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Abstract

As a multidimensional direct inversion procedure, the inverse scattering series has
the ability to image reflectors at their correct spatial location using only the reflection
data and an approximate velocity model as input. Therefore, it is a good candidate
procedure for deriving an algorithm that can accurately depth image seismic data in
complex geological areas where the velocity model is difficult to estimate.

Previously, a subseries of the inverse series was isolated that images reflectors in
space without requiring the actual propagation velocity of the medium. This leading
order imaging series was found to converge for large contrasts between the actual and
reference medium for a 1-D medium and a normal incident plane wave experiment.
In this paper (Part I), in preparation for an analysis for data missing low temporal
frequency (Part II), the algorithm is formulated for an experiment in which a point
source explodes in a three-dimensional constant density acoustic medium where the
velocity varies only in depth. The formulation, termed “prestack” in reference to the
degree of freedom that exists due to the source-receiver offset, is parameterized for
constant angles of incidence.

The leading order imaging series is an approximation to the full depth imaging
potential of the inverse series in that it is leading order in the data. The first term in
the series images reflectors at the depths dictated by the constant reference velocity
and the data’s travel times. The remaining terms use the data’s amplitudes and travel
times as well as the reference velocity to shift the reflectors closer to their correct
location in depth.

Analytic and numerical examples are used to demonstrate that, for small contrasts
between the actual and reference medium, the leading order imaging series signifi-
cantly improves the predicted depths of the reflectors at precritical angles, effectively
flattening the angle gathers. For higher contrasts, or when greater accuracy is desired,
then higher order imaging terms are required that go beyond the leading order terms
identified and analyzed in this paper.
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1 Introduction (motivation and background)

Depth imaging of seismic reflection data plays a critical role in the exploration and production
of oil and gas. The primary goal of depth imaging is to produce a spatially accurate map
of reflectors below the earth’s surface. This structural map is important to the oil and gas
industry because it plays a key role in determining where to drill for hydrocarbon reserves,
which has an enormous economic, environmental and political impact.

Current depth imaging algorithms can be formulated from a linear inverse scattering model,
in which the reference velocity is assumed to be close enough to the actual velocity in
order to place reflectors at their correct spatial locations. In practice, especially in complex
geological environments, the most accurate methods for deriving the reference velocity model
may be inadequate for linear imaging algorithms inasmuch as they fail to focus the reflection
energy at the correct location. The inverse scattering series has the ability to image primary
reflection events at their correct location using only the reflection data and an approximate
reference velocity model (Weglein et al., 2000). The first term in the inverse series is a linear
inversion of the data. It uses a velocity model that is incorrect below the measurement
surface to image reflectors at locations expected when imaging with a typical depth imaging
algorithm (essentially with the equation depth = velocity × travel time). Therefore, in
general, the first term in the series will mislocate the reflectors unless the velocity model is
correct. The higher order terms in the inverse series, that are non-linear in the data, contain
parts that move the reflectors to their true spatial locations. These non-linear imaging terms
only exist when the velocity model is incorrect. In fact, the inverse series only exists when
the reference and actual media are different.

As a multidimensional direct inversion procedure, the inverse scattering series has more to do
than image reflectors at their correct locations in space. The inverse series removes multiply
reflected events, images reflectors, and inverts amplitudes for medium parameters directly

using only the measured data and a reference medium’s parameters (Moses, 1956; Razavy,
1975; Stolt and Jacobs, 1980; Weglein et al., 1981). Early numerical tests of the inverse
series’ ability to directly invert seismic data (Jacobs, 1980; Carvalho, 1992) suggested that it
converged only when the reference medium properties were very close to the actual medium
properties. Multiples were a significant impediment to estimating the earth’s properties (and
deriving an adequate reference medium) from seismic reflection data. As a result, research
was undertaken into using the inverse series to derive algorithms that removed free-surface
and internal multiples from seismic data, but that stopped short of imaging and parameter
estimation. The strategy employed was to isolate subseries of the inverse series that are
responsible for removing multiples.

Weglein et al. (1997) have derived multidimensional free surface and internal multiple at-
tenuation algorithms by isolating separate subseries of the inverse series that perform these
two tasks. These subseries turned out to have more favorable convergence properties than
the entire inverse series. The algorithms converge for an acoustic reference medium of wa-
ter and they share the advantage of not requiring information about the earth below the
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measurement surface. An important prerequisite of all inverse series algorithms is that the
source wavelet is known. These multiple attenuation algorithms are now routinely used in
seismic processing to remove multiples prior to velocity estimation, imaging and AVO anal-
ysis. A key concept within the subseries approach to inversion of seismic data, is to apply
the task-specific algorithms in the following order: 1.) free surface multiple removal; 2.)
internal multiple removal; 3.) depth imaging and 4.) target identification. In taking this
staged approach, each step is less ambitious than direct inversion for earth properties and is
therefore likely to be less demanding of the input data, reference medium proximity, and of
computational requirements. In addition, the subseries are allowed to benefit from all of the
tasks that have been achieved earlier in the sequence, thus further simplifying the problem
at each step. For a comprehensive review of the inverse scattering series and its application
to seismic exploration, see Weglein et al. (2003).

The strategy employed in developing inverse scattering subseries algorithms to solve problems
in seismic data processing has been to first consider the simplest situation in which the
particular problem exists. Most often this is a 1-D normal incidence experiment in a constant-
density acoustic medium. The simplest reference medium is chosen that agrees with the
actual medium above the measurement surface and confines the perturbation to be below
the receivers. Then the inverse series is analytically computed and a subseries is sought that
is responsible for achieving the specific processing task (one of the four listed above). The
subseries is isolated through a combination of intuition and experience garnered through
studying the forward series terms that construct the seismic wavefield.

If the subseries algorithm demonstrates an intrinsic ability to achieve its objective, then it is
reformulated and generalized so that it may eventually be tested on multidimensional field
data. Shaw et al. (2003) considered the simple situation of a normal-incidence experiment
over a 1-D constant density acoustic medium for which the velocity was an unknown function
of depth. An imaging series algorithm was derived that imaged reflectors in depth using a
constant reference velocity and it was shown analytically that this series converged for large
finite contrasts between the actual and reference velocities. For relatively small contrasts,
the leading order imaging series is a good approximation to the entire imaging series in that
the predicted depths are a significant improvement over linear depth imaging with the ref-
erence velocity. It was also demonstrated that this series converges more quickly for smaller
contrasts and for lower maximum frequencies. Therefore, a proximate reference velocity and
a source spectrum with a lower maximum frequency both aid the rate of convergence.

