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Abstract

This paper presents both an overview and a more detailed description of the key
logic steps and mathematical-physics framework behind the development of practical
algorithms for seismic exploration derived from the inverse scattering series.

We present both the rationale for seeking and methods of identifying uncoupled
task specific subseries that accomplish: (1) free-surface multiple removal; (2) internal-
multiple attenuation; (3) imaging primaries at depth; and (4) inverting for earth ma-
terial properties. A combination of forward series analogue and physical intuition are
employed to locate those subseries. We show that the sum of the four task specific sub-
series does not correspond to the original entire inverse series since terms with coupled
tasks are never considered or computed. This aspect of the program, i.e., inversion in
stages, with an isolated task followed by restarting the problem, provides tremendous
practical advantage, since the achievement of a task is a form of useful information
exploited in the redefined problem; and, the latter represents a critically important
step in the logic and overall strategy.

There are both tremendous symmetries and critical and subtle differences between
the forward scattering series construction and the inverse scattering series processing
of seismic events. These similarities and differences help explain the efficiency and

effectiveness of different inversion objectives. The individual subseries are analyzed
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and their strengths, limitations and prerequisites exemplified with analytic, numerical,

and field data examples.

1 Introduction and background

In exploration seismology, a man—made source of energy on (or near) the surface of the
earth (or in the ocean, in marine exploration) generates a wave that propagates into the
subsurface. When the wave reaches a rapid change in earth material properties, (i.e., a
reflector) a portion of the wave is reflected back upward the surface; and, in the marine
case, is recorded at numerous receivers along a towed streamer in the water column near the

air-water boundary.
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Figure 1: Marine Seismic Exploration Geometry: * and 1/ indicate source and receiver,

respectively. The boat moves through the water with the source and receivers, and the ex-
periment is repeated. The collection of the different source-receiver wave field measurements

defines the seismic reflection data.

The objective of seismic exploration is to determine subsurface earth properties from the
recorded wavefield. The ultimate objective is to determine subsurface targets and then to

estimate the type and extent of rock and fluid properties for hydrocarbon potential.

The need for more effective and liable techniques for extracting information from seismic
data is driven by several factors including (1) the higher acquisition and drilling cost and

risk associated with the industry trend to explore and produce in deeper water; and (2) the
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serious technical challenges associated with either deep water, or imaging beneath a complex

and ill-defined overburden, above the target.

An event is a distinct arrival of seismic energy. Seismic reflection events are catalogued as
primary or multiple depending on whether the energy arriving at the receiver has experi-
enced one or more upward reflections, respectively. Multiples or multiply reflected events
are further classified by the location of the downward reflection between two upward reflec-
tions. For marine data, multiples that have experienced at least one downward reflection
at the air-water (free) surface are called free surface multiples. Multiples that have all of
their downward reflections below the free surface are called internal multiples. (See Fig.2).

Methods for extracting subsurface information from seismic data typically assume that the

ar
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Figure 2: 1, 2 and 3 are examples of primaries, free-surface multiples and internal multiples,

respectively.

data consists of primaries, since that model allows essentially one reflection process to be
associated with each recorded event. The latter primaries-only assumption simplifies the
processing of seismic data for determining the spatial location of reflectors and the local
change in earth material properties across a reflector. Hence, multiple removal is a requisite
to seismic processing. It is a long-standing problem and while significant progress has been
achieved over the past decade, conceptual and practical challenges remain. The inability to
remove multiples can lead to multiples masquerading or interfering with primaries causing

false or misleading interpretations; and, ultimately poor drilling decisions. The assump-
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tion of singly reflected (or scattered) data in seismic data analysis is an assumption shared
with other fields of inversion and non-destructive evaluation, e.g., it is common to medical
imaging, and ground penetrating radar, environmental hazards, and the violation of this
assumptions in practice, can lead to deleterious and serious consequences for medical diag-
nosis, hazard detection, and buried object and fluid location/identification, for tunnels and
caves. Even if multiples were to be removed from seismic reflection data, the challenges for
accurate imaging (locating) and inversion across reflectors are significant, especially when
the medium of propagation and the geometry of the target are complex and the contrast in
earth material properties is large. The latter large contrast property condition is all by itself

enough to cause linear inverse methods to bump up hard against their assumptions.

Specifically, the location and definition of hydrocarbon targets beneath salt, basalt, volcanics,
and karsted sediments are of high economic moment in the petroleum industry today, and
serious challenges to current imaging and inversion techniques that go beyond the daunt-
ing issues concerning the removal of multiples. For the latter geologic circumstances the
requirement of all current methods for the imaging-inversion of primaries for an accurate
(or at least adequate) model of the medium above the target, can often not be achievable in
practice, leading to erroneous, ambivalent or misleading prediction. These difficult imaging
conditions often occur in, e.g., the deep water Gulf of Mexico, where the confluence of large
hydrocarbon reserves beneath salt and the high cost of drilling in deep water, drives the
demand for more effective and reliable methods. In this Topical Review, we will describe
how the inverse scattering series has provided the promise of an entire new vision and level
of seismic capability and effectiveness. That promise has already been delivered for the
removal of free surface and internal multiples. We will also describe the recent research
progress and results on the inverse series for the processing of primaries. Our objectives in
writing this Topical Review are: (1) To provide both an overview and a more comprehen-
sive mathematical-physics description of these new seismic processing concepts and practical
industrial production strength algorithms, that derive from the inverse series and (2) To de-
scribe and exemplify the strengths and limitations of these seismic processing algorithms;
and to discuss open issues and challenges. (3) To explain how this work reflects a general
philosophy, and approach (strategy and tactics) to defining, prioritizing and choosing, and
then solving significant real-world problems, from developing new fundamental theory, to is-
sues with limitations with field-data, to satisfying practical prerequisites and computational

requirements.

The problem of determining earth material properties from seismic reflection data is an in-

verse scattering problem; and, specifically, a non-linear inverse scattering problem. Although,
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an overview of all seismic methods is well beyond the scope of this paper, it is accurate to say
that prior to the early 1990s, (when non-linear inverse scattering series methods were first
applied) (Weglein, Boyse and Anderson (1981) and practical algorithms first demostrated
Weglein et al. (1997)) all deterministic methods used in practice in exploration seismology
could be viewed as different realizations of a linear approximation to inverse scattering, the
inverse-Born approximation (see, e.g., Cohen and Bleistein (1997), Stolt and Weglein (1985),
Morley and Claerbout (1983)).

All scientific methods assume a model that starts with assumptions that include some (and
ignore other) phenomena and components of the reality. Among earth models used in seismic
exploration are: acoustic, elastic, heterogeneous, anisotropic and anelastic, and the experi-
mental description model for the characteristics of the man-made source, and the resultant
incident field, the character of the receivers, the dimension of variability of the earth and ge-
ometry of reflectors. The configuration and extent of the experiment, and the sampling rate
of sources and receivers that comprise the recorded seismic wave field need to be included

in the model and subsequent theory and algorithms.

Although 2D, 3D closed form complete integral equation solutions exist for the Schrodinger
equation (see, Newton (2002)) - there is no analogous closed form complete multi-dimensional
inverse solution for the acoustic or elastic equation. The push to develop complete multi-
dimensional non-linear seismic inversion methods came from a several directions: (1) The
need to remove multiples from a complex multidimentional earth and (2) the interest in a

more realistic model for primaries.

This absence of a closed form exact inverse (for a 2D acoustic or elastic earth) shifted
attention to non-closed or series forms. An inverse series can be written, at least formally,

for any differential equation expressed in a perturbative form.

This paper describes and illustrates the development of concepts and practical methods
from the inverse scattering series for multiple attenuation and, provides some recent new

promising conceptual and algorithmic results for primaries.

2 Seismic data and scattering theory

2.1 The scattering equation

Scattering theory is a form of perturbation analysis. In broad terms it describes how a pertur-

bation in the properties of a medium relates a perturbation to a wave field that experiences
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that perturbed medium. It is customary to consider the original unperturbed medium as
the reference, and, to consider the perturbation or alteration of properties turning the refer-
ence into the actual. The difference between the actual and reference media is characterized
by the perturbation operator. The corresponding difference between the actual and refer-
ence wavefields is called the scattered field. Forward scattering takes as input the reference
medium, the reference field, and the perturbation operator, and outputs the actual wave-
field. Inverse scattering takes as input the reference medium, the reference field and values of
the actual field on the measurement surface, and outputs the difference between actual and
reference medium properties, through the perturbation operator. Inverse-scattering-theory
methods typically assume the support of the perturbation to be on one side of the mea-
surement surface. In seismic application this condition translates to a requirement that the
difference between actual and reference media be non-zero only below the source-receiver
surface. Consequently, inverse scattering methods require, for seismic application, that the

reference medium agrees with the actual at and above the measurement surface.

For marine application the sources and receivers are located within the water column and
the simplest reference medium is a half-space of water bounded by a free surface at the
air-water interface. Since scattering theory relates the difference between actual and refer-
ence wavefields to the difference between their medium properties, it is reasonable that the
mathematical description begin with the differential equations governing wave propagation
in these media. Let

LG = —4(r —ry) (1)
and
LOGO = —(5(1‘ - I‘s) (2)

where L, Ly and G, Gy are the actual and reference differential operators and Greens
functions, respectively, for a single temporal frequency. Equations (1) and (2) assume that
the source and receiver signatures have been deconvolved. The impulsive source is ignited
at t = 0. G and Gy are the matrix elements of the Greens operator, G and Gg, in the
spatial coordinates and temporal frequency representation. G and Gy satisfy LG = —1 and
LoGg = —1, where 1 is the unit operator. The perturbation operator, V, and the scattered

field operator, ¥,, are defined as follows:

V=L-L,, (3)
U, =G -Gy . (4)
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W, is not itself a Green’s operator. The Lippmann-Schwinger equation, the fundamental
equation of scattering theory, is an operator identity that relates ¥,, Go, V and G, (see,
e.g., Taylor, 1972),

U, =G — Gy =G¢VG . (5)

In the coordinate representation, Eq. (5) is valid for all positions of r and r, whether or
not they are outside the support of V. A specific simple example of L, Lo, and V, when
G corresponds to a pressure field in an inhomogeneous acoustic medium (see, e.g., Clayton
and Stolt, (1981))

2 1
L0=“’—+v-(—v> ,

o (- 2) = ((-2)].

where K, kg, p and pg are the actual and reference bulk modulus and densities, respectively;

and

w is the temporal frequency. Other forms that are appropriate for elastic isotropic media
and a homogeneous reference, begin with the generalization of equations Egs. (1), (2) and

(5) where matrix operators e.g.:

and

express the increased channels available for propagation and scattering and

V — ‘/;919 ‘/PS
Vip Vs
is the perturbation in an elastic world. (see,e.g., Stolt and Weglein, 1985).
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2.2 Forward series in operator form

Equation (5) can be expanded in an infinite series
U, =G —-Gog=GoVGy+ Gy VG VGq + ... (7)
for W, in orders of the perturbation operater, V. Then Eq. (7) can be rewritten as
Uy = (Uo)1 + (Ps)2 + (Ys)3 + ... (8)

where (¥,), = Go(VGy)", and is the portion of ¥, that is n-th order in V. The inverse
series of Eq. (7) (or Eq. (8)) is an expansion for V in orders (or powers) of the measured
values of ¥, = (¥,),,. The measured values of ¥, = (¥,),, constitute the data, D. Expand

V as a series
V=V +Vy+V3+... 9)
where V,, is the portion of V that is nth order in the data, D.

To find Vy, V,, V3, ... and, hence, V, first substitute the inverse form Eq. (9) into the
forward Eq. (5)

q’s = GO(V1+V2+)G0+G0(V1+V2+)G0(V1+V2+)GO
+Go(V1i+Va+...)Go(Vi+Va+...)Go(V1+ Vo +...)Gyg
+... . (10)

Evaluate both sides of Eq. (10) on the measurement surface and set terms of equal order in

the data equal. The first order terms are
(¥s)m =D = (GoV1Go)m , (11)
the second order terms
0= (GoV2Go)m + (GoV1GoV1Go)m (12)
and the third order

0 = (G0V3G0)m + (G0V1G0V2G0)m
+(G0V2G0V1G0)m + (G0V1G0V1G0V1G0)m + ... (13)

and to n-th order

0 = (GoVnGo)m + (GoV1iGoV,_1Go)m +
+H(GV1GoV1iGe Vi ... GoViGo)ym - (14)
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(U,),, are the measured values of the scattered field ¥,. To solve these equations, start
with Eq. (11) and invert the G¢ operators that sandwich V;. Then substitute V; into Eq.
(12) and perform the same inversion operation as in Eq. (11) to invert the G¢ operators
that sandwich V5. Now substitute V; and V; found from equations (11) and (12), into Eq.
(13) and again invert the Gg operators that bracket V3 and in this manner continue this
program to compute any V,,. This method for determining V;, Vs, V3, ... and, hence,
V =YV, is an explicit direct inversion formalism that, in principle, can accommodate
a wide variety of physical phenomena, and concomitant differential equations, including
multidimensional acoustic, elastic, an certain forms of anelastic wave propagation. Because
a closed or integral equation solution is currently not available for the multidimensional
forms of the latter equations, and a multidimensional earth model is a minimal required
realism to develop relevant and differential technology, the inverse scattering series became a
focus of attention for those seeking significant added completeness and effectiveness beyond

linear, 1D, or small contrast techniques.

