacobs, B., 1980. In an
outline: the inverse series paper by Razavy (1975) is a lucid and important paper relevant to
seismic exploration. In that paper, Razavy considers a normal plane wave incident on a one
dimensional acoustic medium. We follow the Razavy (1975) development to see precisely how
model type enters, and, to glean further physical insight from the mathematical procedure.
Then we introduce a perturbation operator, V, general enough in structure to accommodate

the entire class of earth model types under consideration.

Finally, if a process (i.e., a subseries) can be performed without specifying how V depends
on the earth property changes, (i.e., what set of earth properties are assumed to vary inside

V), the process itself is independent of earth model type.
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5.1 Inverse series for a 1-D acoustic constant density medium

Start with the 1-D variable velocity, constant density acoustic wave equation, where c(x)
is the wave speed and ¥(z,t) is a pressure field at location z at time ¢. The equation that
U(z,t) satisfies is

& 10
0z?  c*(z) Ot?

) U(z,t) =0 (18)

and after a temporal Fourier transform, ¢t — w,

( L “’—2)) U(z,w) = 0. (19)

dz? ' A(z

Characterize the velocity configuration ¢(z) in terms of a reference velocity, co, and pertur-
bation, V'

1

"¢ where k = £ incident upon V(z) from the

The experiment consists of a plane wave e
left (see Fig. (13)). Assume here that V' has compact support and that the incident wave

approaches V(z) from the same side of V(z) that the scattered field is measured.
Incident wave :
e|kx
< @
Reflected wave

W(x, w)

B B —

V(x)

Figure 13: The scattering experiment: a plane wave incident upon the perturbation, V.

Let b(k) denote the overall reflection coefficient for V'(z). It is determined from the reflection
data at a given frequency w. e** and b(k)e~*** are the incident and the reflected waves
respectively. Rewrite (19) and (20) and the incident wave boundary condition as an integral
equation,

U(z,w) =e*® +

iklz—z'| 1.2 / / /
na / M= |2V (V0 (2! ) (21)
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and define the scattered field ¥,

VU, (r,w) = ¥(z,w) — e
Also, define the T' matrix

T(p, k) = / =PV (2)U(z, k)dz (22)

and the Fourier sandwich of the parametrization, V'
V(p, k) = /e_i":”V(x)eikwdx .

The scattered field, ¥, takes the form
VU, (z,w) = b(k)e ™= (23)

for values of z less than the support of V(z).

From equations (21), (22) and (23) it follows that

k_
2%
Multiply Eq. (21) by V(z) and then Fourier transform over z to find
* V(p,g)T(g, k)

w @ —k%—ic

T(—k, k)~ = b(k). (24)

T(p,k) =V (p,k) — Kk / dg (25)

where p is the Fourier conjugate of . Razavy (1975) also derives another integral equation
by exchanging the roles of unperturbed and perturbed with Ly viewed as a perturbation of
—V upon L,

> T*(k,q)T(p, q)

o G®—k? —ie

V(p,k) = T(p, k) + K /

dq . (26)

Finally, define W (k) as essentially the Fourier transform of the sought after perturbation, V'
WE=VRD = [ RV (27)

and recognize that predicting W (k) for all k produces V().

From Eq. (26) we find after setting p = —k,

* T*(k,q)T(—k,q)
q® — k2?2 — ie

W(k) = V(—k, k) =T(—k, k) + &k / dq . (28)

—0o0
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The left hand member of Eq. (28) is the desired solution, W (k), but the right hand member
requires both T'(—k, k) (that we determine from 2:b(k)) and T™(k, ¢)T(—k, q) for all g.

We cannot directly determine 7T'(k, q) for all ¢ from measurements outside V.

If we could determine T'(k, q) for all g, then (28) would represent a closed form solution
to the (multidimensional) inverse problem. If T'(—k, k) relates to the reflection coefficient,

then what does T'(k, q) mean for all g7

Let us start with the integral form for the scattered field

1k’(z z')
2
(z,k) 27r// 0 ———dK'k*V (2") ¥ (2, k)dx' (29)

and Fourier transform (29) going from the configuration space variable, z, to the wave

number p to find

fzk’:c’
/ / k,2 , dk'k2V(a:’)\Il(:z', k)dx' (30)
and if integrate over k' to find

k2
Vy(p, k) = [E——

/ e H5 Y ()0 (e, k) da'. (31)

The integral in Eq. (31) is recognized from equation (22) as

T(p, k)

v =k
s(p7k) kk2_p2_i€

(32)
Therefore to determine T'(p, k) for all p for any k is to determine ¥ (p, k) for all p and any
k (k=)

[81]

But to find ¥,(p, k) from ¥ (z, k) you need to compute
/ e PV, (z, k)dz (33)
i.e. it requires ¥,(z, k) at every z, (not just at the measurement surface, i.e. a fixed z value

outside of V).

Hence (28) would provide W (k) and therefore V(z), if we provide not only reflection data
b(k) = T(—k, k)% but the scattered field, ¥,, at all depths, x.

Since knowledge of the scattered field, ¥, (and, hence, the total field), at all z could be
used in equation (19) to directly compute ¢(z), at all z, there is not much point or value in

treating Eq. (28) in its pristine form as a complete and direct inverse solution.
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Moses (1956) first presented a way around this dilemma. His thinking resulted in the inverse

scattering series and consisted of two necessary and sufficient ingredients:

(1) model type combined with (2) A solution for V(z), (and all quantities that depend on
V') order by order in the data, b(k).

Expand V(z) as series in orders of the measured data
V=Vi+VatVat--=) V, (34)
n=1

where V,, is n—th order in the data D. When the inaccessible T'(p, k), |p| # |k| are ignored,
Eq. (28) becomes the Born-Heitler approximation and a comparison to the inverse Born
approximation (the Born approximation ignores the entire second term of the right hand

member of Eq. (28)) was analyzed in Devaney and Weglein (1985).

It follows that all quantities that are power series (starting with power one) in V' are also

power series in the measured data.

W(k) = Wiy(k) + Wy(k) + ... (36)
V(p,k) = Vi(p, k) + Va(p, k) +.... (37)

The model type, in this simple acoustic case, provides a key relationship

Vip,k) =W (’“%’) (38)

that constrains the Fourier sandwich, V' (p, k), to be a function of only the difference between
k and p. This model-type (acoustic constant density model), combined with order by order
construction of the T'(p, k) for p # k required by the series, provides precisely what we need
to solve for V (z).

Start with the measured data, b(k), and substituting W = > W,,, T = ) T,, from equations
(35) and (36) into Eq. (28) we find

;Wn(kz) = Za(k) + K2 / # <Zl i 2Tn> . (39)
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To first order in the data, b(k), £k > 0 (note that b*(+k) = b(—k), k > 0)

Wa(k) = (k) (40)

and Eq. (40) determines Wi(k) for all k. From Eq. (40) together with Eq. (27) to first
order in the data

Wik) =i~k ) = [ Vila)eedo (a)
we find V4(z). The next step towards our objective of constructing V'(z) is to find Va(z).
From W, (k) we can determinate W;(%52) for all k and p and from Eq. (38) to first order in
the data

k—
Vip, k) = W (—2 ”) (12)
which in turn provides Vi(p, k) for all p, k.

(Here is model type in action: The acoustic model with variable velocity and constant

density).

Next we go to Eq. (26) to first order Vi(p, k) = T1(p, k) for all p and k, and substituting in
(28) we get the second order in the data

W) = [~ Tk T (g (13)
and
Wy(k) = / " ey, (2)da (44)

After finding V5(z) we can repeat the steps to determine the total V' order by order
V =Vi(z) + Va(z) + ...
Order-by-order arguments and model type allow
Ti(p, k) = Va(p, k)
although
T(p, k) # V(p, k) -
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From a physics and information content point-of-view what has happened? The data D
collected at e.g. = 0, ¥;(z = 0,w) determines b(k). This in turn allows the construction
of T(p, k), (k = w/cy) for all p order by order in the data. Hence the required scattered
wavefield at depth, represented by T'(p, k), k = w/cy, for all p, for Eq. (28) is constructed
order-by-order, for a single temporal frequency, w, using the model type constraint. The data
at one depth for all frequencies is traded for the wavefield at all depths at one frequency.
This observation, that in constructing the perturbation, V(z), order-by-order in the data,
the actual wavefield at depth is constructed, represents an alternate path or strategy for

seismic inversion (see Weglein et al. (2000)).

If the inverse series makes these model type requirements for its construction how do the
free surface and internal multiple sub-series work independent of earth model type? What
can we anticipate about the attitude of the imaging and inversion at depth sub-series with

respect to these model type dependence issues?

5.2 The operator V for a class of earth-model types

Consider, once again, the variable velocity, variable density acoustic wave equation

w? 1
z L P = 4
(K-l-V pV) 0 (45)

where K and p are the bulk modulus and density, and can be written in terms of reference

values and perturbations a; and as

11 1 1
K K,( +a1) P p,( + a2)
w? 1
Lo=— +V.-V (46)
K, Pr

wroo as(7
V = ?al(r)+ (V 2;7.)

v) . (47)

We will assume a 2-D earth with line sources and receivers, (the 3-D generalization is straight-
forward). A Fourier sandwich of this V is
2 7 —

o L - k- -
V(P k;w) = /e_”"TVe’k'TdF= ;;,—al(k —-p)+ pa2(k —P) (48)

T T
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where p and k are arbitrary 2D vectors. Green’s Theorem and the compact support of a;
and as help Eq. (47) to Eq. (48). For an isotropic elastic model, equation (48) generalizes
for V,, (see Stolt and Weglein (1985), Boyse (1986), and Boyse and Keller (1986))

2 L=

— w e -p = 2,62 - —
Vol i) = (k=) + “Laak =)~ TR x ok -p) (49

where a3 is the relative change in shear modulus and fy is the shear velocity in the reference

medium.

The inverse series procedure can be extended for perturbation operators (48) or (49), but
the detail will differ for these two models. The model-type and order-by-order arguments
still hold. Hence 2-D (3-D) general perturbative form will be

— -

V(D k;w) = Vi(p, k;w) + - - -

where fand k are two dimensional (or 3D) independent wave-vectors (that can accommodate

a set of earth model types that include acoustic, elastic and certain anelastic forms).

e ACOUSTIC

e ACOUSTIC (density variable)
w? i
V = —2a1+k-k’a2
X0
e ELASTIC isotropic (p-p)
2

2
V=""0+k Kay— 2ﬁ—g|k x k'|*a3
(7)) w

a; = Relative change in the bulk modulus.
as = Relative change in density.

asz = Relative change in shear modulus. What can we compute in the inverse series without
specifying how V depends on (a1), (a1,az),---? If we can achieve a task in the inverse series
without specifying what parameters V depends on, then that task can be attained with the

same identical algorithm independent of earth-model type.
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5.3 Free surface and internal multiple subseries and model-type

independence

In equations (11)—(14), we presented the general inverse scattering series without specifying
the nature of the reference medium that determines Ly and Gg and the class of earth model
types that relate to the form of L, Ly and V. In this section, we present the explicit inverse
scattering series for the case of marine acquisition geometry. This will also allow the issue

of model-type independence to be analyzed in the context of marine exploration.

The reference medium is a half-space, with the acoustic properties of water, bounded by a
free surface at the air-water interface, located at z = 0. We consider a 2-D medium, and
assume that a line source and receivers are located at (zs,€;) and (zg4,¢€,), where €5 and ¢,

are the depths below the free surface of the source and receivers, respectively.

The reference operator, Ly, satisfies

V2 2
LGy, = (p_ + :—) Go(z,z,2',2;w)
0 0

= —§(z—2){o(z—2)—d(z+2)}, (50)

where pg and k¢ are the density and bulk modulus of water, respectively. The two terms
on the right member of Eq. (10), correspond to the actual source located at (2, 2’) and the
image of this source, across the free surface, at (z’, —2'), respectively; (z, z) is any point in

2-D space.

The actual medium is a general earth model with associated wave operators, L, and Green’s

function, G. Fourier transforming Eq. (10) with respect to z, we find:

1 & q "o
[%dz2 + K,_O:| GO(k:mZaw )% 7(")) -
1 71 itl
—(27r)1/2e F2l§(z—2') —6(z+2)} . (51)

The causal solution of Eq. (11) is

—ikg !

Po €

V2r —2iq

where the vertical wave number, g, is defined as

Go(kw,z, xl, ZI;UJ) — (eiq|2—z’| _ eiq|2+z’|) , (52)

q = sign (w)v/(w/c)® — K ,
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and cg is the acoustic velocity of water
co = /ko/po -

With Gy given by Eq. (12), the linear form equation (11) can be written as

2
D(kga €9y ks, €s; w) = qp; Sin(‘]geg) Sin(qSGS)Vl(kga 99, ks, qs, w) ) (53)
g4s

where V(k—;, ky,w) = Vl(k__;, ky, w)+V2(k—;, ky,w)+. .. and k_;, k, are arbitrary two dimensional
vectors. The variable k, is defined as

k:=—(g5+4s) ,
where
g = sign (w)y/(w/co)® — k7 , (54)
and
gs = sign (w)v/(w/c)? — k2 . (55)

The first term in the inverse series (in two dimensions) in equation (11’) in terms of deghosted
data, D is

D
(e2iqgeg _ :|_)(e2iqses _ 1)

= GV 1Go? = D(ky, €4, ks, €4;w) (56)

Using the bilinear form for G¢% on both sides of V; in Eq. (56) and Fourier transforming

both sides of this equation with respect to =, and z, we find

—

Vi(kg, K w)
495

eiQQ €g ei95€s

= D(ky, €4, ks, €5;w) (57)

where k:, and k, are now constrained by |k_;| = |k,| = < in the left-hand member of Eq. (57).

In a 2D world only the three dimensional projection of the five dimensional V;(p, E;w) is
recoverable from the surface measurements D(ky, €4, ks, €5;w) which is a function of three

variables, as well.

It is important to recognize that you cannot determine V; for a general operator V(ri, r3; w)
or Vl(k_:; , E; w) from surface measurements on m, and only the three dimensional projection

of Vy(K, k;w) with |k| = |K'| = 2 is recoverable.
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However this three dimensional projection of V; is more than enough to compute the first
order changes in any number of two dimensional earth model parameters; a; (7) for a given

earth model type. (a} = First order approximation to ai, ag, az -.. ).

After solving for ai(7), a3(7), a3(7) ... ... , you could then use ai,a3,a3,... to compute

V(K k,w) for all ¥, k,w where a}(7) = linear (or Born) inversion of a;(7).

This is the direct extension of the first step of the Moses (1956) procedure where model type

is exploited.

Consider V, for the operator V and its linear approximate V; (from equation (12))
(GoV2Go)m = —(GoV1GoV1Go)m (12)
written for the general V; form
V2(k2v k:’w) = —////eikz‘riﬂ(r}, 73, w)Go(r3, T3;w) X
Vi(73,74; w)eik:'ﬁ‘ drdrydridry
= — / / Vl(kz, 73, w)Go(13, 73, w) Vi (73, ky, w)dradr. (58)
Expressing Gy as a Fourier transform over x5 — z3 we find
Go(z2 — 3, 29, 23;W) = /deg(k, 29, 23; w)eF(®2723) (59)
and

Go(k, 29, 2z3;w) = /e‘imdeg(:c,zz,zg;w) (60)

for Go = G¢?, Eq. (60) reduces to

G d eiq|z2_23|
k jw) = 61
0“(k, 22, z3;w) 2%q (61)
where
w2
SR
Co
For the marine case where there is a free surface, the Green’s function Gy satisfies:
w2 =
(v2 + c—2> Go = 6(r3 — 73) — 8(r3 — 1) (62)
0
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d? . w2 .
(5 -2+ %) o=l —20) 82— ) (63)
where 2% is the image across the free surface of 23 (with the free surface at z = 0, 2} = —z3.

The solution to Eq. (63) is

eldlz2—z3| _ piglzatzs]

Go(kw,ZQ,Zg,CU) = = Gg—f—GOFS

2i1q

The contribution to V5 from the additional portion of the Green’s function due to the free

surface, Gof”, —%, will be from equation (58)
. eiq|zz—|—zg| ] 5
/ Vi(kg, 735 w)drs - / / dh—— e =V (15, ks w)drs (64)
tq

Using the convention

Vi(ky, koyw) = /e_’kl'”Vl(ﬁ,r};w)e’kz'”dﬁdﬁ

where

ky = ko
and

ky = Ky,

. The portion of V due to Go™® has the form
[ Vil a0, 0. 0) Vil 0, ) = ~Valkyy —tp B ) (69

where k' = k;tandﬁ = k::n (Fig.14).

free surface

earth

Figure 14: k and k'.

The computation of the portion of V, only due to G, Vo5 is computable with V (k;, k_;; w)

where |k-;| = |k = <; which is directly related to D without assumption concerning the
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relationship between V; and relative changes in earth material properties. It is that portion

of the inverse series that forms the free surface de-multiple sub-series.

Therefore the free surface demultiple algorithm is independent of the earth model type for

the class of models we are considering.

The summary of the free surface demultiple algorithm (from Weglein et al., 1997 and Car-
valho, 1992) is as follows:

1. The data, D, is computed by subtracting the reference field, Go = G + G, from

the total field, G, on the measurement surface.

2. Compute the deghosted data, D where
D = D/[(e*ss — 1)(e¥e> — 1)]
from D and the source and receiver deghosting factors in the k —w domain, G¢?/Ggy =
1/(e*% —1). g, g, and €,, €, are the vertical wavenumbers and the depths below the

free-surface of the source and receiver, respectively.

3. The series for deghosted and free-surface demultipled data, D', is given in terms of the
deghosted data D) as follows:

1 * .
D — zq(eg+es)Dl
n(kg7 ks,CU) ZﬂprB(CU) /_oo que l(kg7k)w)
xD! _i(k,ks,w) n=273,4,... (66)
and
D' (kg, ks, w) ZD’kkw. (67)

where D'(kg, ks,w) = D'(kg, €, ks, €5,w), B(w) and p, are the source signature and reference
density, respectively. The data D’ consist of deghosted primaries and internal multiples only
and D] = D. Hence, D' represents the deghosted data without free-surface multiples. The
mathematical details of equations (66) and (67) follow from equations (117), (127) and (13/)
and are provided in Carvalho et al. (1992) and Weglein et al. (1997). Equations (66) and (67)
are the prestack multidimensional generalizations of the one-dimensional, normal-incidence

free-surface-elimination map presented in the appendix of Ware and Aki (1969).
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6 Internal multiple attenuation

In the previous section, we described how to achieve the goal of separating the removal of
surface multiples from the other three tasks of inversion. We now address the more difficult
issue of separating the task of attenuating internal multiples from the last two goals of

migration and inversion.

When we separated surface multiples from the other three goals we were able to isolate a
portion of the Green’s function, Go, namely Gof®, whose purpose in the forward and inverse
series was to produce and remove, respectively, events due to the presence of the free surface.
Unfortunately, for internal multiples, we don’t have that relatively straightforward road to

follow.

If we attempt to repeat the reasoning that proved useful with surface multiples, we seek an
example that has neither surface nor internal multiples. We can imagine a problem where
we have two half-spaces; that is, we wish to invert a model that has only a single horizontal
reflector. In that case, the scattered field, the primary, requires for its description a complete
forward scattering series in terms of Go? and the exact perturbation, V. The inverse series
for V in terms of the data, the primary, requires the full series and Gg%. The lesson, from
this single reflector example, is that the complete Go? is required in the inverse series when
the only tasks are locating reflectors and estimating parameters. Hence, we cannot separate
G(? into an extra part that exists only in the presence of internal multiples, but which is
not present when internal multiples are absent. Thus, a fundamentally different approach is

required for the attenuation of internal multiples.

We next present the logical path that leads to this new approach. The forward series gen-
erates primaries and internal multiples through the action of G¢% on V. The inverse series
constructs V from the action of Go? on the recorded data. The action of Go? on data
must remove internal multiples on the way to constructing V. In an earlier section, we
presented an analysis and interpretation of the forward series and specifically, how G gen-
erates primaries and internal multiples of a given order. However, before we focus on the
internal-multiple issue, it is important to note an essential difference between the scattering

theory pictures of free-surface and internal multiple generation.

Given data, D', without free-surface events, the forward series generates data, D, with
free-surface events by the action of G¢™® on D’. Each term in that series generates one
order of free-surface multiple; that is, all events that have reflected from the free surface a

given number of times. The modelling that G provides is an exact description of a wave
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propagating in the water and reflecting from the free surface. Hence, Go7® generates in the
forward series, and removes in the inverse series, one order of free-surface multiple with each

term.

The situation for primaries and internal multiples is quite different. For those events, we
adopt a point-scatterer model, and every term in that forward series contributes to (but
does not by itself fully describe) either primary or internal multiples. Each primary or
internal multiple requires an infinite series for its construction. We adopt the simpler surface
reflection model when describing wave phenomena associated with reflectors at or above the
measurement surface; we adopt the point-scatterer model for waves associated with sub-
receiver/source structure. The former is our model of choice when we have accurate or
nearly accurate information about velocities and structure, and the latter is our model when

that information is unavailable or unreliable.

The location and properties of the free surface are captured in G and it is that specific and
well defined experience (or its absence) which allows free surface multiples to be separated
from primaries and internal multiples with one term creating (in the forward series) and one
term removing (in the inverse series) all events that have experienced the free surface a given
number of times. The number of G factors in a term in the subseries equations (12/-13)
correspond to the order of free surface multiples it removes. The internal multiples have
(by definition) all of their downward reflections below the free surface and since we assume
absolutely no subsurface information those reflectors are assumed to be completely unknown
in both location and character.

This makes the problem of distinguishing the generation (and removal) of internal multiples
from primaries more difficult in terms of direct propagation through water Go¢ and the
difference between earth and water properties, V. As mentioned earlier a series is required
to generate any primary or any internal multiple in terms of G¢% and V and new concepts
required to distinguished this forward subseries.

It is no surprise that the first term in the generation and first term in the removal of internal
multiples are approximate. The efficiency of the first term in the removal subseries of internal
multiples is remarkably higher than the first term in the forward creation, e.g., it takes an
infinite series to get the important time prediction (phase) of any internal multiple in the
forward series (in terms of G¢? and V) whereas, as we will demonstrate, the first term in
the removal series (of an internal multiple of a given order) predicts the time precisely and
well approximates the amplitude (in terms of G¢% and D') of all multiples of that order -
from all reflectors at all depths at once. The efficiency of the inverse subseries accounts for

its practical value and impact.
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The fact that generating primaries and internal multiples of a given order requires an infinite
series suggests that an infinite series of terms, each involving operations with Go? on D',
is required to remove internal multiples of a given order. The particular inverse-scattering
subseries for attenuating all internal multiples, described here, chooses only the leading and
most significant contribution from the removal series of each order of multiple, forming a

series that well attenuates, rather than eliminates, all internal multiples.

In our earlier discussion of the forward series for primaries and internal multiples we argued
that primaries are constructed starting with the first term in the series, and first-order
internal multiples have their leading contribution in the third term. Similarly, second-order
internal multiples are generated by contributions starting with the fifth term in the forward
series. In general, n-th order internal multiples have contributions from all terms starting
at term 2n + 1. In addition, the portion of the third term that starts to build the first-
order internal multiple was distinguished from the part that has a third-order contribution
to constructing primaries. The leading-term contribution to constructing a class of multiples
in the forward series suggests the leading-term contribution for their removal in the inverse
series (Fig. 15).