Having established for the simplest examples that the leading order imaging series has good
convergence properties, the next stage in developing a practical algorithm is to evaluate its
performance under increasingly realistic conditions. Since seismic data are always frequency
bandlimited, one of the highest priority tests involves an analysis of the algorithm under
conditions of missing low frequencies. Such an analysis is provided by Shaw and Weglein
(2004) in a second paper (Part II). In preparation for that analysis, the leading order imaging
series algorithm is rederived here to accommodate prestack input data. The offset aperture in
prestack data provides a lower vertical wavenumber kz and more closely resembles the actual
seismic experiment. This paper includes a derivation of the prestack leading order imaging
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series and presents some preliminary analytic and numerical examples. These examples are
used to discuss how the imaging series performs the task of depth imaging given a constant
reference velocity that is never updated.

We consider a 3-D constant density acoustic medium with point sources and receivers located
at ~x s = (xs, ys, zs) and ~x g = (xg, yg, zg), respectively. Wave propagation in this medium can
be characterized by the wave equation

(

∇2 +
ω2

c2(~x g)

)

P (~x g|~x s; ω) = −A(ω)δ(~x g − ~x s) (1)

where P is the pressure field, A is the source wavelet, c is the propagation velocity and ω is
the angular frequency. The temporal Fourier transform is defined by

P (~x g|~x s; ω) =

∫ ∞

−∞

P (~x g|~x s; t)e
iωtdt. (2)

To simplify the current analysis of the prestack imaging series, we will be assuming that the
medium varies only in the z direction. For the generalization to a 2-D earth, see Liu et al.
(2004). The velocity, c, can be expressed in terms of a constant reference velocity, c0, and a
perturbation, α, such that

1

c2(z)
=

1

c2
0

(1 − α (z)) . (3)

For this acoustic problem, the goal of inversion is to solve for α which can be written as an
infinite series

α = α1 + α2 + α3 + · · · (4)

where α1, the first term in the series for α, is linearly related to the scattered field, Ps =
P −P0. P0 is the pressure wavefield due to the same source, A(ω), in the reference medium,
i.e., a wholespace with velocity, c0. The second term, α2, is quadratic in Ps, the third term,
α3, is cubic and so on. After using the inverse series (4) to solve for α, we can use (3) to
solve for the unknown velocity, c(~x ). The objective of the research described here is in fact
not to solve for the medium parameters (in this case just c), but to solve directly for the
location at which the perturbation α changes. This is the problem of imaging in a medium
whose velocity is not known before or after the imaging procedure.

2 A leading order imaging series for a 3-D experiment

over a laterally invariant acoustic medium

2.1 The first term, α1, and its degree of freedom

If the source wavelet is deconvolved so that D̃ = Ps/A, then D̃ is related to α1 by

D̃ (~x g|~x s; ω) =

∫ ∞

−∞

G0 (~x g|~x ′ ; ω) k2
0α1 (~x ′ ) G0 (~x ′ |~xs; ω) d~x ′ (5)
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Figure 1: Plan view showing the relationship between the horizontal cartesian and cylindrical coordinates. r

is the source-receiver offset in the horizontal plane and φ is the azimuth. For a 1-D subsurface, the data are
invariant in azimuth.

where k0 = ω/c0 and G0 is the causal Green’s function satisfying the wave equation in the
reference medium. The solution for α1 in cylindrical coordinates is (see Appendix A)

α̃1(−2qg) = 2π
−4q2

g

k2
0

eiqg(zg+zs)

∫ ∞

0

D̃(r; ω)J0(krr)rdr (6)

where the vertical and horizontal wavenumbers, qg and kr, respectively, are related by

qg =
ω

c0

√

1 − k2
rc

2
0

ω2
. (7)

J0(krr) is a zero order Bessel function of the first kind that arises due to the azimuthal
symmetry and is

J0(krr) =
1

2π

∫ 2π

0

eikrrcosφ′

dφ′. (8)

Figure 1 illustrates the relationship between the horizontal cartesian coordinates (xg, yg) and
cylindrical coordinates (r, φ).

The fact that the data are a function of both time and source-receiver offset whereas α is
only a function of depth is evident in (6) in that α̃1 is over-determined. Whereas α̃1 is only
a function of qg, the right-hand side of (6) can be written as a function of two independent
variables, e.g., (qg, ω) or (kr, ω). Large angles of incidence can construct α̃1 at low qg values
since qg = k0 cos θ0. Inverse Fourier transforming both sides of (6) gives

α1(z) =
2

2π

∫ ∞

−∞

α̃1(−2qg)e
−2iqgzdqg

= − 8

∫ ∞

−∞

q2
g

k2
0

e−iqg(2z−(zg+zs))

∫ ∞

0

D̃(r; ω)J0(krr)rdrdqg (9)
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where q2
g/k

2
0 = cos2 θ0. Considering fixed angles of incidence, θ0, leads to a number of

different estimates of α1, denoted by α1(z, θ0). Fixing θ0 is the same as fixing horizontal and
vertical slownesses, p0 and ζ0, respectively, where

p0 =
sin θ0

c0

and ζ0 =
cos θ0

c0

.

However, qg is still allowed to vary through the variation in ω since qg = ωζ0. We proceed
by changing variables from qg to ω:

α1(z, θ0) = − 8ζ0 cos2 θ0

∫ ∞

−∞

e−iωζ0(2z−(zg+zs))

∫ ∞

0

D̃(r; ω)J0(ωp0r)rdrdω. (10)

Defining τ0 = ζ0 (2z − (zg + zs)) and performing the inverse temporal Fourier transform of
the data D̃(r; ω), (10) becomes

α1(z, θ0) = − 8ζ0 cos2 θ0

∫ 2π

0

∫ ∞

0

D(r; τ0 − p0r cos φ)rdrdφ. (11)

Changing back to cartesian coordinates yields (see Appendix A)

α1(z, θ0) = − 8ζ0 cos2 θ0

∫ ∞

−∞

∫ ∞

−∞

D(xg, yg; τ0 − xp0)dxgdyg. (12)

Equation (12) is recognizable as a scaled slant stack of the recorded data (Treitel et al.,
1982). In cartesian coordinates, it requires sums in both the x and y directions, whereas in
cylindrical coordinates, as a result of the symmetry of a laterally invariant medium, these
integrals are replaceable by integrals over φ and r (11) or ω and r (10). An alternative
approach to handling the degree of freedom in (9) is to hold ω fixed and integrate over angle
or vertical slowness ζ0 = cos θ/c0 = qg/ω. This parameterization will result in different
estimates of α1 for constant ω values and is the subject of ongoing research.