In the derivation of the inverse series equations (11)—(14) there is no assumption about the
closeness of Gg to G, nor of the closeness of V; to V, nor is V or V; assumed to be small
in any sense. V; is the portion of V that is linear in the data. That is all that is assumed.
Equation (11) is an exact equation for V;. If one were to assume that V; is close to V,
and then treat Eq. (11) as an approximate solution for V, then that would then correspond
to the inverse Born approximation. The latter assumption of V &~ V; is never made in the
formalism of the inverse scattering series. The inverse Born approximation inputs the data
D, and Gy, and outputs V; which is then treated as V.

All of current seismic processing methods for imaging and inversion are different incarnations
of using Eq. (11) to find an approximation for V(see Stolt and Weglein (1985)), hence,
the understandable and sustained effort to build ever more realism and completeness into
the reference differential operator, Lo and its impulse response, Go. As with all technical
approaches, the latter road (and current mainstream seismic thinking) eventually leads to
a stage of maturity where further sustained effort will no longer bring a commensurate
benefit. The inverse series methods provides a vennato achieve objectives beyond the reach
of linear methods for a given level of a-priori information. Several additional comments: (1)
the forward and inverse Born approximations are two separate and distinct methods: the
forward Born approximation for the scattered field, ¥,, uses a linear truncation of Eq. (7)
(and Eq. (8)) to estimate W,

¥, = GoVGy

and inputs Gy and V to find an approximation to ¥,; the inverse Born approximation inputs
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D and Gg and solves for V; as V which it approximates by inverting
(‘I’s)m = D = (G()VGO)m

(2) the inverse series is a separate and distinct procedure from iterative linear inversion.

Iterative linear inversion would start with Eq. (11) and solve for V;. Then a new reference
operator, Ly = Lo + Vi; impulse response, G{ (where LiG{ = —J); and data, D' =

(G — G{)n are input to a new linear inverse form
D' = (GyV1Go)m

where a new operator,Gy, has to now be removed (inverted) from both sides of V). These
linear steps are iterated, note that at each step a new and, in general, more complicated
operator (or matrix or frechetderivative) is required to be inverted. In contrast, the inverse-
scattering series Egs. (11)—(14) inverts the same and original input operator, Gy, at each
step. The inverse-scattering series methods were first developed by Moses (1956), Prosser
(1969), Razavy (1975), and transformed for application to a multi-dimensional Earth and
exploration seismic reflection data by Weglein, Boyse and Anderson (1981) and Stolt and
Jacobs (1980). The first question in considering a series solution is the issue of convergence
and if encouraging, followed closely by the question of rate of convergence. The important
pioneering work on convergence criteria for the inverse series by Prosser (1969) is given
as a condition which is difficult to translate into a statement on the size and duration
of the contrast between actual and reference media. Faced with that lack of theoretical
guidance, empirical tests of the inverse series were performed (Carvalho (1992)) for a 1D
acoustic medium, which indicated that, starting with no a-priori information, convergence
was observed but appeared to be restricted to small contrasts and duration (e.g., < 11%

difference between actual earth acoustic velocity and water (reference) speed).

Since the acoustic wave speed in the earth quickly gets further than 11% from the acoustic
wave speed in water ( 1500 m/sec) the practical value of the entire series, without a priori

information, appeared to be quite limited.

A reasonable response might seem to be to use seismic methods that estimate the velocity
trend of the earth to try to get the reference medium proximal to the actual, and that in

turn could allow the series to possibly converge.

The problem with that thinking was that velocity trend estimation methods assumed that
multiples were removed prior to that analysis. Furthermore, concurrent with these technical

strategic decisions (around 1990) was the loud and clear message heard from petroleum
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industry operating units that multiple removal was on increasingly prioritized and serious

problem and impediment to effectiveness.

Methods for removing multiples (at that time) assumed either: (1) the earth was 1D, (2), the
velocity model was known, (3) reflectors generating the multiples could be defined, different
patterns could be identified in waves from primaries and multiples, and (5) primaries were
random and multiples periodic. All of these assumptions were seriously violated in deep-
water and/or complex geology, and the methods based upon them often enough outright

failed to perform, or produced erroneous or misleading results.

This interest in multiples came in large part from the industry trend to explore in deep
water where the depth alone (> 1km) can cause, e.g., multiple removal methods based on
periodicity arguments to seriously violate their assumptions. Complex multidimensional
heterogeneous and hard to estimate geologic conditions and targets provided additional
challenges for multiple removal methods that relied on having 1D assumptions or access to

inaccessible details about the reflectors that were the source of these multiples.

The inverse scattering series was (and remains) the only multi-dimensional direct inversion
formalism that could accommodate arbitrary heterogeneity directly in terms of Go with

estimated rather than actual propagation properties.

The confluence of these factors lead to the development of thinking that viewed inversion as

a series of tasks or stages, and to view one of these as multiple removal.

2.3 Swubseries

A combination of factors: (1) that the inverse series represent the only multidimensional di-
rect seismic inversion; (2) numerical tests that suggested an apparent lack of robust conver-
gence of the overall series, ( when starting with no a-priori information), and, (3) the interest
in extracting something of value from this only formalism for complete multi-dimensional
inversion; and, (4) the industry need for more effective methods for removing multiply re-
flected events (multiples) from data collected over an unknown heterogeneous earth, all came
together to imagine inversion in terms of steps or stages with intermediate objectives towards
the ultimate goal of identifying earth material properties. The stages were each defined as
achieving a task or objective: (1) removing free-surface multiples; (2) removing internal mul-
tiples; (3) imaging (locating) reflectors in space; and (4) determining the changes in earth
material properties across those reflectors. The idea was to seek to identify within the over-

all series, and specific distinct subseries that performed these focused tasks and to evaluate
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those subseries for convergence, rate of convergence, data requirements and theoretical and
practical prerequisites. Perhaps a subseries for one specific task would have a more favor-
able attitude towards, e.g., convergence in comparison to the entire series. These tasks, if
achievable, could bring practical benefit on their own terms, and, if achievable, could be
realized from the inverse-scattering series directly in terms of the data, D, and reference
wave propagation, Gy and where Gy is not assumed to be proximal to the actual. At the
outset, many important issues were open (and some remain open) that could cause a pause
or hesitation in pursuing such a new task separation strategy. Among them are (1) does
the series in fact uncouple in terms of tasks, (2) if it does uncouple, then how to identify
those uncoupled task-specific subseries; (3) will the inverse series view multiples as noise to
be removed, or as signal to be used for helping to image/invert the target; and (4) will the
subseries derived require different algorithms (and computer codes) for different earth model
types (e.g., acoustic version and elastic version) how can you know or determine, in a given
application, how many terms in a subseries will be required to achieve a certain degree of
effectiveness. We will address and respond to these questions in this paper and list others
that are outstanding or the subject of current investigation. How to identify a task specific
subseries? The pursuit of task specific subseries used several different types of analysis with
testing of new concepts to evaluate, refine and develop embryonic thinking largely based on
analogues and physical intuition. To begin, the forward and inverse series Egs. (7) (8), and
Eqgs. (11)—(14) have a tremendous symmetry. The forward series produces the scattered
wavefield, ¥, from a sum of terms each of which is composed of the operator, Gy acting on
V. When evaluated on the measurement surface, the forward series creates all of the data,
(¥,),, = D and contains all recorded primaries and multiples. The inverse series produces
V from a series of terms each of which can be interpreted as the operator Gy acting on the
recorded data, D. Hence, in scattering theory the same engine, GG, that acts on V to create

data, acts on D to invert data. If we consider
< GoVGy >,=<Go(V1+ Va2 +V3+...)Go >n
and use equations (12)—(14) we find
< GoVGy >,,=< GoV1Gy >,, — < GgV1G VG >, +... (15)

there is a remarkable symmetry between the inverse series Eq. (15) and the forward series
Eq. (7)
(‘I’s)m =< GoVGq >, + < GoVGyVGg >,, +... (7)

In terms of diagrams, the inverse series for V, Eq. (15) can be represented as
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X N/ X \V4 X V4
G(\ /G() = Go\ /GO - GR GO /G0+ e
\Y Vi

Vl Vl

while the forward series, Eq. (7) for the data, (¥,),, = D, can be represented as

X V4 X N X \V4
D= (%\ /G: GO\ %0 +GA\ GO /Go+
\Vj \Vj V V

and, therefore, this diagram comparison indicates further opportunities for relating forward
and inverse processes. The symbols X and 1/ indicate a source and receiver, respectively.
However, we know that the forward and inverse problems are not “inverses” in some more
formal sense - meaning that the forward creates data but the inverse doesn’t annihilate data,
it inverts data. Never-the-less, the inverse scattering task specific subseries were thought to
act on only specific subsets of the data, e.g., free surface multiples, internal multiples, and,
imaging and inverting primaries. Hence, the guess was that if we could figure out how those
events were created in the forward series in terms of Gy and V, perhaps we could figure
out how those events were processed in the inverse series when once again Gy was acting on
D. That intuitive leap was later provided with a somewhat rigorous basis for free surface
multiples, but the more challenging internal multiple attenuation subseries and the distinct
subseries that image and invert primaries at depth without the velocity model while hav-
ing attracted some insightful mathematical-physics rigor (Ten Kroode (2002)), remain with
certain key steps in their logic based on plausibility, empirical tests, and physical intuition.
In fact, for internal multiples understanding how the forward scattering series produces an
event only hints at where the inverse process might be located. That ’hint’ required and
presently remains indebted to intuition, testing and subtle refinement of concepts to go to
the location of the inverse operation. This is further internal. This last statement is neither
an apology nor an expression of hubris, but a normal and expected stage in the development

and evolution of new fundamentally concepts.
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3 The marine case

For the marine case, with sources and receivers in the water column, the simplest reference
medium is a half-space of water bound by a free surface at the air-water interface. The

reference Green’s function, Gy, consists of two parts
Go = Go? + Go™* | (16)

where G¢? is the direct propagating, causal, whole-space Green’s function in water and
GoF¥ is the additional part of the Green’s function due to the presence of the free surface

(see Fig. 3). G corresponds to a reflection off the free surface. In the absence of a free

free surface

Figure 3: The marine configuration and reference Green’s function.

surface, the reference medium is a whole-space of water and Gg? is the reference Green’s
function. In this case, the forward series equation (7) describing the data is constructed from
the direct propagating Green’s function, Go?, and the perturbation operator, V. With our
choice of reference medium, the perturbation operator characterizes the difference between
earth properties and water; hence, the support of V begins at the water bottom. With the
free surface present, the forward series is constructed from Go = Go? + GoF° and the same
perturbation operator, V. Hence, GoF* is the sole difference between the forward series with
and without the free surface; therefore Gy is responsible for generating those events that
owe their existence to the presence of the free surface, i.e., ghosts and free-surface multiples.
Ghosts are events that either start their history propagating from the source up to (and
reflecting down from) the free-surface or end their history as the downgoing portion of the
recorded wavefield at the receiver, having its last experience as a downward reflection at the

free surface (see Fig.3).
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® @
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Figure 4: 1 and 2 correspond to source and receiver ghosts, respectively.

In the inverse series, equations (11)-(14), it is reasonable to infer that Go™® will be responsi-
ble for all the extra tasks that inversion needs to perform when starting with data containing
ghosts and free-surface multiples rather than data without those events. Those extra inverse
tasks include deghosting and the removal of free-surface multiples. In the section on the
free-surface demultiple subseries that follows, we describe how the extra portion of the ref-
erence Green’s function due to the free surface, Go™®, performs deghosting and free-surface

multiple-event removal.

X (2) e

S

Figure 5: Deghosted Marine Data: 1, 2 and 3 represent deghosted primaries, free surface

multiples and internal multiples, respectively.

Once the events associated with a free surface are removed, the remaining measured field
consists of primaries and internal multiples. For a marine experiment absent of a free surface,
the scattered field, ¥’,, can be expressed as a series in terms of a reference medium consisting

of a whole-space of water, the reference Green’s function, G¢?, and the perturbation, V, as
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follows:

U, = Go'VGo® + Go?VG'VGy® + Go?VG' VG VG + ...
= (W) 4 (W) + (¥)s. . (17)

The values of ¥/, on the measurement surface, D', are the data, D, absent of free-surface

events; i.e., D' consists of primaries and internal multiples
D'=D\+Dy+Ds+...+D) +...

where D! is the projection of (¥'y),, on the measurement surface. Unfortunately, the free-
space Green’s function, Go?, doesn’t separate into a part responsible for primaries and a part
responsible for internal multiples; a new concept was necessary to be introduced to separate
the tasks associated with Go? (Weglein et al., (1997)).

A seismic event represents the measured arrival of energy that has experienced a specific set
of actual reflections, R, and transmissions, 7, at reflectors and propagation, p, governed by
medium properties between reflectors. A complete description of an event would typically
consist of a single-term expression with all the actual episodes of R, T', and p in its history.
The classification of an event in D’ as a primary or an internal multiple depends on the

number and type of actual reflections it has experienced.