The first two terms in the forward series don’t contribute to generating first-order internal
multiples. Similarly, it’s argued that the first two terms in the inverse series don’t contribute
to their removal. The mathematical realization of Fig. 15a, is the leading contribution to
the generation of first-order internal multiples; it suggests the corresponding mathematical
expression for the leading-order attenuation of those multiples. To realize Fig. 15b select the

portion of the third term of the inverse series with z; > 25 and z3 > 2s.

With this purpose in mind we examine V3, the third term in the inverse series. In contrast
with the subseries generated by G, for free-surface multiple attenuation, the three terms
in V3 do not sum to a single term when the inverse series is generated with the direct
propagating Green’s function, Go%. From the fact that G¢™ can be viewed as the Green’s
function due to an image source above the free surface and is therefore outside the volume,
it follows that for all z, 2’ inside the volume (i.e., below the free surface) G satisfies the

homogeneous differential equation

V2 2
<—+w—) G5 =0.
Po Ko

The fact that G satisfies a homogeneous differential equation leads in turn to the math-
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(a) Forward

(b) Inverse

A

21

23y

Figure 15: The leading term contribution to the generation of first-order internal multiples
is represented in (a) and suggests the leading term contribution, in the inverse series, to the
removal of first-order internal multiples represented in (b). Gg%, V and V; are the whole-
space Green’s function, the perturbation operator and the “migrated data-like” first-order

approximation to V, respectively.
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ematical simplification

(GOdV1G0FSV1G0FSV1G0d)m = - (GOdV1G0FSV2G0d)m
= - (GOdVQGOFsvl(;Od)m . (68)

Gof® doesn’t require off-shell k # k' contribution as long it is in integrals over the volume
V1, and its effective source, the image source is outside the volume. This is another way to
understand why the free-surface demultiple algorithm is automatically model-type indepen-
dent. Model type was needed in Razavy (1975), to provide T (k, p) for k # p. Since G
never requires k # p'in its integrations with V; it doesn’t depend upon the inverse series
model type argument to generate this subseries. Hence the free-surface multiple removal
subseries is independent of earth model type. In contrast, Go? satisfies the inhomogeneous

differential equation

(V_2 N w_2) Got = —6(z — #)5(z — ') .

Po Ko

From Eq. (13”), and using G¢%, we have:

(ngV3G0d) = - (ngleng2G0d)
— (Go?V2Go?V1Go?) — (Go?V1Go?V1G?V1GyY)
= (G V31Go?) + (Go?V32Go?) + (Go?V33Go?) (69)
where
Vi = —ViGy'Vy, (70)
Vi = —V2G0dV1 ) (71)
and
Vis = —ViGVG*V; . (72)

In contrast to the case of Gy, these three terms Vs;, Vo and V33 make distinct contri-
butions. The first two terms, (GOdV31G0d) and (GOdV32G0d), on the right member can be
shown (Araijo, 1994) to consist of a refraction-like scattering component, and are thus not
chosen for the task of removing internal multiples. These contribute to the other inversion
tasks (migration and inversion) that act on primaries. The third term on the right hand

side,
(G V33Go?) = — (Go?V1G?V1Go?V1Go?)
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Figure 16: Diagrams corresponding to different portions of ASGOdleOdleOdlegdAg.
Ounly (d), with 23 > 25 and 2 < z3, contributes to the attenuation of first-order internal

multiples (see also Fig. 15b).
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can be broken up into four parts corresponding to the four diagrams in Fig. 16.

Choose the portion of (ngV33G0d)m corresponding to Fig. 16d; a diagram that represents
a contribution to multiple reflection attenuation. (ngV31G0d)m and (ngV32G0d)m do
not support a diagram of the Fig. 16d variety, and therefore were not selected for that task.
The mathematical and algorithmic realizations of Fig. 16d takes place by requiring a lower-
higher-lower relationship between the successive vertical locations of the data in the integral.
Using this criterion, the appropriate portion of each of the odd terms in the series is selected.
The generalization of the diagram found in Fig. 16d is used to select the appropriate portion

of the leading-order contribution to removing higher-order internal multiples.

7 Internal multiple attenuation and model-type depen-

dence

For G, the direct propagating Green’s function we have from Eq. (61)
eialz2— 23] 1 0 iq'(22—23)
—_— = 7.(1(],
2iq 21 | o @* — q"? + ie
and separating the integral into a principal value and a contribution from contours around
the poles ¢’ = +q as

= PV. (ﬁ) +im6 (¢ — ¢%)

1 1 1 g
= PV.|—— — | imT— (§ I K} ! iq' (z2—23)
(q2 —Q'2) o (W2IQI Old —a)+3lg +g))e )

1
q* — q* +ie

This contour around the pole contribution leads to:

/oo dk ‘/1 (kga _qga k7 Q) ‘/1 (ka q, ksa q:;) + ‘/1 (kga _qga ka _q) ‘/1 (ka —q, ksa qs)
2iq 21q

—0o0

and is computable directly from V; (k,, gg, ks, gs)-

The portion of V, that depends on the principal value part of the contribution to G¢ is
not computable from ¥, (z,, €4, T, €5, w) without assuming a model-type. Since the internal
multiple algorithm derives from the analogous imd contributions from the V;V;V; or V33
(equation (72)) contribution from the third term in the series (equation (13”))

/dkdkl Vl (kg’ —dg, ka q) Vl (ka q, k,’ _q,) Vl (kla —q', ksa Q.s)
2iq ' 2iq’

+...
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is once again computable directly from surface data without assumption of model type.

An important point to recognize in deriving the internal multiple algorithm, not emphasized
in previous publication, is that although the “W” or lower-higher-lower relationship from
the forward series provides a guide for the examination of a similar diagram in the inverse,
to actually realize an internal multiple algorithm the quantity taken through the diagram

was not V; but rather

Vi (kga dg, ks, qs, w)
—2iq,

bl (kga €g, ksa €s,4g + qs) = (_2iqs) DI (kga €9y ksa €s, w) =

the effective data generated by a single frequency plane-wave incident field. This was origi-
nally deduced (see Araujo (1994) and Weglein et al. (1997)) through empirical evaluation and
testing of different candidate quantities (e.g. a first and natural guess of taking V; through
“W” doesn’t lead to an attenuation algorithm) that, in turn, allow different subdivisions of

the V33 term in terms of a “W” diagram.

The fact that this quantity, b;, results in a localized incident wavefront in every dimension
(without the wake behind the front that the impulse response in 1D and 2D experience) is the
only and best (although meager) 'understanding’ or hint we have for this fact, to-date. Hence,
the forward construction and inverse removal symmetry for the internal multiple went only so
far and the fact that, b; = %ﬁ:’q”w is the quantity that when transformed to (kg, gy, 2)
and broken into lower-higher-lower contributions results in the internal multiple algorithm
remains partly intuitive and empirical in its foundation and invites further analysis for better
understanding. That algorithm operates in a 1D, 2D or 3D earth. A deeper awareness and
comprehension of the workings of the inverse series will, of course, also benefit the current

research on imaging and inverting primaries.

The internal multiple algorithm is independent of model type because if derives from a

algorithm depending on the portion of V; that only requires |k:_;| = |ky| = -.

8 Internal multiple algorithm

The first term in the internal multiple-attenuation subseries is the data, D', consisting of
primaries and internal multiples. The second term in the attenuation series comes from a
portion of the third term in the series (equations (69) and (72)). This portion of the third
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term,

1 oo ) )
—iq1(eg—e€s) iq2(€g—€s)
b=y / / dkye #01(6o <)y (co

o0
oo

x [ dee%t g, (k, Ky, z)

X dZQ@l( an- qz)sz1(l€1,k2,Z2)

.
I

X / dz ez(qz+45)23b1(k2, ksa Z3) ) (73)

z2

is chosen to satisfy z; > 23 and 23 < z3. b; is defined in terms of the original prestack data

with free-surface multiples eliminated, D', and is defined by
D'(kg, kyyw) = (—2ig,) ' B(w) by(kg, ks, qg + gs) - (74)

by is the data that would result from a single-frequency incident plane wave and B(w) is the

source signature. The data with internal multiples attenuated, D™ is
DIM(kg, ks, w) = (—2iqs lB Z b2n+1 sa qg + qs)' (75)

A recursive relationship that generalizes Eq. (75) and provides bs,, 1 in terms of by, ; for

n=1,2,3,... is given in Aratjo (1994) as

ban 1 (kg Koy dy + G5 =ﬁ / : dkyeia1(es <)
X / h dz,€" 905, (ko Ky 20) Agnya (K, ks, 21)
h n=1,23,... (76)
where

%) 21
A3(k1, ks, zl) :/ dk2e’tq2(€g*€s) / dz2ez(—q17q2)zZ

X b1(k1,k2,22)/ dz3e’ (@923, (ky Ky, 23)

z2
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and

A2’n+l(kl, ks, Zl) :/ dk2eiq2(€g_€s)

—00

z1
X / d22€i(_ql_q2)22 bl(kl, kQ, 2’2)

y /oo dkse—i(IS(Gg—es) /°° dzsei(q2+q3)z3

X by(ka, ks, 23)Aan—1(ks, ks, 23)
n=2234,....

As we mentioned, the full series for V can have restrictive convergence properties and a
sensitivity to missing low-frequency information, (see, e.g., Carvalho, 1992). In contrast,
tests indicate (see Aratjo, 1994; Aradjo et al., 1994a; Aratjo et al., 1994b) that the multiple
attenuation subseries in Eq. (76) always converges and is insensitive to missing low frequency

information.

Free-surface multiple attenuation methods operate one temporal frequency at a time (see
equations (66) and (67)); in contrast, the attenuation of an internal multiple from a single
frequency of data requires data at all frequencies [see equations 75 — 76]. This require-
ment derives from the integral over temporal frequency in the transform of ¢, + ¢, to z.
With bandlimited data this transform is only approximate; nevertheless, the truncated in-
tegral remains effective in attenuating multiples. As in the case of the surface-removal
algorithm each term in the series, Eq. (75), attenuates a given order of internal multiple,
and prepares the higher order internal multiples for the higher demultiple terms in the se-
ries. Since e““zzbl(kg, ks,w) is a downward continuation of shots and receivers to depth z
in the reference medium, and subsequent integration over k, is a simple constant Jacobian
away from integration over w (¢ = 0 imaging condition), it follows that b;(kg, ks, z) corre-
sponds to uncollapsed-migration (Stolt and Weglein, 1985; Weglein and Stolt, 1999). Indeed,
the algorithm can be interpreted as a sequence of these uncollapsed migrations restricted to
lower-higher-lower, pseudo-depth, which is essentially vertical travel time, since the reference
is constant water speed. Uncollapsed-migration is a generalization of the original migration
concept; sources and receivers are downward continued to a common-depth level z, time is
evaluated at zero, and information at z, # z, is retained. The latter retention of z, # z,
distinguishes uncollapsed-migration from migration; it provides local angle-dependent re-
flection coefficients rather than the angle-averaged reflection coefficient of the traditional

z, = =5 imaging condition(see Weglein and Stolt, 1999).
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When free-surface and internal multiples are present: (1) apply the free-surface demulti-
ple algorithm to D and output D', then (2) input D' to the internal multiple attenuation

algorithm, to produce primaries.

9 Purposeful perturbation concept and examples of

free surface and internal multiple attenuation

9.1 Purposeful perturbation

As we have described, the response to the apparent lack of robust convergence of the entire
inverse series, without a-priori information, and the recognition that it nevertheless repre-
sented the only complete inversion formalism for the multidimensional acoustic and elastic
waves combined to encourage seeking task specific subseries that would have more favorable
properties. However, another issue that these task specific (well-converging) subseries faced
was how many terms would you require in practice to achieve a certain level of effectiveness.

The concept of purposeful perturbation was developed to address the latter issue.

The idea was to identify the specific purpose or role that each term within a task specific
subseries performs independent of the subsurface or target over which the recorded data was

collected.

The terms of the series perform tasks and coupled tasks; the task specific subseries per-
form isolated, uncoupled tasks; and, we define the purposeful perturbation concept to know
precisely what each term within a given task specific subseries is designed to accomplish.
For example, a term in the inverse scattering subseries for eliminating free surface multiples
removes precisely one order of free-surface multiple completely independent of the depth of

the water or any other property or characteristic of the Earth.

9.2 1D free surface demultiple algorithm

For the simplest illustration of this purposeful perturbation concept, consider the generation
of free-surface multiples for a 1-D Earth, whose primary reflections and internal multiples
have a response R(w); and, where the free surface is characterized by a reflection coefficient
of -1 (see Fig. 17).
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Figure 17: Illustration of the free surface multiple removal series: (a) Data without a free
surface, (b) the total upgoing field in the presence of a free surface Rpg, and (c) the series

for Rpg.

If the subseries we isolate are defined for accomplishing one of the four broad tasks we earlier
defined, purposeful perturbation seeks to determine, or further define, the specific role or
sub-task that individual terms in the sub-series perform. Then, e.g., if you estimate the
range of depths of potential hydrocarbon reservoirs in a given setting, and the depth to the
water-bottom, then you have a good way to determine the highest order of water-bottom
multiple you need to be concerned with and precisely the number of terms in the free surface

demultiple subseries (equations (66) and (67)) that can accomplish that objective.

For source and receiver deghosted data, and a source wavelet with unit amplitude, the
upgoing field in the presence of a free surface Rpg is able to be written in terms of R(w) by
imagining (see Fig (17)c) the wave first leaving the source moving down into the Earth; that
incident unit pressure wave generates a reflected response from the Earth, R(w), consisting
of primaries and internal multiples. This in turn propagates as a train up in the water
column until it hits the free-surface, where it experiences a (—1) reflection coefficient and
heads down through the water columns as —R(w). The impulse response of the Earth R(w)
times this effective downgoing “wavelet”, — R(w) produces a new wave moving up from the
Earth through the water column towards the free surface. This process continues and results
in the total upgoing wave in the presence of the free surface, Rpg(w) in terms of the primary

and internal multiple wavefield, R(w) as follows

Rps=R—R*+ R®— ...
R
" 1+R

Each term in Eq. (77) generates all free surface multiples of a given order independent of

(77)

any detail of the subsurface. The order of a free surface multiple corresponds to the number
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of times that event has experienced a reflection at the free surface. Since each successive
term in Eq. (77) comes from one additional reflection at the free-surface, it generates one
additional order of free-surface multiple. Solving Eq. (77) for the data without free-surface

multiples, R, we have
_ _Frs
1— Rpg
= Rps+ Rag+ Rag+ ... (78)

R

The first term in Eq. (78), Rpg, is the upgoing portion of the reflection data that contains
all free-surface multiples. When the second term, R%, is added to Rrg two things happen:
(1) all free-surface multiples that have reflected once (and only once) from the free-surface
are removed and (2) all higher-order free-surface multiples are altered in preparation for
higher terms, e.g., R%g, to remove them order-by-order, as well. This well-defined action of
the terms in the free-surface demultiple series is totally independent of any water-bottom
or subsurface detail (of course, within an assumed 1D, 2D or 3D dimension of the Earth

variation).

This is an example of purposeful perturbation; and, it has enormous practical significance.
For example, if you estimate that for a given depth of water and target, that only a certain
order of multiples could be troublesome, then you know precisely how many terms in the
series you need to use in your processing algorithm for that data. Eq. (78) is the 1-D normal
incidence special case of the general multi-dimensional inverse scattering subseries for free-
surface multiple removal equations (66) and (67) (see also Carvalho et al., 1992 and Weglein
et al., 1997).

Equation (78) is the 1D antecedent of equations (11/- 13/) and (66) and (67) for free surface

multiple removal. Several observations about equations (77) and (78) are worth noting.

First, the role of Gy, the extra portion of Gy due to the free-surface, is played by the (-1)
reflection coefficient in deriving (77) and its inverse (78). Second, the forward construction
series was a guide (and in this simple instance, more than a guide) to the inverse process.
Only the free-surface reflection coefficient (-1) i.e., G terms enter confirms the forward
and removal series (77), (78). Focussing on the one task, and only one task, this simple
consistent strategy we described, i.e., no Go®, GoP coupled terms appear in the analogous

and transparently simple equations (77) and (78).

Regarding some practical issues, exemplified by equations (77) and (78), if instead of 1,

a unit incident pulse, a wavelet A(w) was the source signature, then equation (77) would
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become
A(w)R
Rrs = 1(+)R (79)
and Eq. (78) becomes
Rps
Aw) Rps Rrs o
R— - +( 2+ (80)
1-— f{;; A(w)  “Aw)

and, hence, the wavelet is a critical requirement for the free-surface removal and all subseries

application.

A similar process of purposeful perturbation occurs (and has been identified) for the internal
multiple removal series. Understanding the specific purpose, within an overall task, that
each term accomplishes not only reveals what has (and has not) been achieved for a given
finite number of terms and this significantly mitigates issues of overall convergence and rate

of convergence.

9.3 1D analytic example of the internal multiple attenuation al-

gorithm
The 2D internal multiple algorithm described in equations (73-76)
b(kg, ks, qg + 45) = —2iq, D' (kg, ks, w)

where D’ is the free-surface multiple removed data resulting from an impulsive source. The

second term in the internal multiple attenuation series, b3, is given by

1 oo oo ' -

b3(k9a ksa dg + qs) = (271')2 / / dklequ(es_eg)dk2e“]2(€g—€s)

21, (ky, k1, 21)
dz2ei(—¢h—q2)zz bl(kl’ _k2’ 22)

o0
S
o0
1
<
o0

x / dz3ei(@9)2, (ky, —k,, 23)

z2

The first two terms in the multiple attenuation series, (—2ig,)(b; + b3), Eq. (75), attenuate

all first order internal multiples. For a 1D earth and a normal incidence plane wave, Eq.
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Figure 18: One dimensional model with 2 interfaces.
(73) reduces to:

e 21 o)
b3(k) :/ dzleikzlb(zl)/ dZQ@ikzzb(Z2)/ dZ36ikz3b(Z3) (81)

—o0 oo 22

To explicitly demonstrate how the internal multiple attenuation algorithm works and to
examine its properties, we will consider the simplest model that can produce an internal
multiple. For the model shown in Fig. (18) the reflection data due to an impulsive incident

wave 0(t — %) is

D(t) = R15(t - tl) + TOlRQTlg(S(t - t2) + “ae

where t1,t9, Ry, Ry are the two way times and reflection coefficients from the two reflectors

and Tp; and Tjg are the transmission coefficients between 0 and 1 and 1 and 0, respectively.
D(w) = Rleiwtl + T01R2T106iwt2 —+ ... (82)
where D(w) is the temporal former transform of D(t).

Note that the (—2ig;) factor that multiples D' in the internal multiple theory is not required
in this example since we assume that the incident wave is an impulsive plane wave. The role
of the (—2ig,) is to transform an incident (or reference field) Gy, into a plane wave in the
Fourier domain. The internal multiple algorithm inputs the data with primaries and internal

multiples, b and is the first term in the multiple attenuated series, b;.

b™ (k) = by(k) + bs(k) + bs(k) + ...
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where b; = b, the input data.

The vertical wave number

be = \/(@/Co)? — B2, + 1/ (w/Co)* — R,

for 1D medium and normal incident wave is k, = 2010 and
b(k;) = D(w) - (83)

The reflection data from Eq. (82) and (83) is expressed in terms of k,

Co

. 2wy, Cot -0 2w t
b(k,) = Rlez(é_o)(%) + T01R2T10€1(é_°)( ) T+ (84)

and define the pseudo-depths z; and 25 in the reference medium as:

_ Coty
21 = ——
2

_ Gty

29 — ——— .
D)

The input data is now expressed in terms of k£ = k, and z; and 2, as
b(k) = Rie*™ 4 Ty RyThge™™ + . .. (85)

ready for the internal multiple algorithm.

Substitute the data from Eq. (85) into the algorithm (b3, equation (81)). After transforming

from k£ = k, to z.

b(z) = / h e **p(k)dk (86)

—00

The first integral in Eq. (81) towards computing bs is

/ dzse® (Ry6(2 — 21) + RL(2 — 22) + ... (87)

§+€1

where

R,2 = T01R2T10 .
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€1 is a small positive parameter chosen to insure that the 'W’ diagram is strictly lower-
higher-lower and avoids the lower than or equal to contribution. In actual seismic field data
application the parameter € is chosen to be the width of the source wavelet and speaks two
the fact that subresolution (i.e., thin bed multiples) will not be attenuated. The integral
(87) evaluates to:

H(z — (2h+ €1))Rie™™ + H(zy — (2 + €1)) Rhe™™ .
The second integral in Eq. (81) is

/zl 62(R15(Z; — 21) 4 RY(2h — 20))(H(21 — (2 + €1)) Ryet*™ + (8)
H(o,; — (25 + 61))R/26ikzz)e—ikzédzé
= R2H((2} — &) — 21)H (21 — (21 + €1))eF1e =
+R1RLH (2] — VH(z1 — (22 + €)= e =2
+RIR,H((2] — €2) — 21)H (2 — (21 + €1) )e**2e7F
+(RY)?H((2) — €2) — z2)H (29 — (22 + €1))e™*2e =

where €, is a positive parameter with the same function as G; and all the underlined terms
are zero.

62) — Z9 H
€2

The third (and last) integral is:

b3 (k) :/ dzie’ikzi(Rlé(zi —21) + Ry6(2) — 22))

(RiRyH((2) — €2) — 21)H (22 — (21 + €1))e™2e #1)
zeikz1 R%RIQH(—GQ)H(Z2 — 2z + el)eikzzefikzl
+ eikZ2R1(R’2)2H(z2 — 2z — €2)H(22 — 2 — el)eikzze—ikzl

and the underlined function is zero. Then, since
Ry = To1 RyTho,
the prediction is:
by(k) = Ry RETR T2 eik=2 e2ikszo—ikn
and
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From the example it is easy to compute the actual first order internal multiple precisely

—RiR3To1 Tyod(t — (2ty — t1)) .

Hence the key prediction of time is perfect and the amplitude of the prediction has an extra
power of Tp1T1o thus defining exactly the difference between the attenuation represented by

bs and elimination.

Since Tp;T1p is less than one, the method always attenuates and, furthermore, the residual
after adding b; to bs has the same sign as the multiple. Therefore, the internal multiple
algorithm has well-defined amplitude prediction properties. If R = 1/4 (a large reflection
coefficient) then R? = 1/16 and T2 = 15/16(R*+ T2 = 1), and T = /15/16 ~ 31/32.

So even with large R, T? is still not far from 1 and that explains the remarkable efficiency
of the leading order term for removing first order multiples. It produces the precise tim-
ing of all internal multiples of first order, independent of where the upward and downward
reflections occur and well approximates their amplitudes, always less than the actual, the
precise relationship between the internal multiple amplitude and the b3 prediction is quan-
tified. Since the difference in amplitude is related to transmission information the internal
multiple predictor can provide indirect useful effective, overbunden transmission estimation,
as well. Hence, while it is precise to say that the internal multiple algorithm doesn’t predict
the exact amplitude it is not accurate to say that no significant useful amplitude information

is predicted by the internal multiple algorithm.

9.4 Synthetic and field data examples

Figure 19 shows an example of the internal multiple attenuation series algorithm applied
to a 2-D synthetic dataset. From left to right, the three panels show the input data, the
predicted internal multiples and the result of inverse scattering internal multiple attenuation,

respectively.