2.2 Task separation in the second and third terms

The integral equation for the second term in the inverse series for this acoustic problem is

∫ ∞

−∞

G0 (~x g|~x ′ ; ω)k2
0α2(~x

′ )G0 (~x ′ |~x s; ω) d~x ′

= −
∫ ∞

−∞

d~x ′G0 (~x g|~x ′ ; ω) k2
0α1(~x

′ )

×
∫ ∞

−∞

d~x ′′G0 (~x ′ |~x ′′ ; ω) k2
0α1(~x

′′ )G0 (~x ′′ |~x s; ω) . (13)
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The solution to (13) is detailed in Appendix B where α̃2 as a function of vertical wavenumber
is shown to be

α̃2(−2qg) = −
∫ ∞

−∞

dz ′e2iqgz′ k2
0

2q2
g

(

α2
1(z

′) +

∫ z′

0

dz ′′α1(z
′′)

dα1(z
′)

dz ′

)

. (14)

As in the case of α̃1, there is a degree of freedom in (14) that results in a choice of which
variable to hold constant, and which to integrate over in the construction of α2(z). For
example, if we choose to keep incident angle θ0 constant, then performing the inverse Fourier
transform of (14) gives

α2(z, θ0) = − 1

2 cos2 θ0

(

α2
1(z, θ0) +

∫ z

0

dz ′α1(z
′, θ0)

∂α1(z, θ0)

∂z

)

(15)

since

k2
0

q2
g

=
k2

0

k2
0 cos2 θ

=
1

cos2 θ
.

The second term in the inverse series (15) has been separated into the sum of two pieces.
As explained by Weglein et al. (2002), these two terms have distinctly different roles in the
inversion procedure. The first piece

α21(z, θ0) = − 1

2 cos2 θ0

α2
1(z, θ0) (16)

is responsible for correcting the amplitude of α1(z, θ0) (see, e.g., Zhang and Weglein, 2004)
and the second piece

α22(z, θ0) = − 1

2 cos2 θ0

∫ z

−∞

α1(z
′, θ0)dz ′∂α1(z, θ0)

∂z
(17)

acts to shift the mislocated interfaces in α1(z, θ0) closer to their true depths. This shift is
accomplished by a Taylor series for the difference of two Heaviside functions expanded about
the depth of each mislocated interface. The first term in this Taylor series for the shift is
α22. For details on this expansion, the reader is referred to Weglein et al. (2002).

Proceeding to the third term in the series, the integral equation to be solved is
∫ ∞

−∞

d~x ′G0 (~x g|~x ′ ; ω) k2
0α3(z

′)G0 (~x ′ |~x s; ω)

= −
∫ ∞

−∞

d~x ′G0 (~x g|~x ′ ; ω) k2
0α1(z

′)

∫ ∞

−∞

d~x ′′G0 (~x ′ |~x ′′ ; ω) k2
0α2(z

′′)G0 (~x ′′ |~x s; ω)

−
∫ ∞

−∞

d~x ′G0 (~x g|~x ′ ; ω) k2
0α2(z

′)

∫ ∞

−∞

d~x ′′G0 (~x ′ |~x ′′ ; ω) k2
0α1(z

′′)G0 (~x ′′ |~x s; ω)

−
∫ ∞

−∞

d~x ′G0 (~x g|~x ′ ; ω) k2
0α1(z

′)

∫ ∞

−∞

d~x ′′G0 (~x ′ |~x ′′ ; ω) k2
0α1(z

′′)

×
∫ ∞

−∞

d~x ′′′G0 (~x ′′ |~x ′′′ ; ω) k2
0α1(z

′′′)G0 (~x ′′′ |~x s; ω) . (18)
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The solution for α3(z) can be broken into a number of pieces two of which are given in
Appendix C. This separation is discussed in Shaw et al. (2003) for the normal incidence case
and it is extendable to prestack data when the angle θ0 is held constant. The amplitude
correction and leading order imaging contributions from the third term are given by:

α3(z, θ0) =
1

cos4 θ0

[

3

16
α3

1(z, θ0) +
1

8

(∫ z

0

α1(z
′, θ0)dz ′

)2
∂2α1(z, θ0)

∂z2
+ · · ·

]

. (19)

2.3 A prestack leading order imaging series

The imaging series is a subseries of the inverse series that is responsible for positioning
reflectors at their correct spatial location (Weglein et al., 2000, 2002). For the problem
considered here, in which the earth is characterized by a single parameter, the imaging series
is written

αIM = αIM
1 + αIM

2 + αIM
3 + · · · (20)

where αIM
i is the term in the imaging series that is ith order in the scattered field and

is found in the ith term of the inverse series. The leading order imaging series, αLOIM,
is the contribution to the imaging series that is leading order in the scattered field. The
terms in this imaging series have been found to exhibit a specific pattern (corresponding to
particular scattering diagrams) recognized by Shaw et al. (2003) which allowed the prediction
of a general form. Following that earlier work, and using the constant-θ0 formulation, the
prestack form of the algorithm is

αLOIM(z, θ0) =α1(z, θ0) −
1

2

1

cos2 θ0

(∫ z

0

α1(z
′, θ0)dz ′

)
∂α1(z, θ0)

∂z

+
1

8

1

cos4 θ0

(∫ z

0

α1(z, θ0)dz ′

)2
∂2α1(z, θ0)

∂z2
− · · ·

=
∞∑

n=0

(−1/2)n

n! cos2n θ0

(∫ z

0

α1(z
′, θ0)dz ′

)n
∂nα1(z, θ0)

∂zn
(21)

where

α1(z, θ0) = − 8ζ0 cos2 θ0

∫ 2π

0

∫ ∞

0

D(r; τ0 − p0r cos φ)rdrdφ.

Performing a Fourier transform of (21) gives

αLOIM(kz, θ0) =

∫ ∞

−∞

∞∑

n=0

(−ikz/(2 cos2 θ0))
n

n!