In contrast, forward scattering describes data, D', in terms of a series. Each term of the
series corresponds to a sequence of reference medium propagations, G, and scatterings
off the perturbation, V. The scattering theory description of any specific event in D’ also
requires an infinite series necessary to build the actual R, T, and p’s in terms of reference
propagation, Go%, and the perturbation operator, V. That is, R, T, and p are nonlinearly
related to Go% and V. We will illustrate this with a simple example later in this section.
Hence two chasms need to be bridged to determine e.g., the subseries that removes internal
multiples. The first requires a map between primary and internal multiples in D’ and their
description in the language of forward scattering theory, Go? and V; the second requires
a map between the construction of internal multiple events in the forward series and the

removal of these events in the inverse series.

The internal multiple attenuation concept requires the construction of these two dictionaries:
one relates seismic events to a forward-scattering description, the second relates forward
construction to inverse removal. The task separation strategy requires that those two maps
to be determined . Both of these multidimensional maps were originally derived using

arguments of physical intuition and mathematical reasonableness. Subsequently, Matson
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(1996) provided, for 1-D constant-density acoustic media, a mathematically rigorous map of
the relationship between seismic events and the forward scattering series. Recent work by
Nita et al. (2003), and Innanan and Weglein (2003), extend that work to prestack analysis
and absorptive media, respectively. Within the context of the important Matson paper, his
results agree with and confirm the original intuitive arguments. The second map, relating
forward construction and inverse removal, remains largely based on its original foundation
of reasonableness. Recently, Ten Kroode (2002) presented a formal mathematical map for
certain important aspects of the forward to inverse internal multiple map based on a leading
order definition of internal multiples. For the purpose of this paper, we present only the
key logical steps of the original arguments that lead to the required maps; the argument of
the first map is presented here; the second map, relating forward construction and inverse

removal, is presented in the next section.

To understand how the forward scattering series describes a particular event, it is useful to
recall that the forward series for D’ is a generalized Taylor series in the scattering operator,
V (Keys and Weglein, 1983). But what is the forward scattering subseries for a given event
in D'? Since a specific event consists of a set of actual R, T', and p factors, it is reasonable
to start by asking how these individual factors are expressed in terms of the perturbation
operator. Consider the simple example of one-dimensional acoustic medium consisting of a
ikz

single interface and a normal-incidence plane wave, e***, illustrated in Fig. 6.

Let the reference medium be a whole-space with acoustic velocity, ¢o. The actual and

reference differential equations describing the actual and reference wave fields, P and P,

are:
d? w?
[@ + 02(2):| P(z,w) =0 ,
and
az  W?
[@‘i‘ %] PO(Z,CU) =0 ,
where ¢(z) is the actual velocity.
The perturbation operator, V, is
w? w?
V=L-ILy=————.
T k) 4
Characterize c(z) in terms of ¢y and the variation in index of refraction, a,
1 1
= —|1 .
i = gl tele)
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Figure 6: The 1-D plane-wave normal-incidence acoustic example.

In the lower half-space
1 1 1+ al
_— = — o
ad ’

a; essentially represents (within a constant factor of w?/c2) the change in the perturbation
operator at the interface. The reflection and transmission coefficients and the transmitted

wave propagating in the lower half-space are

€1 —Co
Rai =
01 o1+ o
2
Ty = —
C1 + Co
and
P, =Tye'a® = To1ps
Using
C 1
a = —Ol ¢ |[l—-a+hp(a)|
(1+a):z 2

these R, T, and p quantities are expandable as power series in the perturbation, a; (h.p.
denotes “higher powers of”).

1
Ry = —zet h.p-(a) ,
T01 = 1+ hp(a) y
p = ea’=¢éw” +hp(a)

= po+hp(a).
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Thus, to lowest order in an expansion in the local perturbation, the actual reflection is
proportional to the local change in the perturbation, the transmission is proportional to
1, and the actual propagation is proportional to the reference propagation. An event in
D’ consists of a combination of R, T' and p episodes. The first term in the series that
contributes to this event is determined by collecting the leading-order contribution (in terms
of the local change in the perturbation operator) from each R, T' and p factor in its history.
Since the mathematical expression for an event is a product of all these actual R, T' and
p factors, it follows that the lowest order contribution, in the powers of the perturbation
operator, will equal the number of R factors in that event. The fact that the forward series,
Eq. (17), is a power series in the perturbation operator then allows us to identify the term
in Eq. (3) that provides the first contribution to the construction of an event. Since by
definition all primaries have only one R factor, their leading contribution comes with a
single power of the perturbation operator; hence, from the first term of the series for D’'.
First-order internal multiples, with three factors of reflection, have their leading contribution
with three factors of the perturbation operator; hence, the leading-order contribution to a
first-order internal multiple comes from the third term in the series for D'. All terms in
the series beyond the first make second-order and higher contributions for the construction
of the R, T' and p’s of primaries; similarly, all terms beyond the third provide higher-order
contributions for constructing the actual reflections, transmissions and propagations of first-
order internal multiples. How do we separate the part of the third term in the forward
series that provides a third-order contribution to primaries from the portion providing the

leading-term contribution to first-order internal multiples?

The key to the separation resides in recognizing that the three perturbative contributions
in Dj are located at the spatial location of reflectors. For a first-order internal multiple
the leading-order contribution (illustrated on the right-hand-member of Fig. 7), consists of
perturbative contributions located at the spatial location (depth) of the three reflectors where
reflections occur. Specifically for the example in Fig. 7, the three linear approximations to
Rq5, Ry, R19, that is, as — a1, a1, ag — a; are located at depths 21, 29, z3 where z; > 29 and
23 > 2. In this single layer example z; = z3. In general, Dj consists of the sum of all three
perturbative contributions from any three reflectors at depths z;, 22, and z3. The portion of
D} where the three reflectors satisfy z; > 22 and z3 > 25 corresponds to the leading order
construction of a first-order internal multiple involving those three reflectors. The part of
Dj corresponding to the three perturbative contributions at reflectors that do not satisfy
both of these inequalities, provide third-order contribution to the construction of primaries.

A simple example is illustrated in Fig. 8.
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Figure 7: The left-hand-member of this diagram represents a first-order internal multiple;
and the right-hand-member illustrates the first series contribution, from Dj, to its construc-

tion. a; and as — a; are the perturbative contributions at the two reflectors; cg, ¢; and ¢y

are the acoustic velocities and 1/c3 = 1/c3(1 + aa), 1/2 = 1/c3(1 + o).

23

22

21

Figure 8: Diagram representing a portion of Dj that makes a third-order contribution to the

construction of a primary.
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The sum of all the contributions in Dj that satisfy z; > 29 and z3 > 29 for locations of the
three successive perturbations, is the sum of the leading contribution term for all first-order
internal multiples. Similarly, second, third, - -- , n-th order internal multiple find their initial
contribution in the fifth, seventh, --- | (2n + 1)-th term of the forward series. We use this
identified leading-order contribution to all internal multiples of a given order in the forward
series to suggest a map to the corresponding leading-order removal of all internal multiples
of that order in the inverse series.

The forward map between the forward scattering series Eqgs. (7) and (8) for (¥y),, and the
primaries and multiples of seismic reflection data works as follows. The scattering series
builds the wavefield as a sum of terms with propagations Gy and scattering off V. Scat-
tering occurs in all directions from the scattering point V and the relative amplitude in a
given direction determined by the isotropy (or anisotropy) of the scattering operator. An
scattering operator being anisotropic is distinct from physical anisotropy, the latter of course
means that the wave speed in the actual medium at a point is a function of the direction
of propagation of the wave at that point. A two-parameter acoustic (isotropic) medium has
an anisotropic scattering operator. (see Eq. (6)). In any case, since primaries and multiples
are defined in terms of reflections, we imagine that primaries and internal multiples will be
distinguished by the number of reflection like scatterings in their forward description. A
reflection-like scattering is where the incident wave moves away from and the wave emerging

from the scattering point moves towards the measurement surface. Every reflection event in

\"
Primaries = \/+ \//"‘ \/+\/+
Y%
J \"
\Y4 \Y4 Vv v
_ v v M
(first order = one _
= + + + ...
downward reflection) \" v \'AY
v v
A4 \Y

2nd order
=(2 downward reflections —>
2 downward scatterings)

Internal
multiples

Figure 9: A scattering series description of primaries and internal multiples.

seismic data requires contributions from an infinite number of terms in the scattering theory
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description. Even with water as reference speed the simplest primaries, i.e., the water bot-
tom reflection, requires an infinite number of contributions to take the scattering ingredients
G and V into Gg and R where V and R correspond to the perturbation operator change
and reflection coefficient at the water bottom, respectively. For a sub-water bottom primary
the series has further issues to deal with beyond turning the local value of V into the local
reflection coefficient, R. For the latter case the reference Green’s function, Gy, no longer
corresponds to the propagation down to and back from the reflector (G # Gy) , and the
terms in the series beyond the first, GoVGg, are required to correct, e.g., for the timing

errors, and for ignoring transmission coeflicients, in addition to taking V into R.

The remarkable fact is that all primaries are constructed in the forward series by portions of
every term in the series. The contributing part has one and only one upward reflection-like
scattering. Furthermore, internal multiples of a given order (order is defined by the number
of downward reflections, independent of the location of that reflector) have contributions
from all terms that have exactly a number of reflection-like scatterings corresponding to the

order of that internal multiple.

Figure 10: a)A reflection-like scattering for a primary. b)Three reflection-like scatterings

contributing to a first order internal multiple.

The first term in the forward series for the data equations Egs. (7) and (8),

(e)m)1 = (GoVGo)m

where

is an integral over the entire subsurface, where V resides, and approximates all primaries
at once, as well as a single scattering model case, independent of depth. Of course the

quality of the approximation represented by (¥,);, depends on how many issues (e.g., phase,
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transmission coefficients and reflection coeflicient) starting with Gy, V into G and R are

required by any particular event.

All internal multiples of first order begin their creation in the scattering series in the portion
of the third term of [(¥),]m, [[(¥)s]m]3, With three reflection like scatterings. All terms in
the fourth and high terms of (¥,),, that consist of three and only three reflection—like
scattering, plus any number of transmission—like and self—interactions also contribute to

the construction of first order internal multiples.

G G,

(b)

VvV

Figure 11: Examples of transmission (a) and self-interaction (b) scattering diagrams.

As mentioned, all of these conclusions were originally deduced based on physically intuitive
arguments and later confirmed by analysis of the relationship between seismic events and
the forward series for 1D media (Matson, 1996). Further research in the scattering theory
descriptions of seismic events is warranted, and underway, and will strengthen the first of the
two key logic links (maps) required for developments of more effective and better understood

task specific inversion procedures.

Map I takes data into scattering series forward description. Map II takes scattering series
description of seismic events to the inverse scattering series processing that are performed
on those events. If you know how Gy and V make primaries and multiples, then perhaps

you can figure out how Gy and D(t) processes those same events.

4 The inverse series and task separation: terms with

coupled and uncoupled tasks

As we mentioned, the fact that: (1) in the forward series Go™® is the agent that creates
all events that come into existence due to the presence of the free surface (i.e., ghosts and
free-surface multiples) and (2) that the inverse series starting with data that includes those

free-surface related events - has additional tasks to perform (i.e., deghosting and free surface
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Figure 12: Two maps for inverse scattering subseries. a) D(t) = (¥,),, consisting of primaries
Py, P, ... and multiples, M, .... b) (¥,),, = D(¢) as a forward series in terms of Gy and
V. c¢) The inverse series for < GoVGg >,n=< GoV1Gg > — < GoV1GV1Go > +-..
Map (I) takes seismic events to a scattering series description. Map (II) takes forward

construction of events to inverse processing of those events.

multiple removal) on the way to constructing the perturbation, V, and (3) that the forward
and inverse engine, the reference Green’s function, Gy, consists of Go? plus G, for the
marine case, would be taken together imply that Go® would, in the inverse series, be the

removal machine for the events it is responsible for having created in the forward series.

How to go from that thought to a deghosting and free surface multiple removal subseries?
The inverse series expansions (11)-(14), in the marine case, consists of terms < GoV,, Go >,
with Gg = Go%+ G,5. Deghosting is realized by removing the two outside Go = Gol+
G, functions and replacing them with G¢?, a downgoing wave from source to V and an

upgoing wave from V to the receiver. Details are provided in section 10.

After that deghosting operation D =< GoV; Gg >,, to D =< Go%V; Go? >,, where D and
D are (¥,), = (G — Gy),, and the source and receiver deghosted data, respectively. The

objective is to remove free surface multiples from the deghosted data, D.

The terms in the series equations (11)-(14), with input D replacing D, contain both Gg?

and Go™° between the operators V. The terms in the series are of three types, e.g.,

Typel (GodVlGopsleoFsvlgod)mS
Type2 : (GOdV1G0F8V1G0dV1G0d)m§
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and
Typ€3 : (ngVngdVngdVl God)m

From an isolated task point of view we interpret these types of terms as: Type (1) when only
G, appears between two V; contributions then the term removes free surface multiples
(when added to D) and no other task is to be performed; Type (2): when both G¢? and
G,oT appear between two V; contributions, then a free surface multiple removal plus a task
associated with G are both to be performed and; Type (3), when only G¢* appears between
two V; contributions, then no free surface multiples are removed by that term. The two

outside GZ merely denotes that the data has been deghosted.