Figures 20-22 illustrate the free surface and internal multiple attenuation algorithms applied
to a dataset from the Gulf of Mexico over a complex salt body. Seismic imaging beneath
salt is a challenging problem due to the complexity of the resultant wavefield. In Figure 20,
the left panel is a stack section of the input data, and the right panel shows the result of
the inverse scattering free surface multiple removal algorithm. Figure 21 is a cartoon that
illustrates the events that are used by the algorithm to predict the free surface multiples

in the data. Figure 22 illustrates the internal multiple attenuation method applied to the
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Figure 19: The left panel shows a common offset display from a 2-D synthetic dataset. The
middle panel shows the predicted internal multiples. The right-hand panel is the result of

subtracting the multiples from the input dataset.

Water
bottom

Figure 20: The left panel is a stack of a field dataset from the Gulf of Mexico. The right

panel is the result of free surface demultiple. Data are courtesy of WesternGeco.

same Gulf of Mexico dataset. An internal multiple that has reverberated between the top of
the salt body and the water bottom, is well attenuated through this method. The cartoons
in Fig. 23 illsutrate the subsevents that are used by the algorithm to predict the internal

multiples.
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Figure 21: A cartoon illustrating the events that are used by the algorithm to predict free

surface multiples.

10 Inverse subseries for imaging and inversion at depth
without the velocity model for large contrast com-
plex targets

Initial analysis for identifying the imaging and inversion tasks associated with primaries

within the series have recently been reported by Weglein et al. (2002). Starting with the
acoustic Eq. (6), and defining

1 1
Ezk_r(1+a)
1 1
_=_]__|_ﬁ
p = th)

for a one dimensional variable velocity and density acoustic medium with point sources and

receivers at depth €, and ¢,, respectively, Eq. (11/) becomes

o Pr —igg(€esteg —
D(qgaea egaes) = _Ze 9 (€ot )[COS2 Gal(_2qg)
+(1 — tan® 6) 51 (—24,)] (89)

where the subscripts s and g denote source and receiver respectively, and g, 8 and k = w/cg

are shown in Fig. (24), and they have the following relations:

gg = qs = kcosf
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k, = ks = ksin6 .

g

Similarly, from Eq. (12/) we can get the solution for as(z) and (5(z) as a function of a4 (z)
and f31(z)

1
cos2 6

1 2

"~ 2cos? 0041 (2)
1
+ mal(z)ﬂl(z)

as(2) + (1 — tan?0)B,(2) =

3 1
— (5 + tan® 6 + _ tan' 0)5}(2)

1 1 o ! !
_ mal(z)/o dz [oa(z) — Bu(z)]

+ %<tan4 6 —1)8,(2) fo d2'fes(2) = Bu(2)] . (90)

For a single reflection between two acoustic half-spaces where the upper half space corre-
sponds to the reference medium the data consists of primaries and the inversion tasks they
face are simply to locate the reflector and to invert for acoustic property charges across the
reflector. When the primary data from this two half space model is substituted into Eq.
(89) and (90), then the two terms involving integrals on the right hand side become zero.
If the model would allow a second reflector, and a two primary wavefield, then those same
terms involving the integrals are not zero. From an inversion point-of-view, the primary from
the second reflector has more tasks to perform, (in comparison with the first primary) since
the first event actually travelled through the reference medium. In addition to estimating
changes in earth material properties, the second primary will be imaged where it is placed
by the reference medium. From this type of observation and the detailed analysis formed in
Weglein et al., (2002) and Shaw and Weglein (2003), it is deduced that the last two terms
in Eq. 90 assist in moving the second (deeper) primary to its correct location and the first

three terms of Eq. 90 are associated with improving the linear inversion (Eq. 89).

The first three terms on the right-hand-side of equation (90) have two objectives. The first
objective: for a primary off the shallower reflector, those first three terms start the nonlinear
process of turning that events reflection coefficient into the earth property changes a and 3.
The reflection coefficient is a non-linear series in a and J; and, conversely, a and ( are them-
selves nonlinear series in the reflection coefficient. For the second (deeper) primary, the first
objective is more complicated, since the event amplitude is a function of both the reflection
coefficient at the second reflector and the transmission coefficient down-through and up-past
the first reflector. The communication between the two events allowed in e.g., a2 can be

shown to allow the reflection coefficient of the shallower reflector to work towards removing
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the transmission coefficients impeding the amplitude of the second event from inverting for
local properties at the second reflector. Hence, specific communication between primaries
from different reflectors work together to remove the extraneous transmission coeflicients on

deeper primaries that are suffering from being given the wrong velocity.

Similarly, the integral terms on the right-hand-side of equation (90) represent a recognition
that the reference velocity will give an erroneous image, and asks for an integral of a; — 31,
the linear approximation to the change in acoustic velocity, from the onset of a; — 3;, down
to the depth needing the imaging help. Two important observations: (1) When the actual
velocity doesn’t change across an interface, R() is not a function of § and from equation
(89) it can be shown that

ar— P = (%)1 =0.
Therefore, when the actual velocity doesn’t change then the linear approximation to the
change in velocity is zero. Therefore, when the velocity is equal to the reference across all
reflectors (e.g., when density changes but not velocity) then these equations understand and
don’t correct the location from where the reference velocity locates those events, which in
that case is correct; and (2) the error in locating reflectors caused by an error in velocity
depends on both the size of the error and the duration of the error. Hence, the integral
of a; — B represents an amplitude and duration correction to the originally mislocated
primary. This is a general principle, when an inversion task has a duration aspect to the
problem being addressed, the response has an integral in the solution. The inverse series
empowers the primary events in the data to speak to themselves for non linear inversion and
to speak to each other to deal with the effect of erroneous velocity on amplitude analysis. The

analogous “discussion between events” for multiple removal is described in the conclusions.

Figures (25) and (26) illustrate the imaging portion of the inverse series for a 1-D constant
density, variable velocity acoustic medium. The depth that the reference velocity images the
second reflector at is zy=136m. The band-limited singular functions of the imaging subseries
act to extend the interface from zy to 2, (Fig. (25)). The cumulative sum of these imaging
subseries terms is illustrated in Fig. 26. After summing five terms, the imaging subseries

has converged and the deeper reflector has moved towards its correct depth z; = 140 m.

Figures (28)—(31) are a comparison of linear and non-linear prediction for a two-parameter
acoustic medium and for a 1-D single interface example (Fig. 27). Figure (28) shows a; as a
function of two different angles of incidence for a chosen set of acoustic parameters. Figure

(29) shows the sum of a;+as, and shows a clear improvement, for all precritical angles, as
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an estimate for a. Figure (31) illustrates similar improvements for the second parameter g3

over the linear estimate given in Fig. (30).

Early analysis and tests are encouraging demonstrating intrinsic potential for the of task
specific subseries of the inverse series to perform imaging at the correct depth (Shaw et al.,
2003) and improving upon linear estimation of earth material properties (Zhang and Weglein,
2003), without an adequate velocity model. Furthermore, tests point to convergence for
imaging for large error and duration of error in velocity and rapid improvement in estimates

of earth material properties beyond the industry standard linear techniques.

11 Conclusions and Summary

The forward series begins with the reference propagator, Gg, and the perturbation operator,
V(7,w), the difference between actual and reference medium properties as a function of

space, 7. The inverse series inputs data, D(t), in time, and the reference propagator, Gg.

Since the forward series inputs the perturbation, V(7,w), and rapid variation of V corre-
spond to the exact spatial location of reflectors it follows that space is the domain of comfort

of the forward series.

On the contrary, the computation of time of arrival of any (and every)seismic event for
which the actual propagation path is not described by Gy requires an infinite series to get
the correct time from the forward series. Time is the domain of discomfort for the forward

series for seismic events.

For the inverse series the input is data, D(t) ,in time, and processes that involve transforming,
D(t), to another function of time, e.g., the data without free-surface multiples, D'(t) ,are
simpler to achieve than tasks such as imaging primaries in space that require a map from
D(t) to V(7,w).

In addition, if accurate a-priori information can be provided for the localization and sepa-
ration of a given task (as in the case of a free-surface reflection coefficient or G®) e.g.,
for the removal of ghosts and free-surface multiples, where the task is defined in terms of
separating events that have a well defined experience (from those events that have not) then
further efficiency can derive from subseries that involve time to time maps. In table (1), we
summarize the amount of effort required to achieve a certain level of effectiveness for each

of the four task-specific subseries.

110



Inverse series and seismic exploration MOSRPO02

The strategy is to accomplish one task at a time, in the order listed, and then restart the
problem as though the already achieved task never existed. This avoids the coupled task
terms in the series. Further more, the achievement of these tasks, in order, can enhance the
ability of subsequent tasks to reach their objective. For example, the removal of free-surface
and internal multiples significantly improves the ability to estimate the overburden velocity
model and subsequently aids the efficacy and efficiency of the imaging and inversion subseries

for primaries.

Since the rate of convergence of both multiple removal subseries doesn’t benefit at all from
anything closer to the earth than water speed, and the cost of the algorithms quickly increase
with complexity of the reference medium, the idea is to perform tasks that prefer simple,
cheap reference propagation with what they want. Then restart the problem with certain
issues in the data addressed, i.e., with new data (e.g., primaries) that require proximal
velocity information, with more complex and more costly subseries for tasks that appreciate
that assistance for practical efficacy and efficiency. If you don’t like the 'Isolated Task and
Restart the Problem Strategy’, and you wanted to be a purist and start and end with one
inverse scattering series, you would need the single complex reference that would allow the
toughest task to have an opportunity to succeed. Two issues with the latter approach: (1)
where would you get the proximal velocity if troublesome multiples are in your input data;
and (2) the one series, one time for all data is an “all or nothing at all” strategy that doesn’t
allow for stages to succeed and provide benefit, when the overall series or more ambitious

goals are beyond reach.

Although both primaries and multiples have experienced the subsurface; and, hence, carry
information encoded in their character, the indisputable attitude of the only multidimen-
sional direct inversion method for acoustic and elastic media, the inverse scattering series, is
to treat multiples as coherent noise to be removed and primaries as the provider of subsur-
face information. That doesn’t mean that one could never use multiples in some inclusive
method that seeks to exploit the information that both primaries and multiples contain. If
simply means that an inclusive theory, starting with realistic a-priori information, doesn’t

now exist, and, further, that the inverse series definitely adopts the exclusive view.

While the ability to directly achieve seemingly impossible inversion objectives from data,
D(t), and only an estimated reference propagator, Gg, (which can be inadequate) certainly
follows from Eq. (11-14) (see also Weglein et al. (1997)) there is value in providing an

understanding from an information content point of view, as well.

What basically happens in each task specific subseries is that specific conversations take

place between events in the data as a whole that allows, e.g., multiple prediction or accurate
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depth imaging to take place without an accurate velocity model. “Non-linear in the data”
is the key, and means that quadratic terms enter the picture (data times data, at least) and

that allows different events to have multiplicative communication.

For example, if you provide the medium in detail you can readily determine whether any
event in the data is a primary or multiple. However, if you provide only an isolated event,
without the medium properties, then there is no way to determine if it is a primary or
multiple, in fact it can be either for different models. So how does the inverse series figure
out whether the event is a primary or multiple with out any subsurface information? Since it
is a series there is a “conversation” set up with other events and then a yes or no to whether
an event is a primary or multiple is completely achievable without any information about
the medium. In Fig. (32) we show an internal multiple (dashed line), SABCR. Primaries
SABE, DBCR and DBE have a phase relationship with the internal multiple SABCR such
that.

(SABE)time + (DBCR)tlme - (DBE)time - (SABCR)tlme (91)

Hence, if the overall data contains three events such that two are longer time events and if
the sum of the time of the two longer events minus one smaller time event corresponds to
the time of the event under investigation, the event is an internal multiple and, if so, it is
removed. This is the reason the third term in the inverse series, that involves three D(t)
data terms, starts the process of internal multiple removal and why the “W” diagram (see
Fig (32)) is as the heart of the internal multiple prediction from the data procedure; and,
finally, why the time prediction of all internal multiples is precise.

In the subseries for imaging at depth without the velocity the first term is current linear
migration and places each events exactly where the input reference velocity dictates. The
latter imaging process is linear in the data and events are not asked their individual view or

opinion of the input velocity non are they allowed to discuss it amongst themselves.

The second term in the inverse series has integral terms (e.g., Eq. 90) that start to move the
incorrectly imaged events (from using the reference velocity) towards their correct location.
There is a quadratic dependence on the data, allowing multiplicative conversations between
two events and they are empowered to have an opinion about the input velocity. If they
decide together that (at least) one of the events has been provided with a velocity model
not consistent with those two events, the troubled event (usually deeper) asks for assistance
from a shallower event to help it use its amplitude and the degree of dissatisfaction to move

the deeper primary towards its correct location.
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Hence, the inverse series and the task-specific subseries concept, represent as fundamentally
a new and potentially impactful way of thinking about imaging and inverting primaries
as it represented for the earlier (and now mature and standard algorithms for) removal of
multiples. There were serious conceptual and practical hurdles in the theoretical evolution,
development and robust industrial application.

We anticipate that in bringing the subseries for imaging and inverting primaries through
that same process, that higher hurdles and tougher prerequisites will be addressed. The
potential benefits for exploration and production of hydrocarbons are great. We would be
delighted if this paper would serve to encourage other fields of non-destructive evaluation
e.g., medical imaging, environmental monitoring, and defense detection and identification,

and earth quake deep earth definition, application to benefit from these efforts as well.
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Figure 22: An example of internal multiple attenuation from the Gulf of Mexico. Data are
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TASK PROPERTIES.
Free-surface multiple One term in the subseries predicts precisely the time
elimination and amplitude of all free-surface multiples of a given

order independent of the rest of the history of the event.
Order is defined as number of times the multiple

has a downward reflection at the free-surface.

Internal multiple One term in the inverse series predicts
attenuation the precise time and approximate amplitude of
all internal multiples of a given order.
The order of an internal multiple is
defined by the number of downward reflections

from any subsurface reflector at any depth.

Imaging at depth without First term in series corresponds to current
the precise velocity migration or migration — inversion.
To achieve a well-estimated depth-map requires
an infinite series directly in terms of an
inadequate velocity model.

A priori velocity estimate will aid rate of convergence.

Inversion at depth without First term in subseries corresponds to current
the precise overburden linear amplitude analysis. For improvement
to linear estimates of earth property changes and
to account for inadequate overburden requires infinite series.

Tests indicate rapid convergence for the first

non-linear parameter estimation objective.

Table 1: Summary of task-specific subseries.
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Figure 32: Subevents for an internal multiple.
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Viscoacoustic Born Series Continued: Toward Scattering-
based Q Compensation/Estimation

Kristopher A. Innanent and Arthur B. Weglein{
tUniversity of British Columbia, {University of Houston

Abstract

The forward scattering series in 1D has available to it a mapping (Matson, 1996)
which allows one to follow terms, or groups of terms, from their individual compu-
tation through to their overall effect on the closed form wave field expression. This
provides a tool to gain insight into the likely behaviour of the inverse scattering series,
and the subseries’ which have elsewhere been identified and separated as means to
eliminate/attenuate multiples, and image and invert primaries. Here this tool is used
to (1) gain basic understanding of the types of scattering interaction which give rise
to macroscopic properties of the viscoacoustic wave field, and (2) gain focused under-
standing of where in the inverse scattering series the machinery for () compensation
and estimation must reside. In casting the problem with an acoustic reference medium
a conceptually compelling result is obtained: a viscoacoustic wave field, attenuated
and dispersed, is correctly computed through the scaled, nonlinear, combination of
propagations which all occur in a lossless (reference) medium. Beyond this, the key
conclusion is that the “imaging subseries”, which in the acoustic case is seen as an
engine for moving reflectors to their correct depths, must be generalized to include the
removal of all propagation effects. This includes the phase and amplitude distortions
associated with attenuation. In other words, the imaging subseries is also the basic
(QQ-compensation machine; it is to this subseries that we must direct our attention in

devising scattering-based processing strategies.

1 Introduction: Viscoacoustic Scattering Potentials

This paper involves refining our understanding of how the forward scattering series, or Born
series, functions in media which attenuate the wave field. The first section develops some
ideas of how various types of scattering diagram conspire to construct aspects of the vis-
coacoustic wave field — for instance, the absorptive propagation effects, and the negative of
the direct wave. The second section is more focused on predicting the nature of an inverse
scattering-based scheme for () compensation and estimation. In it we consider the role of the

so-called “separated” and “self-interacting” scatter-type comparatively, contrasting a purely
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acoustic case with a purely absorptive one. The results suggest where in the inverse series

we must look for tools to accomplish these tasks of estimation and compensation.

To begin, we review the Born series for viscoacoustic media, and construct some appropriate

scattering potentials.

The Born series representation of a wave field arises from a perturbation of the coefficients of
the wave equation around a reference value. For instance, in a 1D constant density acoustic
medium, the equation

[ d? w?

dz? + c(z)?

| $lelziw) =86 - 2, )
which describes the behaviour of the wave field ¥(z|z,;w), measured at z and due to an
impulsive source at z,, in a medium characterized by the wavespeed profile ¢(z), is re-written

[% + k21— oz(z))} V(2|55 ko) = 0(2 — 2s), (2)

where k§ = w?/c3. Usually the reference model, here represented by the constant wavespeed
2
co, is assumed to be known, so the perturbation a(z) = 1 — % is the de facto model.

The scattering potential V' (kg, z) is the difference between the “true” and reference wave

operators:

TERFAEARERE

Bl —— 4 = | = kaa(z). 3
a2 c(2)? a2 cg] 0(2) )
The acoustic Born series is a representation of the solution of equation (1) in orders of
V(ko,z). A straightforward derivation involves placing the term V' (ko, 2)¥(z|zs; ko), onto

the right-hand side of equation (2), multiplying these “sources” by the Green’s function
Go(z|zs; ko), which satisfies

d? 9
|+ 8 Gulala) = 86 ), ()
and integrating:
P(2|2s; ko) = Go(z|2s; ko) +/ Go(2]2'; ko) V (ko, 2')9(2'| 253 ko) d2'. (5)

Finally, equation (5), which is the 1D version of the Lippmann-Schwinger equation, is ex-

panded to produce the Born series:

’l,b(Z|Zs; kO) = 1/)0(’2'28; kO) + 'l;bl(’z"zs; kO) + ¢2(Z|Zs; kO) + ¢3(Z|Zs; kO) + (6)
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where
1/)O(Z|Zs; kO) = GO(Z|25; kO)a
1/)1(z|zs;k0)=/ Go(z|2'; ko)V (ko, 2')Go(2'| 255 ko )d2, (1)
P2 (2]2s; ko) =/ GO(Z|Z';k0)V(k0,2')/ Go(2'|2"; ko)V (o, 2")Go(2"|2s; ko) d2"d2,

etc. Clearly, v, is first order in V', whereas 1 is second order in V| and so forth. Because
the Green’s function Gy(z|2'; ko) describes propagation in the reference medium from point
Z' to point z, the term 15 may be interpreted as a wave field which has propagated in the
reference medium N + 1 times, and has N times interacted with the perturbation a(z) via
the scattering potential. Since the reference medium is characterized by constant wavespeed

co, the Green’s function is (e.g. DeSanto, 1993):

6z'ko|zfz$|

Go(z|2s; ko) = W. (8)

Therefore, having defined V' (ko, z) via some desired Earth model, and knowing Gy, one may

compute as many terms as desired in equation (6) to approximate the solution.

One may define a wide variety of scattering potentials, differing in what the “true” medium
properties are with respect to the reference medium. Here we consider two variants on
the acoustic case, each utilizing wavenumbers which permit attenuation to be modeled in
addition to acoustic behaviour. This requires moving away from the acoustic kg = w/cg, and
adopting for the true medium:

w

c(2)

where ((w, z), a complex number, is the spatial distribution of an attenuation parameter

k(2) [1+B(w,2)], (9)

which instills absorption and dispersion character into the wave field. From equation (9), and
guided by equation (3), two related scattering potentials are defined. The first corresponds
to media in which both wavespeed contrasts and attenuation contrasts are permitted:

k*(2) %

=1-
kg c*(2)

O‘cq(z) =1- [1 + 2ﬁ(w’z)] ) (10)

neglecting terms quadratic in 3. The second corresponds to a medium in which the wavespeed
is constant throughout, and contrasts are only permitted in 5. Since in such a case ¢(z) = ¢y,

from equation (10) the form is
ag(2) = 26(w, 2). (11)
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The remarkable simplicity of this perturbation and its association with the actual value of
0 arises partly because there is no attenuation in the reference medium, and also because
of the attenuating wavenumber of equation (9) already resembles a perturbation away from
the acoustic case. In this paper we consider only cases in which the reference medium is

acoustic, and non-attenuative.

If we choose the constant () model of Kjartansson (1979), for instance, we have

) = 5065 - o™ (i) 12

where w, is a chosen reference frequency. This arises due to the form of a 1D constant

wavenumber:

k=2 1+i—i1n(i)] (13)

2 The Terms and Diagrams of the Born Series

The Born series, equation (6), is a decomposition of the full wave field into those components
which have interacted with the non-reference portion of the medium a certain number of
times; each interaction is separated by a propagation in the reference medium. Scattering
diagrams, which, as used here, are the wave-theoretic analogues of the Feynman diagrams
of quantum field theory (e.g. Weglein et al., 2002), arise from further decomposition of the
terms in this series. In this section, the scattering diagrams associated with a simple 1D
transmission case are developed from the form of the Born series integrals, and linked to the

explicitly computed terms in the series.

The integrals which give rise to the terms v, in equation (6) subdivide because of the
geometric constraints on the propagation imposed by the Green’s functions (equation 8). To
see this, consider equations (7) with the condition that the source z, is less than all z for

which the perturbation is non-zero. Then:

eikg (z—2s)

Yo(z|zs; ko) = ik (14)
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Also,
oo eiko|z—z’| eiko(z'—zs)
= k — 2 / d !
Valzlzi ko) /oo 2iky 102 #) T, 42
z eiko(z—z’) eiko(z’—zs) 0o eiko(z’—z) eiko(z’—zs)
= —k2 ! —d ! / —k2 ! —d !
/_oo 2iky P00 ) gy T | iy R0 T (g
_j‘_leiko(zzs) /Z Oz(ZI)dZI . }leiko(z—i—zs) /00 ei2k0z'a(zl)dzl
= Yn + Y12

The integrals are likewise broken up in the computation of s:
oo eiko|z—z’| oo eiko|z’—z”| eiko(z”—zs)
s k — k2 ! k2 n d Ild /
Yalles ko) /_oo ik 00(7) /_oo diky F0aF) T ez (16)
= 21 + Yoz + Y3 + 2,

where

1 . z z
Y21 (2255 ko) = gikoelko(z_h)/ Of(zl)/ a(z")dz"d,

—0o0 —0o0

1 ; ? o ! & o n
¢22(Z|Zs; ko) — gikoezko(z—z,s)/ e—z2kgz a(z/)/ ez2kgz a(z")dz"dz',

!

