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Abstract

A new task specific multiparameter estimation subseries of the inverse scattering
series is derived and tested for a velocity and density varying 1D earth. Tests are
encouraging and indicate that one term beyond linear provides significant improvement

beyond standard practice.

1 Introduction

The original inverse series research aimed at separating imaging and inversion tasks on
primaries (Weglein et al., 2002) was developed for a 1D acoustic constant density medium and
a plane wave at normal incidence. In this work we move a step closer to seismic exploration
relevance by extending that earlier work to variations in both velocity and density and
allowing for point sources and receivers over a 1-D earth. Tests with analytic data indicate
significant added value, beyond linear estimates, in terms of both the proximity to actual

value and the increased range of angles over which the improved estimates are useful.

This work is another step towards using the task specific parameter estimation inverse series

for identifying large contrast targets with either specular or diffractive wave responses.

2 Inverse scattering and seismic processing objectives

Consider the basic wave equations

LG =6 (1)

LoGo =0 (2)

where L and Lg are respectively the differential operators that describe wave propagation in

the actual and reference medium, and G and Gy are the corresponding Green’s functions.
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We define the perturbation V = Ly — L (Weglein et al., 2002). The Lippmann-Schwinger

equation
G =Go+ GVGE (3)

relates G, Go and V (see, e.g., Taylor, 1972). Iterating this equation back into itself generates

the Born series
G=Gy+G)\VGy+ GVGyVGy+--- . (4)
Then the scattered field ¥, = G — G can be written as

b = GoVGo+ GoVGoVGo+---
= (@)1 + (Po)a+ - ()

where (1), is the portion of 1, that is n* order in V. The measured values of 9, are the
data, D, where

D = (¥s)ms = (¥s)on the measurement sur face:
Expanding V as a series in orders of D (Weglein et al. 1997)
V=Vi+Va+-- (6)
then substituting Eq.(6) into Eq.(5) and evaluating Eq.(5) on the measurement surface yields
D =[Go(Vi+ Vot )Golms + [Go(Vi+Vat---)Go(Vi+ Vot )Golms+---. (7)

Setting terms of equal order in the data equal, leads to the equations that determine V;, V5,
... from D and G,.

D = [GO‘/IGO]ms (8)

0= [GO%GO]ms + [GOV'lGOVleO]ms (9)
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3 Derivation of a3, (1, s and (3,

To find V is to perform ‘inversion’, i.e., medium identification. If we associate tasks with
inversion: (1) Removal of free-surface multiples (2) Removal of internal multiples (3) Image
primaries to correct spatial locations and finally (4) Identify medium properties, then these

tasks are directly achievable in terms of data, D, and reference information only.

To illustrate task (4), we will consider a 1-D acoustic two-parameter earth model (e.g. bulk
modulus and density or velocity and density). Beginning with the 3-D acoustic wave equa-

tions in the actual and reference medium (Weglein et al. 1997, Clayton and Stolt, 1981)

CU2 1 ] 1
(K(r) +V-HV)G(r,r;w)=5(r—r) (10)
UJ2 1 1 1
(Ko(r) +V. po(r)V)Gg(r,r;w) =d(r—r) (11)
Then the perturbation is
wia 3
V=Lj—L=—+V-2V 12
° Ky Po (12)
Where a = 1 — %, =1- %, K is P-bulk modulus, ¢ is P-wave velocity and K, ¢ and

density p have the relation K = c?p.

Now we assume both py and ¢y are constants, then Eq.(11) becomes

2
(5 + V3)Go(x, 7'3) = pod(r — 1) (13)
0

and for the 1-D case, the perturbation V' has the following form

wia(z) 1 2 10 0
282 =g 2 14
K, poﬂ(z)8x2 t o 0s (2)5- (14)

V(z, V)=

Similarly, we expand V' (z,V), a(z) and (3(z) respectively as

V(2,V) =Vi(2, V) + Va(2, V) + -+, (15)
a(z) =a1(z) +az(z) + -+, (16)
B(2) = pi(2) + Ba(2) +--- . (17)
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Then we have

2 1 0? 10 0

Wi V) = S i (a) o i) (18)
2 o? 10 0

Ve, V) = o 4y a) o Bae) (19)

Substitute Eq.(18) into Eq.(8) and we can get the linear solution for a;(z) and (1(z) as a
function of data D