The idea behind task separated subseries is two fold: (1) isolate the terms in the overall
series that perform a given task as if no other task exists (i.e., Type 1 above) and (2) do
not return to the original inverse series with its coupled tasks involving Go™® and G¢¢, but
rather restart the problem with an input data, D', (equation (11”)), absent of free surface

multiples. Collecting all Type 1, Gof® terms we have

.Dll = D=(G0dV1G0d)m (11,)
Dy = —(Go*V1G™V1Gy?) (12"
Dy = +(Go*ViGo™ViGe™V1GyY) (13")

and D' = ) ° D} is the deghosted and free-surface multiple removed data. The data D’
consists of primaries and internal multiples and an inverse series for V. = )"° 'V} where V]

is the portion of V first order in primaries and internal multiples

DI — (GodvllGOd)m (11”)
(GOdeOd)m - _ (GOdVIIGOdVIIGOd)m (12”)
(GOd‘/SIGOd)m - _ (GOdVIIGOdVIIGOdVIIGOd)m

. (GOdvllGOd‘/QIGOd)m
— (Go?Vy'Go*V{'Gy?) (13")

G? creates primaries and internal multiples in the forward series and is responsible for

inverse tasks on the same events in the inverse.
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We repeat this process for removing internal multiples seeking to isolate terms that only
care about this one and only responsibility of Go?. No coupled task terms (e.g., that involve

tasks concerned with both internal multiples and primaries) are included.

After that is accomplished and internal multiples are attenuated, restart the problem, once
again, to write an inverse series whose input consists only of primaries. This task isolation
and restarting the definition of the inversion procedure strategy has several advantages over
a rigid fixation with the original series. Those advantages includes the recognition that a
task has already been accomplished is a form of new information and makes subsequent tasks
in our list that are often progressively more difficult, considerably less daunting, especially
compared to the original all-inclusive data series approach. For example, after removing mul-
tiples with a reference medium of water speed, it is easier to estimate a variable background
to aid. Transforming to a simpler data with fewer tasks to perform has serious advantages

over the strict adherence to the original series for

Note that the V the difference between water and earth properties is the same in V =
Yo Viand V =37 Vi but V; # V; since V; assumes the data is D (primaries and all
multiples) and V' assumes the data is D’ (primaries and only internal multiples),e.g., V; is
linear in all primaries, free surface and internal multiples, while V7 is linear in all primaries

and internal multiples.

5 An analysis of the Earth model-type and the inverse

series and sub-series

To invert for medium properties requires choosing a set of parameters that you seek to
identify. The chosen set of parameters (e.g. P and S wave velocity and density) defines an
Earth model-type (e.g. acoustic, elastic, isotropic, anisotropic earth), and the details of the
inverse series will depend on that choice. Choosing an earth model-type defines the form of
L, Ly and V.

On the way towards identifying the earth properties, (for a given model type), intermediate
tasks are performed, such as the removal of free surface and internal multiplies and the

location of reflectors in space.
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It will be shown below that the free surface and internal multiple attenuation sub-series
not only do not require subsurface information for a given model type, they are even inde-
pendent of earth model type for a very large class of models. The meaning of model type
independent task specific subseries is that the defined task is achievable with precisely the
same algorithm for an entire class of earth model-types. The members of the model type
class we are considering satisfy the convolution theorem, and include acoustic, elastic and

certain anelastic media.

In this section, we provide a more general and complete formalism for the inverse series
and especially the sub-series that has appeared in the literature to-date. That formalism
allows us to examine the issue of model-type and inverse scattering objectives. Finally,
when we discuss the imaging and inversion subseries in §7, we use this general formalism as
a framework for defining and addressing the new challenges we face in developing subseries
that perform imaging at depth without the velocity and inverting large contrast complex
targets. All inverse methods for identifying an objective function or medium properties
require specification of the parameters to be determined, i.e., of the assumed earth-model

type that has generated the scattered wavefield.

To understand how the free surface multiple removal and internal multiple attenuation task
specific subseries avoid this requirement, it is instructive to examine the mathematical-
physics and logic behind the classic inverse series and see precisely the role model type plays

in the derivation.

References for the inverse series include: Moses, H. E. 1956, Razavy, M., 1975, Weglein,
A.B., Boyse, W.E., and Anderson, J.E., 1981, Stolt, R.H., and Jacobs, B., 1980. In an
outline: the inverse series paper by Razavy (1975) is a lucid and important paper relevant to
seismic exploration. In that paper, Razavy considers a normal plane wave incident on a one
dimensional acoustic medium. We follow the Razavy (1975) development to see precisely how
model type enters, and, to glean further physical insight from the mathematical procedure.
Then we introduce a perturbation operator, V, general enough in structure to accommodate

the entire class of earth model types under consideration.

Finally, if a process (i.e., a subseries) can be performed without specifying how V depends
on the earth property changes, (i.e., what set of earth properties are assumed to vary inside

V), the process itself is independent of earth model type.
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5.1 Inverse series for a 1-D acoustic constant density medium

Start with the 1-D variable velocity, constant density acoustic wave equation, where c(x)
is the wave speed and ¥(z,t) is a pressure field at location z at time ¢. The equation that
U(z,t) satisfies is

& 10
0z?  c*(z) Ot?

) U(z,t) =0 (18)

and after a temporal Fourier transform, ¢t — w,

( L “’—2)) U(z,w) = 0. (19)

dz? ' A(z

Characterize the velocity configuration ¢(z) in terms of a reference velocity, co, and pertur-
bation, V'

1

"¢ where k = £ incident upon V(z) from the

The experiment consists of a plane wave e
left (see Fig. (13)). Assume here that V' has compact support and that the incident wave

approaches V(z) from the same side of V(z) that the scattered field is measured.
Incident wave :
e|kx
< @
Reflected wave

W(x, w)

B B —

V(x)

Figure 13: The scattering experiment: a plane wave incident upon the perturbation, V.

Let b(k) denote the overall reflection coefficient for V'(z). It is determined from the reflection
data at a given frequency w. e** and b(k)e~*** are the incident and the reflected waves
respectively. Rewrite (19) and (20) and the incident wave boundary condition as an integral
equation,

U(z,w) =e*® +

iklz—z'| 1.2 / / /
na / M= |2V (V0 (2! ) (21)
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and define the scattered field ¥,

VU, (r,w) = ¥(z,w) — e
Also, define the T' matrix

T(p, k) = / =PV (2)U(z, k)dz (22)

and the Fourier sandwich of the parametrization, V'
V(p, k) = /e_i":”V(x)eikwdx .

The scattered field, ¥, takes the form
VU, (z,w) = b(k)e ™= (23)

for values of z less than the support of V(z).

From equations (21), (22) and (23) it follows that

k_
2%
Multiply Eq. (21) by V(z) and then Fourier transform over z to find
* V(p,g)T(g, k)

w @ —k%—ic

T(—k, k)~ = b(k). (24)

T(p,k) =V (p,k) — Kk / dg (25)

where p is the Fourier conjugate of . Razavy (1975) also derives another integral equation
by exchanging the roles of unperturbed and perturbed with Ly viewed as a perturbation of
—V upon L,

> T*(k,q)T(p, q)

o G®—k? —ie

V(p,k) = T(p, k) + K /

dq . (26)

Finally, define W (k) as essentially the Fourier transform of the sought after perturbation, V'
WE=VRD = [ RV (27)

and recognize that predicting W (k) for all k produces V().

From Eq. (26) we find after setting p = —k,

* T*(k,q)T(—k,q)
q® — k2?2 — ie

W(k) = V(—k, k) =T(—k, k) + &k / dq . (28)

—0o0
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The left hand member of Eq. (28) is the desired solution, W (k), but the right hand member
requires both T'(—k, k) (that we determine from 2:b(k)) and T™(k, ¢)T(—k, q) for all g.

We cannot directly determine 7T'(k, q) for all ¢ from measurements outside V.

If we could determine T'(k, q) for all g, then (28) would represent a closed form solution
to the (multidimensional) inverse problem. If T'(—k, k) relates to the reflection coefficient,

then what does T'(k, q) mean for all g7

Let us start with the integral form for the scattered field

1k’(z z')
2
(z,k) 27r// 0 ———dK'k*V (2") ¥ (2, k)dx' (29)

and Fourier transform (29) going from the configuration space variable, z, to the wave

number p to find

fzk’:c’
/ / k,2 , dk'k2V(a:’)\Il(:z', k)dx' (30)
and if integrate over k' to find

k2
Vy(p, k) = [E——

/ e H5 Y ()0 (e, k) da'. (31)

The integral in Eq. (31) is recognized from equation (22) as

T(p, k)

v =k
s(p7k) kk2_p2_i€

(32)
Therefore to determine T'(p, k) for all p for any k is to determine ¥ (p, k) for all p and any
k (k=)

[81]

But to find ¥,(p, k) from ¥ (z, k) you need to compute
/ e PV, (z, k)dz (33)
i.e. it requires ¥,(z, k) at every z, (not just at the measurement surface, i.e. a fixed z value

outside of V).

Hence (28) would provide W (k) and therefore V(z), if we provide not only reflection data
b(k) = T(—k, k)% but the scattered field, ¥,, at all depths, x.

Since knowledge of the scattered field, ¥, (and, hence, the total field), at all z could be
used in equation (19) to directly compute ¢(z), at all z, there is not much point or value in

treating Eq. (28) in its pristine form as a complete and direct inverse solution.
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Moses (1956) first presented a way around this dilemma. His thinking resulted in the inverse

scattering series and consisted of two necessary and sufficient ingredients:

(1) model type combined with (2) A solution for V(z), (and all quantities that depend on
V') order by order in the data, b(k).

Expand V(z) as series in orders of the measured data
V=Vi+VatVat--=) V, (34)
n=1

where V,, is n—th order in the data D. When the inaccessible T'(p, k), |p| # |k| are ignored,
Eq. (28) becomes the Born-Heitler approximation and a comparison to the inverse Born
approximation (the Born approximation ignores the entire second term of the right hand

member of Eq. (28)) was analyzed in Devaney and Weglein (1985).

It follows that all quantities that are power series (starting with power one) in V' are also

power series in the measured data.

W(k) = Wiy(k) + Wy(k) + ... (36)
V(p,k) = Vi(p, k) + Va(p, k) +.... (37)

The model type, in this simple acoustic case, provides a key relationship

Vip,k) =W (’“%’) (38)

that constrains the Fourier sandwich, V' (p, k), to be a function of only the difference between
k and p. This model-type (acoustic constant density model), combined with order by order
construction of the T'(p, k) for p # k required by the series, provides precisely what we need
to solve for V (z).

Start with the measured data, b(k), and substituting W = > W,,, T = ) T,, from equations
(35) and (36) into Eq. (28) we find

;Wn(kz) = Za(k) + K2 / # <Zl i 2Tn> . (39)
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To first order in the data, b(k), £k > 0 (note that b*(+k) = b(—k), k > 0)

Wa(k) = (k) (40)

and Eq. (40) determines Wi(k) for all k. From Eq. (40) together with Eq. (27) to first
order in the data

Wik) =i~k ) = [ Vila)eedo (a)
we find V4(z). The next step towards our objective of constructing V'(z) is to find Va(z).
From W, (k) we can determinate W;(%52) for all k and p and from Eq. (38) to first order in
the data

k—
Vip, k) = W (—2 ”) (12)
which in turn provides Vi(p, k) for all p, k.

(Here is model type in action: The acoustic model with variable velocity and constant

density).

Next we go to Eq. (26) to first order Vi(p, k) = T1(p, k) for all p and k, and substituting in
(28) we get the second order in the data

W) = [~ Tk T (g (13)
and
Wy(k) = / " ey, (2)da (44)

After finding V5(z) we can repeat the steps to determine the total V' order by order
V =Vi(z) + Va(z) + ...
Order-by-order arguments and model type allow
Ti(p, k) = Va(p, k)
although
T(p, k) # V(p, k) -
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From a physics and information content point-of-view what has happened? The data D
collected at e.g. = 0, ¥;(z = 0,w) determines b(k). This in turn allows the construction
of T(p, k), (k = w/cy) for all p order by order in the data. Hence the required scattered
wavefield at depth, represented by T'(p, k), k = w/cy, for all p, for Eq. (28) is constructed
order-by-order, for a single temporal frequency, w, using the model type constraint. The data
at one depth for all frequencies is traded for the wavefield at all depths at one frequency.
This observation, that in constructing the perturbation, V(z), order-by-order in the data,
the actual wavefield at depth is constructed, represents an alternate path or strategy for

seismic inversion (see Weglein et al. (2000)).

If the inverse series makes these model type requirements for its construction how do the
free surface and internal multiple sub-series work independent of earth model type? What
can we anticipate about the attitude of the imaging and inversion at depth sub-series with

respect to these model type dependence issues?

5.2 The operator V for a class of earth-model types

Consider, once again, the variable velocity, variable density acoustic wave equation

w? 1
z L P = 4
(K-l-V pV) 0 (45)

where K and p are the bulk modulus and density, and can be written in terms of reference

values and perturbations a; and as

11 1 1
K K,( +a1) P p,( + a2)
w? 1
Lo=— +V.-V (46)
K, Pr

wroo as(7
V = ?al(r)+ (V 2;7.)

v) . (47)

We will assume a 2-D earth with line sources and receivers, (the 3-D generalization is straight-
forward). A Fourier sandwich of this V is
2 7 —

o L - k- -
V(P k;w) = /e_”"TVe’k'TdF= ;;,—al(k —-p)+ pa2(k —P) (48)

T T
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where p and k are arbitrary 2D vectors. Green’s Theorem and the compact support of a;
and as help Eq. (47) to Eq. (48). For an isotropic elastic model, equation (48) generalizes
for V,, (see Stolt and Weglein (1985), Boyse (1986), and Boyse and Keller (1986))

2 L=

— w e -p = 2,62 - —
Vol i) = (k=) + “Laak =)~ TR x ok -p) (49

where a3 is the relative change in shear modulus and fy is the shear velocity in the reference

medium.