X - p (17)
¢23(Z|Zs; kO) — gikoefiko(z—i—zs) / ei2k0z’a(z/) / a(Z”)dZ”dZI,
1 . & & o n
VY2a(2|2s; ko) = gikoe”k"(z“s) / a(z') / e o(2")dz2"d7.
In the “new” series,
V(2|2s; ko) = Yo + Y11 + 12 + Y1 + Yoy + Yoz + os + ..., (18)

the terms have been divided into, first, the number of interactions, and second, the relative
location of the interactions. For instance, the term 1535 represents the totality of second
order interactions in which 2’ > z and 2’ > 2", whence arise the scattering diagrams,
which symbolize this particular scattering geometry. Since the addition of a further order
of interaction, e.g. going from second to third order, involves the inclusion of one further
Green’s function, which must be subdivided into two cases, in general the n’th order term
produces 2" sub-terms. In this way, the eight terms of 13, followed by the 16 terms of /4,
and so forth may be produced. Scattering diagrams may now be drawn based on the terms

in equation (18). This is preceded by a description of the chosen 1D model.
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reference

! Z
medium @ Zs (SOU.I'CG) i
c(z)=co

non-reference )
medium @ z (receiver)
c(z).p(2)

(a)

zs (source) %
reference
medium

Z

non-reference 4 (receiver)
medium

"

V4

(b)

Figure 1: 1D transmission model and framework for scattering diagrams: (a) a homogeneous
acoustic wholespace is chosen as the reference medium, in which the source is located; a
homogeneous (visco-)acoustic half-space is chosen as the non-reference medium, in which
the receiver is located; the step-like interface is located at z;; (b) an example (t)q3) of the
form and construction of the scattering diagrams is superimposed on the chosen transmission
model; the arrows and labels included in this example are assumed but omitted in subsequent

diagrams.
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The model is a 1D homogeneous acoustic whole-space, characterized by constant density and
the wavespeed cy. Overlaying this reference whole-space is the perturbation, a homogeneous
half-space in which the medium parameters, i.e. ¢(z) and/or ((z), are constant and may
or may not differ from that of the reference medium. A source is located at z, = 0, in the
reference medium, and a receiver is located at z, in the non-reference medium, thus mimicking
a transmission experiment; the interface between the reference medium and the non-reference
medium is at z;. The model is illustrated in Figure la. This configuration is geometrically
identical to one used by Matson (1996), such that the mapping developed therein, from Born
series to closed-form, may be utilized. Figure 1b illustrates, as an example, the scattering
diagram associated with 193, within the context of the chosen model. In later diagrams
the arrows are omitted, nevertheless, all propagations go from z, to z. Further, it is worth
mentioning that in this 1D model the lateral separation of scattering points has no meaning

other than as an aid to visualization.

Figure 2 contains the scattering diagrams associated with ), (one diagram), ¢; (two dia-
grams), 1o (four diagrams), and 13 (eight diagrams), pictured without the context of the
1D model discussed above. As in Figure 1b, the the “top-left” endpoint is z,, and the

“bottom-right” is z.

The next step is to evaluate these integrals, given the chosen transmission model of Figure 1,
and to use the Matson approach to produce the closed form expression for the transmitted
wave field, all the while tracking the diagrams through the organization and collapsing of se-
ries. To remain general in the sense of acoustic/viscoacoustic perturbation, the perturbation

a(z) is assigned the spatial dependence
a(z) = H(z — 2), (19)

such that the details of the contrast (i.e. acoustic or viscoacoustic) are hidden in the am-
plitude oy, which could have a form like either of equations (10) or (11). The step-like

behaviour is explicitly present in the Heaviside function H(z — z7). Substituting equation
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Figure 2: Scattering diagrams, for the 1D transmission example of Figure 1la, are illustrated

up to third order in the perturbation a.
order, a1 — 194; (d) the eight diagrams
terms that have been explicitly compute

(a) 0’th order, 1yo; (b) 1st order, 111 — ¥12; (c) 2nd
of the 3rd order. Those diagrams associated with

d in this paper are labelled as in the calculations.

(19) and 2, = 0 into the terms of equation (18) results in:

to(2]0; ko) =
$11(210; ko) =
12(210; ko) =
P21(2/0; ko) =
Paa2(20; ko) =
Pas(20; ko) =

V24 (2]0; ko) =

eikoz

2iky’
a7 €
4 2ikg

1koz

1koz

2ik0(z-—-z1),

o€
4 2iky’
ale
8 2ikg
ale

16 2ikg
(X% eikgz
16 2ikg
(X% eikoz
16 2iky

1koz

[iko(z — 21))%, (20)

1koz

2ik0(2 —-Zl),

2ik0(2 —-Zl),
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The straightforward computation of the terms in equation (20) raises an issue that is of
at least conceptual importance. The wave field associated with a single interface, whether
reflected or transmitted, must ultimately consist of a local event due to that interface.
Scattering series terms involve nested integrals over all (or much of) space. One might
well ask why integrals over all space are necessary for the determination of the character
of a local event. What, for instance, has the Earth at 100km depth got to say about a
reflection coefficient at 50m depth? The answer is, not much, of course. The computation of
equation (20) makes clear a more appropriate way of interpreting the “job” of these integrals
which range over all space. The form of the perturbation places the interface at z; with a
Heaviside function, which alters the integration limits of the integral to include z;. In such
a (definite) integral, then, the antiderivative is “picked out” at the limit z;. This would
happen anywhere an interface was placed in the form of a(z). As such the results are local
terms, which depend on measurement location z and interface location z; only. So these
integrals should be thought of as the process of scanning the model for discontinuities which
give rise to local events in the series terms. This is the conceptual link — albeit simplified
to include only stepwise constant media — between the integrals of the scattering series and

the local nature of reflected and transmitted events.

Figure 3 contains an organization of the terms comprising the Born series representation of
the wave field ¥(z|0; ko), including those of equations (20); above the low order terms, the
associated scattering diagram is included. These terms are, together,

eikoz eikoz 1 1 5
ko) = - — a2+ —ad ...
(203 ko) = 5o+ T {80‘1+ 160 T gt
Liko( ) Lo+ —a? 4 od (21)
— Z—Z (8 — —
0 Vgt 16t 128t

1 3 9
—kg(z — 2)? [Eoﬁ + 6—404:} + ﬁa‘f + } + } .

Equation (21) makes use of two definitions:

R:2{1—a1/2—(1—a1)1/2}’ (22)

(03]

and
12k
r=01-a) =, (23)
ko
where k; is the wavenumber in the non-reference medium (which may describe acoustic or
viscoacoustic propagation). Noting that v may be expanded in Taylor series:
1/2 1 Lo, 1 5 5 4

=1—-oq— =-aj — T6% ~ 1o8%1 ~ (24)

= (1—
7=(1-0) 2 8 128
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w(z10:k,) =

Figure 3: The Born series terms for the 1D transmission case of equation (20) are illustrated

with their associated scattering diagrams.

and keeping in mind the terms found in Figure 3, one may write

1 1, 5 R

Zon+ — — .= 2
1, 3, 9 , R
—a? 4 = ~atr o =1=-y= 26

and so on. The series’ in powers of a4, i.e. the rows of Figure 3, therefore collapse into single
terms in R and 1 — ~. In fact:
eikoz eikoz R {

(1—7) . ki(z — z1)?
Cikal(z — 2 (1 — &) — 0\ )
2ike | ko 17 iho(z = 21)(1 =)

2 2

V(2|05 ko) =
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These collapsed series’ in a; are therefore coefficients of a further series in orders of —iky(z —

z1). Notice that one may expand as a Taylor’s series:

e—iko(z—21)(1=7) _ (1+7)
2

_ [1 _a ! 7)} k(2 — 21)(1— ) — ’“2—0(2 P =) (28)

2

= a-v ; 7 _ iko(z — z1)(1 — ) — k2—0(z —21)2(1—7)* +...

This is the form of the series in equation (27). Substituting equation (28) into equation (27)

produces the closed-form expression:

eik(]z eikoz R . (1 + ry)
0: ka) = —iko(z—z1)(1—7) _
VI k) = S ik 1o {e

2
_ gthoz n ko gko= eikl(z—zl) _ —eikoz (29)
2tk ko + k1 ikg 2ikg
ikoz
_ ]CO 6. 0=t eikl(z_ZI),
ko + kl Zko

using the definitions of equations (22) and (23). This expression for the transmitted wave
field, generalized to accomodate viscoacoustic or acoustic propagation, propagates according

to kq, which is the non-reference wavenumber.

Observing the process of collapsing the series, from the form of Figure 3 to that of equation
(27), the roles of the types of scattering interaction in the construction of the eventual wave

field become clear.

The wave field, propagating correctly in the non-reference medium via the term etoze—tko(z—21)(1=7)
= etkozgiko(k1/ko)(2-21) — gik1(2-21) {5 generated in the Born series by a weighted series in or-
ders of —ikg(z — z1), i.e. each row of equation (21) and Figure 3. Notice from Figure 3 that
the leading terms in each order n > 0 of [—iko(z — 21)]", arise due to the same scattering
interaction-type, that is, those with no direction-change from source to receiver (see Figure
4a). It is therefore justifiable to attribute much of the burden of alteration of propagation
(wavespeed and/or attenuation) to this type of scattering interaction in the Born series. Of
course, to correctly alter ko to k; requires v = k;/kg, which in turn requires terms at all

orders of a;; nevertheless, the leading terms are the most signficant, especially for small ;.

Next consider the amplitude of the transmitted wave field, ko/(ko+k1) = R/(1—), which is
correctly produced by the series of 0’th order in —ikg(z — 21), i.e. the first “row” of equation

(21) and Figure 3. While it is true that every order of —iko(z—2;) has such a series embedded
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T

(a)

Avar)

(b)

Figure 4: Certain scattering-types are seen to be associated with the generation of macro-
scopic properties of the transmitted wave field. (a) These interaction types contain all
information necessary to properly alter the amplitude of the transmitted wave field; also,
these interaction-types are solely responsible for producing the negative of the direct wave;
(b) These interaction types are responsible for the leading order terms in the alteration of

the propagation wavenumber, from kg (reference medium) to k; (true medium).
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in it, so in truth the whole series produces the amplitude coefficient, the information required
for its correct computation is laid down by this first row of equation (21). Inspection of Figure
3 reveals that this series is also characterized by scattering interactions of common type (see
Figure 4b). This amplitude produces the expected transmission coefficient, as was noted in
Matson (1996) for the acoustic case:
_ WOk _ 2k
 |Go(210; ko)l ko + ka’

and so one is justified in looking to these types of interaction as being central to amplitude

(30)

adjustment.

In “mixed” terms, of order higher than n = 1 in [y]" and n = 0 in [—iko(z — 21)]",
more than one type of scattering diagram is associated with each term. In other words,
certain scattering interaction-types are not distinct in the solution. Inspection of Figure 3
suggests that these indistinct components of the solution are related in that they share the
same number of “up-” and “down-"scattering directions. For instance, the term —k3(z —
21)%(3/64)a3 has three contributing diagrams: from left to right, “down-down-down-up”,
“down-up-down-down”, and “down-down-up-down”. Since the source is fixed to be above
all interactions, the first direction must be “down”; therefore, these three diagrams represent

Y

all permutations of “two downs + one up-” interaction type.

Finally, consider the third key task of the Born series: the elimination of the direct wave
o = € /2iky. The series accomplishes this, in equation (28), concurrently to the wave
field construction, by creating the negative of the direct wave such that they destructively
interfere. This is also a conclusion of Matson (1996). This “task” is accomplished by the
terms which are 0’th order in —iko(z — z1); the unit first term is split into two parts, (1+7)/2
and 1 — (1 + +)/2, the former of which ultimately becomes the negative of the direct wave
(equation 28). This direct wave eliminator, unlike the amplitude term, owes its existence

solely to scattering interactions of the type seen in Figure 4b.

Lastly, we might underscore a remarkable aspect of the propagations and interactions which
constitute the terms in the Born series. The reference Green’s function propagates from
interaction point to interaction point in every term — no other type of propagation ever
occurs in this formalism. The reference Green’s function is, here, the solution to the acoustic
wave equation, yet the final wave field is viscoacoustic: this means that an attenuated
and dispersed wave field is being correctly generated by a sophisticated interplay of non-

attenuating wave propagations.

In this section the scattering potentials, generalized to permit viscoacoustic wave propaga-

tion, have been confirmed as producing the expected wave field expression for a simple 1D
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transmission case. Concurrently, scattering diagrams, which are a byproduct of the subdi-
vision of the Born series terms into computable units, are carried through the calculations.
Thus, when the mapping of Matson (1996) is used to produce the closed form expression for
the wave field, the “scattering interaction-types” that produced each term may be catego-
rized as to their contribution to overall wave field properties, such as amplitude, phase (and

attenuation), and the destruction of unwanted wave field components.

3 Toward Scattering-based Q Compensation/Estimation

In this section we utilize a different categorization of scattering diagram, that of “separated”
vs. “self-interaction” (Weglein et al., 2002). The insight gained from such a categorization

directly guides the search in the inverse series for task-oriented subseries.

The promise of the inverse scattering series, convergence issues notwithstanding, is to com-
pute the model a(z) via certain nonlinear operations carried out upon the data. If the
measured wave field is distorted and smoothed because it propagated through an attenuat-
ing medium that has sharp transitions, then the reconstruction of these sharp transitions
must include some process of (Q-compensation. Furthermore, since () can be cast as part of
the perturbation, the computation of the model must include Q-estimation. To determine
how and where such processes take place in the inversion, it is, as ever, useful to turn to the

forward scattering series.

It is particularly compelling to consider a 1D case in which only ) contrasts, and no
wavespeed contrasts, exist. These contrasts produce reflections, but the wave never travels
at a speed different from that of the reference medium. So, in the inverse, no beyond-Born
imaging per se will be required. All events will be correctly located by imaging with the
reference wavespeed. The only processing step necessary will be to remove the smoothing
and distortion effects. Weglein et al. (2002) have identified a separable subseries responsible
for imaging in the presence of wavespeed contrasts — will this subseries shut down in a Q-only
case? How then will () compensation occur? Let us next address these questions by looking

at the forward analogue of the imaging subseries.

Consider the two models shown in Figures 5a and b, both of which represent 1D media.
Both are geometrically identical, but the first (5a) represents a purely acoustic variation:
the wave field propagates at wavespeed ¢y for z < z; and z > 23, but at ¢; in the layer
between (z1,22). Meanwhile, the second corresponds to a situation akin to that described

above: the wavespeed never changes, ¢(z) = ¢ everywhere. The absorption parameter @),
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which we assume obeys the dispersion relation associated with Kjartansson’s constant @
model (1979), undergoes a contrast in this case (Figure 5b), from oo outside (21, 22) to @1

within.

S r S r
Z0 ....................................................................
C=Co C=¢Co
=0 =0
VA
cC=C1 C=Co
Q=wx Q=Q
V4
c=co c=co
Q=w =w

Figure 5: Schematic of two models for a 1D reflected wavefield. (a) The acoustic case: we
consider the “second primary”, i.e. that which has reflected at the z; interface, which in
this case corresponds to a wavespeed contrast. (b) The viscoacoustic case: an identical
geometry as that of (a), here we consider a contrast in ) only. This latter wave field travels
everywhere with the wavespeed ¢y, and hence no alteration of the Born approximate arrival
time is required; we wish to ascertain what if any effect the “mover”, or timing-related terms

in the series have on the construction of this field.

Matson (1996) finds an expression for the primary reflection associated with the lower inter-
face (22) in a model of this sort (whose ray-path is illustrated in Figures 5a and b). Previous
work of Innanen (M-OSRP Report, 2001) has shown that the general form of Matson’s ex-

pressions are the same for both the acoustic and viscoacoustic examples. After the amplitude
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series’ have been collapsed, we have

—ikoz ,12ko 22

e e .
Vpra(z < 21]05 ko) = TR2TNTM [1+ iko2(z2 — 21)(y — 1)
B oy o oy
_54(22 —2)2(y—1)?2 - ?8(@ —z2)(y =10 +..|,
which further collapses to
e—ikozei2k022 .
¢W2(z < Z1|0; kO) _ R2T10T01612k0(z2—z1)(’7—1)’ (32)

2tk
recalling that v = k /kq, i.e. the ratio of the reference and non-reference wavenumbers. The
reflection and transmission coefficients (R», and Ty and Tp;, for the reflection, transmission
from medium 1 to 0 and transmission from medium 0 to 1 respectively) have been produced

similarly to the amplitude of the transmitted wave field in the previous section.

The terms in the Born series which have conspired to produce the bulk of the e?2ko(z2—21)(7=1)
component in equation (32) correspond to “separated” diagrams, by virtue of the presence
of powers of (23 — z1); hence this component is due to the forward analogue of the imaging
subseries. We expect, therefore, that in the acoustic case, this term will do much of the work
required to take the incorrectly-timed arrival of the Born approximation, and alter it such
that it arrives having travelled everywhere at the correct wavespeed. Let us first see that

this is the case.

In the acoustic case

ko«
N ko N C1

¥ : (33)

so, expanding equation (32),

—ikoz
2tko
Consider first equation (32). The incorrect arrival time of the Born approximation appears
in the uncorrected leftmost term %

delay over the distance z; with wavenumber ko: €2%%2. Next consider equation (34). Notice

¢pr2(z < z1|0; kO) — R2T10T01 [ei2koz2e—i2koz2} ei2koz16i2ko(zz—21)z—g. (34)

, specifically in the part which produces a phase

that the —1 portion of (4 — 1) in the correction produces a term opposing this arrival (both

are in square brackets [-]) when the expression is expanded. So in the acoustic case, the first

7«

task of the series’ “corrector” term, e2*0(22=21)(7=1) ig to delete the incorrectly timed event.

Next,

—ikoz

et ; o[« 0 _

. _ i2koz1 32 2l(22—21)

’l,bPT.Q(Z < Zl|0, ko) = %k RyT10T61€ 021 o™ leg e
0
e—ikoz . .
— o R2T10T01ez2kozl612k1(22721).

tro

(35)
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Here, the second task of the series corrector is engaged: the remainder of (y — 1), namely
co/c1, multiplies the reference wavenumber kg in the square brackets, deleting the incorrect

wavespeed and replacing it with the correct wavespeed and thus the correct wavenumber k;.

In their totality, the “separated diagram” type terms therefore have the effect of (1) deleting
the Born approximate arrival, and (2) replacing it with the correctly-timed true arrival.
Thus arises the interpretation, in the inverse analogue, of these separated diagram terms
as being “movers”. One might indeed expect that, in the event of a true medium with no
wavespeed variation, these terms would shut down. There are a number of problems with

this expectation, however, not least of which is: they don’t.

Let us proceed by examining the purely-() contrast case. We have

w % 1 w

ky a[Hﬁ—mln(a)] i 1 (w)

_ o =1+ -0 ——In(Z 36

K ko % 2Q1 7T wy )’ (36)

following the constant @ law of Kjartansson (1979). Once again expanding equation (32),
but this time with the viscoacoustic v, we have

e—ikozei2k0 z2

: R2T10T016i2k0(22721) [1+ﬁ*ﬁ ln(ﬁ)—l]
22]60

VYpra(z < 21]0; ko) =
_ e thoz giZkozz RyTyo Ty 20 =) [ﬁfﬁln(ﬁ)].
2iky

So the correcting term doesn’t become unity, or by any means vanish, even though there are
no timing changes to be made — the imaging subseries analogue stays alive. What happens
instead is that the form of the viscoacoustic -y extinguishes the —1 from (y—1) — see equation
(37). This was the mechanism in the acoustic case that deleted the incorrect arrival. The
Born arrival time of this primary is kept! What is left in place of a “mover” term, that
deletes and replaces primaries, is an operator, emo(zz_zl)[ﬁ_ﬁln(:_r)], that distorts the
amplitude and phase of the Born primary according to the ) model. We finally arrive at

—tkoz (R —i2kg21 | 55— — —2— In(
Ppra(2 < 21|0; ko) = 62% RyT1oTp e 2% |1+ 5by =y L (wr)]e 2hoz1 | g — =y | (uT)], (38)
0

Here, via the term e T n ln(:_r)], the wave field propagates the entire distance 225,
attenuating with ¢);. This is the correct arrival time, but the incorrect amount of attenuation
— too much. The rightmost term, einkozl[ﬁ*ﬁln(ﬁﬂ, corrects this by deconvolving the
attenuation effects (not the propagation effects) associated with the distance 2z;. The final
result is that the second primary has experienced the expected amount of attenuation, that

is, through the distance 2(z3 — 21).
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The important point here is that the “separated diagram”-type terms have played an enor-
mously important role in the ) contrast only case, in spite of the fact that no “moving” was
required. It seems clear that a redefinition of the forward analogue of the imaging subseries
is in order. We surmise that these terms are responsible for generating propagation effects
rather than simply timing changes — with the former reducing to the latter in the acoustic
case. The “movers”, which correspond to the imaging subseries in the inverse case, must be

generalized to “depropagators”.

4 Conclusions

The work described in this paper reflects the course of the initial investigation into the use
of scattering theory as a means to process data with non-negligible attenuation effects. It
contains, first, the results of computing terms in the forward (or Born) series, and following
the scattering diagram associated with each of these terms. Secondly, it concerns itself
with the effect on a reflected primary of terms that involve “separated” interactions. These
are the forward series analogues of the imaging terms of the inverse scattering series. We
reach the conclusion that the meaning of the “moving” terms, those whose diagrammatical
representation involves separated scattering interactions, must be generalized to accomodate

the inclusion of all propagation effects into the true wave field.

The consequences with regards to how the inverse scattering series must treat attenuation
are clear — we must look to the imaging subseries to remove the effects of (). In an example
pathologically created with no wavespeed changes, we may indeed find that the imaging
series does only this. In such an example the inversion subseries (Zhang’s work in this

report) must therefore be involved with @Q-estimation only.

Beyond ascertaining that this is the case, the next challenge is to cast the inverse scatter-
ing series problem with at least two parameters (perhaps ¢ and @), and use a pre-stack
experimental milieu to investigate both the imaging (depropagation) and inversion (c and @

estimation) subseries.
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Forward scattering series and seismic events: high fre-
quency approximations, critical and postcritical reflec-
tions

Bogdan G. Nita!, Kenneth H. Matson? and Arthur B. Weglein!
1University of Houston, 2BP

Abstract

In this paper we progress the analysis of the forward scattering series and seismic
events for 1D normal incidence seismic data introduced by Matson (1996) and later
extended to prestack data by Matson (1997). We show that the exchange of certain
integrals in the prestack calculation of the forward scattering series terms in the later
yield the same result as a high frequency approximation of the integrals, without the
interchange. The reasonableness of this outcome is described from both a mathematical
and a physical point of view. The convergence of the forward scattering series at the
critical angle is also proved and an explanation is proposed for the divergence of the

series for postcritical incident planewaves.

1 Introduction

Inverse scattering series is using the deghosted and demultipled recorded data to locate
reflectors and invert for parameters that change at those locations. The present location and
inversion algorithms, although successful, are written for smooth, horizontal interfaces and
process either 1D data or 2D precritical data. If interfaces are considered to have a higher
degree of realism (dipping, highly corrugated, diffractive etc.) then the data contains more
and different information than expected by those algorithms (postcritical reflections, head-
waves) even for simple incident planewaves. For both fundamental and practical advances, it
is important to establish the attitude taken towards these returning signals (portions of the
recorded scattered wavefield) as noise or as information bearing agents. The general objective
of this particular research is to establish the scattering theory description and processing of
more complicated waves. While analogies between forward and inverse processes are not
maps, they never-the-less provide useful hints or at least point where certain activity resides
in the inverse series. The forward series does not hint at whether events will be signal or noise
in the inverse series, only suggests where one might look for that answer. Take multiples

for example: it turns out that the inverse scattering subseries made of terms that mimic the
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diagrams for multiples in the forward series is responsible for attenuating/removing them
from the data. Precritical data has been studied by Matson (1997) who showed that the
expected (from wave-theory) precritically reflected wavefield is constructed by the convergent
forward scattering series in a 2D experiment. This study brings new understanding about the
physical interpretation of Matson results; it also shows that the same forward series converges

for critical angles as well. An explanation of the postcritical divergence is proposed.