(∫ z

0

α1(z
′, θ0)dz ′

)n

α1(z, θ0)e
−ikzzdz

=

∫ ∞

−∞

exp

[

−ikz/(2 cos2 θ0)

∫ z

0

α1(z
′, θ0)dz ′

]

α1(z, θ0)e
−ikzzdz. (22)
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where the power series

∞∑

n=0

[
−ikz/(2 cos2 θ0)

∫ z

0
α1(z

′, θ0)dz ′
]n

n!
= exp

[

−ikz/(2 cos2 θ0)

∫ z

0

α1(z
′, θ0)dz ′

]

(23)

was substituted to arrive at (22). Inverse Fourier transforming both sides of (22) yields a
closed form for the leading order imaging series that operates θ0-by-θ0 (or p0-by-p0):

αLOIM(z, θ0) =α1

(

z − 1/(2 cos2 θ0)

∫ z

0

α1(z
′, θ0)dz ′, θ0

)

. (24)

The prestack leading order imaging series for a point source in a laterally invariant acoustic
medium can be implemented by slant-stacking (or τ -p transforming) the data, weighting
each p trace by the factor −8ζ0 cos2 θ0, and then operating on each trace with the formula
provided in (24). When θ0 = 0, (21) and (24) reduce to the normal incidence algorithms
given by Shaw et al. (2003). The normal incidence leading order imaging series was shown
to converge for arbitrarily large finite contrasts between the actual and reference medium.
From (23), it can be concluded that the rate of convergence of (21) will be greater for smaller
values of kz, smaller values of

∫ z

0
α1(z

′, θ0)dz ′, and smaller values of θ0. Analysis of the 1-D
normal incidence algorithm showed that, for relatively small contrasts (the actual velocity
within about 10% of the reference velocity), the leading order contributions to the imaging
series can accurately locate reflectors. Higher contrasts or greater accuracy require higher
order imaging terms.

3 Analytic and numerical examples

3.1 Analytic example with two interfaces; leading and higher or-
der imaging terms

Consider a model that consists of two horizontal interfaces at depths za and zb and a discon-
tinuous velocity profile c0-c1-c2 (Fig. 2). The wavefield in the upper halfspace, Ψ0, consists
of an incident field, Ψi, and a reflected field, Ψr. The measured reflected wavefield can
be derived by decomposing the incident field into a sum of plane waves (the Sommerfeld
integral) and then matching boundary conditions at each interface. The result is

Ψr(r, zg; ω) =iω

∫ ∞

0

(
R01 + T01R12T10e

2iωζ1(zb−za) + · · ·
)

ζ0

eiωζ0(2za−zs−zg)J0(ωp0r)p0dp0 (25)

where the reflection and transmission coefficients are functions of angle and are given by

R01 =
ζ0 − ζ1

ζ0 + ζ1

, T01 =
−2ζ1

ζ0 + ζ1

, R12 =
ζ1 − ζ2

ζ1 + ζ2

and T10 =
2ζ0

ζ0 + ζ1

. (26)
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Figure 2: A multi-layer 1-D constant density acoustic model. In the absence of a free surface, all reflected
waves at the receiver are upgoing.

We further define R′
12 = T01R12T10. The vertical slownesses are functions of the incident

angles in each layer since

ζi =
cos θi

ci

, i = 0, 1, 2, . . . (27)

The “+ · · · ” in (25) are the internal multiple reflections in the data. The internal multiple
removal subseries, that begins in the third term of the inverse series, is assumed to have been
applied before the imaging subseries. This results in a new effective data and a new effective
α1 that contain only primary reflection events. This step is part of the strategy of inverse
series task separation described by Weglein et al. (2003). For the two reflector example
considered here, the internal multiples are of no consequence since the imaging series only
uses information recorded earlier than the primary event being imaged, which excludes the
multiples. Reverting to the symbol D̃ for data that contain only primary reflections, and
changing the integration variable from p0 to kr, (25) becomes

D̃(r; ω) = −
∫ ∞

0

(
R01 + R′

12e
2iωζ1(zb−za)

)

iωζ0

eiωζ0(2za−zs−zg)J0(krr)krdkr (28)

Substituting the data (28) into the linear inverse equation (10), then for this two-reflector
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example, the first term in the series for α(z) can be written as a function of angle

α1(z, θ0) = − 8ζ0 cos2 θ0

∫ ∞

−∞

e−iωζ0(2z−(zg+zs))

∫ ∞

0

D̃(r; ω)J0(krr)rdrdω

=8 cos2 θ0

∫ ∞

−∞

R01 + R′
12e

2iωζ1(zb−za)

iωζ0

e−2iωζ0(z−za)dω

=4 cos2 θ0 [R01H (z − za) + R′
12H (z − zb′)] (29)

where the shallower reflector is correctly located at za (since the velocity down to za was
correct) but the deeper reflector is mislocated at depth

zb′ = za + (zb − za)
ζ1

ζ0

. (30)

Therefore, the correction in the depth of the second reflector from zb′ to the actual depth zb

is

zb − zb′ = zb − za − (zb − za)
ζ1

ζ0

= (zb − za)

(

1 − ζ1

ζ0

)

. (31)

Substituting (30) into (31) to eliminate zb on the right-hand side gives

zb − zb′ = (zb′ − za)

(
ζ0

ζ1

− 1

)

. (32)

The ratio of the slownesses can be written as an infinite series in the reflection coefficient
(or amplitude) of the shallower reflector under the condition that |R01| < 1. This condition
precludes post-critical reflections. Therefore,

ζ0

ζ1

=
(1 − R01)

(1 + R01)
= 1 − 2R01 + 2R2

01 − 2R3
01 + · · · , |R01| < 1.

Hence, the shift from the depth predicted by the first term in the series (zb′) to the actual
depth of the second reflector (zb) can be expressed, for precritical angles, as

zb − zb′ = −2(zb′ − za)
(
R01 − R2

01 + R3
01 − · · ·

)
. (33)

The approximation to this shift that is leading order in the data’s amplitudes is

zb − zb′ ≈ −2(zb′ − za)R01. (34)

This is equal to the shift calculated automatically by the leading order imaging series. To
see this, we substitute the first term in the imaging series for this example (29) into the
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closed form for αLOIM (24) and evaluate the algorithm at zb′

αLOIM(zb′ , θ0) =α1

(

zb′ − 1/(2 cos2 θ0)

∫ zb′

0

α1(z
′, θ0)dz ′, θ0

)

=α1







zb′ − 2

∫ zb′

0

R01 (θ0) H (z ′ − za) dz ′ − 2

∫ zb′

0

R′
12 (θ0) H (z ′ − zb′) dz ′

︸ ︷︷ ︸

=0







=α1 (zb′ − 2 (zb′ − za) R01 (θ0)) . (35)

We see from (35) that the leading order imaging series αLOIM shifts the interface at zb′ in
α1 to a new depth zb′ + 2 (zb′ − za) R01 which is closer to the actual depth zb. As might be
expected, this shift is a function of angle.