The inverse series procedure can be extended for perturbation operators (48) or (49), but
the detail will differ for these two models. The model-type and order-by-order arguments
still hold. Hence 2-D (3-D) general perturbative form will be

— -

V(D k;w) = Vi(p, k;w) + - - -

where fand k are two dimensional (or 3D) independent wave-vectors (that can accommodate

a set of earth model types that include acoustic, elastic and certain anelastic forms).

e ACOUSTIC

e ACOUSTIC (density variable)
w? i
V = —2a1+k-k’a2
X0
e ELASTIC isotropic (p-p)
2

2
V=""0+k Kay— 2ﬁ—g|k x k'|*a3
(7)) w

a; = Relative change in the bulk modulus.
as = Relative change in density.

asz = Relative change in shear modulus. What can we compute in the inverse series without
specifying how V depends on (a1), (a1,az),---? If we can achieve a task in the inverse series
without specifying what parameters V depends on, then that task can be attained with the

same identical algorithm independent of earth-model type.
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5.3 Free surface and internal multiple subseries and model-type

independence

In equations (11)—(14), we presented the general inverse scattering series without specifying
the nature of the reference medium that determines Ly and Gg and the class of earth model
types that relate to the form of L, Ly and V. In this section, we present the explicit inverse
scattering series for the case of marine acquisition geometry. This will also allow the issue

of model-type independence to be analyzed in the context of marine exploration.

The reference medium is a half-space, with the acoustic properties of water, bounded by a
free surface at the air-water interface, located at z = 0. We consider a 2-D medium, and
assume that a line source and receivers are located at (zs,€;) and (zg4,¢€,), where €5 and ¢,

are the depths below the free surface of the source and receivers, respectively.

The reference operator, Ly, satisfies

V2 2
LGy, = (p_ + :—) Go(z,z,2',2;w)
0 0

= —§(z—2){o(z—2)—d(z+2)}, (50)

where pg and k¢ are the density and bulk modulus of water, respectively. The two terms
on the right member of Eq. (10), correspond to the actual source located at (2, 2’) and the
image of this source, across the free surface, at (z’, —2'), respectively; (z, z) is any point in

2-D space.

The actual medium is a general earth model with associated wave operators, L, and Green’s

function, G. Fourier transforming Eq. (10) with respect to z, we find:

1 & q "o
[%dz2 + K,_O:| GO(k:mZaw )% 7(")) -
1 71 itl
—(27r)1/2e F2l§(z—2') —6(z+2)} . (51)

The causal solution of Eq. (11) is

—ikg !

Po €

V2r —2iq

where the vertical wave number, g, is defined as

Go(kw,z, xl, ZI;UJ) — (eiq|2—z’| _ eiq|2+z’|) , (52)

q = sign (w)v/(w/c)® — K ,
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and cg is the acoustic velocity of water
co = /ko/po -

With Gy given by Eq. (12), the linear form equation (11) can be written as

2
D(kga €9y ks, €s; w) = qp; Sin(‘]geg) Sin(qSGS)Vl(kga 99, ks, qs, w) ) (53)
g4s

where V(k—;, ky,w) = Vl(k__;, ky, w)+V2(k—;, ky,w)+. .. and k_;, k, are arbitrary two dimensional
vectors. The variable k, is defined as

k:=—(g5+4s) ,
where
g = sign (w)y/(w/co)® — k7 , (54)
and
gs = sign (w)v/(w/c)? — k2 . (55)

The first term in the inverse series (in two dimensions) in equation (11’) in terms of deghosted
data, D is

D
(e2iqgeg _ :|_)(e2iqses _ 1)

= GV 1Go? = D(ky, €4, ks, €4;w) (56)

Using the bilinear form for G¢% on both sides of V; in Eq. (56) and Fourier transforming

both sides of this equation with respect to =, and z, we find

—

Vi(kg, K w)
495

eiQQ €g ei95€s

= D(ky, €4, ks, €5;w) (57)

where k:, and k, are now constrained by |k_;| = |k,| = < in the left-hand member of Eq. (57).

In a 2D world only the three dimensional projection of the five dimensional V;(p, E;w) is
recoverable from the surface measurements D(ky, €4, ks, €5;w) which is a function of three

variables, as well.

It is important to recognize that you cannot determine V; for a general operator V(ri, r3; w)
or Vl(k_:; , E; w) from surface measurements on m, and only the three dimensional projection

of Vy(K, k;w) with |k| = |K'| = 2 is recoverable.
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However this three dimensional projection of V; is more than enough to compute the first
order changes in any number of two dimensional earth model parameters; a; (7) for a given

earth model type. (a} = First order approximation to ai, ag, az -.. ).

After solving for ai(7), a3(7), a3(7) ... ... , you could then use ai,a3,a3,... to compute

V(K k,w) for all ¥, k,w where a}(7) = linear (or Born) inversion of a;(7).

This is the direct extension of the first step of the Moses (1956) procedure where model type

is exploited.

Consider V, for the operator V and its linear approximate V; (from equation (12))
(GoV2Go)m = —(GoV1GoV1Go)m (12)
written for the general V; form
V2(k2v k:’w) = —////eikz‘riﬂ(r}, 73, w)Go(r3, T3;w) X
Vi(73,74; w)eik:'ﬁ‘ drdrydridry
= — / / Vl(kz, 73, w)Go(13, 73, w) Vi (73, ky, w)dradr. (58)
Expressing Gy as a Fourier transform over x5 — z3 we find
Go(z2 — 3, 29, 23;W) = /deg(k, 29, 23; w)eF(®2723) (59)
and

Go(k, 29, 2z3;w) = /e‘imdeg(:c,zz,zg;w) (60)

for Go = G¢?, Eq. (60) reduces to

G d eiq|z2_23|
k jw) = 61
0“(k, 22, z3;w) 2%q (61)
where
w2
SR
Co
For the marine case where there is a free surface, the Green’s function Gy satisfies:
w2 =
(v2 + c—2> Go = 6(r3 — 73) — 8(r3 — 1) (62)
0
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d? . w2 .
(5 -2+ %) o=l —20) 82— ) (63)
where 2% is the image across the free surface of 23 (with the free surface at z = 0, 2} = —z3.

The solution to Eq. (63) is

eldlz2—z3| _ piglzatzs]

Go(kw,ZQ,Zg,CU) = = Gg—f—GOFS

2i1q

The contribution to V5 from the additional portion of the Green’s function due to the free

surface, Gof”, —%, will be from equation (58)
. eiq|zz—|—zg| ] 5
/ Vi(kg, 735 w)drs - / / dh—— e =V (15, ks w)drs (64)
tq

Using the convention

Vi(ky, koyw) = /e_’kl'”Vl(ﬁ,r};w)e’kz'”dﬁdﬁ

where

ky = ko
and

ky = Ky,

. The portion of V due to Go™® has the form
[ Vil a0, 0. 0) Vil 0, ) = ~Valkyy —tp B ) (69

where k' = k;tandﬁ = k::n (Fig.14).

free surface

earth

Figure 14: k and k'.

The computation of the portion of V, only due to G, Vo5 is computable with V (k;, k_;; w)

where |k-;| = |k = <; which is directly related to D without assumption concerning the
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relationship between V; and relative changes in earth material properties. It is that portion

of the inverse series that forms the free surface de-multiple sub-series.

Therefore the free surface demultiple algorithm is independent of the earth model type for

the class of models we are considering.

The summary of the free surface demultiple algorithm (from Weglein et al., 1997 and Car-
valho, 1992) is as follows:

1. The data, D, is computed by subtracting the reference field, Go = G + G, from

the total field, G, on the measurement surface.

2. Compute the deghosted data, D where
D = D/[(e*ss — 1)(e¥e> — 1)]
from D and the source and receiver deghosting factors in the k —w domain, G¢?/Ggy =
1/(e*% —1). g, g, and €,, €, are the vertical wavenumbers and the depths below the

free-surface of the source and receiver, respectively.

3. The series for deghosted and free-surface demultipled data, D', is given in terms of the
deghosted data D) as follows:

1 * .
D — zq(eg+es)Dl
n(kg7 ks,CU) ZﬂprB(CU) /_oo que l(kg7k)w)
xD! _i(k,ks,w) n=273,4,... (66)
and
D' (kg, ks, w) ZD’kkw. (67)

where D'(kg, ks,w) = D'(kg, €, ks, €5,w), B(w) and p, are the source signature and reference
density, respectively. The data D’ consist of deghosted primaries and internal multiples only
and D] = D. Hence, D' represents the deghosted data without free-surface multiples. The
mathematical details of equations (66) and (67) follow from equations (117), (127) and (13/)
and are provided in Carvalho et al. (1992) and Weglein et al. (1997). Equations (66) and (67)
are the prestack multidimensional generalizations of the one-dimensional, normal-incidence

free-surface-elimination map presented in the appendix of Ware and Aki (1969).
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6 Internal multiple attenuation

In the previous section, we described how to achieve the goal of separating the removal of
surface multiples from the other three tasks of inversion. We now address the more difficult
issue of separating the task of attenuating internal multiples from the last two goals of

migration and inversion.

When we separated surface multiples from the other three goals we were able to isolate a
portion of the Green’s function, Go, namely Gof®, whose purpose in the forward and inverse
series was to produce and remove, respectively, events due to the presence of the free surface.
Unfortunately, for internal multiples, we don’t have that relatively straightforward road to

follow.

If we attempt to repeat the reasoning that proved useful with surface multiples, we seek an
example that has neither surface nor internal multiples. We can imagine a problem where
we have two half-spaces; that is, we wish to invert a model that has only a single horizontal
reflector. In that case, the scattered field, the primary, requires for its description a complete
forward scattering series in terms of Go? and the exact perturbation, V. The inverse series
for V in terms of the data, the primary, requires the full series and Gg%. The lesson, from
this single reflector example, is that the complete Go? is required in the inverse series when
the only tasks are locating reflectors and estimating parameters. Hence, we cannot separate
G(? into an extra part that exists only in the presence of internal multiples, but which is
not present when internal multiples are absent. Thus, a fundamentally different approach is

required for the attenuation of internal multiples.

We next present the logical path that leads to this new approach. The forward series gen-
erates primaries and internal multiples through the action of G¢% on V. The inverse series
constructs V from the action of Go? on the recorded data. The action of Go? on data
must remove internal multiples on the way to constructing V. In an earlier section, we
presented an analysis and interpretation of the forward series and specifically, how G gen-
erates primaries and internal multiples of a given order. However, before we focus on the
internal-multiple issue, it is important to note an essential difference between the scattering

theory pictures of free-surface and internal multiple generation.

Given data, D', without free-surface events, the forward series generates data, D, with
free-surface events by the action of G¢™® on D’. Each term in that series generates one
order of free-surface multiple; that is, all events that have reflected from the free surface a

given number of times. The modelling that G provides is an exact description of a wave
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propagating in the water and reflecting from the free surface. Hence, Go7® generates in the
forward series, and removes in the inverse series, one order of free-surface multiple with each

term.

The situation for primaries and internal multiples is quite different. For those events, we
adopt a point-scatterer model, and every term in that forward series contributes to (but
does not by itself fully describe) either primary or internal multiples. Each primary or
internal multiple requires an infinite series for its construction. We adopt the simpler surface
reflection model when describing wave phenomena associated with reflectors at or above the
measurement surface; we adopt the point-scatterer model for waves associated with sub-
receiver/source structure. The former is our model of choice when we have accurate or
nearly accurate information about velocities and structure, and the latter is our model when

that information is unavailable or unreliable.

The location and properties of the free surface are captured in G and it is that specific and
well defined experience (or its absence) which allows free surface multiples to be separated
from primaries and internal multiples with one term creating (in the forward series) and one
term removing (in the inverse series) all events that have experienced the free surface a given
number of times. The number of G factors in a term in the subseries equations (12/-13)
correspond to the order of free surface multiples it removes. The internal multiples have
(by definition) all of their downward reflections below the free surface and since we assume
absolutely no subsurface information those reflectors are assumed to be completely unknown
in both location and character.

This makes the problem of distinguishing the generation (and removal) of internal multiples
from primaries more difficult in terms of direct propagation through water Go¢ and the
difference between earth and water properties, V. As mentioned earlier a series is required
to generate any primary or any internal multiple in terms of G¢% and V and new concepts
required to distinguished this forward subseries.

It is no surprise that the first term in the generation and first term in the removal of internal
multiples are approximate. The efficiency of the first term in the removal subseries of internal
multiples is remarkably higher than the first term in the forward creation, e.g., it takes an
infinite series to get the important time prediction (phase) of any internal multiple in the
forward series (in terms of G¢? and V) whereas, as we will demonstrate, the first term in
the removal series (of an internal multiple of a given order) predicts the time precisely and
well approximates the amplitude (in terms of G¢% and D') of all multiples of that order -
from all reflectors at all depths at once. The efficiency of the inverse subseries accounts for

its practical value and impact.
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The fact that generating primaries and internal multiples of a given order requires an infinite
series suggests that an infinite series of terms, each involving operations with Go? on D',
is required to remove internal multiples of a given order. The particular inverse-scattering
subseries for attenuating all internal multiples, described here, chooses only the leading and
most significant contribution from the removal series of each order of multiple, forming a

series that well attenuates, rather than eliminates, all internal multiples.