2 The forward series and seismic reflection data

Matson (1996) and thesis (1997) describe the propagation of a wavefield in a given 1D or 2D
medium respectively, using the forward scattering series. The actual medium is viewed as a
perturbation of a reference medium; the propagation of the wavefield in the actual medium is
given by the forward scattering (Born) series, a series of propagations in the reference medium

separated by different orders of scattering interactions with a point scatterer perturbation

P(F|7w) = Po(F|fy;w)
+ / Po(F|F; w)V (7") Py (7|7 s; w) dF”
+ / Po(FIF; )V (7) / Po(F! 7" W)V (7" ) Po(7" |7, , w)dF" | di”

+

where all the position vectors are fully 3D and 7 represents the position of the source, 7
the position of the receiver and 7' indicates the position of a point scatterer. For a two
dimensional model, the propagations in the reference medium are given by the 2D Green’s

function

GO(xa Z|1‘s, Zs) =

oo . .
1 ezks(a:fa:s)ezugs|zgfzs|
/ dk;

o iV,

—0o0

where k, and 1, are the horizontal and the vertical wavenumber of the reference medium
respectively (13, + k? = w?/c} ). Rewriting Gy as

1 efik:g:cs
Go(-’B,Z|.’B3, Zs) = % / 2il/g ¢0('Tgazg|ksazs;w)dks

—0o0
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with ¢o(g, 24| ks, 253 w) = eilksatroslza=2:1) it s apparent that Gy represents a superposition
of weighted plane waves. This motivates the use of a plane-wave as the incident wave with
the remark that one can construct solutions for point sources from plane-wave solutions by
performing the above mentioned weighted integration. The model used is a half-space earth
with no lateral variance, with an interface at z; ; the scattering perturbation for this model

is
V(') = kla1H(2' — z1)

where a; = 1—c2/c?, ¢, is the velocity in the second medium, ¢, the velocity in the reference
medium with H being the Heaviside function. For simplicity consider the source location to
be (0, 0); the Born series takes the form

P(F|Fy;w) = eilkaatinz)
i 1 ri eikg(zg*w’)eiu0|zgfz’| ) , o .
+ % / % dkgkoalﬂ(z — Zl)PO((L' , 2 ,U))d(L' dz
0
oo oo 1 o0 eikg(a;gfwl)eiydzgizq ,
i / / 27 / 2iv dkgkga H(2' — 21) Pi(2', 2' > 21|k, w)dz'dz’
0

+....

Note that the incoming wave hits all the scatterers at once; each scatterer then emits a
spherical wave which can propagate to the receiver or to another point scatterer. Each
term in the forward series represents the response at the receiver after a certain number
of interactions: the zeroth term represents the direct arrival, the first term represents the
wavefield after one interaction with a point scatterer and so on. To construct even the
simplest event, one needs an infinite number of terms in the forward series. To obtain the
total wavefield at the receiver we have to solve the integrals in the previous expression.

Following Matson (1997) we solve for the first term in the series

Begin by switching the order of integration so that the integration with respect to dx’ is

8\8

1 i ikg(zg—a') Livo|zg—2| L ,
o / c 22_5 dkgkia  H(2' — z1)e'® 07) da! !
0

performed first. Hence

_1/
1_27r

zZ1

00 oo
/ / i(k—kg)x' dz’ zkga:geulgg|zg 2| zugz’ ks 0a1 dk dz'
—00 00

ZVog
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Using
/ e'k=ka)e dpt — 276 (ky — k)
P; becomes

0o 0
ikgrg ivog|zg—2'| Jivoz’ k(:;a’l !
P = I(kg — k)ett9%ae0sl2a#let0% —=—dk dz'.
g
21 —00

Using the properties of the delta function we see that the inside integral switches k, — k

and hence vy, — 14 so the expression becomes

%)
k2a1 ; ; I
Pl — 0 ezkwg ewc||zg z |ew0z dZI.
211
Z1

There are two cases to be considered at this point: z, < z; for the reflected P, and z, > 2
for the transmitted part. The first enters into the series for the total reflected field while
the second is used either into the series for transmitted wavefield or for the calculation of P,
(reflected or transmitted).

We have

o0

kia; : 2!
Pi(zg, 2y < 21|k;w) = —2—ehaemir0zg [ gi022q, !
221/0

21

Integrating and considering that, due to some small dissipation, the wave at infinity vanishes,
we obtain

2
kOa1 eika:g eiz/g (2z1—24)

Pi(zg4,24 < 21|k;w) = 107
0

Same integration procedure is used for the calculation of P, , P5 etc. The calculated terms

o 1k2a; 1 (k2a;\?> 5 [K2a;\° 7 [Ka;\*
P, 25 < 21|l ) = ekesgivn(2z—) [-0—“1+—( 0‘”) +—( 0“1) +—( 0‘”) ;

2 2 2 2
4 v 8\ 1 64 \ 14 Vg

indicate certain regularity: the series is recognized to be the Taylor series for 4/1 — k‘%#

)
kgal
2

about = 0 after some algebraic operations performed on it. The ratio test indicates
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kz;“ ‘ < 1. By writing vy = kg cosf , with 6 being the incidence

0
{0

that the series converges for ‘
angle of the plane wave, this condition becomes

sinf < 2 < (1—|—cos2t9)1/2 (1)
(4]

This last relation can be viewed in two ways:

1. First, for a fixed incidence angle 6, this is a restriction on the velocity contrast between
the reference and the actual medium. For § = 0 (normal incidence) the left inequality
is satisfied for any 2 velocities; the right hand inequality becomes ¢y < v/2¢; (Matson
1996).

2. Second, for a fixed velocity model, the restriction is on the incident angle. Note that
given any two velocities ¢y and c;, one of the two inequalities is automatically satisfied.
For ¢y > ¢; , the condition reads E—‘I] < (1 + cos? 9)1/2 or sin?f < 1+ a; with a; <0 .

For ¢y < c¢; , the condition becomes sinf < 2—‘1’ or 8 < 6, where 6. is the critical angle

6. = sin ' (co/c1) . When the series converges, the limit is

9 Ve [1_ 1_k§a1] N

kia, V2 Vo + 11

so the final expression for the total field is

VW—1 i _
P = —ezkzg ewo(2zl zg)
Vo + 11

which is the expected result from Wave Theory.

3 Comments about the calculation of terms in the for-

ward scattering series

The calculation of

<7 1 3 ikg(zg—a') Livg|zg—2'| L, ,
P = //— /e c dk, | k2aiH(2' — z))e' = 05 dz' dz! (2)

2 21y

contains a reordering of integrals: in the original expression the dk, integral should be

solved first since it is the inner most one then the dz’ integral and finally the dz’ onme.
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The calculations are greatly simplified if the dz’ integration is performed first, then the
dk, and finally the d2’ integration. However this kind of operation has to be performed
with great care since it might change the result obtained from solving the integrals in the
original order. In this section we show that the interchange of integrals is only valid in
the high frequency approximation. To get a feeling why this statement is true even before
proving it mathematically, study the equation (2) in detail. Recall that Fubini theorem gives
sufficient conditions for interchanging integrals. It states that when a function f is integrable
(continuity or boundedness imply integrability) on R = R*¥ x R™ then the iterated integrals

of f over R* and R™ exist and

/f //fmydydm—//fxydmdy

Rk R™ R™ RE
Note that the inner most integrand in (2) is neither continuous nor bounded due to vy =
w_ kg in the denominator. When k; runs from —oo to oo, the integrand blows up at
0

+ 2. However, in the high frequency approximation, we have

w/co

oo ikg(zg—a') Livo|zg—2| ikg(zg—a') Livo|zg—2'|
/e e dk, ~ / c £ dk, (3)

27,1/0 27,1/0
—o0 —w/co

and the integrand is now continuous hence integrable everywhere. The Fubini theorem
applies and the interchange of integrals, and hence Matson’s derivation, is valid. Next,
we recalculate P; using saddle point approximations for the two integrals involved without
switching the order of integration and show that the result is the one obtained by Matson.

Saddle point or stationary phase approximation gives the leading asymptotic behavior of

generalized Fourier integrals, i.e. of the form f F(p)e“f®)dp, having stationary points,

i.e. points ps such that f'(p,) = 0. The idea of the method is to use the analyticity of
the integrand to justify deforming the path of integration to a new path on which f(p)
has a constant imaginary path. How the contour is deformed depends on the singularities
and branch cuts of the integrand. Once this has been done the integral may be found

asymptotically (w — 00) to be

T 27 1/2 isi n ™
[ F@e P ~ || P e exp o). @

To calculate P; start by rewriting

1 7 eikg(a:gf:t’)eiuo|zg—z'|
Gy = — dk
07 o 2ivg g
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as
1 o
Gy = 7 / F(p)e“’f(p)dp
where
() = —
p) =
2iy/1/c — p?
and

flp) =1 [p(wg — ')+ ciz — P2z — Z'|] :
0

Note that, due to the square root, F/(p) defines two branch cuts in the complex p plane; the
branch cuts are hyperbolas in the first and third quadrant and are running very close to the
coordinate axis (for a full discussion of the branch cuts of F' see Aki and Richards (1980)
Box 6.2). By definition, branch cuts are lines of discontinuities for F'(p) and here are given
by Im\/l/cgi—p2 = 0. This means that when the new integration path (see Figure 6.6 in
Aki and Richards) intersects these branch cuts, F(p) is discontinuous hence not analytic.
This apparent problem can be avoided if we relax the condition Im\/l/c%i—p2 > 0 along
the integration path. Instead we allow Im\/l/cgi—p2 to change sign at each branch cut
intersection which, for the integration path, is equivalent to a transition to a different Rie-
mann sheet. The integrand looses physical interpretation while on another Riemann sheet
but gains analyticity. However, the two intersections with the branch cut insure two sign
changes and the emergence of the integrand with the correct sign at the saddle point (even-
tually the integrand is going to be expanded in a Taylor series at that point and the rest of
the path is going to be discarded). To calculate the location of the saddle point equate the
derivative of f with zero; we find

g —a'

cod'

bs =

with d' = \/(zg — 2/)? 4 (z, — «')%. Calculate

'
f(pS) - Za
" ZCOdI3
f (ps) |Zg - Z,|2
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Co d

Fp,) = =2
(p) 2i|zg — 2|

and plug them into the above formula (4) to obtain

1 TCo 1/2 1
G ~ ( ) ikod ] 5
0™ ori \awa) € 5)

This last expression shows that, in the high frequency approximation, the main contribution

from each point scatterer comes along the line connecting the scatterer with the receiver.

The coeflicient accounts for the dismissed directions of propagation. In time domain the Gy

\/;\/* (-2) )

With this approximation, the expression for P; becomes

from equation (5) is

" /2 . 1 ’
27r2/ / ol 27TC;/ kjar e’ o) d' ! (7)

21 —
or

132 ® ? '+Ew')
0 a1 m ivgz’ 6 o d ld ! 8
2mi \/g / v (8)

Again, the inner most integral has the form

oo

I= /F(m')e“’f(zl)d:c'

—0o0

with F(z') = \/1‘7 and f(z') =1 (d?l + £2/) . Note that the integrand has no branch cuts this

time since d' = \/ (2, — 2')* + (z, — 2')? is always positive; the saddle point is z/, such that
T,— T, = |zg—z'|—

and so we have

k
s = (2l =1+ 2y )

(el = i

wd|zg — 2
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and
o 1 Colg
Vizg =2V w '

Using the same high frequency approximation (4) we find

F(z))

s

T eiw(%lJr%wI) 1 /27w
—dx' ~ = —
\/(? o Co

—0o0

Plugging this into the expression (8) for P; we obtain

oo
k2a]_ . . "ol
— !
P = 0 ezkzg ewo|zg z |ewoz dz
221/0
Z1

ei(”0|zg_zl|+k:”g)

which is the same result as obtained before by switching the order of integration. The rest

of the terms in the series for P can be similarly shown to resemble the expressions given by

Matson (1997).

4 Physical interpretation of the approximations

The two high frequency approximations made in the previous derivation have an easy to

understand physical interpretation. The approximation of the first integral represents the

most important contribution coming to the receiver from each point scatterer (see Figure 1).

Source Receiver

4

Figure 1: The physical interpretation of the approximation of GGy - the inner most integral

in the expression of P;.
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The result,

1 meg \ /2 .,
G ~ _( ) ikod
O™ omi \2wd' ) €

Y

represents the ray from the scatterer to the receiver multiplied by a coefficient which accounts

for the dismissal of all the other directions of propagations.

The approximation of the second integral looks at the totality of the rays arriving at the
receiver. Again the most important contribution is picked out to be the one coming from
the rays that make an angle equal to the incident’s plane wave angle with the vertical (see

Figure 2); this can also be seen from the expression of the saddle point

kl

Ty — T = |2y — 2| o (10)

The last integral in the expression of P; is a one dimensional integral along the bold line

Source Receiver

Vv

Incoming planewave

Figure 2: The physical interpretation of the approximation of the second integral in the

calculation of P;.

showed in Figure 2. Even though the parameter of integration is 2’, there is a certain relation
between 2’ and z’, given by (10), so that the direction of integration is tilted at angle equal

to the incident angle and not vertical.

153



Forward scattering series and seismic events MOSRPO02

5 Convergence at the critical angle

The forward scattering series for the model discussed in this paper is (see Matson (1997))

; ; 1k2a1 1 k2a1 2 5 k2a1 3 7 k2a1 4
P < k: — ptkzg jivo(221—24) | = 0 - 0 > 0 o 0
(g, 29 < 21]k;w) = €€ 4 12 + 8\ 12 + 64 \ 12 + 128 \ 13 *
(11)

. k2 . k2 s .
The ratio test shows convergence for f}‘;l < 1, divergence for ?};“ > 1 and it is incon-
0 0
. k2 . .y . . k2 . .
clusive for ‘i—;“‘ = 1. When ¢ < ¢; this last condition is equivalent to %3+ = 1 which in
0 0

turns is equivalent to 6 = 6., i.e. the incident angle is the critical angle. In other words, the
forward series is convergent for precritical incidence and divergent for postcritical incidence;
no information is found about the critical incidence. For a critical incident planewave, the
series becomes
L 1 1 5 7
. _ _tkxy ivg(2z21—2
P(zg, 2, < 21]k;w) = etk@oeio(221-2) [Z + 8 + 6 + 128 + } . (12)

Rewrite

1 1 5 7 > 11-3-5....(2n—3 . I'(n+1/2
Yo ( ):Z( (n+1/2)

R=-+cot—4+-—+..= - .
48 64 128 s nl 2  (n+1)T(1/2)

Note that the series has the form ) a, with a, = %”’5?‘# and so

n=2

2 2
lim n &n —1)=limn nt —1 =§>1
n—00 An+1 n—00 2n— 1 2

hence Raabe’s Convergence Test shows convergence (for a full discussion of this convergence

test see Bromwich (1965)). The conclusion is that the forward scattering series for this model
converges at the critical angle as well. Note that the sum of the series, which corresponds

to the reflection coefficient, is R = 1.

6 Postcritical divergence

For a ¢y < ¢; model, the forward series converges for precritical and critical incidence and
diverges for postcritical incidence. From wave theory, the reflection coefficient R which

should be constructed by the forward scattering series is:
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e R= % < 1 for precritical incidence. In this case both 1y and v; are real.

e R =1 for critical incidence. In this case v; = 0.

e R= Zg —,+ for postcritical incidence. In this case v, is purely imaginary and hence R
is complex. However |R| = 1 and the complexity of R is attributed to a phase-shift of
the emerging wave after hitting the interface due to the evanescent waves created in

the second medium.

The term lk" = 1— -} is grater than one exactly when v, becomes imaginary. In fact if for

this case one ertes R = €', where ¢ is the phase-shift of the wavefield, then alk

= 1+tan® £
enforcing the earlier statement that the divergence is due to the phase-shift of the reflected
wave. In other words, it is the impossibility of constructing a complex number 1 as a series
of real numbers (powers of 1) which leads to the divergence of the series. The graph of v as

2
a function of a:}# is shown in Figure 3. For ¢y < ¢; we have that a; > 0 so we are looking at
0

2
a kg

2
Vo

V=V, |l-

A
Rev,

Yo

2
aky

Imv,

alko

Figure 3: The graph of v, as a function of
0

the positive x-axis of the graph; if the velocity model is fixed, a;k2 is a constant. The vertical
wavenumber of the propagating wave in the actual medium, v, is equal to vy when alk” =
0

(at critical incidence), v; is zero showing that there

Y

alko _

i.e. at normal incidence. When
0

is no propagation into the second medium. When alk"

> 1 (post-critical incidence), vy is
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ay k:%

complex and it becomes unrecoverable by a Taylor series written at = 0; the series is

v
now divergent. For ¢y > c¢; it seems like this problem does not exist. In this case there is

no critical angle and so the vertical wavenumber 1; never becomes complex. However the

2 2
series inherits the divergent behavior for all,fo < —1 due to the singularity at all,fﬂ = 1. For
0 0
any value of alllfg outside the unit sphere centered at the origin the series will diverge due to
0

that same singularity.
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Abstract

The objective of seismic depth imaging is to produce a spatially accurate map of the
reflectivity below the Earth’s surface. Current methods for depth imaging require an
accurate velocity model in order to place reflectors at their correct locations. Existing
techniques to derive the velocity model can fail to provide this information with the
necessary degree of accuracy, especially in areas that are geologically complex.

Recently, Weglein et al. (2000) have proposed using the inverse scattering series, a
direct non-linear inverse procedure, to perform the task of imaging reflectors at depth
without needing to specify the exact velocity. The primary objective of the research
described here is to derive and develop a practical inverse series algorithm to perform
the task of imaging without accurate velocity information. The strategy employed is to
isolate a subseries of the inverse series with the purpose of imaging reflectors in space
(Weglein et al., 2002).

In this paper, a leading order imaging subseries is isolated and its convergence
properties are analyzed. It is shown analytically that this imaging subseries converges
for any finite contrast between the actual and reference medium, and for band-limited
data with a finite maximum frequency. The rate of convergence is greater for small

contrasts and smaller maximum frequencies.

1 Introduction

At its core, seismic data processing is an inverse method; the data are inverted for the
Earth’s subsurface properties. These properties include the spatial location of reflectors and
the contrasts in density and elastic properties at these reflectors. In practice, the processing
of seismic data is carried out in a sequence of steps, e.g., random noise attenuation, source
wavelet deconvolution, removal of free surface multiples, removal of internal multiples, imag-
ing (also called migration), and inversion for changes in Earth properties. The order in which
these steps are carried out can be important because most algorithms assume that the data

have been preconditioned by the preceding processes. The research described here concerns
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the single step of imaging primaries. Primaries are events in the measured wavefield that
have experienced a single upward reflection in the subsurface and are distinguished from mul-
tiples which have experienced more than one upward reflection. Imaging may be thought of
as a process that transforms the recorded primary seismic wavefield into a spatially accurate

picture of the Earth’s subsurface reflectivity.

The research described here represents progress in a long-term project to develop multi-
dimensional algorithms that have a greater ability to achieve the goals of seismic processing
while lowering the demands on (often inaccessible) a-priori information about the subsurface.
As with earlier analysis of algorithms for multiple attenuation, the evaluation of new concepts
and theory progresses from simple, analytic examples to complex, numerical models and
ultimately to field data. To avoid numerical, stability or discreteness issues, testing is first
conducted with analytic data for one-dimensional examples. This ensures that the results

are attributed to the inverse procedure only.

The following section explains the motivation for addressing the problem of imaging when
the exact velocity model is unknown. Then, in the next section, the inverse scattering series
is derived and the strategy for isolating subseries of the inverse series that perform seismic
processing tasks is described. In the remaining sections, a leading order imaging subseries is

derived and its convergence properties are studied analytically and numerically.

2 Motivation for an accurate imaging algorithm when

the velocity is unknown

Reflectors exist where there are sharp contrasts in Earth material properties that are usu-
ally attributed to boundaries between different types of rocks and fluids. Oil and gas are
often trapped below the surface by impermeable rocks. Seismic imaging produces a map of
subsurface reflectors. The accuracy of this reflector map has a direct impact on our ability
to predict the location, volume and even type of hydrocarbons trapped below the surface.

Hence seismic imaging plays a key role in exploration and production of natural resources.

Current methods for imaging can be derived using Green’s Theorem and the wave equation
to predict the wavefield inside the Earth from measurements on its surface (e.g., Schneider
1978; Stolt 1978; Berkhout and Palthe 1981; Wapenaar et al. 1989). For example, for a

constant density acoustic medium, if P is the wavefield due to the seismic source, and G is
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Figure 1: Current imaging algorithms may be derived using Green’s Theorem and the wave
equation to predict the wavefield in the Earth from measurements on its surface. Knowledge

of the Earth’s properties inside the volume V is required.

the Green’s function that satisfies

2

(v2 + CQ‘EF)) G| w) = 6(F — ), (1)

where c is the velocity inside the volume V defined in Figure 1, then the wavefield prediction

formula can be shown to be

P sw) = f (P |7 ; ) V(7| w) — G| ;w)V P |7y w)) - 7dS (2
7les

where 7 is the location at which the wavefield is predicted and 7, is the source location.
The need for the measurement of VP is avoided by making G satisfy Dirichlet boundary
conditions on the measurement surface. The requirement of current imaging algorithms for

the velocity comes from the need to compute the Green’s function G inside the volume V.

The wavefield predicted in the Earth is transformed into a map of reflectivity using an
imaging condition. Usually, the imaging condition asks for the seismic amplitude recorded
in the limit of a small recording time for a hypothetical experiment where a source and
receiver are coincident in the Earth (e.g., Claerbout 1971). If a reflector exists immediately
below the source and receiver in the Earth, then the imaging condition will output a measure

of the reflector’s strength.

As mentioned, traditional methods for imaging require the precise velocity model in order to

compute the Green’s function that back-propagates the measured wavefield into the Earth.
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Without the true propagation velocity, the wavefield in the Earth will not be correctly
predicted, and the imaging condition will fail to locate the reflectors. It is for this reason that
the quality of the results from current methods for depth imaging are critically dependent

on the accuracy of the velocity model.

Velocity information itself can be derived from seismic reflection data by picking reflection
travel times (Taner and Koehler, 1969) or using reflection tomography (e.g., Stork and
Clayton 1991). In practice, the seismic interval velocities can be in error by 5-10% (Gray
et al., 2001) depending on data quality, geologic complexity, and the sophistication and

robustness of the algorithm being used to derive them.

The failure of current methods to produce accurate depth images below complex overburdens,
such as below salt, basalt, and karsted or gas-saturated sediments, is the motivation for
the research proposed here. Under these geologic conditions, current velocity estimation
procedures fail to yield the velocity model with the necessary degree of accuracy to place
reflectors at their correct locations. The objective of this research is to develop a new method
to accurately image seismic data that is less dependent on our ability to describe the precise

velocity model.