Po —iqg(zs+zg
D(qgaeazgazs)z_ze 9o(7s )[

—(—2g) + (1~ tan’ 6)5i(—2¢,)]  (20)

where the subscripts s and g denote source and receiver respectively, and g, 8 and k = w/cg

are shown in Fig.1, and they have the following relations (Matson, 1997)

k

g

qg Co> Pos K
¢, P> K,

zv

Figure 1: The relation between 6,k and g,.

gg = qs = kcos6

k, =k, = ksin®

Similarly, substitute Eq.(19) into Eq.(9), and we can get the solution for as(z) and (2(z) as
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a function of a;(z) and £;(z)

1
(6%)
cos2 6

(2) + (1 — tan®0)3,(2)

1 2
" 2cost 0041 (2)
1
—a(E)B(:)

!
!

(§ + tan® 6 + 1tan4 6)3%(2)

mal(z)/o dz aq(z

]. 4 7 2 !

E(tan 0—1)51(2) | dzayi(z)
0

2 2
1 ,
)
1 7 Z 7 1
mal(z)/o dz (1(z)
1 4 ' z 1 7
— 0—-1 d 21
~(tan* 0 — 1)54(2) / 2 6u(2) (21)

For a single-interface example, we can see that only the first three terms on the right hand

side contribute to amplitude, the other four terms are the “image moving” terms. As shown

in Eq.(20) and Eq.(21), for two different angles of 6, we can determine a4, 5; and then as,

Pa-

4 Numerical test

Consider a one-interface example (shown as Fig.2), the interface surface is at z = a, and

suppose z; = zg = 0.

P X

Cos Po> K
¢, P, K,

Figure 2: One interface example.
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In this case, the reflection coeflicient has the following form (Keys, 1989)

(p1/po)(c1/co)V/1 —sin?@ — /1 — (c3/c2)sin? 0

R(6) = . (22)
(p1/p0)(c1/co)V/1 —sin? @ + /1 — (c3/c2) sin? 6
Using perfect data (Clayton and Stolt, 1981)
D(q..6 g e
= 2
(@) = () G (23)
and substituting Eq.(23) into Eq.(20), we get
1
p— 0041(z) + (1 — tan®?6)B1(2) = 4R(0)H(z — a). (24)
Then, choosing two different angles to solve for a; and (;
R(6,) cos? 6; — R(6s) cos® O,
=4 2
$1(61,62) cos 26; — cos 260, (25)
_ R(6,) — R(62)
(11(91, 02) = 161(91, 92) + 4ta,n2 01 — tan2 92. (26)
Similarly, we can get as and s
g02(2) + (11— tan? 0)B(2) = — 5———ad(a) + — o ()Ba2)
cos? 972V 2 2B T T G eost NV T ogt g VI
1
- (g + tan? 6+ _ tan® 6)63(2) (27)
1, 1 1 1,
Ba2(61,602) = {[—5(11(91,92) + 041(91,92)&(91,92)][(:082 0. cos? 02] - §ﬂ1(91,92)
sin* § sin* 6
[cos® @) — cos® B, + o 011 -~ 6;]}/{cos 26, — cos 26y} (28)
1, 1 1
az(01,02) = B2(61,62) + {[—5041(91, b2) + 041(91,92)ﬂ1(91,92)][cos4 8. cosd 02]
1 1
—B%(8y,6,)[tan? §; — tan® G, + 2 tan?@; — 2 tan? 6]}/ {tan? 4, — tan®6,} (29)

Now, for a specific model, py = 1.0g/cm?, p; = 1.1g/cm?, ¢y = 1500m/s, ¢; = 1700m/s,
let’s see how the nonlinear terms contribute to the changes in the P-wave bulk modulus,

density, impedance and velocity.
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In the figures, we give the results corresponding to different pairs of 6; and 6,. From Fig.3,
we can see that when we add as to aj, the result is much closer to the exact value of a.
Furthermore, the result is better behaved over a larger range of precritical angles; the values

of a1 + as change slowly.

Similarly, from Fig.4, we can also see the results of 3; + (3 are much better than those of
B1. And also the results of &L (see Fig.5 ) and ﬁ (see Fig.6). Especially, we noticed that
values of ( ¢); are always greater than zero, that is, the sign of (Ac); is positive, which is

same as that of the exact value Ac. We will state about it in the next section.

5 Special parameters for linear inversion

In general, linear inversion will produce errors in earth property prediction since the rela-

tionship between data and earth property changes is nonlinear.
Manifestation:

When A(property) = 0, linear prediction of A(property) # 0

= When A(property) > 0, linear prediction of A(property) can be < 0.