In our earlier discussion of the forward series for primaries and internal multiples we argued
that primaries are constructed starting with the first term in the series, and first-order
internal multiples have their leading contribution in the third term. Similarly, second-order
internal multiples are generated by contributions starting with the fifth term in the forward
series. In general, n-th order internal multiples have contributions from all terms starting
at term 2n + 1. In addition, the portion of the third term that starts to build the first-
order internal multiple was distinguished from the part that has a third-order contribution
to constructing primaries. The leading-term contribution to constructing a class of multiples
in the forward series suggests the leading-term contribution for their removal in the inverse
series (Fig. 15).

The first two terms in the forward series don’t contribute to generating first-order internal
multiples. Similarly, it’s argued that the first two terms in the inverse series don’t contribute
to their removal. The mathematical realization of Fig. 15a, is the leading contribution to
the generation of first-order internal multiples; it suggests the corresponding mathematical
expression for the leading-order attenuation of those multiples. To realize Fig. 15b select the

portion of the third term of the inverse series with z; > 25 and z3 > 2s.

With this purpose in mind we examine V3, the third term in the inverse series. In contrast
with the subseries generated by G, for free-surface multiple attenuation, the three terms
in V3 do not sum to a single term when the inverse series is generated with the direct
propagating Green’s function, Go%. From the fact that G¢™ can be viewed as the Green’s
function due to an image source above the free surface and is therefore outside the volume,
it follows that for all z, 2’ inside the volume (i.e., below the free surface) G satisfies the

homogeneous differential equation

V2 2
<—+w—) G5 =0.
Po Ko

The fact that G satisfies a homogeneous differential equation leads in turn to the math-
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(a) Forward

(b) Inverse

A

21

23y

Figure 15: The leading term contribution to the generation of first-order internal multiples
is represented in (a) and suggests the leading term contribution, in the inverse series, to the
removal of first-order internal multiples represented in (b). Gg%, V and V; are the whole-
space Green’s function, the perturbation operator and the “migrated data-like” first-order

approximation to V, respectively.
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ematical simplification

(GOdV1G0FSV1G0FSV1G0d)m = - (GOdV1G0FSV2G0d)m
= - (GOdVQGOFsvl(;Od)m . (68)

Gof® doesn’t require off-shell k # k' contribution as long it is in integrals over the volume
V1, and its effective source, the image source is outside the volume. This is another way to
understand why the free-surface demultiple algorithm is automatically model-type indepen-
dent. Model type was needed in Razavy (1975), to provide T (k, p) for k # p. Since G
never requires k # p'in its integrations with V; it doesn’t depend upon the inverse series
model type argument to generate this subseries. Hence the free-surface multiple removal
subseries is independent of earth model type. In contrast, Go? satisfies the inhomogeneous

differential equation

(V_2 N w_2) Got = —6(z — #)5(z — ') .

Po Ko

From Eq. (13”), and using G¢%, we have:

(ngV3G0d) = - (ngleng2G0d)
— (Go?V2Go?V1Go?) — (Go?V1Go?V1G?V1GyY)
= (G V31Go?) + (Go?V32Go?) + (Go?V33Go?) (69)
where
Vi = —ViGy'Vy, (70)
Vi = —V2G0dV1 ) (71)
and
Vis = —ViGVG*V; . (72)

In contrast to the case of Gy, these three terms Vs;, Vo and V33 make distinct contri-
butions. The first two terms, (GOdV31G0d) and (GOdV32G0d), on the right member can be
shown (Araijo, 1994) to consist of a refraction-like scattering component, and are thus not
chosen for the task of removing internal multiples. These contribute to the other inversion
tasks (migration and inversion) that act on primaries. The third term on the right hand

side,
(G V33Go?) = — (Go?V1G?V1Go?V1Go?)
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Figure 16: Diagrams corresponding to different portions of ASGOdleOdleOdlegdAg.
Ounly (d), with 23 > 25 and 2 < z3, contributes to the attenuation of first-order internal

multiples (see also Fig. 15b).
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can be broken up into four parts corresponding to the four diagrams in Fig. 16.

Choose the portion of (ngV33G0d)m corresponding to Fig. 16d; a diagram that represents
a contribution to multiple reflection attenuation. (ngV31G0d)m and (ngV32G0d)m do
not support a diagram of the Fig. 16d variety, and therefore were not selected for that task.
The mathematical and algorithmic realizations of Fig. 16d takes place by requiring a lower-
higher-lower relationship between the successive vertical locations of the data in the integral.
Using this criterion, the appropriate portion of each of the odd terms in the series is selected.
The generalization of the diagram found in Fig. 16d is used to select the appropriate portion

of the leading-order contribution to removing higher-order internal multiples.

7 Internal multiple attenuation and model-type depen-

dence

For G, the direct propagating Green’s function we have from Eq. (61)
eialz2— 23] 1 0 iq'(22—23)
—_— = 7.(1(],
2iq 21 | o @* — q"? + ie
and separating the integral into a principal value and a contribution from contours around
the poles ¢’ = +q as

= PV. (ﬁ) +im6 (¢ — ¢%)

1 1 1 g
= PV.|—— — | imT— (§ I K} ! iq' (z2—23)
(q2 —Q'2) o (W2IQI Old —a)+3lg +g))e )

1
q* — q* +ie

This contour around the pole contribution leads to:

/oo dk ‘/1 (kga _qga k7 Q) ‘/1 (ka q, ksa q:;) + ‘/1 (kga _qga ka _q) ‘/1 (ka —q, ksa qs)
2iq 21q

—0o0

and is computable directly from V; (k,, gg, ks, gs)-

The portion of V, that depends on the principal value part of the contribution to G¢ is
not computable from ¥, (z,, €4, T, €5, w) without assuming a model-type. Since the internal
multiple algorithm derives from the analogous imd contributions from the V;V;V; or V33
(equation (72)) contribution from the third term in the series (equation (13”))

/dkdkl Vl (kg’ —dg, ka q) Vl (ka q, k,’ _q,) Vl (kla —q', ksa Q.s)
2iq ' 2iq’

+...
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is once again computable directly from surface data without assumption of model type.

An important point to recognize in deriving the internal multiple algorithm, not emphasized
in previous publication, is that although the “W” or lower-higher-lower relationship from
the forward series provides a guide for the examination of a similar diagram in the inverse,
to actually realize an internal multiple algorithm the quantity taken through the diagram

was not V; but rather

Vi (kga dg, ks, qs, w)
—2iq,

bl (kga €g, ksa €s,4g + qs) = (_2iqs) DI (kga €9y ksa €s, w) =

the effective data generated by a single frequency plane-wave incident field. This was origi-
nally deduced (see Araujo (1994) and Weglein et al. (1997)) through empirical evaluation and
testing of different candidate quantities (e.g. a first and natural guess of taking V; through
“W” doesn’t lead to an attenuation algorithm) that, in turn, allow different subdivisions of

the V33 term in terms of a “W” diagram.

The fact that this quantity, b;, results in a localized incident wavefront in every dimension
(without the wake behind the front that the impulse response in 1D and 2D experience) is the
only and best (although meager) 'understanding’ or hint we have for this fact, to-date. Hence,
the forward construction and inverse removal symmetry for the internal multiple went only so
far and the fact that, b; = %ﬁ:’q”w is the quantity that when transformed to (kg, gy, 2)
and broken into lower-higher-lower contributions results in the internal multiple algorithm
remains partly intuitive and empirical in its foundation and invites further analysis for better
understanding. That algorithm operates in a 1D, 2D or 3D earth. A deeper awareness and
comprehension of the workings of the inverse series will, of course, also benefit the current

research on imaging and inverting primaries.

The internal multiple algorithm is independent of model type because if derives from a

algorithm depending on the portion of V; that only requires |k:_;| = |ky| = -.

8 Internal multiple algorithm

The first term in the internal multiple-attenuation subseries is the data, D', consisting of
primaries and internal multiples. The second term in the attenuation series comes from a
portion of the third term in the series (equations (69) and (72)). This portion of the third
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term,

1 oo ) )
—iq1(eg—e€s) iq2(€g—€s)
b=y / / dkye #01(6o <)y (co

o0
oo

x [ dee%t g, (k, Ky, z)

X dZQ@l( an- qz)sz1(l€1,k2,Z2)

.
I

X / dz ez(qz+45)23b1(k2, ksa Z3) ) (73)

z2

is chosen to satisfy z; > 23 and 23 < z3. b; is defined in terms of the original prestack data

with free-surface multiples eliminated, D', and is defined by
D'(kg, kyyw) = (—2ig,) ' B(w) by(kg, ks, qg + gs) - (74)

by is the data that would result from a single-frequency incident plane wave and B(w) is the

source signature. The data with internal multiples attenuated, D™ is
DIM(kg, ks, w) = (—2iqs lB Z b2n+1 sa qg + qs)' (75)

A recursive relationship that generalizes Eq. (75) and provides bs,, 1 in terms of by, ; for

n=1,2,3,... is given in Aratjo (1994) as

ban 1 (kg Koy dy + G5 =ﬁ / : dkyeia1(es <)
X / h dz,€" 905, (ko Ky 20) Agnya (K, ks, 21)
h n=1,23,... (76)
where

%) 21
A3(k1, ks, zl) :/ dk2e’tq2(€g*€s) / dz2ez(—q17q2)zZ

X b1(k1,k2,22)/ dz3e’ (@923, (ky Ky, 23)

z2
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and

A2’n+l(kl, ks, Zl) :/ dk2eiq2(€g_€s)

—00

z1
X / d22€i(_ql_q2)22 bl(kl, kQ, 2’2)

y /oo dkse—i(IS(Gg—es) /°° dzsei(q2+q3)z3

X by(ka, ks, 23)Aan—1(ks, ks, 23)
n=2234,....

As we mentioned, the full series for V can have restrictive convergence properties and a
sensitivity to missing low-frequency information, (see, e.g., Carvalho, 1992). In contrast,
tests indicate (see Aratjo, 1994; Aradjo et al., 1994a; Aratjo et al., 1994b) that the multiple
attenuation subseries in Eq. (76) always converges and is insensitive to missing low frequency

information.

Free-surface multiple attenuation methods operate one temporal frequency at a time (see
equations (66) and (67)); in contrast, the attenuation of an internal multiple from a single
frequency of data requires data at all frequencies [see equations 75 — 76]. This require-
ment derives from the integral over temporal frequency in the transform of ¢, + ¢, to z.
With bandlimited data this transform is only approximate; nevertheless, the truncated in-
tegral remains effective in attenuating multiples. As in the case of the surface-removal
algorithm each term in the series, Eq. (75), attenuates a given order of internal multiple,
and prepares the higher order internal multiples for the higher demultiple terms in the se-
ries. Since e““zzbl(kg, ks,w) is a downward continuation of shots and receivers to depth z
in the reference medium, and subsequent integration over k, is a simple constant Jacobian
away from integration over w (¢ = 0 imaging condition), it follows that b;(kg, ks, z) corre-
sponds to uncollapsed-migration (Stolt and Weglein, 1985; Weglein and Stolt, 1999). Indeed,
the algorithm can be interpreted as a sequence of these uncollapsed migrations restricted to
lower-higher-lower, pseudo-depth, which is essentially vertical travel time, since the reference
is constant water speed. Uncollapsed-migration is a generalization of the original migration
concept; sources and receivers are downward continued to a common-depth level z, time is
evaluated at zero, and information at z, # z, is retained. The latter retention of z, # z,
distinguishes uncollapsed-migration from migration; it provides local angle-dependent re-
flection coefficients rather than the angle-averaged reflection coefficient of the traditional

z, = =5 imaging condition(see Weglein and Stolt, 1999).
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When free-surface and internal multiples are present: (1) apply the free-surface demulti-
ple algorithm to D and output D', then (2) input D' to the internal multiple attenuation

algorithm, to produce primaries.

9 Purposeful perturbation concept and examples of

free surface and internal multiple attenuation

9.1 Purposeful perturbation

As we have described, the response to the apparent lack of robust convergence of the entire
inverse series, without a-priori information, and the recognition that it nevertheless repre-
sented the only complete inversion formalism for the multidimensional acoustic and elastic
waves combined to encourage seeking task specific subseries that would have more favorable
properties. However, another issue that these task specific (well-converging) subseries faced
was how many terms would you require in practice to achieve a certain level of effectiveness.

The concept of purposeful perturbation was developed to address the latter issue.

The idea was to identify the specific purpose or role that each term within a task specific
subseries performs independent of the subsurface or target over which the recorded data was

collected.

The terms of the series perform tasks and coupled tasks; the task specific subseries per-
form isolated, uncoupled tasks; and, we define the purposeful perturbation concept to know
precisely what each term within a given task specific subseries is designed to accomplish.
For example, a term in the inverse scattering subseries for eliminating free surface multiples
removes precisely one order of free-surface multiple completely independent of the depth of

the water or any other property or characteristic of the Earth.

9.2 1D free surface demultiple algorithm

For the simplest illustration of this purposeful perturbation concept, consider the generation
of free-surface multiples for a 1-D Earth, whose primary reflections and internal multiples
have a response R(w); and, where the free surface is characterized by a reflection coefficient
of -1 (see Fig. 17).
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Figure 17: Illustration of the free surface multiple removal series: (a) Data without a free
surface, (b) the total upgoing field in the presence of a free surface Rpg, and (c) the series

for Rpg.