3 Scattering theory and seismic data processing

The research described here applies inverse scattering theory to the seismic inverse problem.
In scattering theory, the difference in the behavior of an incident wave in two media (referred
to as the reference medium and the actual medium) is described in terms of the difference

between the physical properties of these two media.
The wave equations for the actual and reference wavefields are expressed by
L = AW)S(F, — 7) (3)
Lopo = A(w)d(7g —7%) (4)

where L and L, are the differential operators that describe wave propagation in the actual
and reference media, respectively, and A(w) is the source wavelet. The variables 7, and
7s are the receiver and source position vectors, respectively. The Green’s functions for the

actual medium, GG, and the reference medium, Gy, satisfy

LG = (g —15) (5)
LOGO = 5(7_’;] - 7_’;) (6)
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and so ¥ = A(w)G and ¢y = A(w)Gy. The scattering potential and the scattered wavefield
are defined by

V=L-L (7)
¢SE¢_¢01 (8)

respectively. The equation that relates the actual and reference wavefields to the scattering

potential is the Lippmann-Schwinger equation

o0

P(7g |75 s w) =1/)o(7_"g|ﬁ;w)+/ Go(7y [T 5 W)V (75 ) (17 |7 w)dr” . (9)

—00

This equation can be successively iterated for 1) on the right-hand side resulting in the

forward, or Born, series for the actual wavefield 1)

Y=+ U1+ +... (10)

where

oo
(7|7 w) =

Go(7y [T 5 w)V (75 w)tho (7 |y ; w)dr” (10a)

8

Uo7y |75y w) = Go(7, |7 w)V (75 w) %

\g‘g\

—00

8

/ Gol7 7" )V (7" s )b (7" |y s )" d” (10b)

(e}

The forward series is a solution for ¢ in terms of Gy, 19 and V. The wavefield that propagates
in the actual medium is described in terms of an infinite series of propagations in a chosen
reference medium and interactions with the potential V. Conversely, the inverse series is a
solution for V' in terms of the scattered field on the measurement surface (¢ — ¥g)m = (¥s)m
and Gg. The inverse series can be derived by first writing V' as the sum of constituent

components (Moses, 1956)
V=Vi+V+Vit+...=> V, (11)
n=1

where V, is the portion of V that is n'® order in the measured values of the scattered field,

(¥s)m- Substitution of equation (11) into the forward series (equation 10) and matching
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terms that are equal order in (1)), yields the inverse series:

(GO‘/I'(/)O)m = ('l:bs)m (11&)
(GoVatho)m = —(GoV1GoV1¢ho)m (11b)
(GoV3%0)m = —(GoViGoViGoVitg)m — (GoVaGoVitho)m — (GoViGoVatho)m (11c)

See, for example, Weglein et al. (1981) for references to the development of the inverse series.
To calculate only the first term in the inverse series (i.e., solving equation 11a) and to treat
Vi &= V is to make the inverse Born approximation. However, the inverse series does not
make that assumption. V; is assumed to be the first order approximation to V' and equation
(11a) is the exact equation for that quantity. The inverse Born approximation forms the
basis of all current techniques employed to perform seismic inversion (Clayton and Stolt,
1981), i.e., normal moveout (NMO) stack, amplitude variation with offset (AVO) analysis,
migration (imaging) and migration-inversion (Stolt and Weglein, 1985). Linear approximate
inverse methods are also the basis of medical imaging and other non-destructive evaluation
methods. For the seismic problem, the inverse Born is a reasonable approximation for
precritical primary reflections, for small contrasts in material properties, and for a reference
medium that is close to the actual medium. Second and higher terms in the inverse series can
be viewed as correcting V; towards V' when the series convergences. The tasks of removing
multiples, imaging primaries at their correct depth, and inverting for large changes in Earth

properties reside in the second and higher order terms in the inverse series.

The inverse scattering series (equation 11) is a multi-dimensional direct inversion procedure.
The scattering medium’s properties are directly determined from the recorded data with-
out iterative updating of the reference medium towards the actual medium. Alternative
approaches, e.g., iterative linear inversion, involve updating the reference model so that the
reference wavefield, in some sense, fits the observed data (Tarantola, 1987). The inverse
series is a distinct and separate method from iterative linear inversion. Equation (11) solves
for V1,V,... and hence for V. =V; + V5 + ... directly in terms of (¢5),, and Gy.

Empirical tests of the entire inverse series for a simple acoustic model suggested that it
does not converge for contrasts between actual and reference medium properties greater
than about 11 % (Carvalho, 1992). Based on these tests, it was believed that the radius of
convergence is too small to be of direct practical use when no a-priori information is supplied.
Rather than abandon the inverse series, research has been undertaken to isolate convergent
subseries that perform individual tasks associated with inversion. Inversion of seismic data

can be viewed as performing a sequence of four tasks:
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1. Removal of free-surface multiples;
2. Removal of internal multiples;
3. Positioning reflectors at their correct spacial locations (imaging); and

4. Inverting reflectivity for changes in Earth parameters (target identification).

The inverse series accomplishes these tasks using only measured data and reference medium
properties. Isolating specific subseries that perform these tasks is less ambitious than di-
rectly inverting for Earth properties in one step and so convergence properties may be more
favorable. Also, by carrying out these tasks in sequence, tasks 2—4 benefit from the fact that
previous tasks have already been performed which constitutes valuable a prior:i information.
At each step, the simplest possible reference medium is chosen that allows rapid convergence
of the specific subseries.

This strategy of task separation first produced a multi-dimensional free surface multiple
removal algorithm. Free surface multiples are events that have reflected in the subsurface,
traveled back up, hit the free surface at least once, and traveled back into the Earth. These
events usually have large amplitudes and can obscure reflection events that have traveled
further into the Earth but arrive at the same time as the multiples. The presence of multiples
often precludes accurate estimation of reference medium properties. The second task-specific
subseries to be isolated was the one that predicts and attenuates internal multiple reflections.

Internal multiples are events that have all their downgoing reflections below the free surface.

The multiple removal algorithms derived using the inverse series (Weglein et al., 1997) have
the unique property that they expect the recorded seismic data and the source wavelet as
input, but do not require the propagation velocity or any other subsurface information.
For marine seismic data, both the free surface and internal multiple subseries converge for a
homogeneous acoustic reference medium — water — which makes the algorithms computation-
ally efficient. More importantly, they predict and attenuate multiples generated by actual
Earth model types that are much more complicated than the homogeneous acoustic reference

medium and include elastic, heterogeneous, anisotropic and certain forms of anelastic media.

An important prerequisite of these inverse scattering algorithms is knowledge of the source
wavelet. Methods for estimating the wavelet include direct near-field measurements (Zi-
olkowski, 1991) or an estimation from the recorded data (Weglein and Secrest, 1990; Osen
et al., 1998; Tan, 1999).
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The strategy employed in this research is to first remove the multiples with their task-specific
subseries, and then to use the demultipled data with its source wavelet deconvolved, as input
to the subseries that act on primaries. This represents a staged approach where tasks are
carried out in an order that progresses from relatively easy to more challenging and that
uses the successful completion of earlier tasks to improve the chances of subsequent tasks

being successful.

Recently, Weglein et al. (2000) have proposed using the inverse scattering series to perform
the third and fourth tasks of imaging reflectors in depth and inverting for Earth parameters,
both in terms of reference medium information. The concepts surrounding the task of
imaging using the inverse series have been set out by Weglein et al. (2002). The next
section summarizes how the inverse series performs imaging illustrated using 1-D analytic

and numerical examples.

4 Imaging using the inverse series

4.1 1-D inverse series and task separation

Wayve propagation in a 1-D constant density variable velocity acoustic medium is described

by the equation

(45 +#) wlasw) = 0 (12)

where k(z) = w/c(z), w is the angular frequency, ¢(z) is the velocity, and z is the field point
of the wavefield. Assume that the region that equation (12) describes does not contain the
source. If the reference medium is chosen to be an acoustic wholespace with velocity ¢y, then

the perturbation has the form

V= LO — L
=kt — K
= kia (13)

where a(z) = 1—c2/c*(z) and kg = w/cy. In this context, the inverse problem is to solve for

o where

ozzal-l—ag-l—ag—l—...:Zan (14)
n=1
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The first term in the inverse series (equation 11a) is then

0o eik0|szz’|
iﬁs(zm;w):/ Wkgal(z')iﬁg(z';ko)dz' (15)

where z,, is the measurement depth and the reference wavefield is 1y = e?0(z'=#m)  Solving
for a; (see appendix 6) yields

ar(z) = 4/: Vs (2m;2")dz2’ (16a)

where 2’ = ¢ot/2 and t is the travel time. Time zero (¢ = 0) corresponds to when the
downgoing incident wave passes z,. Equation (16a), which in this 1-D case amounts to
trace integration, is a conventional migration-inversion. The second term in the inverse

series (Equation 11b) can be broken up in to two terms (see appendix 6):

ax(d) =~ 3 (at0) + | 2] [“auianas). (16D)

These two terms in oy correspond to “self-interaction” (af) and “separated” (o [ o) scat-

tering diagrams represented in Fig. 2. All higher order inverse series terms can be broken
up in a similar manner. As has been reported by Weglein et al. (2002), separated diagram
terms with a single upward scattering point contribute to a subseries that images reflectors
at their correct spatial location, and self-interaction terms form the subseries that corrects
the amplitude of a; towards a. The third term in the inverse series (Equation 11c) is broken

up as follows (see appendix 6):

a3(2) =13—6a?(2) + % [j—;al(z)] (/OZ al(z')dz')2
-5 || [ atenas

i) ) [

z
_ 1 /Z /Z iozl(z') iozl(z") a1(2" + 2" — 2)dz"dz’ (16¢)
16 Jo Jo Ldz’ dz"
Consider that the inverse series can be separated into subseries so that

a=0a1+ay+oag+...

=oq + (aIS — al) + (aAO — al) + (aIM — al) +... (17)
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Figure 2: The terms in the inverse series can be interpreted using scattering diagrams. The
circles represent a; and the line represents a propagation in the reference medium. Self-
interaction occurs when two or more scattering points are at the same location. Separated
diagrams refer to scattering between points that are at different locations. Diagrams shown

here perform inverse tasks on primary events.

where

o’ = Imaging subseries

o© = Subseries that inverts amplitudes only

a'™ = Subseries that removes internal multiples
(Note that each of the subseries in

equation (17) have been written to include a;.)

The residual “+...” in equation (17) includes terms that correct the amplitude between
where «a; places reflectors, and where o’ locates them. Coupled tasks such as these will be

the subject of future reports.

The removal of internal multiples begins in the third term in the inverse series (Weglein

et al., 1997) and, in this context, is written
o™ (2) = ay(z

/ / [—al Hdd,,al(Z”)] 01(2" +2' —2)d2"dz" + ...  (18)
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The self-interaction terms that correct amplitude only, and not location, can be grouped and

written
a9(2) =a;1(z) — za2(2) + —a3(2) — ... (19)

The imaging subseries terms do not alter the amplitude of a; but act to correctly locate the
interfaces that are mislocated in ;. The imaging subseries can be considered in two parts:
leading order (LO) and higher order (HO) contributions. Leading order terms are those
that correspond to purely separated scattering diagrams with a single upward scattering
point, whereas the higher order imaging terms consist of separated diagrams that also have

self-interaction components (see Fig. 3) above the deepest scattering point.

o, % %

Leading order imaging Higher order imaging

Figure 3: Examples of leading order and higher order imaging terms from the third term in

the inverse series.

a'¥(z) =0 (z) + a'¥H0 (2) (20)

More will be said about the leading and higher order contributions in the next section with

an analytic example. The leading order contributions to the imaging subseries are

asi0(z) =an() ~ 5 |4 ([ entanaz)
[ ([ ot .
_Z< 1) ) [d;;(z)] ( /0 al(z')dz’)n o)

Equation (21) is the leading order imaging subseries and was originally derived through an

analysis of the first three terms in the inverse series, and the recognition of a general form
that predicts the expected fourth and higher order series coefficients in the case of a simple
analytic example (given in the next section). This analysis is typical of the kind used to derive

inverse series algorithms in the past. The forward series gives us clues as to which terms
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in the inverse series perform a particular task. Then we isolate those terms of the inverse
series and study their behavior for simple analytic examples deliberately chosen so that the
inverse task is clear. For the task of imaging, a logical example to study a two-interface
model where we only know the velocity to the first interface. The first term in the inverse
series will properly locate the shallower interface and mislocate the deeper one. If the series
converges, then the higher order terms will neccesarily act to correct the depth of the deeper
interface. It was this type of analysis that yielded the leading order imaging algorithm,
which was subsequently tested on more complicated analytic and numerical examples with

good results.

In the next two sections, analytic and numerical examples are used to illustrate how this

algorithm works. Notice that equation (21) can be simplified as follows

o510 (2) =§: (ﬁﬂ) [% / ) (z'ko)"dl(ko)e"k”dkg] ( /0 Z ozl(z')dz')n

n=0
Z (—Zk}o / ozl(z')dz ,) dl(kg)eikozdko.

Recognizing that

- 1 o1 ? ' ' " o1 ? ' !

Z — | —tko= | on(2')dz'| =exp | —ikoz | ai(z')dz (22)

—~ n! 2 Jo 2 Jo
for any finite ky and foz aydz’, then we can write a closed form of the leading order imaging
subseries

aISLO(Z) =2i/ &l(ko)eiko(zféfozal(z’)dZI)dkO (23)
™ —0o0

—on (z _ % /0 "o (2')dz ) (24)

Equation (23) has the form of a phase-shift migration, where the shift is equal to 1 2 fo aq(z")dz’".
In the absence of the actual velocity function, this algorithm extracts the neccesary infor-
mation from the amplitudes and depth information in «; through an integral. The closed
form expression will be used to discuss the convergence properties after the analytic and

numerical examples.

4.2 Analytic example

In this section, the ability of the inverse series to perform the task of imaging without

needing to specify the velocity is illustrated using a simple 1-D acoustic example. Consider
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the experiment illustrated in Figure 4 with a source and receiver at the surface z,, = 0.
The reference velocity is chosen to be constant ¢y, whereas the actual Earth velocity is an

unknown function ¢(z).

------------------------------ z
CO
z, <
C1
Zb
CZ

Figure 4: A single layer with velocity ¢; between two homogeneous half-spaces with velocity
co and cy. The depth of the first interface is z, and the depth of the second interface is z.

In accordance with the strategy, all multiples (i.e., free-surface and internal multiples) have
been removed from the input data. Hence, for this example, the data consist of two primary

reflections that arrive at times ¢; and ¢,
D(t) = Ry0(t — t1) + Ry0(t — ty). (25)

R, is the reflection coeflicient for a downgoing wave at the first interface and RQ =T R2T19
where R is the downgoing reflection coeflicient at the second interface and Ty, and Tj, are
the transmission coefficients for a wave propagating down and up, respectively through the

first interface. The equations for the reflection and transmission coefficients are

C1—Cp

R, = 26
! c1+ ¢ ( )
Tgl - 1 - Rl (27)
Ty =1+ R, (28)
Cy — (1
d Ry = . 29
an ? Cc+ 1 (29)

The data D differ from the scattered field ¢, in equation (16a) in that multiples having been
removed from D. Substitution of equation (25) into equation (16a) yields a primaries-only

aq:

a1,(2) = AR H(z — 2,) + ARy H(2 — 2y) (30)
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where zp is the pseudo depth at which the event with travel time ¢, images with velocity cg.

This pseudo depth can be written
2y = 2a + V(2 — 2a) (31)

where v = ¢y/cy. Figure 5 illustrates a; for the case where ¢y < ¢;. The second reflector is
imaged at a depth that is too shallow because the reference velocity is less than the actual
velocity in the layer. Furthermore, the amplitude of a; is different from that of a. These

differences between a; and a are corrected by the higher order terms in the inverse series.

Z,
Z, -
I
1
1
1
1
:
:
Zb/ :- ------------ ---I a"
Z, | .
1
1
1
7 A\

Figure 5: Given the reference velocity cg, the first term in the inverse series, a;, places the
second interface at the incorrect depth zy rather than the actual depth z,. For the case
where ¢y < ¢1, 2z will be shallower than z;. The task of imaging is the process of moving the
interface from zy to z, whereas the last remaining task in the inversion for a must correct

the amplitude of a;. Both of these tasks reside in the higher order terms of the inverse series.

Evaluating the second and higher order terms in the leading order imaging subseries (equa-
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tion 21) leads to

o110 (2) = — 2Ry(z — 2)4Ra8(2 — ) (32)

agfLO (2) =2R?(z — za)24R25I(Z — 2y) (33)
4 A~

o510 (2) = — SRz — ) *4Red" (2 — ) (34)

In this example, the task of imaging is to shift the deeper interface from zy to z,. The
imaging subseries accomplishes this shift through a Taylor series for the difference of two
Heaviside functions expanded about the mislocated interface. This shift is a scaled box B(z)

where
B(z) =H(z — zy) — H(z — z)

2—212 2—213
7(b2'b) 7(b3‘b) (s”(Z—Zbl)— (35)

The ¢ functions and their derivatives relate to those in equations (32)—(34). The coefficients

=(Zb — zb:)5(z — Zbl) — 5,(2 — Zbl) +

of the Taylor series contain the correct depth to the interface, z;. In the inverse series, these
coefficients are constructed order by order in the data D, and are a function of the amplitudes
and travel times (or pseudo depths) down to the reflector being imaged. Combining equations
(26) and (31) provides the coefficients

(zb—zb/) :—2(21,/ —Za) (R1+R%+Ri+) (36)
2
% =2 (2p — za)° (R2+ 2R3+ 3R +...) (37)
(2 — Zb’)3 4 3 (p3 4 5
2 = — (2 — z,)” (R + 3Ry +6RY +...) (38)

3! 3

The contributions to these coeflicients that are leading order in the data are

(2 — 20)"® = — 2 (2y — 24) Ry (39)

(%) =2 (2 — 22)" R} (40)
( B )3 LO 4

(T) =—3 (2 — za)” R} (41)
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These coeflicients correspond to those predicted by the leading order imaging subseries terms
in equations (32)—(34). The higher order imaging subseries terms predict the remaining
coefficients in equations (36)—(38). For |R;| << 1 the leading order contributions will be
more significant than the higher order ones. Careful analysis of the relative significance of

these terms will be the subject of future work.

In the next subsection, numerical examples illustrate how the imaging subseries terms act

to shift the reflectors towards the correct depth for band-limited synthetic input data.

4.3 Numerical Examples

Consider the 1-D model depicted in Fig. 4 with the following parameters: ¢y =2000 m/s,
¢ =2200 m/s, ¢ =2020 m/s, z, =100 m and z,=140m. Choosing a reference velocity
¢op =2000 m/s, and simulating data for a 0 — 125 Hz band-limited source, then the computed

a1 is shown as the dashed red line in Fig. 6.

The depth that the reference velocity images the second reflector at is zp=136m. The band-
limited singular functions of the imaging subseries act to extend the interface from zy to z,.
The cumulative sum of these imaging subseries terms is illustrated in Fig. 7. After summing
five terms, the imaging subseries has converged and the deeper reflector has moved towards

its correct depth z.

Figure 8 illustrates the result of the closed form of the leading order imaging subseries for a
four-layer example. For this example, the leading order contributions to the imaging series

are seen to shift the interfaces (in o) most of the distance towards their actual depths.

5 Convergence properties of the leading order imaging

subseries

The essence of the leading order imaging series for the 1-D acoustic case has been shown to

reduce to the Taylor series for e* (equation 22), i.e.,

T __ = z"
n=0

= (—ikoé /0 ) ozl(z')dz'). (43)
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Figure 6: Five terms in the leading order imaging subseries. The solid black line is the actual
perturbation a and the dashed red line is a3, the first approximation to a. The blue lines
are the leading order imaging subseries terms. The cumulative sum of these imaging terms
is shown in Fig. 7.

ko is the reference wavenumber (w/cg) and «; is a migration-inversion, or linear estimate of

.

This series for e” is known to converge for any finite x, and hence the leading order imaging
subseries will converge as long as both the maximum frequency w, and the “cumulative”

perturbation are both finite. Both of these conditions are realizable in practice.

Concerning the rate of convergence, the series will converge more rapidly for smaller pertur-
bations and for smaller values of w. Hence, the closer the reference medium velocity is to the
actual medium velocity, the faster the series will converge. Since the strategy is to remove
multiples before processing primaries, then velocity analysis can be employed to derive a
velocity model that is proximate to the actual model, thereby making the contrast between
the reference medium and the actual medium as small as possible. Also, lower resolution

data (small w) will image more quickly using this imaging series.

As might be expected, the leading order imaging subseries will not converge to the exact
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Figure 7: Cumulative sum of five terms in the leading order imaging subseries. The solid
black line is the perturbation a and the red line is the first approximation to « or the first
term in the inverse series, a;. The blue line is the cumulative sum of the imaging subseries
terms, e.g. in panel (ii) the sum of two terms in the subseries is shown, and in panel (v) the

sum of five terms in the subseries is displayed.

depth because the higher order terms are not included in the series. Returning to the simple
analytic example in Fig. 4, where the data is expressed by Eq. (25), then Eq. (24) provides

for the leading-order imaged data:
aII,SLO =4RH (z —2Ry(z—a)H(z —a) —a — 2Ry(z — zy)H(z — zb/))
+ AR H (z “2Ri(z — a)H(z —a) — ¥ — 2Ry(z — 2)H (2 — zb/)) (44)
Studying this expression, we find that for |R;| < 1/2
al$10 =4R\H (2 — a) + 4Ry H (2 — b™°) (45)

where the second interface has shifted from &' to the leading order approximation to b,

' —a)

b =a+ ————~.
1 2Ry)

(46)
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Figure 8: The thin black line shows a for a four layer example where ¢y = 1500 m/s,

c; = 1650 m/s, co = 1725 m/s, ¢ = 1575 m/s and ¢4 = 1725 m/s. The thick blue line in
panel (i) is a; generated using the constant velocity ¢ = 1500 m/s for 0-125 Hz band-limited
synthetic data. The thick blue line in panel (ii) shows the closed form result of the leading
order imaging subseries oéSLO. The interfaces have shifted from the incorrect depths towards

their correct ones.

The actual depth b is (from equation 31)

———=(b' —a). (47)

For small R;, b*©

is a good approximation to b. Analysis of more complicated analytic
examples, including the effects of transmission in the overburden, will the subject of future

work.
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6 Discussion and Conclusions

The free surface multiple removal subseries predicts the correct time of all orders of multiple
with just one term. It then takes a series to get the amplitudes of the second and higher
order multiples correct. The internal multiple removal series takes one term to predict the
right time, but a whole series to approzimate the amplitudes of the multiples. Extending
this analogue, we have now isolated an imaging subseries that requires an infinite number
of terms to get the approximate depth. Clearly the subseries become more demanding the

closer we get to reaching the ultimate objectives of direct inversion.

The derivation of the 1-D acoustic leading order imaging subseries algorithm presented in this
paper constitutes a blueprint for deriving the algorithms in multi-D and extending them for
more complicated Earth models. Significant progress has already been made in deriving the
equations for variable velocity and density acoustic Earth models, and for a depth-varying
reference medium (Zhang and Weglein, 2003; Liu and Weglein, 2003).