The extent to which the leading order imaging series, αLOIM, is a good approximation to the
entire imaging series, αIM, depends on the magnitude of the perturbation above the reflector
being imaged. Higher order imaging series that go beyond the leading order approximation
include successively more amplitude terms in the series for the shift in (33). For models
containing more than two interfaces, the leading order order imaging series produces an
approximation to the shift at each mislocated interface that is an infinite series in reflection
and transmission coefficients in the overburden. It is postulated that higher terms in the
imaging series will act to unravel these transmission coefficients.

Consider two specific examples where the reference velocity c0 = 1500 m/sec and the two
reflectors are located at za = 1000 m and zb = 1075 m. In the first case c1 = 1650 m/sec and
in the second case c1 = 1350 m/sec. Figure 3 illustrates the depths predicted by the first
term in the series and three approximations to the imaging series for two different velocity
models. The variation of zb′ with angle is referred to as residual moveout. At higher angles,
the depth of the second reflector predicted by the first term in the series is less accurate.
This is because the constituent plane waves travelling at higher angles of incidence spend a
proportionally longer time in the layer with the wrong velocity. Therefore, the non-linear
terms in the imaging series have to shift the interface further at higher angles. The fact
that the magnitude of the reflection coefficient at the first interface, |R01|, increases with
angle aids the imaging terms in shifting greater distances with angle. On the other hand,
this increase in amplitude will tend to make the leading order approximation in (34) less
justifiable. Figure 3 shows, for two examples, that including higher order imaging terms
improves the accuracy of the predicted depth, especially at higher angles where they are
needed more. Figure 4 shows two more examples where the contrasts are twice as large as
in Fig. 3. These examples show how higher order imaging terms become more important
for higher contrasts between the actual and reference velocity.
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Figure 3: Low contrast analytic example. Depths predicted by the first term in the series and three different
imaging series as a function of angle for two specific analytic examples: za = 1000 m, zb = 1075 m, c0 = 1500
m/sec and c1 = 1650 m/s (i), c1 = 1350 m/sec (ii).
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Figure 4: High contrast analytic example. Depths predicted by the first term in the series and three different
imaging series as a function of angle for two specific analytic examples: za = 1000 m, zb = 1075 m, c0 = 1500
m/sec and c1 = 1800 m/sec (i), c1 = 1200 m/sec (ii).
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3.2 Numerical examples

We test the leading order imaging series on data synthesized using a reflectivity algorithm
(see, for example, Kennett (1983)). The source wavelet is a band-limited delta function with
a frequency spectrum A(f) where fmin < f < fmax. We begin with the simplest imaging
problem of two reflectors in a constant density acoustic medium with no free surface.

As with the analytic examples, two specific cases are considered, one representing the case
where the reference velocity is slower than the actual velocity, and one where the reference
velocity is faster. In the former example, the velocities are c0 = 1500 m/s, c1 = 1650 m/s
and c2 = 1500 m/s, and so the critical angle for a downgoing plane wave at the first interface
is 65◦. In the latter example, the velocities are c0 = 1500 m/s, c1 = 1350 m/s and c2 =
1500 m/s, and there is no critical reflection. The depths of the two interfaces in both
examples are za = 1000 m and zb = 1075 m.

The data are synthesized in the τ -p domain and so can be considered to have been generated
from an experiment with infinite spatial aperture. Figure 5 shows the reflectivity data for the
two models. In both cases, the minimum and maximum source frequencies are fmin = 0.25
Hz and fmax = 62.5 Hz, respectively. We choose to display the result as “spike-like” data,
rather than “box-like” α1, by taking the derivative of the result with respect to z. This
is done primarily because it is easier to detect the shifting of reflectors when displayed in
“spike-like” form. Figure 6 shows the results of imaging the data in Fig. 5 using the constant
reference velocity, c0. The mislocated reflector exhibits residual moveout when imaged with
the first term in the series (left). The leading order imaging series (right) improves the depth
at all angles and acts to “flatten” the imaged reflector. As expected from the leading order
approximation, a small amount of residual moveout remains.

Figure 7 compares the result of summing eight terms in the leading order imaging series (21)
with the closed form result (24). After summing eight terms, the series has converged and
the deeper reflector has been relocated to the depth predicted analytically. Summing more
terms in the leading order imaging series does not further correct the depth because the
terms are too small. Differences in appearance between the series summation and the closed
form result can be attributed to the artifacts associated with the numerical computation of
derivatives.

Figure 8 shows the velocity profile and synthetic data for a 6-layer model. The imaging results
using a constant reference velocity are compared in Fig. 9. The leading order imaging series
improves the location of all the reflectors mislocated by the first term. The remaining errors
in the predicted depths are left to be corrected by higher order imaging terms. A small
cumulative error in depth noticeable in Fig. 9 is attributed primarily to the fact the integral
of the data in the overburden necessarily includes transmission coefficients that introduce
small errors in the series for the shifts.
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Figure 5: Velocity model and synthetic reflectivity data in the τ -p domain for two specific two-interface
examples. The time derivatives of the data are displayed and the polarity is consistent with the wave equation
in (1). The red lines overlying the seismic data are the analytically computed τ values for each reflector.

4 Discussion

The analytic and numerical results of the prestack leading order imaging series have high-
lighted a number of interesting characteristics of the algorithm. Given a choice of how to
handle the degree of freedom afforded by the source-receiver offset in the seismic experi-
ment, we chose in this paper to keep the angle of incidence in the reference medium (θ0 or
p0) constant and let ω vary. This allowed for a straightforward generalization of the normal
incidence case to non-normal incidence. By parameterizing the problem for a constant θ0,
one can consider a new effective perturbation that is scaled by 1/ cos2 θ0:

ω2

c2(z)
=

ω2

c2
0

(1 − α (z)) =
k2

z

cos2 θ0

(1 − α (z)) . (36)

For the acoustic examples considered here, the first term in the imaging series more accu-
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Figure 6: Results of imaging the two datasets in Fig. 5. At top is the example where the velocity increased,
and at bottom is the example where the velocity decreased. On the left is the first term in the series: the result
of an imaging algorithm that is linear in the data. On the right is the result of the leading order imaging
series. The derivatives with respect to depth of αLOIM are displayed. The yellow lines are the actual depths
of the two reflectors. The red and green lines are the predicted depths computed analytically using (30) and
(34), respectively.