If the subseries we isolate are defined for accomplishing one of the four broad tasks we earlier
defined, purposeful perturbation seeks to determine, or further define, the specific role or
sub-task that individual terms in the sub-series perform. Then, e.g., if you estimate the
range of depths of potential hydrocarbon reservoirs in a given setting, and the depth to the
water-bottom, then you have a good way to determine the highest order of water-bottom
multiple you need to be concerned with and precisely the number of terms in the free surface

demultiple subseries (equations (66) and (67)) that can accomplish that objective.

For source and receiver deghosted data, and a source wavelet with unit amplitude, the
upgoing field in the presence of a free surface Rpg is able to be written in terms of R(w) by
imagining (see Fig (17)c) the wave first leaving the source moving down into the Earth; that
incident unit pressure wave generates a reflected response from the Earth, R(w), consisting
of primaries and internal multiples. This in turn propagates as a train up in the water
column until it hits the free-surface, where it experiences a (—1) reflection coefficient and
heads down through the water columns as —R(w). The impulse response of the Earth R(w)
times this effective downgoing “wavelet”, — R(w) produces a new wave moving up from the
Earth through the water column towards the free surface. This process continues and results
in the total upgoing wave in the presence of the free surface, Rpg(w) in terms of the primary

and internal multiple wavefield, R(w) as follows

Rps=R—R*+ R®— ...
R
" 1+R

Each term in Eq. (77) generates all free surface multiples of a given order independent of

(77)

any detail of the subsurface. The order of a free surface multiple corresponds to the number
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of times that event has experienced a reflection at the free surface. Since each successive
term in Eq. (77) comes from one additional reflection at the free-surface, it generates one
additional order of free-surface multiple. Solving Eq. (77) for the data without free-surface

multiples, R, we have
_ _Frs
1— Rpg
= Rps+ Rag+ Rag+ ... (78)

R

The first term in Eq. (78), Rpg, is the upgoing portion of the reflection data that contains
all free-surface multiples. When the second term, R%, is added to Rrg two things happen:
(1) all free-surface multiples that have reflected once (and only once) from the free-surface
are removed and (2) all higher-order free-surface multiples are altered in preparation for
higher terms, e.g., R%g, to remove them order-by-order, as well. This well-defined action of
the terms in the free-surface demultiple series is totally independent of any water-bottom
or subsurface detail (of course, within an assumed 1D, 2D or 3D dimension of the Earth

variation).

This is an example of purposeful perturbation; and, it has enormous practical significance.
For example, if you estimate that for a given depth of water and target, that only a certain
order of multiples could be troublesome, then you know precisely how many terms in the
series you need to use in your processing algorithm for that data. Eq. (78) is the 1-D normal
incidence special case of the general multi-dimensional inverse scattering subseries for free-
surface multiple removal equations (66) and (67) (see also Carvalho et al., 1992 and Weglein
et al., 1997).

Equation (78) is the 1D antecedent of equations (11/- 13/) and (66) and (67) for free surface

multiple removal. Several observations about equations (77) and (78) are worth noting.

First, the role of Gy, the extra portion of Gy due to the free-surface, is played by the (-1)
reflection coefficient in deriving (77) and its inverse (78). Second, the forward construction
series was a guide (and in this simple instance, more than a guide) to the inverse process.
Only the free-surface reflection coefficient (-1) i.e., G terms enter confirms the forward
and removal series (77), (78). Focussing on the one task, and only one task, this simple
consistent strategy we described, i.e., no Go®, GoP coupled terms appear in the analogous

and transparently simple equations (77) and (78).

Regarding some practical issues, exemplified by equations (77) and (78), if instead of 1,

a unit incident pulse, a wavelet A(w) was the source signature, then equation (77) would
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become
A(w)R
Rrs = 1(+)R (79)
and Eq. (78) becomes
Rps
Aw) Rps Rrs o
R— - +( 2+ (80)
1-— f{;; A(w)  “Aw)

and, hence, the wavelet is a critical requirement for the free-surface removal and all subseries

application.

A similar process of purposeful perturbation occurs (and has been identified) for the internal
multiple removal series. Understanding the specific purpose, within an overall task, that
each term accomplishes not only reveals what has (and has not) been achieved for a given
finite number of terms and this significantly mitigates issues of overall convergence and rate

of convergence.

9.3 1D analytic example of the internal multiple attenuation al-

gorithm
The 2D internal multiple algorithm described in equations (73-76)
b(kg, ks, qg + 45) = —2iq, D' (kg, ks, w)

where D’ is the free-surface multiple removed data resulting from an impulsive source. The

second term in the internal multiple attenuation series, b3, is given by

1 oo oo ' -

b3(k9a ksa dg + qs) = (271')2 / / dklequ(es_eg)dk2e“]2(€g—€s)

21, (ky, k1, 21)
dz2ei(—¢h—q2)zz bl(kl’ _k2’ 22)

o0
S
o0
1
<
o0

x / dz3ei(@9)2, (ky, —k,, 23)

z2

The first two terms in the multiple attenuation series, (—2ig,)(b; + b3), Eq. (75), attenuate

all first order internal multiples. For a 1D earth and a normal incidence plane wave, Eq.
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Figure 18: One dimensional model with 2 interfaces.
(73) reduces to:

e 21 o)
b3(k) :/ dzleikzlb(zl)/ dZQ@ikzzb(Z2)/ dZ36ikz3b(Z3) (81)

—o0 oo 22

To explicitly demonstrate how the internal multiple attenuation algorithm works and to
examine its properties, we will consider the simplest model that can produce an internal
multiple. For the model shown in Fig. (18) the reflection data due to an impulsive incident

wave 0(t — %) is

D(t) = R15(t - tl) + TOlRQTlg(S(t - t2) + “ae

where t1,t9, Ry, Ry are the two way times and reflection coefficients from the two reflectors

and Tp; and Tjg are the transmission coefficients between 0 and 1 and 1 and 0, respectively.
D(w) = Rleiwtl + T01R2T106iwt2 —+ ... (82)
where D(w) is the temporal former transform of D(t).

Note that the (—2ig;) factor that multiples D' in the internal multiple theory is not required
in this example since we assume that the incident wave is an impulsive plane wave. The role
of the (—2ig,) is to transform an incident (or reference field) Gy, into a plane wave in the
Fourier domain. The internal multiple algorithm inputs the data with primaries and internal

multiples, b and is the first term in the multiple attenuated series, b;.

b™ (k) = by(k) + bs(k) + bs(k) + ...
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where b; = b, the input data.

The vertical wave number

be = \/(@/Co)? — B2, + 1/ (w/Co)* — R,

for 1D medium and normal incident wave is k, = 2010 and
b(k;) = D(w) - (83)

The reflection data from Eq. (82) and (83) is expressed in terms of k,

Co

. 2wy, Cot -0 2w t
b(k,) = Rlez(é_o)(%) + T01R2T10€1(é_°)( ) T+ (84)

and define the pseudo-depths z; and 25 in the reference medium as:

_ Coty
21 = ——
2

_ Gty

29 — ——— .
D)

The input data is now expressed in terms of k£ = k, and z; and 2, as
b(k) = Rie*™ 4 Ty RyThge™™ + . .. (85)

ready for the internal multiple algorithm.

Substitute the data from Eq. (85) into the algorithm (b3, equation (81)). After transforming

from k£ = k, to z.

b(z) = / h e **p(k)dk (86)

—00

The first integral in Eq. (81) towards computing bs is

/ dzse® (Ry6(2 — 21) + RL(2 — 22) + ... (87)

§+€1

where

R,2 = T01R2T10 .

103



Inverse series and seismic exploration MOSRPO02

€1 is a small positive parameter chosen to insure that the 'W’ diagram is strictly lower-
higher-lower and avoids the lower than or equal to contribution. In actual seismic field data
application the parameter € is chosen to be the width of the source wavelet and speaks two
the fact that subresolution (i.e., thin bed multiples) will not be attenuated. The integral
(87) evaluates to:

H(z — (2h+ €1))Rie™™ + H(zy — (2 + €1)) Rhe™™ .
The second integral in Eq. (81) is

/zl 62(R15(Z; — 21) 4 RY(2h — 20))(H(21 — (2 + €1)) Ryet*™ + (8)
H(o,; — (25 + 61))R/26ikzz)e—ikzédzé
= R2H((2} — &) — 21)H (21 — (21 + €1))eF1e =
+R1RLH (2] — VH(z1 — (22 + €)= e =2
+RIR,H((2] — €2) — 21)H (2 — (21 + €1) )e**2e7F
+(RY)?H((2) — €2) — z2)H (29 — (22 + €1))e™*2e =

where €, is a positive parameter with the same function as G; and all the underlined terms
are zero.

62) — Z9 H
€2

The third (and last) integral is:

b3 (k) :/ dzie’ikzi(Rlé(zi —21) + Ry6(2) — 22))

(RiRyH((2) — €2) — 21)H (22 — (21 + €1))e™2e #1)
zeikz1 R%RIQH(—GQ)H(Z2 — 2z + el)eikzzefikzl
+ eikZ2R1(R’2)2H(z2 — 2z — €2)H(22 — 2 — el)eikzze—ikzl

and the underlined function is zero. Then, since
Ry = To1 RyTho,
the prediction is:
by(k) = Ry RETR T2 eik=2 e2ikszo—ikn
and
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From the example it is easy to compute the actual first order internal multiple precisely

—RiR3To1 Tyod(t — (2ty — t1)) .

Hence the key prediction of time is perfect and the amplitude of the prediction has an extra
power of Tp1T1o thus defining exactly the difference between the attenuation represented by

bs and elimination.

Since Tp;T1p is less than one, the method always attenuates and, furthermore, the residual
after adding b; to bs has the same sign as the multiple. Therefore, the internal multiple
algorithm has well-defined amplitude prediction properties. If R = 1/4 (a large reflection
coefficient) then R? = 1/16 and T2 = 15/16(R*+ T2 = 1), and T = /15/16 ~ 31/32.

So even with large R, T? is still not far from 1 and that explains the remarkable efficiency
of the leading order term for removing first order multiples. It produces the precise tim-
ing of all internal multiples of first order, independent of where the upward and downward
reflections occur and well approximates their amplitudes, always less than the actual, the
precise relationship between the internal multiple amplitude and the b3 prediction is quan-
tified. Since the difference in amplitude is related to transmission information the internal
multiple predictor can provide indirect useful effective, overbunden transmission estimation,
as well. Hence, while it is precise to say that the internal multiple algorithm doesn’t predict
the exact amplitude it is not accurate to say that no significant useful amplitude information

is predicted by the internal multiple algorithm.

9.4 Synthetic and field data examples

Figure 19 shows an example of the internal multiple attenuation series algorithm applied
to a 2-D synthetic dataset. From left to right, the three panels show the input data, the
predicted internal multiples and the result of inverse scattering internal multiple attenuation,

respectively.

Figures 20-22 illustrate the free surface and internal multiple attenuation algorithms applied
to a dataset from the Gulf of Mexico over a complex salt body. Seismic imaging beneath
salt is a challenging problem due to the complexity of the resultant wavefield. In Figure 20,
the left panel is a stack section of the input data, and the right panel shows the result of
the inverse scattering free surface multiple removal algorithm. Figure 21 is a cartoon that
illustrates the events that are used by the algorithm to predict the free surface multiples

in the data. Figure 22 illustrates the internal multiple attenuation method applied to the
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Figure 19: The left panel shows a common offset display from a 2-D synthetic dataset. The
middle panel shows the predicted internal multiples. The right-hand panel is the result of

subtracting the multiples from the input dataset.

Water
bottom

Figure 20: The left panel is a stack of a field dataset from the Gulf of Mexico. The right

panel is the result of free surface demultiple. Data are courtesy of WesternGeco.

same Gulf of Mexico dataset. An internal multiple that has reverberated between the top of
the salt body and the water bottom, is well attenuated through this method. The cartoons
in Fig. 23 illsutrate the subsevents that are used by the algorithm to predict the internal

multiples.
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Figure 21: A cartoon illustrating the events that are used by the algorithm to predict free

surface multiples.