There is a special parameter for linear inversion of acoustic media, that never suffers the

latter problem.

From Eq.(22) we can see when ¢y = ¢, the reflection coeflicient is independent of 6, then

from the linear Eq.(26), we have

<§) = %(al — 161) = 0 ’LUhe'n/ AC = O
1

C

i.e., when Ac = 0, (Ac); = 0. This generalizes to when Ac > 0, then (Ac); > 0, or when
Ac < 0, then (Ac); < 0, as well. Which can be shown as below:

The reflection coeflicient is

(p1/po)(c1/co) V1 —sin?8 — /1 — (c}/c2)sin? 6

(p1/p0)(c1/co)V/1 —sin? @ + /1 — (c3/c3) sin 79

R(0) =

Let

A(8) = (p1/po)(c1/co) V1 — sin? 6,
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\/ 1—(c3/c%)sin?6.
Then

R(6,) — R(6;) = 2 A(61)B(62) — B(61)A(62)

[A(61) + B(61)] [A(62) + B(6,)]

where the denominator is greater than zero. The numerator is

2[A(61)B(62) — B(61)A(62)] =2(p1/po)(c1/co) [\/ 1 —sin 01\/1 — (3 /c?) sin® 5 —

V1 — sin® 02\/1— (c2/c) sin 01}.

Then we let
C = /1 — sin? 91\/1— (c3/c?)sin? 6y > 0
D = /1 — sin® 02\/1— (c3/c?)sin?6; > 0
Then

2
C?*-D*= (Z; - 1) (sin®0; — sin’6,)
0
Then, as ¢; > ¢g and 6; > 6, , we have
C% . 9 .9
— — 1) (sin®f; — sin“6y) > 0
Then
R(Gl) — R(02) >0
and as ¢; < ¢g and 6; > 60, , we have
C% . 9 . 9
— — 1) (sin“6; — sin"0y) <0
Then
R(Gl) — R(02) <0

For the single interface example, we have

R(61) — R(62)
tan2§; — tan? 6,

a1(01,02) — B1(61,02) = 4
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So as ¢; > cg, a1(01,05) — B1(61,602) > 0, then (Ac); > 0; similarly, as ¢; < cg, @1(61,62) —
B1(61,62) < 0, then (Ac); < 0.

We are currently generalizing these equations to an elastic Earth model. The strategy is to
combine information from special linear parameters with added value from inversion beyond
linear. We also note that when the velocity doesn’t change across an interface, the Born
inverse doesn’t change and looking at the integrand of “image moving” terms (see Eq.(21))

a; — (31, the image doesn’t move.

The imaging and inversion subseries automatically accommodate an adequate velocity model.
They determine the degree of adequacy of the velocity model from all the data, and act

accordingly.

6 Conclusion

Including terms beyond linear in earth property identification subseries provides added value.
We are encouraged by these results. The next step is to study the elastic case using three

parameters (see, e.g., Boyse, 1986 and Boyse and Keller, 1986).
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Ol (Bulk modulus)
exact value of Ol=0.292 critical angle=61.9°

60

» 0424 .6 / \
- 0.392 0.3
042 s ;
0.40 40-i /
} 038 | _ 0.376 0.3920.408
0.36 T o
%_ ) g 0.368
0.34 0] 0364 0.421
0.32
0.30 10+
0.2§,
0 T T T T T
0 10 20 30 40 50 60

60

0.1 &75\
0-30 \
50
0.25 ﬂ 0.226:18
40-
0.20 0.272 0.263
% 015 0 281
= . © 30_
£ 3 T
E 010 7| e et e LA L e T N s
% 20-
0.05
0.00 0 295
-0.05
0
0 50 60
theta2
”'%1 50

60 O

Figure 3: oy (top) and a3 + g (bottom).
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Figure 4: (; (top) and B; + (2 (bottom).
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Figure 5: Linear approximation to change in impedance (4), = (a1 + 1) (top). Sum
of linear and first non-linear terms (5%), + (5%), = (55, + 3 [3(ca — B1)* + (02 + B2))]
(bottom).
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Figure 6: Linear approximation to change in velocity (%)1 = %(al — (1) (top). Sum of
linear and first non-linear terms (4¢), + (4%), = (&9), + 3 [;(c1 + 51)* — B + (a2 — B2))]
(bottom).
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