rately locates reflectors at small angles θ0. This is because the decomposed plane waves at
larger angles spend proportionally longer times in the layers with the wrong velocity. At
the same time, the magnitude of the amplitudes at larger angles is greater, which assist the
non-linear terms of the leading order imaging series in shifting the reflectors the required
distance to their actual locations. This larger “effective contrast” at higher angles also tends
to emphasize the fact that the imaging algorithm currently being tested is leading order in
the data’s amplitudes. This leading order approximation is better at small angles and is it’s
the reason why the leading order imaging series leaves a small amount of residual moveout.
Higher order terms may be required by larger angles of incidence. On the other hand, the
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Figure 7: The cumulative sum of up to eight terms in the leading order imaging series compared to the closed
form result. The input data are the same as in Fig. 5 (top) where the reference velocity is slower than the
actual velocity in the layer. The red and green lines are the predicted depths computed analytically for the
first term and the closed form, respectively.

rate of convergence of the series form of the algorithm will benefit from the fact that the
maximum kz is smaller at large angles (since kz = k0 cos θ0).
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Figure 8: Velocity profile and synthetic reflectivity data in the τ -p domain for a 6 layer model. The time
derivatives of the data are displayed. The red lines overlying the seismic data are the analytically computed
τ values for each reflector.

The reflectivity data that was the input to the numerical tests, was modelled for a source
absent of zero frequency. This is itself an important result since field data are always ban-
dlimited. A more detailed analysis of the issues surrounding missing low frequency and the
leading order imaging series is given in Part II (Shaw and Weglein, 2004).

5 Conclusion

A prestack formulation of a leading order imaging series for constant angles of incidence and
a 1D medium has been derived and analyzed for several analytic and synthetic numerical
experiments. The results illustrate the improvement in the predicted depths of the reflectors
that are mislocated by conventional depth imaging (which corresponds to the first term in
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Figure 9: Results of imaging the data in Fig. 8. On the left is the first term in the series: the result of an
imaging algorithm that is linear in the data. On the right is the result of the leading order imaging series.
The yellow lines are the actual depths of the reflectors.
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the series). The effect of the leading order imaging series can be visualized as correcting the
residual moveout of common image gathers that are imaged with the wrong velocity.
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A Derivation of the first term, α1

The first term in the inverse series is a linear inversion of the scattered field. Beginning with
(5), the data D̃ are related to α1 by

D̃ (~x g|~x s; ω) =

∫ ∞

−∞

dx′

∫ ∞

−∞

dy ′

∫ ∞

−∞

dz ′G0 (~x g|~x ′ ; ω) k2
0α1 (~x ′ ) G0 (~x ′ |~xs; ω) (37)

where k0 = ω/c0. The two reference Green’s functions in (37) satisfy

(

∇2 +
ω2

c2
0

)

G0 = −δ (38)
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and the causal solutions are (see, for example, DeSanto (1992))

G0(~x g|~x ′ ; ω) =
1

(2π)3

∫ ∞

−∞

dkx′

∫ ∞

−∞

dky′

∫ ∞

−∞

dkz′

eikx′ (xg−x′)eiky′ (yg−y′)eikz′ (zg−z′)

k2
0 − k2

x′ − k2
y′ − k2

z′

(39)

G0(~x
′ |~x s; ω) =

1

(2π)3

∫ ∞

−∞

dkxs

∫ ∞

−∞

dkys

∫ ∞

−∞

dkzs

eikxs (x′−xs)eikys (y′−ys)eikzs (z′−zs)

k2
0 − k2

xs
− k2

ys
− k2

zs

. (40)

Implicit in (37) is that the incident field is the result of a point source and not a plane wave.
Substituting these Green’s functions into (37) yields

D̃ (~x g|~x s; ω) =
1

(2π)6

∫ ∞

−∞

dx′

∫ ∞

−∞

dy ′

∫ ∞

−∞

dz ′

∫ ∞

−∞

dkx′

∫ ∞

−∞

dky′

×
∫ ∞

−∞

dkz′

eikx′ (xg−x′)eiky′ (yg−y′)eikz′ (zg−z′)

k2
0 − k2

x′ − k2
y′ − k2

z′

k2
0α1(~x

′ )

×
∫ ∞

−∞

dkxs

∫ ∞

−∞

dkys

∫ ∞

−∞

dkzs

eikxs (x′−xs)eikys (y′−ys)eikzs (z′−zs)

k2
0 − k2

xs
− k2

ys
− k2

zs

. (41)

Performing a double Fourier transform over xg and yg

D̃(kxg
, kyg

, zg|~x s; ω) =

∫ ∞

−∞

dxg

∫ ∞

−∞

dygD̃ (xg, yg, zg|~x s; ω) e−ikxg xge−ikyg yg

=
1

(2π)6

∫ ∞

−∞

dxg

∫ ∞

−∞

dyg

︸ ︷︷ ︸

∫ ∞

−∞

dx′

∫ ∞

−∞

dy ′

∫ ∞

−∞

dz ′

×
∫ ∞

−∞

dkx′

∫ ∞

−∞

dky′ eixg(kx′−kxg )eiyg(ky′−kyg )
︸ ︷︷ ︸

×
∫ ∞

−∞

dkz′

e−ikx′x′

e−iky′y′

eikz′ (zg−z′)

k2
0 − k2

x′ − k2
y′ − k2

z′

×k2
0α1(~x

′ )

∫ ∞

−∞

dkxs

∫ ∞

−∞

dkys

∫ ∞

−∞

dkzs

eikxs (x′−xs)eikys (y′−ys)eikzs (z′−zs)

k2
0 − k2

xs
− k2

ys
− k2

zs

. (42)

Carrying out the integrations over xg and yg (braced terms) produces two delta functions
(2π)2δ(kx′ −kxg

)δ(ky′ −kyg
). Then the integrations over kx′ and ky′ can be performed giving

D̃(kxg
, kyg

, zg|~x s; ω) =
1

(2π)4

∫ ∞

−∞

dx′

∫ ∞

−∞

dy ′

∫ ∞

−∞

dz ′

×
∫ ∞

−∞

dkz′

e−ikxg x′

e−ikyg y′

eikz′ (zg−z′)

k2
0 − k2

xg
− k2

yg
− k2

z′

k2
0α1(~x

′ )

×
∫ ∞

−∞

dkxs

∫ ∞

−∞

dkys

∫ ∞

−∞

dkzs

eikxs (x′−xs)eikys (y′−ys)eikzs (z′−zs)

k2
0 − k2

xs
− k2

ys
− k2

zs

(43)
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Now assume that the actual medium is invariant in the x and y directions, i.e.,

α1(~x ) = α1(z). (44)

Collecting the exponentials in x′ and y ′ and then carrying out the integrations over these
variable produces two more delta functions (braced terms below) allowing integration over
kxs

and kys
:

D̃(kxg
, kyg

, zg|~x s; ω) =
1

(2π)4

∫ ∞

−∞

dx′

∫ ∞

−∞

dy ′

︸ ︷︷ ︸

∫ ∞

−∞

dz ′

∫ ∞

−∞

dkz′

× eikz′ (zg−z′)

k2
0 − k2

xg
− k2

yg
− k2

z′

k2
0α1(z

′)

×
∫ ∞

−∞

dkxs
eix′(kxs−kxg )
︸ ︷︷ ︸

∫ ∞

−∞

dkys
eiy′(kys−kyg )
︸ ︷︷ ︸

×
∫ ∞

−∞

dkzs

e−ikxsxse−ikysyseikzs (z′−zs)

k2
0 − k2

xs
− k2

ys
− k2

zs

=
1

(2π)2

∫ ∞

−∞

dz ′

∫ ∞

−∞

dkz′

eikz′ (zg−z′)

k2
0 − k2

xg
− k2

yg
− k2

z′

× k2
0α1(z

′)

∫ ∞

−∞

dkzs

e−ikxg xse−ikyg yseikzs (z′−zs)

k2
0 − k2

xg
− k2

yg
− k2

zs

. (45)

Note that the integrations over x′ and y ′ in (45), for a laterally invariant medium where α1

is not a function of x′ or y ′, demonstrates that kxg
= kxs

and kyg
= kys

. Define the vertical
wavenumbers

q2
g = k2

0 − k2
xg

− k2
yg

(46)

and

q2
s = k2

0 − k2
xs
− k2

ys
(47)

which, for the case where α is only a function of z, are equal (qg = qs). Substituting (46)
into (45),

D̃(kxg
, kyg

, zg|~x s; ω) =
1

(2π)2
e−ikxg xse−ikyg ys

∫ ∞

−∞

dz ′k2
0α1(z

′)

×
∫ ∞

−∞

dkz′

eikz′ (zg−z′)

q2
g − k2

z′

∫ ∞

−∞

dkzs

eikzs (z′−zs)

q2
g − k2

zs

. (48)

We are now in a position to perform the integrals with respect to kz′ and kzs
(see, e.g.,

DeSanto (1992), page 57):
∫ ∞

−∞

dkz′

eikz′ (zg−z′)

q2
g − k2

z′

= −
∫ ∞

−∞

dkz′

eikz′ (zg−z′)

(kz′ − qg)(kz′ + qg)

= −πi

qg

eiqg|zg−z′| (49)
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and similarly

∫ ∞

−∞

dkzs

eikzs (z′−zs)

q2
g − k2

zs

= −πi

qg

eiqg|z′−zs|. (50)

Substituting (49) and (50) into (48) gives

D̃(kxg
, kyg

, zg|~x s; ω) =
1

(2π)2
e−ikxg xse−ikyg ys

∫ ∞

−∞

dz ′k2
0α1(z

′)

(

−πi

qg

eiqg|zg−z′|

)(

−πi

qg

eiqg |z′−zs|

)

=
e−ikxg xse−ikyg ys

−4q2
g

∫ ∞

−∞

dz ′eiqg(z′−zg)k2
0α1(z

′)eiqg(z′−zs)

=
k2

0

−4q2
g

e−ikxg xse−ikyg yse−iqg(zg+zs)α̃1(−2qg) (51)

where in (51) we have assumed that the scattering points are below the measurement surface
(z ′ > zg and z ′ > zs). Performing a double inverse Fourier transform

D̃(~x g|~x s; ω) =
1

(2π)2

∫ ∞

−∞

dkxg
eikxg xg

∫ ∞

−∞

dkyg
eikyg ygD̃(kxg

, kyg
, zg|~x s; ω)

=
1

(2π)2

∫ ∞

−∞

dkxg
eikxg xg

∫ ∞

−∞

dkyg
eikyg yg

k2
0

−4q2
g

e−ikxg xse−ikyg yse−iqg(zg+zs)α̃1(−2qg)

=
1

(2π)2

∫ ∞

−∞

dkxg

∫ ∞

−∞

dkyg

k2
0

−4q2
g

α̃1(−2qg)e
ikxg (xg−xs)eikyg (yg−ys)e−iqg(zg+zs). (52)

We proceed by changing from cartesian to cylindrical coordinates where

∫ ∞

−∞

dkxg

∫ ∞

−∞

dkyg
=

∫ ∞

0

krdkr

∫ 2π

0

dφ̃. (53)

Substituting (53) into (52) yields

D̃(r, z; ω) =
1

(2π)2

∫ ∞

0

dkr

∫ 2π

0

dφ̃
k2

0kr

−4q2
g

α̃1(−2qg)e
ikr cos φ̃r cos φeikr sin φ̃r sin φe−iqg(zg+zs) (54)

and, since,

∫ 2π

0

eikrr(cos φ̃ cos φ+sin φ̃ sin φ)dφ̃ =

∫ 2π

0

eikrr(cos(φ̃−φ))dφ̃ = 2πJ0(krr), (55)

then (54) becomes

D̃(r; ω) =
1

(2π)

∫ ∞

0

k2
0

−4q2
g

α̃1(−2qg)e
−iqg(zg+zs)J0(krr)krdkr (56)
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which is an expression for the scattered field in terms of α̃1. Equation (56) can be inverted
by recognizing the Fourier-Bessel transform pairs

g(r) =

∫ ∞

0

G(kr)J0(krr)krdkr (57)

G(kr) =

∫ ∞

0

g(r)J0(krr)rdr (58)

and leads to

1

(2π)

k2
0

−4q2
g

α̃1(−2qg)e
−iqg(zg+zs) =

∫ ∞

0

D̃(r; ω)J0(krr)rdr. (59)

Therefore,

α̃1(−2qg) = 2π
−4q2

g

k2
0

eiqg(zg+zs)

∫ ∞

0

D̃(r; ω)J0(krr)rdr. (60)

where

qg =
ω

c0

√

1 − k2
rc

2
0

ω2
. (61)

From (60), we see that α̃1 is over-determined (there are more free variables on the right-hand
side than on the left). Inverse Fourier transforming both sides of (60) gives

α1(z) =
2

2π

∫ ∞

−∞

α̃1(−2qg)e
−2iqgzdqg

= − 8

∫ ∞

−∞

q2
g

k2
0

e−iqg(2z−(zg+zs))

∫ ∞

0

D̃(r; ω)J0(krr)rdrdqg (62)

Considering fixed angles of incidence, θ0, leads to a number of different estimates of α1,
denoted by α1(z, θ0). Fixing θ0 is the same as fixing horizontal and vertical slownesses,
p = p0 and ζ = ζ0, respectively, where

p0 =
sin θ0

c0

and ζ0 =
cos θ0

c0

.