10 Inverse subseries for imaging and inversion at depth
without the velocity model for large contrast com-
plex targets

Initial analysis for identifying the imaging and inversion tasks associated with primaries

within the series have recently been reported by Weglein et al. (2002). Starting with the
acoustic Eq. (6), and defining

1 1
Ezk_r(1+a)
1 1
_=_]__|_ﬁ
p = th)

for a one dimensional variable velocity and density acoustic medium with point sources and

receivers at depth €, and ¢,, respectively, Eq. (11/) becomes

o Pr —igg(€esteg —
D(qgaea egaes) = _Ze 9 (€ot )[COS2 Gal(_2qg)
+(1 — tan® 6) 51 (—24,)] (89)

where the subscripts s and g denote source and receiver respectively, and g, 8 and k = w/cg

are shown in Fig. (24), and they have the following relations:

gg = qs = kcosf

107



Inverse series and seismic exploration MOSRPO02

k, = ks = ksin6 .

g

Similarly, from Eq. (12/) we can get the solution for as(z) and (5(z) as a function of a4 (z)
and f31(z)

1
cos2 6

1 2

"~ 2cos? 0041 (2)
1
+ mal(z)ﬂl(z)

as(2) + (1 — tan?0)B,(2) =

3 1
— (5 + tan® 6 + _ tan' 0)5}(2)

1 1 o ! !
_ mal(z)/o dz [oa(z) — Bu(z)]

+ %<tan4 6 —1)8,(2) fo d2'fes(2) = Bu(2)] . (90)

For a single reflection between two acoustic half-spaces where the upper half space corre-
sponds to the reference medium the data consists of primaries and the inversion tasks they
face are simply to locate the reflector and to invert for acoustic property charges across the
reflector. When the primary data from this two half space model is substituted into Eq.
(89) and (90), then the two terms involving integrals on the right hand side become zero.
If the model would allow a second reflector, and a two primary wavefield, then those same
terms involving the integrals are not zero. From an inversion point-of-view, the primary from
the second reflector has more tasks to perform, (in comparison with the first primary) since
the first event actually travelled through the reference medium. In addition to estimating
changes in earth material properties, the second primary will be imaged where it is placed
by the reference medium. From this type of observation and the detailed analysis formed in
Weglein et al., (2002) and Shaw and Weglein (2003), it is deduced that the last two terms
in Eq. 90 assist in moving the second (deeper) primary to its correct location and the first

three terms of Eq. 90 are associated with improving the linear inversion (Eq. 89).

The first three terms on the right-hand-side of equation (90) have two objectives. The first
objective: for a primary off the shallower reflector, those first three terms start the nonlinear
process of turning that events reflection coefficient into the earth property changes a and 3.
The reflection coefficient is a non-linear series in a and J; and, conversely, a and ( are them-
selves nonlinear series in the reflection coefficient. For the second (deeper) primary, the first
objective is more complicated, since the event amplitude is a function of both the reflection
coefficient at the second reflector and the transmission coefficient down-through and up-past
the first reflector. The communication between the two events allowed in e.g., a2 can be

shown to allow the reflection coefficient of the shallower reflector to work towards removing
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the transmission coefficients impeding the amplitude of the second event from inverting for
local properties at the second reflector. Hence, specific communication between primaries
from different reflectors work together to remove the extraneous transmission coeflicients on

deeper primaries that are suffering from being given the wrong velocity.

Similarly, the integral terms on the right-hand-side of equation (90) represent a recognition
that the reference velocity will give an erroneous image, and asks for an integral of a; — 31,
the linear approximation to the change in acoustic velocity, from the onset of a; — 3;, down
to the depth needing the imaging help. Two important observations: (1) When the actual
velocity doesn’t change across an interface, R() is not a function of § and from equation
(89) it can be shown that

ar— P = (%)1 =0.
Therefore, when the actual velocity doesn’t change then the linear approximation to the
change in velocity is zero. Therefore, when the velocity is equal to the reference across all
reflectors (e.g., when density changes but not velocity) then these equations understand and
don’t correct the location from where the reference velocity locates those events, which in
that case is correct; and (2) the error in locating reflectors caused by an error in velocity
depends on both the size of the error and the duration of the error. Hence, the integral
of a; — B represents an amplitude and duration correction to the originally mislocated
primary. This is a general principle, when an inversion task has a duration aspect to the
problem being addressed, the response has an integral in the solution. The inverse series
empowers the primary events in the data to speak to themselves for non linear inversion and
to speak to each other to deal with the effect of erroneous velocity on amplitude analysis. The

analogous “discussion between events” for multiple removal is described in the conclusions.

Figures (25) and (26) illustrate the imaging portion of the inverse series for a 1-D constant
density, variable velocity acoustic medium. The depth that the reference velocity images the
second reflector at is zy=136m. The band-limited singular functions of the imaging subseries
act to extend the interface from zy to 2, (Fig. (25)). The cumulative sum of these imaging
subseries terms is illustrated in Fig. 26. After summing five terms, the imaging subseries

has converged and the deeper reflector has moved towards its correct depth z; = 140 m.

Figures (28)—(31) are a comparison of linear and non-linear prediction for a two-parameter
acoustic medium and for a 1-D single interface example (Fig. 27). Figure (28) shows a; as a
function of two different angles of incidence for a chosen set of acoustic parameters. Figure

(29) shows the sum of a;+as, and shows a clear improvement, for all precritical angles, as
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an estimate for a. Figure (31) illustrates similar improvements for the second parameter g3

over the linear estimate given in Fig. (30).

Early analysis and tests are encouraging demonstrating intrinsic potential for the of task
specific subseries of the inverse series to perform imaging at the correct depth (Shaw et al.,
2003) and improving upon linear estimation of earth material properties (Zhang and Weglein,
2003), without an adequate velocity model. Furthermore, tests point to convergence for
imaging for large error and duration of error in velocity and rapid improvement in estimates

of earth material properties beyond the industry standard linear techniques.

11 Conclusions and Summary

The forward series begins with the reference propagator, Gg, and the perturbation operator,
V(7,w), the difference between actual and reference medium properties as a function of

space, 7. The inverse series inputs data, D(t), in time, and the reference propagator, Gg.

Since the forward series inputs the perturbation, V(7,w), and rapid variation of V corre-
spond to the exact spatial location of reflectors it follows that space is the domain of comfort

of the forward series.

On the contrary, the computation of time of arrival of any (and every)seismic event for
which the actual propagation path is not described by Gy requires an infinite series to get
the correct time from the forward series. Time is the domain of discomfort for the forward

series for seismic events.

For the inverse series the input is data, D(t) ,in time, and processes that involve transforming,
D(t), to another function of time, e.g., the data without free-surface multiples, D'(t) ,are
simpler to achieve than tasks such as imaging primaries in space that require a map from
D(t) to V(7,w).

In addition, if accurate a-priori information can be provided for the localization and sepa-
ration of a given task (as in the case of a free-surface reflection coefficient or G®) e.g.,
for the removal of ghosts and free-surface multiples, where the task is defined in terms of
separating events that have a well defined experience (from those events that have not) then
further efficiency can derive from subseries that involve time to time maps. In table (1), we
summarize the amount of effort required to achieve a certain level of effectiveness for each

of the four task-specific subseries.
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The strategy is to accomplish one task at a time, in the order listed, and then restart the
problem as though the already achieved task never existed. This avoids the coupled task
terms in the series. Further more, the achievement of these tasks, in order, can enhance the
ability of subsequent tasks to reach their objective. For example, the removal of free-surface
and internal multiples significantly improves the ability to estimate the overburden velocity
model and subsequently aids the efficacy and efficiency of the imaging and inversion subseries

for primaries.

Since the rate of convergence of both multiple removal subseries doesn’t benefit at all from
anything closer to the earth than water speed, and the cost of the algorithms quickly increase
with complexity of the reference medium, the idea is to perform tasks that prefer simple,
cheap reference propagation with what they want. Then restart the problem with certain
issues in the data addressed, i.e., with new data (e.g., primaries) that require proximal
velocity information, with more complex and more costly subseries for tasks that appreciate
that assistance for practical efficacy and efficiency. If you don’t like the 'Isolated Task and
Restart the Problem Strategy’, and you wanted to be a purist and start and end with one
inverse scattering series, you would need the single complex reference that would allow the
toughest task to have an opportunity to succeed. Two issues with the latter approach: (1)
where would you get the proximal velocity if troublesome multiples are in your input data;
and (2) the one series, one time for all data is an “all or nothing at all” strategy that doesn’t
allow for stages to succeed and provide benefit, when the overall series or more ambitious

goals are beyond reach.

Although both primaries and multiples have experienced the subsurface; and, hence, carry
information encoded in their character, the indisputable attitude of the only multidimen-
sional direct inversion method for acoustic and elastic media, the inverse scattering series, is
to treat multiples as coherent noise to be removed and primaries as the provider of subsur-
face information. That doesn’t mean that one could never use multiples in some inclusive
method that seeks to exploit the information that both primaries and multiples contain. If
simply means that an inclusive theory, starting with realistic a-priori information, doesn’t

now exist, and, further, that the inverse series definitely adopts the exclusive view.

While the ability to directly achieve seemingly impossible inversion objectives from data,
D(t), and only an estimated reference propagator, Gg, (which can be inadequate) certainly
follows from Eq. (11-14) (see also Weglein et al. (1997)) there is value in providing an

understanding from an information content point of view, as well.

What basically happens in each task specific subseries is that specific conversations take

place between events in the data as a whole that allows, e.g., multiple prediction or accurate

111



Inverse series and seismic exploration MOSRPO02

depth imaging to take place without an accurate velocity model. “Non-linear in the data”
is the key, and means that quadratic terms enter the picture (data times data, at least) and

that allows different events to have multiplicative communication.

For example, if you provide the medium in detail you can readily determine whether any
event in the data is a primary or multiple. However, if you provide only an isolated event,
without the medium properties, then there is no way to determine if it is a primary or
multiple, in fact it can be either for different models. So how does the inverse series figure
out whether the event is a primary or multiple with out any subsurface information? Since it
is a series there is a “conversation” set up with other events and then a yes or no to whether
an event is a primary or multiple is completely achievable without any information about
the medium. In Fig. (32) we show an internal multiple (dashed line), SABCR. Primaries
SABE, DBCR and DBE have a phase relationship with the internal multiple SABCR such
that.

(SABE)time + (DBCR)tlme - (DBE)time - (SABCR)tlme (91)

Hence, if the overall data contains three events such that two are longer time events and if
the sum of the time of the two longer events minus one smaller time event corresponds to
the time of the event under investigation, the event is an internal multiple and, if so, it is
removed. This is the reason the third term in the inverse series, that involves three D(t)
data terms, starts the process of internal multiple removal and why the “W” diagram (see
Fig (32)) is as the heart of the internal multiple prediction from the data procedure; and,
finally, why the time prediction of all internal multiples is precise.

In the subseries for imaging at depth without the velocity the first term is current linear
migration and places each events exactly where the input reference velocity dictates. The
latter imaging process is linear in the data and events are not asked their individual view or

opinion of the input velocity non are they allowed to discuss it amongst themselves.

The second term in the inverse series has integral terms (e.g., Eq. 90) that start to move the
incorrectly imaged events (from using the reference velocity) towards their correct location.
There is a quadratic dependence on the data, allowing multiplicative conversations between
two events and they are empowered to have an opinion about the input velocity. If they
decide together that (at least) one of the events has been provided with a velocity model
not consistent with those two events, the troubled event (usually deeper) asks for assistance
from a shallower event to help it use its amplitude and the degree of dissatisfaction to move

the deeper primary towards its correct location.
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Hence, the inverse series and the task-specific subseries concept, represent as fundamentally
a new and potentially impactful way of thinking about imaging and inverting primaries
as it represented for the earlier (and now mature and standard algorithms for) removal of
multiples. There were serious conceptual and practical hurdles in the theoretical evolution,
development and robust industrial application.

We anticipate that in bringing the subseries for imaging and inverting primaries through
that same process, that higher hurdles and tougher prerequisites will be addressed. The
potential benefits for exploration and production of hydrocarbons are great. We would be
delighted if this paper would serve to encourage other fields of non-destructive evaluation
e.g., medical imaging, environmental monitoring, and defense detection and identification,

and earth quake deep earth definition, application to benefit from these efforts as well.
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Figure 22: An example of internal multiple attenuation from the Gulf of Mexico. Data are

courtesy of WesternGeco.
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Figure 23: A cartoon illustrating the events that are used by the algorithm to predict a

subsalt internal multiple.
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Figure 25: Five terms in the leading order imaging subseries. The solid black line is the

actual perturbation a and the dashed red line is a;, the first approximation to a. The blue

lines are the leading order imaging subseries terms. The cumulative sum of these imaging

terms is shown in Figure 26.
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Figure 26: Cumulative sum of five terms in the leading order imaging subseries. The solid

black line is the perturbation a and the red line is the first approximation to « or the first

term in the inverse series, a;. The blue line is the cumulative sum of the imaging subseries

terms, e.g. in panel (ii) the sum of two terms in the subseries is shown, and in panel (v) the

sum of five terms in the subseries is displayed.
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Figure 27: One-dimensional acoustic model.
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of the graph on the left. In this example, the exact value of « is 0.292.
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Figure 29: The sum of a; + as displayed as a function of two angles for the same example
as in Fig. 28.
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of the graph on the left. In this example, the exact value of 3 is 0.09.
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TASK PROPERTIES.
Free-surface multiple One term in the subseries predicts precisely the time
elimination and amplitude of all free-surface multiples of a given

order independent of the rest of the history of the event.
Order is defined as number of times the multiple

has a downward reflection at the free-surface.

Internal multiple One term in the inverse series predicts
attenuation the precise time and approximate amplitude of
all internal multiples of a given order.
The order of an internal multiple is
defined by the number of downward reflections

from any subsurface reflector at any depth.

Imaging at depth without First term in series corresponds to current
the precise velocity migration or migration — inversion.
To achieve a well-estimated depth-map requires
an infinite series directly in terms of an
inadequate velocity model.

A priori velocity estimate will aid rate of convergence.

Inversion at depth without First term in subseries corresponds to current
the precise overburden linear amplitude analysis. For improvement
to linear estimates of earth property changes and
to account for inadequate overburden requires infinite series.

Tests indicate rapid convergence for the first

non-linear parameter estimation objective.

Table 1: Summary of task-specific subseries.
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Figure 32: Subevents for an internal multiple.
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