In conclusion, we have isolated a subseries of the inverse scattering series that images seismic
data in depth in the absence of adequate velocity information. We have found analytically
and numerically that this series’ convergences properties are extremely favorable. The series
images the reflectors directly at depths that are the leading order approximations to their
precise locations. In 1-D, and for a constant density, varible velocity acoustic medium, there

exists a closed form solution to this imaging subseries.
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Appendix A: Solution for a;(z)

The first term in the inverse series for 1-D constant density acoustic media can be written

Wlemi0) = Yolams) + [ Zao<zm|z';w>k§al< Vol lemsw)ds’ (A1)
where
gikolzm—z'|
Goliml's) = S (A-2)
Bo(z" |2 w) = etale"5m) (A-3)
(25 ) — Bo2m; @) = Dm0, (A-4)

Zm is the measurement depth, and kg = w/cy. The reference medium is chosen to be a
homogeneous wholespace with velocity ¢y and the incident wavefield is written as a pseudo
plane wave that passes depth z,, at time ¢ = 0. Making use of the fact that all scattering
points are below the measurement surface (2’ > z,,)

o0 eiko(z’—zm) ] ,
a; (Z I)ezko(z fzm)dzl

Ya(2m;w) = kﬁ/

e 2tko
_ k2€*2zkozm /oo N (z’)e%kozldz' (A_5)
0 2Zk0 oo 1 :
So
[ ezt = 2 g
—© Zko
_2coweiwr where 7 = 2zm/CO (A-6)
w

Performing an inverse Fourier transform, we get

w

-2 m) i _
o) = / ey Bmi @) (r2z/e0) g,

—4 / Da(om: 2 (A-7)

where 2’ = (cot/2 — 2m)-
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Appendix B: Separation of a; terms

The second term in the inverse series can be written

/ Golzgl2"; ko)kZaa (=" Ybo(2 | 2a; o)z =

—00

—/ Go(zg|z";k0)k§a1(z")/ Go(2"|2"; ko) ki (2o (2| 2s; ko)dz'd2" (B-1)

where
gikolzg—2'|
Gol(zg|2"5 ko) = " ik
Po(2|2s; ko) = ekoz'=7)
ko = w/co
So
) o k2 o,
6_2”““2"”/ -0 _ay(2")e? o dy! =
2ikg
— e~ 2tkozm /Z (2530)2041(2”)6%02” /Z eikﬂ|z”_zI|a1(z')eik°zldz 'd2" (B-2)

As might be expected, the location of the measurment surface (z,,) cancels since this infor-

mation is carried in a;. Then cancelling some ¢’s and kq’s yields

oo

2 o0

: [
= a2(zl)e2zk0z dZ,I
Zkg — oo

—0o0

041(2")6ik°zu / ei’“’"z”*zI|Oz1(Z')6ik°Z "dz'dz" (B-3)
and considering the absolute value in the exponential reveals a symmetry

2 o n ; 1
7@2( 2k0) _ / o II zkgz / H 1ko(z —z )al(z I)ezkoz dz ,dZ”
(%) _

%)
n _ . 1
+ Qi II zkoz / H zko(z z )al (Z I)ezkoz dz 'dz"

— 2/ 041( // 1,k(]2”/ H z — ) iko(z'—2' )al(zl)eikOZIdZ,dZ“

a2(—2ko) :/ ozl(z")/ ikoH (2" — 2")on(2")e*™ 0 dz'dz" (B-4)
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Integrating by parts

u= / a1(Z"H(z' — 2"y (2")d2"

o0

. y 1
dv = ikoe?*0* ' dz’

e [ (w P B - ) )

d !
=a? +/ Z—z)ia( " | dz"
i oo dz'
2ikgz !
V=
Therefore,
o2ikoz ' 7
ao(—2ky) = [ a1(ZH(z' — 2"y (2")d2" 5 ]
. 1 (/ a2(zl)e2ikgz’dz/)
2 1

_%< / / an(Z"VH (2" — 2)d2" d‘j (al(z'))e%k“’dz') (B-5)

The first term is taken to be zero under the assumption that the scattering potential is

confined to some finite region z,, < z’ < co. Then, performing an inverse Fourier transform
on both sides yields

an(z) = —% <a§(z) + [%al(z)] /0 i al(z')dz') (B-6)
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Appendix C: Separation of a3 terms

The third term in the inverse series can be written

/ Golzg, 2's ko) k2aus (2 Yo (2| 2e; ko)dz' =

—00
[o o]

—/ Go(zg,z”;ko)kgal(z")/ Go(2", 2" ko) ki ag (2 )abo(2"| 23 ko )d2z ' d2”

—00 —0o0

- / Gol2, 2" ko) k3 () / Go(2", 2" ko) K30 (= o= | 2 ko) dz'd2"

—0o0 —00

—/ Go(z,z"';ko)kgal(z'”)/ Go(2", 2" ko)k2ay(2")

X / Go(2", 2" ko) k2o (2" )abo(2"| 2s; ko )dz'd2" d2" (C-1)

which on substitution of G and 9y (Egs. A-2 and A-3) reduces to

dg(—2k0) = jl + fg + jg (0-2)
where

~ k o0 . n . 7] ' : [

Il(—2k0) — 270 al(zll)ezkoz / ezk0|z —z |a2(zl)ezkoz dz'dz"

~ k o0 . " . " I} . [

12(—2k0) _ Z70 a2(zll)ezkoz / ezk0|z —z |a1(zl)ezkoz dz'dz"

T k(2) Oo ny ikoz" Oo ikg |2 —2"| "

I3(—2ky) = — aq(2")e™ e ay(2")

o0
. n__ ; !
e’tk0|z z |O{1 (z I)ezkoz dz 'dz"dz'"

X
— =

oo

The first term can be expanded

I = I+ s
where
jnd .k & & . 17
Ill(—2k;0) = 270/ al(zll)/ H(z" - z/)a2(zl)e2zkoz dz'dz"
~ ik oo oo ) ,
112(—2k0) = 270/ al(z")/ H(zl . zu)a2(z/)e2zkoz dz'dz"
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A symmetry exists between I; and I, since
I = Iy + I
where
~ k : 7
Iy (—2kg) = %o / 2") / H(Z" — 2"y (2")e* " dz'd2"
7 ZkO // 2ikoz' 3,1 3. 11
Iy (—2kg) = H (z" = 2"y (z")e*™* dz'dz
we see that
Iy = Iy
Iy = I
o)
f2 = fl. (C-3)
Integrating I1; by parts provides
u :al(z")/ H(Z" — z")as(z")dz’
gy =R
2
du d
=l + [ anle)ds | ()
B e2ikoz”
YTy
1 o0 1" *
I11(—2ky) = [Zal(z")/ H(Z" — z")ay(z")dz ' e?*o* }
1 * n 2ikoz n
~ 1 ay(2")as(2") d
1 = & ! ! d " 2ikoz" 7. 1
~1 as(z")dz 17 (aa(2")) d (C-4)
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Similarly, integrating I, by parts yields

u=as(z") / H(z' — 2")ay(2")dz"

" :ikoe%koz:dzl
2
du z! d
da’ =as(z")a1(z") -l—/_oooz (z")d2" [@ (rz(2 ))}
e2ikoz’
v =
4
~ 1 [e ] . , foe)
I15(—2ko) = [2042(/)/ H(z' — 2")au(2")d2" e**o* ]
. _

— —/ oz (2" (z")e?o= dz'

1 / / [d‘j,(aQ(z'))] eioz' ! (C-5)

Since the scattering potential is confined to a finite region, the boundary terms in Egs. (C-4)
and (C-5) are equal to zero. Then by Eq. (C-3),

L+1,=2I =2 (-fn + flz)

1 o0
— _ = / al(zn)a2(zn) 2ikoz”dzll

d - "
__/ / 062 dz [w (061(2”)):| e2zkoz dz”

——/ az(2")a(z")e? o= dz'

-5 / / [ ‘ (a2(z'))] ¢z !

Performing an inverse Fourier transform I ( —2kq ) €202’ d(—2k¢) we have

=%
Lz") + L(z') = - %al( - %/
-3 [ o

_ §a2( _
/ ) [dd (or(=")]

y / (e [}( (2 '))] (C-6)

= —ai(z)

l\le—l
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Recalling the expression for ay(z’)

!

an(e) = 5o~ 5 [ @i | L) (1)

2 2/ o

then to write Eq. C-6 in terms of only a; we need to integrate aa(z'):

" n

z 1 z
/ az(z")dz' = — —/ ai(z")dz'

2 1
1 < & " " d ! !
~3 ay(2")dz @al(z )| dz (C-8)

The second integral in Eq. (C-8) can be rewritten

1 [eS) [e9)
_5/ H(z" . ZI) / H(ZI - z///)al(zm)dzm [%al(z')] dz' (C-9)
—o0 —00 Z

which can be integrated by parts

U :H(Z" . ZI)/ H(ZI . Z,I,)al(zlll)dzl,l

~1d , ,
dv = — 53,7 (a1(2')) dz
d o0
aul _ (zll . zl)/ 5(Z' . z"’)ozl(z"')dz'”

_5(zu . ZI) H(Zl . Z”I)Ozl(zm)dzm
ZH(Z”— Zl)al(zl) _5(211_ Zl)/ al(Z///)dZ///
1
v=— ial(z')

which leads to

oo

o0 1 4
/ udv = —§a1(z')H(z"—z')/ al(z"')dz"']

z!=—00

- / 5(211 - z')al(z')/ ozl(z'")dz'"dz'
/ af(z')dz'—%ozl(z")/ ai(2")dz". (C-10)
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Therefore, the integral of ay(z’) (Eq.C-8) becomes

" "

/ az(z')dz'z—%al(z") / an(2")d2". (C-11)

oo —00

It is interesting to see that the terms that are the integrals of a; squared cancel. To simplify
Eq. (C-6), we also need to differentiate ay(z’):

] =5

DO
2

) enl)

T (2")de" d2,2a1(z')
[t [ )

N

B

|
NI NIW NI~ N~ N
IS8
N
/N
8
o
N
|
N\
—
Q
=
~~~
N\
—
IS8
N\
N—
| —|
oy
N
Q
=
~~~
N
—
—_

z d2
/ ap(2")dz" [dz I2a1(z')} : (C-12)
Therefore, substituting Egs. (C-11) and (C-12) into Eq. (C-6), we have

1 3

L")+ h(z) = a3(z") + tan(z") / T a(2)de" [ial(z')}

2 2

1 2
—1—1(11(2')/

—00

+Zal(z') /; ;1 (2")d2" [501(2")}

L(2) + o(2) =—a?(2) + Sau (2) / " (2')dz! -ial(z)]

2 2 oo | dz

+% ( /_ oo an(z)dz ')2 [(j—;al(z)] (C-13)

Now consider the third term in Eq. (C-2), namely
Iy = I3y + Iy + I35+ I3
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where

7 k2 * /// 2zkoz”’ m n
I3 (—2kg) = H ay(2")

/ H(Z" — 2")ai(z ')dz'dz”dz”’ (C-14)
I5o(—2kg) = / 2" / H(2" — 2" (2")exHo="
/ H(2" - 2")au(2")dz"dz"dz" (C-15)
j33( 2ko) = / 2" / H(Z" — 2"y (2")
/ H(z ay(z")e**% dz'dz" d2" (C-16)
Is4(—2ko) = 1 / : 2" etho" / H(Z" — 2" (2")e 20"
x / T H( - an(2!)Ph s de " (C-17)

Equation (C-17) is equivalent to that for “Ws33” (Eq. 5.8 in Matson (1997)), except for the
substitution V; = kZa;. The Heaviside functions in this equation ensure that 2" > 2" and
z' > 2" so that the first and third scattering points are deeper than the second scattering
point; hence the “W” diagram interpretation of the internal multiple attenuation algorithm.
We will return to this equation a little later on.

Switching variables reveals that I33 = Is;. Notice that k2 = #’“0)2 and performing an

inverse Fourier transform over the conjugate variable —2kq yields

I3 =213 + I3z + I34

1 d? [
== ST (al(z"')/ / H(Z" — 2" a1 (2")H(2" — z')ozl(z')dz'dz")
z —o0 J —oc0
1 & m R " " " m / ! 1 gon
ST aq(2") H(z — 2N a1 (2")H(Z" — 2")a1(2")dz"dz

1 &
— Edz//m ( /// / / H m ( //)

H(z' — 2")au(z )e2ik0z’672ik0z”dz/dzll)
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N—r
8

")al(z”)H(z" _ z')al(z')dz'dz”)

X
w
Sl
N
|
N

1 o0
. gdd", (041(2’”,)/ al(z"')H(z”' _ z')al(z I)dZ I)
z —0o0
1 ZIII Z” d2
- _ §/ ozl(z”)/ ai(z")dz'dz" [dzmozl(z"')}
1 Z”I d
— g [ ana | )]
1 Z”I d 1
- el [ e | ] - Laten
1 ZIII Z” d2
- §/ ozl(z”)/ ai(z')dz"'dz" [d ”,2041(2”')}
3 Z”I d 1
“ gl [ e | Gaen] - et

The nested integral in the first expression can be simplified as follows

!

u=/ a(2")dz"

dv =a;(z")
du =a;(z")dz’

=% (/; al(z")dz"> (C-19)

So equation (C-18) becomes
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(C-20)

and

(C-21

Finally, consider Is4 (Eq. C-17)

- 1 o o0
[34(—2k0) = _ﬁ\/ (2ik0)2a1(z”’)/ H(Z”I . Z//)al(z//)

o0
: n___n 1
% / H(ZI . z//)al(z/)emkg(z ' +z )dZ,dZ”dZ”I
—00
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n

and substitute u = (2" — 2" + z') to eliminate 2"

I34(—2ko) = ~16 /. (2ik0)2a1(z"’) / Hu—z2"a (2" + 2" —u)
/ H III ( ) 2ik0udzl(_du)dzlll
Notice that dz” = —du and the limits of integration of z” and u are opposite. Switching the

direction of the u integral introduces an overall minus sign. Performing an inverse Fourier

transform yields

1

16
X / a1(Z"VH(u — 2" a1 (2" + 2" — w)H(u — 2")a;(2")dz 'dz'")

I34(U) = —

‘2w
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1 8 o0 o0
_ _ ﬁ% / / al(z"')
) m / )H(u—z"’)al(z')dz'dz"')

~~~
N
|
Y N N
N—r
Q
~~~
N
_|_
N
|
IS

X
—

= ool
=S

| P
N

=

S

~~

N\

_|_

N

S

N—r

(&%)

—

S

N\

J

—

N—r

=

N

&

N\

S

|
&=
S|
N
\\
3 8 S
\\
] 8

o)

N

= 11_682 (/ 2(Z"H(u — 2")a (u)dz"')
U —0o0
10 e
ST (/ a3(zVH(u — 2")oq(u)dz )
Lﬁ /oo % ///
16 Ou 00 J oo
X H(u— z')% (a1(2"+ 2" —u)) H(u — z"')al(z')dz'dz"')

The first two expressions are equal and, when the differentiation is carried out, the last
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expression creates three integrals, two of which are also equal:

falu) = gt — g [ et | antw)

8 8/
1 o o0
. / H(u— 2")ar(z")6(u — 2 )au (")
X ial (" + 2" —u)| dz'dz"
ou
1 o o0
- / H(u— 2")a(2")6(u — 2" (")
X goq(z"’ +z'—u)| dz'd2"
ou

1 [+ e 52
N E /—oo /—oo “ (z”’)al(z I) [wal(zm + — U):| dz'dz""

Then summing the two integrals that are equal in Eq. (C-22) we get

2 % <_% / / H(u—2")an(2")0(u — 2")au(2)
| Lo (2 + 2" — )| dz'de"
ou

1 * d
:gal(u) /_oo H(u— 2")ay(2") [wal(z"')} dz"

=/ pdq

p :al(zIII)H(u _ Z”,)

1 d
dqg ==y (u) [dz’”al(zm):|

where

8

dzlll dZI”

b _ [ d al(z”’)} H(u— ") — oy (2")o(u — 2")

1
q =§041(U)0¢1(2'")

(C-22)

(C-23)

Notice that the change in sign in Eq. (C-23) reflects the fact that the derivative with respect

to u was carried out before the delta function acted on it. Since a; was a function of —u,
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then a minus sign was introduced. Then

oo 1 o0
/ pdq =0 — gal(u)/ H(u - z"')al(z”') [djmal(zm)} dz"

1 oo
+ gal(u) / 0[%(2”/)(5(’[1, o lel)dzlll

o0 1
= —/ pdg+ ga?(U)

1
=EO€(U)

Substituting Eq. (C-24) into Eq. (C-22) yields

) = ggedtw) — § [ @t | o]

1 [+ e 52
N E /—oo /—oo “ (z”’)al(z I) [wal(zm + — U):| dz'dz"

The last term in this equation can be integrated by parts:
1 * n n * n
I343(u) = 16 H(u— 2")au(2") pdg dz
where
p=H(u—2z"ai(z')

2

dq = [%al(z'" +2z'— u)} dz'

N d / 1 !
o = H(u—z )Eal(z ) —d0(u—z")ai(z")

= (L)

The boundary values are zero:

oo

T B O e I

z'=—00
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so Eq. (C-26) becomes

.[343(U) = 0

1 * n " “ d ! a " ! ! mn
16 H(u— 2")oq(2") @(al(z ) aal(z +z2' —wu)dz'| dz
+% H(u—2")ay(z") [/ d(u—z2")au (2’ )88u 1"+ 2" —u)dz '] dz"
_ i “ i ' « _m m 0 m ma
= 16 — (a1(z )) H(u 2"Mai(z )8u 12" + 2" —u)d2"dz

_ _041 / III d —a a1 (z ///)d m
S % : di / H(u— 2")ay (") 88 (2" + 2" — w)d2"dz

u
- 2 al(w) (c28)

As before, the derivative with respect to u was carried out before the integration with the
delta function, which introduced the change in sign. Now performing the z"” integration (Eq.

C-28) by parts in the same fashion gives
a o0
/ H III ( lll)a_al(zlll +Z’ _ u)dzlll — / p dq
U —0oQ
where
p — H(u . Z”,)al(zlll)
0
dg = %al(z"’ +z' —u)dz"
dp m m m m
ke H(u-—z )Wal(z ) —6(u—2")ay(2")
g=—a1(z2" +z' —u) (C-29)

So

/ ) p dg =0+ [ / 1; dj"' (a1(2")) a1 (2" + 2" — ) dz”']
_ [/oo §(u— 2")ay(2")ou (2" + 2" — U)dz”':|
— [/_1 dj’” Jai(2")) a1 (2" + 2" — u)dz"'] — a(wa(z))
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and inserting this expression into Eq. (C-28) gives

1 [ d “od
Iyg3 = — — _(al(z/)) [/ dzmal(zm) (ZIII+Z )dz"' dz'

16 J_ dz'
1 “ d 1
+ ﬁm(u) | e + el
/ / d : 041 dd”, (al(z"')) (Z”l + 5! )dz'”dz'
- 3—2a1(u) + 3—2a1(u) (C-30)

which, when substituted into Eq. (C-25), gives the last piece of the GoV1GoV1Go Vit term

(o) = - ggad(e) — § [ b’ | anta)]

1 2 2 d d
16 / 2o (@(#)) 55 (n(2) e (2" + 2" = 2)de"dz” (C-31)

Finally, summing Egs. (C-13), (C-20), (C-21) and (C-31), yields

a3(Z) :Il(Z) + 12(2) + I3(Z) = 2]1 + I31 + I32 + I33 + I34
=21 + 2131 + I35 + I34
=(Eq. C-13) + (Eq. C-20) + (Eq. C-21) + (Eq. C-31)
1 3

zial(z)ﬁ-gal(z) / " ()’ [ial(z)]

(L o) o
(L) lf]

3 g [
—gal(z)/ ai(z')dz’ _Eal

—0o0

7 ey

OOIr—l

o 1 3 1 * 2/ i
16a1(z) S /_oo aj(z")dz [dzal(z)
1 z z d ! d n n ! n !
16 P (a1(2")) P (a1(2") a1 (2" + 2" — 2)dz"dz (C-32)
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There are four a3(z') terms, three terms that are o [ o [a}] and three terms that are
(J @1)?[cf]. Summing up, Eq. (C-32) reduces to

oo

([ e [ L)

03(z) =203(z) + Jon (2 / " an(2')dz! [ial(z)]

1 2 z d d
S I I P R N )

The leading order (LO) inverse series imaging term in ajz is

alS50(2) =% ( / Oo on(2)dz ')2 [j—;al(z)]

which produce the expected coefficients for a known analytic data example. ozgs LO is con-

tributed to by all three componenents of the third term of the inverse series, i.e., GoVaGo V19,
GoV1GoVahy and GoV1GoViGoVito.
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Target identification using the inverse scattering series;
inversion of large-contrast, variable velocity and density
acoustic media

Haiyan Zhang and Arthur B. Weglein

University of Houston

Abstract

A new task specific multiparameter estimation subseries of the inverse scattering
series is derived and tested for a velocity and density varying 1D earth. Tests are
encouraging and indicate that one term beyond linear provides significant improvement

beyond standard practice.

1 Introduction

The original inverse series research aimed at separating imaging and inversion tasks on
primaries (Weglein et al., 2002) was developed for a 1D acoustic constant density medium and
a plane wave at normal incidence. In this work we move a step closer to seismic exploration
relevance by extending that earlier work to variations in both velocity and density and
allowing for point sources and receivers over a 1-D earth. Tests with analytic data indicate
significant added value, beyond linear estimates, in terms of both the proximity to actual

value and the increased range of angles over which the improved estimates are useful.

This work is another step towards using the task specific parameter estimation inverse series

for identifying large contrast targets with either specular or diffractive wave responses.

2 Inverse scattering and seismic processing objectives

Consider the basic wave equations

LG =6 (1)

LoGo =0 (2)

where L and Lg are respectively the differential operators that describe wave propagation in

the actual and reference medium, and G and Gy are the corresponding Green’s functions.
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We define the perturbation V = Ly — L (Weglein et al., 2002). The Lippmann-Schwinger

equation
G =Go+ GVGE (3)

relates G, Go and V (see, e.g., Taylor, 1972). Iterating this equation back into itself generates

the Born series
G=Gy+G)\VGy+ GVGyVGy+--- . (4)
Then the scattered field ¥, = G — G can be written as

b = GoVGo+ GoVGoVGo+---
= (@)1 + (Po)a+ - ()

where (1), is the portion of 1, that is n* order in V. The measured values of 9, are the
data, D, where

D = (¥s)ms = (¥s)on the measurement sur face:
Expanding V as a series in orders of D (Weglein et al. 1997)
V=Vi+Va+-- (6)
then substituting Eq.(6) into Eq.(5) and evaluating Eq.(5) on the measurement surface yields
D =[Go(Vi+ Vot )Golms + [Go(Vi+Vat---)Go(Vi+ Vot )Golms+---. (7)

Setting terms of equal order in the data equal, leads to the equations that determine V;, V5,
... from D and G,.

D = [GO‘/IGO]ms (8)

0= [GO%GO]ms + [GOV'lGOVleO]ms (9)
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3 Derivation of a3, (1, s and (3,

To find V is to perform ‘inversion’, i.e., medium identification. If we associate tasks with
inversion: (1) Removal of free-surface multiples (2) Removal of internal multiples (3) Image
primaries to correct spatial locations and finally (4) Identify medium properties, then these

tasks are directly achievable in terms of data, D, and reference information only.

To illustrate task (4), we will consider a 1-D acoustic two-parameter earth model (e.g. bulk
modulus and density or velocity and density). Beginning with the 3-D acoustic wave equa-

tions in the actual and reference medium (Weglein et al. 1997, Clayton and Stolt, 1981)

CU2 1 ] 1
(K(r) +V-HV)G(r,r;w)=5(r—r) (10)
UJ2 1 1 1
(Ko(r) +V. po(r)V)Gg(r,r;w) =d(r—r) (11)
Then the perturbation is
wia 3
V=Lj—L=—+V-2V 12
° Ky Po (12)
Where a = 1 — %, =1- %, K is P-bulk modulus, ¢ is P-wave velocity and K, ¢ and

density p have the relation K = c?p.

Now we assume both py and ¢y are constants, then Eq.(11) becomes

2
(5 + V3)Go(x, 7'3) = pod(r — 1) (13)
0

and for the 1-D case, the perturbation V' has the following form

wia(z) 1 2 10 0
282 =g 2 14
K, poﬂ(z)8x2 t o 0s (2)5- (14)

V(z, V)=

Similarly, we expand V' (z,V), a(z) and (3(z) respectively as

V(2,V) =Vi(2, V) + Va(2, V) + -+, (15)
a(z) =a1(z) +az(z) + -+, (16)
B(2) = pi(2) + Ba(2) +--- . (17)
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Then we have

2 1 0? 10 0

Wi V) = S i (a) o i) (18)
2 o? 10 0

Ve, V) = o 4y a) o Bae) (19)

Substitute Eq.(18) into Eq.(8) and we can get the linear solution for a;(z) and (1(z) as a
function of data D

Po —iqg(zs+zg
D(qgaeazgazs)z_ze 9o(7s )[

—(—2g) + (1~ tan’ 6)5i(—2¢,)]  (20)

where the subscripts s and g denote source and receiver respectively, and g, 8 and k = w/cg

are shown in Fig.1, and they have the following relations (Matson, 1997)

k

g

qg Co> Pos K
¢, P> K,

zv

Figure 1: The relation between 6,k and g,.

gg = qs = kcos6

k, =k, = ksin®

Similarly, substitute Eq.(19) into Eq.(9), and we can get the solution for as(z) and (2(z) as
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a function of a;(z) and £;(z)

1
(6%)
cos2 6

(2) + (1 — tan®0)3,(2)

1 2
" 2cost 0041 (2)
1
—a(E)B(:)

!
!

(§ + tan® 6 + 1tan4 6)3%(2)

mal(z)/o dz aq(z

]. 4 7 2 !

E(tan 0—1)51(2) | dzayi(z)
0

2 2
1 ,
)
1 7 Z 7 1
mal(z)/o dz (1(z)
1 4 ' z 1 7
— 0—-1 d 21
~(tan* 0 — 1)54(2) / 2 6u(2) (21)

For a single-interface example, we can see that only the first three terms on the right hand

side contribute to amplitude, the other four terms are the “image moving” terms. As shown

in Eq.(20) and Eq.(21), for two different angles of 6, we can determine a4, 5; and then as,

Pa-

4 Numerical test

Consider a one-interface example (shown as Fig.2), the interface surface is at z = a, and

suppose z; = zg = 0.

P X

Cos Po> K
¢, P, K,

Figure 2: One interface example.
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In this case, the reflection coeflicient has the following form (Keys, 1989)

(p1/po)(c1/co)V/1 —sin?@ — /1 — (c3/c2)sin? 0

R(6) = . (22)
(p1/p0)(c1/co)V/1 —sin? @ + /1 — (c3/c2) sin? 6
Using perfect data (Clayton and Stolt, 1981)
D(q..6 g e
= 2
(@) = () G (23)
and substituting Eq.(23) into Eq.(20), we get
1
p— 0041(z) + (1 — tan®?6)B1(2) = 4R(0)H(z — a). (24)
Then, choosing two different angles to solve for a; and (;
R(6,) cos? 6; — R(6s) cos® O,
=4 2
$1(61,62) cos 26; — cos 260, (25)
_ R(6,) — R(62)
(11(91, 02) = 161(91, 92) + 4ta,n2 01 — tan2 92. (26)
Similarly, we can get as and s
g02(2) + (11— tan? 0)B(2) = — 5———ad(a) + — o ()Ba2)
cos? 972V 2 2B T T G eost NV T ogt g VI
1
- (g + tan? 6+ _ tan® 6)63(2) (27)
1, 1 1 1,
Ba2(61,602) = {[—5(11(91,92) + 041(91,92)&(91,92)][(:082 0. cos? 02] - §ﬂ1(91,92)
sin* § sin* 6
[cos® @) — cos® B, + o 011 -~ 6;]}/{cos 26, — cos 26y} (28)
1, 1 1
az(01,02) = B2(61,62) + {[—5041(91, b2) + 041(91,92)ﬂ1(91,92)][cos4 8. cosd 02]
1 1
—B%(8y,6,)[tan? §; — tan® G, + 2 tan?@; — 2 tan? 6]}/ {tan? 4, — tan®6,} (29)

Now, for a specific model, py = 1.0g/cm?, p; = 1.1g/cm?, ¢y = 1500m/s, ¢; = 1700m/s,
let’s see how the nonlinear terms contribute to the changes in the P-wave bulk modulus,

density, impedance and velocity.
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In the figures, we give the results corresponding to different pairs of 6; and 6,. From Fig.3,
we can see that when we add as to aj, the result is much closer to the exact value of a.
Furthermore, the result is better behaved over a larger range of precritical angles; the values

of a1 + as change slowly.

Similarly, from Fig.4, we can also see the results of 3; + (3 are much better than those of
B1. And also the results of &L (see Fig.5 ) and ﬁ (see Fig.6). Especially, we noticed that
values of ( ¢); are always greater than zero, that is, the sign of (Ac); is positive, which is

same as that of the exact value Ac. We will state about it in the next section.

5 Special parameters for linear inversion

In general, linear inversion will produce errors in earth property prediction since the rela-

tionship between data and earth property changes is nonlinear.
Manifestation:

When A(property) = 0, linear prediction of A(property) # 0

= When A(property) > 0, linear prediction of A(property) can be < 0.

There is a special parameter for linear inversion of acoustic media, that never suffers the

latter problem.

From Eq.(22) we can see when ¢y = ¢, the reflection coeflicient is independent of 6, then

from the linear Eq.(26), we have

<§) = %(al — 161) = 0 ’LUhe'n/ AC = O
1

C

i.e., when Ac = 0, (Ac); = 0. This generalizes to when Ac > 0, then (Ac); > 0, or when
Ac < 0, then (Ac); < 0, as well. Which can be shown as below:

The reflection coeflicient is

(p1/po)(c1/co) V1 —sin?8 — /1 — (c}/c2)sin? 6

(p1/p0)(c1/co)V/1 —sin? @ + /1 — (c3/c3) sin 79

R(0) =

Let

A(8) = (p1/po)(c1/co) V1 — sin? 6,

202



Inverse series target identification

MOSRPO02

\/ 1—(c3/c%)sin?6.
Then

R(6,) — R(6;) = 2 A(61)B(62) — B(61)A(62)

[A(61) + B(61)] [A(62) + B(6,)]

where the denominator is greater than zero. The numerator is

2[A(61)B(62) — B(61)A(62)] =2(p1/po)(c1/co) [\/ 1 —sin 01\/1 — (3 /c?) sin® 5 —

V1 — sin® 02\/1— (c2/c) sin 01}.

Then we let
C = /1 — sin? 91\/1— (c3/c?)sin? 6y > 0
D = /1 — sin® 02\/1— (c3/c?)sin?6; > 0
Then

2
C?*-D*= (Z; - 1) (sin®0; — sin’6,)
0
Then, as ¢; > ¢g and 6; > 6, , we have
C% . 9 .9
— — 1) (sin®f; — sin“6y) > 0
Then
R(Gl) — R(02) >0
and as ¢; < ¢g and 6; > 60, , we have
C% . 9 . 9
— — 1) (sin“6; — sin"0y) <0
Then
R(Gl) — R(02) <0

For the single interface example, we have

R(61) — R(62)
tan2§; — tan? 6,

a1(01,02) — B1(61,02) = 4
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So as ¢; > cg, a1(01,05) — B1(61,602) > 0, then (Ac); > 0; similarly, as ¢; < cg, @1(61,62) —
B1(61,62) < 0, then (Ac); < 0.

We are currently generalizing these equations to an elastic Earth model. The strategy is to
combine information from special linear parameters with added value from inversion beyond
linear. We also note that when the velocity doesn’t change across an interface, the Born
inverse doesn’t change and looking at the integrand of “image moving” terms (see Eq.(21))

a; — (31, the image doesn’t move.

The imaging and inversion subseries automatically accommodate an adequate velocity model.
They determine the degree of adequacy of the velocity model from all the data, and act

accordingly.

6 Conclusion

Including terms beyond linear in earth property identification subseries provides added value.
We are encouraged by these results. The next step is to study the elastic case using three

parameters (see, e.g., Boyse, 1986 and Boyse and Keller, 1986).
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Figure 3: oy (top) and a3 + g (bottom).
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Figure 4: (; (top) and B; + (2 (bottom).
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Al
T(P-wave impedance)
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Figure 5: Linear approximation to change in impedance (4), = (a1 + 1) (top). Sum
of linear and first non-linear terms (5%), + (5%), = (55, + 3 [3(ca — B1)* + (02 + B2))]
(bottom).
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Ac (P-wave velocity)
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Figure 6: Linear approximation to change in velocity (%)1 = %(al — (1) (top). Sum of
linear and first non-linear terms (4¢), + (4%), = (&9), + 3 [;(c1 + 51)* — B + (a2 — B2))]
(bottom).
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Initial analysis of the inverse scattering series for variable
background

Fang Liu, Haiyan Zhang, Arthur Weglein
University of Houston

Abstract

We present a derivation of the first two terms of the inverse scattering series that
accommodate a smoothly varying background velocity. A WKBJ Green’s function is
assumed for reference propagation. Shaw et al. (2003) separate the second term in the
series, using a constant reference medium, into contributions appropriate for the tasks of
imaging and parameter estimation. We provide the generalization of that task separation
for a variable background, co(z).

1 Introduction

The current imaging and inversion sub-series derived from the inverse scattering series
assume a constant background model (e.g. Shaw et al. 2003., H. Zhang and Weglein
2003). These sub-series demonstrate robust convergence when both the magnitude and
duration of the difference between actual and reference are large. However, the next
important practical issue concerns the rate of convergence. Early analysis and testing
indicate that the rate of convergence will improve when the difference between actual
and reference media is reduced.

Advances in multiple removal technology (See e.g. Weglein 1999) allow improved
estimates of the subsurface velocity model. These two facts encourage the development
of imaging and inversion sub-series that can accommodate a variable velocity model.

This paper represents the first effort in that direction. It provides the first two terms in the
inverse series for a one parameter (variable velocity, constant density) acoustic medium.
The reference medium cy(z) is assumed to be smooth, thereby allowing a WKBJ
waveform to be appropriate. The separation of the second term in the co(z) background
inverse series into reflector imaging at depth is the near-term objective.

While the mathematical derivation of the second term is laborious and non-trivial the
result is remarkably compact and can easily be shown to reduce to the earlier constant
background case.

2 Motivation for using a closer approximation to the actual medium

With the discovery of the leading order imaging sub-series, which has the nice property
of converging for any contrast, and the inversion sub-series, which is the only candidate



for a direct inversion for multi-dimensional, corrugated, high-contrast Earth, a huge
amount of additional computation is demanded. Only one term in the imaging or
inversion sub-series may take CPU cycles equivalent to that of traditional migration. A
typical 3D time migration may need several months to be executed on a super computer
like SP2 or a PC cluster. That’s why we need to accelerate the series summation by
incorporating the roughly inadequate estimated velocity to form an adequate image.

How can we accelerate the series computation? One factor is the choice of the reference
medium. The rate of convergence is much better if the reference medium is closer to the
actual medium.

Constant background inversion assumes no a priori information is available. This nice
property also has its negative side: the rate of convergence is relatively slow. After free-
surface and internal multiples are removed, a more accurate velocity trend is available.
We can incorporate this a priori information into the inverse scattering series to speed up
the series calculation.

The use of cy(z) is motivated by the fact that, on a global scale, the structure of the Earth
is dominated by the overwhelming influence of gravity. The structure of the earth can be
much better approximated by a vertically varying but horizontally uniform model than a
uniform velocity field filling the whole space. Our cy(z) reference model offers a much
closer approximation to the actual earth.

3 Equations need to be solved:

Following Weglein et al. (1997), we will calculate the perturbation terms Vi, V», ... using
the inverse series:

D =Gy G,
0=GV,G, + GV G NG,
0=G VG, + G VG V,G, + G V,GoV\ G, + GV GV GV, G,

(1)

where D is the data obtained on the measurement surface, and all the expressions above
are supposed to be evaluated on the measurement surface. Gy is the Green’s function of
the reference medium, which cannot be easily obtained if the reference velocity is not
constant or piecewise constant. In the next section, we explain the complexity of
obtaining an analytical Green’s function for an arbitrary medium.

4 WKBJ Green’s function:



Let’s consider the simplest case, when both the earth and the experiment are 1D. Then
the Green’s function satisfies the following inhomogeneous second-order differential
equation (expressed in the frequency domain).

azG(Z°fS"")+( G J G(z.2,,0)=8(z - z,) @
0z C(Z)

where z is the coordinate of the source. In order to solve the equation above, we have to
consider its corresponding homogeneous equation:

°G(z,z,,0) +( @
c

0z* z

)j G(z,z,,0)=0 (3)

It can be written in a more general form:

%52)+f(2)P(2)= 0 (4)

The seemingly very simple equation is of great importance in both mathematics and
physics because any linear homogeneous second-order equation may be put in this form.
Finding a precise solution to the problem of Green’s function for variable background is
mathematically equivalent to solving the problem above analytically. Since this problem
had already been proved analytically unsolvable for arbitrary f(z), our precise Green’s
function is in general impossible to find.

In quantum mechanics, WKBJ methods had been developed by Wentzel, Kramers,

Brillouin, Jeffreys to approximate the equation above. The WKBJ solutions to the
homogeneous equation (4) (Methews and Walker, equation 1-90, page 28) are:

P(z)= ﬁ{cl exp(ii mdx] +c, exp[— ij Wa’x}} (5)

where c; and c; are arbitrary constants. Interested readers may refer to Yedlin’s paper for
constructing WKBJ Green’s function in two dimensions.

Note that there are 2 linearly independent solutions to the homogeneous equation (3):

c(2) . ¢ du
a, 7 eXp[la);‘:mJ (6)
a, @ exp[— za)j-ﬂJ

® c(u)

P(z, Z, ,a)) =




where a; and a; are arbitrary constants. We are now in the position to construct the
Green’s function satisfying equation (2). It will consist of 2 parts, one for z<zg, and one
for z>z,. The final result should be continuous at z=z,, but the first derivative with respect
to z will have a jump of magnitude 1, so the second derivative will have a 6-function
behavior at z=z,.

a, ? exp{iwj%} zZ>z

a, iexp{—ia)jﬂ] z<z,
Vo 0

Continuity at z=z; means that a;=a,=a. Now lets look at the left and right first derivative
when z=z,.

Glz,z,,0)= (7)

lim 8G(Z, ZS) _ oG, (Z, ZS) Y P R C'(Zs)
>zt Oz 0z . c(zs) 2\ ez,
lim aG(Z,Zs) _ oG, (Z, zs) _. —iw N c'(ZS)
z>z) oz Oz =z, 1/CiZS i 2./wc Z
1= tim 20E2) i 8682 [ @
7oz Oz zz, oz C(ZS )
N gL Jelz)
2i\ o

So we have our causal WKBJ Green’s function:

Glz,z,,0)= VAR exp[ia)

2i®

¢ du
Z{ @J (8)

5 Solving the problems with WKBJ Green’s function:
5.1 Solving for al(z)

The first problem stated in equation (1) is:
D(zg 2y a)) = Idz' G, (Zg .z, a))V1 (Z')GO (z' - a)) 9)

Without losing any generality, we assume both the source and the receiver located at 0
depth, that is: z;=z,=0. As in the case of constant background, let’s define:



a(z)= (i)]_z%(z)- (10)

o
We can also define a function similar to travel time in the reference medium, but having a
negative value when traveling upwards.

2 d
r(zl,zz)i[xz) (11)

After applying a Fourier transform we change equation (9) into:

Jaanl0.0k 0« Jao|fu 02,0 (G 0] 01

Solving the equation above (see Appendix A), we obtain:

- —C(Z)” a,(z)= [deoD(0.0, @) (13)

We can also use other incident wave-fields, the one commonly used in 1D constant
background scattering series can be obtained by multiplying Gy with 2ik. It’s better than
G itself in presenting data in the time domain because its time-domain representation is a
spike, but that of Gy is a Heaviside function. A more realistic wavelet in seismic
exploration would be Gy multiplied by 2ik. So the data in the frequency domain will also
be multiplied by 2ik =2iw/c(0), let’s denote this data after changing wavelet by
DW(ngZssa))- We have:

2iw
D, (0,0, 0,0,
W( a)) ( a))c(O)
D(0,0,0)= M
i20/c(0)
a (Z __ 4 T a)DW (O’O’a))e—iaﬂr(o,z) 1=27(0,) _i ]zda) Dy, (anaw) ol
‘ 0z ? 7 2w/c(0) 2w
day(z) _2 j daD,, (0,0,0)e™ = 2 j dawD,, (0,0,0)e"
dt V4 V4
da ( ) —ial ~
— = di (0,0,0)e™ =4D,,(0,0,7)
21(0,2)
a,(z)=4 [ D, (0,0,t)dt (14)

—00

where Dy, (0,0,¢) is the seismic trace in the time domain. Just as in the case of constant

background, a; is a trace integral in the time domain. The a; formula in constant
background can be expressed as:



It positions the events in the time domain uniformly into space according to the reference
velocity cy. Compared with the corresponding a; formula, equation (14) has the
flexibility to position the events non-uniformly in time domain according to a variable
velocity trend, an additional power looks like migration.

5.2 Solving for «,(z)

The second problem stated in equation (1) is:

GV Gy = =G |GV G,

Applying the same Fourier transform as before, we have:

[G1Goe ™ dw = [-G G Gpe ™ dw (15)

Solving for the equation above (see Appendix B), we have:

0 )0 ) o )] 24

4 8 c(z‘)

So we can express «, (z) (in terms of «, (z)) as:

a2(2)=_%{al( Vi el ( ){jd'

In a special case of constant background, ¢'(z)=0, we have:

az(z):—%{al( oy ){ Jaza(z H a7

Equation (17) agrees with the «, (z) term in the constant background inversion. If

c‘(z) # 0, there will be additional terms in equation (16). We will study these terms
further and identify their use in imaging and inversion.

6 Future work

Future work will include: (1) Calculating terms beyond ¢, (z) (2) Identifying the specific

sub-series that perform different inversion tasks. (3) Numerically testing the convergence
properties of these sub-series. (4) Working out the corresponding terms in multi-
dimensions, which are currently approximately solved only for the first (linear) term.



7 Conclusion

Two terms in the inversion scattering series with variable background have been
calculated with a WKBJ Green’s function in 1D. The inverse equations can be precisely
solved using Fourier transform. The first term introduces more flexibility to position the
events in the time domain non-uniformly by a varying velocity trend. More work,
including numerical tests, is needed to study newly discovered terms.
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Appendix A --- deriving ¢, (z)

Using the WKBJ Green’s function (7), we have:

][%)a ()L %%')exp[iw ]

We assume that no perturbation occurs for :<o, that is: = < 0 = «,(:) - 0, we can simplify the

Idz’ G, (0,2, 0V, (2')G,(z',0,0)

n Z"

J&

2\ o o

:sz,i c(0) ¢(z")

exp[ia)!@

—00

expression above further:

I o T od" c(O)al(z')_ c(0) 7, , NCAC)
——Z_J;dz exp[z2a).([c(zn)J c(z') = :[Odz exp(zZa)r(O,z))

So the right-hand-side of (10a) is:
Idw{ Idz O z' a) ( )Go (Zv’o’a))}emzr(o,z)

= ]Eda) _ﬂ szveﬂa)r(o,z') ) (Z') e—inr(O,z)
LA 4 ) ()

By switching the order of integration, we have:

J.d'al( J‘d i0{27(0,2')-27(0,2)}




. _@(zn)]odz' (=) 5(02(0, 29 2¢(0,)

4 T e(2)
o) % Ja,(2) |
— j = 8(27(0,z)-27(0,2")

Let’s apply the formula for integration with d-function (A-1) in Appendix 3 (here we take

w(z)= a(2) ). We have:

o)

Appendix B --- deriving o, (z)
The left-hand-side of (13) can be similarly calculated as in Appendix A. The only

difference is changing 1 to 2, all other derivations are the same. Here we give the final
result:

_@az(z)'

4
But the right-hand-side is more tedious, the derivation procedure is:

GV G V,G,
aro Zg,z,w(cg,)] et 2 a0

f & ,1 c O)C [c Z)J ) L REC )C(Z ); z(::z”)(C(QZ)H)JZO,](Z..);Z_ \/@emu o)

w'[d, io|r Oz)‘ 1(' J‘d" io|r( zz‘al( ) io|7(0,z")

Z') c(z") ¢

We assume that no perturbation occurs for :<o, that is: : < 0 = «,(:) - 0, we can simplify the
expression above further:

e e

— —@CO ](Zdz|eiwr(0,z') a, (Z') OjZdZ" iolr(z\2") &) (Z”) iwr(0,2")
8 c(z') 7 c(z")



By defining: 4, () - %g, we have:

= —%a) sz'e’m(o’f) z' sz”{ Z"—z')ei”’r(z"z") + H(z’—z")e"“”(zn’zv) }wl (z")e"“”(o’z")
l —0

- % (l-a))J-dZvei{ur (0,2") J.dzn { zrur ,2") + H(Zv_Zn)ei(ur(z",z') }% (Zn)ei{ur(o,z“)
Now we can calculate the Fourier transform of the right-hand-side:

646Gyl o= 1)

where 1, is calculated as:

—iw | dz' dZu eia)ZT(O,z") e—i2wr(0,z) do
= Jlfan ] e
= J-dz v (z jdz"H 22"V, (2") Idw im)e miof27(0,2)-2:(0,2")}

= (27) jdz w,(z j dz"H(z"-z"W, (2")8" (27(0,2) - 22(0,2"))
Let’s apply the formula for integration with d-function (A-2) in Appendix C (here we
takey(z") =y, (z")H(z"-2') = MH (z'~z")). The expression above can be simplified

c(z“)

further as:



z
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—00
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Similarly, I, can be calculated as:

—0

Let’s apply the formula for integration with 6-function (A-2) in Appendix C (here we

take y(z') =y, (z)H(z'-z") = a(2) H(z"-2')). We have:

c(z')

2
C

o0
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—00
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In summary, we have:



GGGyl o= 1)
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Appendix C --- Integral with 5-function and its first derivative

In this paper, the function inside d-function and it’s first derivative will always be the 2-
way travel time between 0 and z:

1) =2]E- ~24(0,2)

where z is depth, c(u) is a function of reference velocity. Let’s consider it’s relation with
it’s inverse (denoted here by g):

u=f(z) andz=glu)=r"(u)

b
f'(Zo)

Now it’s time to calculate the following integral:

If u, :f(zo). We have: g'(uo)z

Jdetyletrta)- 1)

where y(z) is an arbitrary function.

After changing integration variable: u = f(z) and u, = f(z,)
We have dz = g'(u)du
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Now it’s time to calculate the integral with the first derivative of d-function:



[ty (2o (1) 1)

where y(z) is an arbitrary function.

After changing integration variable: u = f (z) and u, = f (zo)
We have dz = g'(u)du ,

(o (7)- 1)

Denote: plu) = p(glu))e(u)
We have:

Jetuly el )0ty =)} = oo, =)}

o0
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—00
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In the expression above, g"(uo) can be calculated by:

g"(u)={¢'(w)

-1
Because: g = /', we have:
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So we have:
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