However, qg is still allowed to vary through the variation in ω (since qg = ωζ0). We proceed
by changing variables from qg to ω:

α1(z, θ0) = − 8ζ0 cos2 θ0

∫ ∞

−∞

e−iωζ0(2z−(zg+zs))

∫ ∞

0

D̃(r; ω)J0(ωp0r)rdrdω (63)
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Define τ0 = ζ0 (2z − (zg + zs)) and substitute (a) the temporal Fourier transform of the data
D(r, t) for D̃(r; ω) and (b) the integral form of the Bessel function gives

α1(z, θ0) = − 8ζ0 cos2 θ0

∫ ∞

−∞

dωe−iωτ0

∫ ∞

0

rdr

(∫ ∞

−∞

D(r; t)eiωtdt

)(
1

2π

∫ 2π

0

eiωp0r cos φdφ

)

= − 8ζ0 cos2 θ0

∫ ∞

−∞

dω

∫ ∞

0

rdr

(∫ ∞

−∞

D(r; t)eiω(t−(τ0−p0r cos φ))dt

)(
1

2π

∫ 2π

0

dφ

)

= − 8ζ0 cos2 θ0

∫ ∞

0

rdr

(∫ ∞

−∞

D(r; t)2πδ(t − (τ0 − p0r cos φ))dt

)

= − 8ζ0 cos2 θ0

∫ 2π

0

∫ ∞

0

D(r; τ0 − p0r cos φ)rdrdφ (64)

Changing back to cartesian coordinates, where

r =
√

x2 + y2, φ = arccos

(

x
√

x2 + y2

)

, φ = arcsin

(

y
√

x2 + y2

)

and the partial derivatives are

∂r

∂x
=

x
√

x2 + y2
=

x

r

∂r

∂y
=

y
√

x2 + y2
=

y

r

∂φ

∂x
=

−1
√

1 −
(

x√
x2+y2

)2
×

(
√

x2 + y2 − x2√
x2+y2

)

(x2 + y2)

=

(
x2

r
− r

)

r2

√

1 −
(

x2

r2

)
=

1
r
(x2 − r2)

r
√

r2 − x2
=

−y

r2

∂φ

∂y
=

1
√

1 −
(

y√
x2+y2

)2
×

(
√

x2 + y2 − y2√
x2+y2

)

(x2 + y2)

=

(

r − y2

r

)

r2

√

1 −
(

y2

r2

) =
1
r
(r2 − y2)

r
√

r2 − y2
=

x

r2
.
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So the Jacobian is

∂r

∂x

∂φ

∂y
− ∂r

∂y

∂φ

∂x
=

x2

r3
+

y2

r3
=

1

r

and therefore

α1(z, θ0) = − 8ζ0 cos2 θ0

∫ ∞

−∞

∫ ∞

−∞

D(x, y; τ0 − xp0)dxdy (65)

where τ0 = ζ0 (2z − (zg + zs)) and p0 = sin θ0/c0. Equation (65) is recognizable as the slant
stack of the recorded data (Treitel et al., 1982).

B Derivation of the second term, α2

The integral equation for the second term in the inverse series for this acoustic problem is
∫ ∞

−∞

G0 (~x g|~x ′ ; ω)k2
0α2(~x

′ )G0 (~x ′ |~x s; ω) d~x ′

= −
∫ ∞

−∞

d~x ′G0 (~x g|~x ′ ; ω) k2
0α1(~x

′ )

×
∫ ∞

−∞

d~x ′′G0 (~x ′ |~x ′′ ; ω) k2
0α1(~x

′′ )G0 (~x ′′ |~x s; ω) . (66)

Upon substitution of the causal Green’s functions, the left-hand side becomes

LHS =
1

(2π)6

∫ ∞

−∞

dx′

∫ ∞

−∞

dy ′

∫ ∞

−∞

dz ′

×
∫ ∞

−∞

dkx′

∫ ∞

−∞

dky′

∫ ∞

−∞

dkz′

eikx′ (xg−x′)eiky′ (yg−y′)eikz′ (zg−z′)

k2
0 − k2

x′ − k2
y′ − k2

z′

× k2
0α2(z

′)

∫ ∞

−∞

dkxs

∫ ∞

−∞

dkys

∫ ∞

−∞

dkzs

eikxs (x′−xs)eikys (y′−ys)eikzs(z′−zs)

k2
0 − k2

xs
− k2

ys
− k2

zs

(67)

and the right-hand side is

RHS =
−1

(2π)9

∫ ∞

−∞

dx′

∫ ∞

−∞

dy ′

∫ ∞

−∞

dz ′

×
∫ ∞

−∞

dkx′

∫ ∞

−∞

dky′

∫ ∞

−∞

dkz′

eikx′ (xg−x′)eiky′ (yg−y′)eikz′ (zg−z′)

k2
0 − k2

x′ − k2
y′ − k2

z′

× k2
0α1(z

′)

∫ ∞

−∞

dx′′

∫ ∞

−∞

dy ′′

∫ ∞

−∞

dz ′′

×
∫ ∞

−∞

dkx′′

∫ ∞

−∞

dky′′

∫ ∞

−∞

dkz′′

eikx′′ (x′−x′′)eiky′′ (y′−y′′)eikz′′ (z
′−z′′)

k2
0 − k2

x′′ − k2
y′′ − k2

z′′

k2
0α1(z

′′)

×
∫ ∞

−∞

dkxs

∫ ∞

−∞

dkys

∫ ∞

−∞

dkzs

eikxs (x′′−xs)eikys (y′′−ys)eikzs (z′′−zs)

k2
0 − k2

xs
− k2

ys
− k2

zs

. (68)
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As with deriving an equation for α1, we Fourier transform both sides over xg and yg and
perform the integrations over kx′ and ky′ . Therefore,

LHS → 1

(2π)4

∫ ∞

−∞

dx′

∫ ∞

−∞

dy ′

∫ ∞

−∞

dz ′

∫ ∞

−∞

dkz′

e−ikxg x′

e−ikyg y′

eikz′ (zg−z′)

k2
0 − k2

xg
− k2

yg
− k2

z′

× k2
0α2(z

′)

∫ ∞

−∞

dkxs

∫ ∞

−∞

dkys

∫ ∞

−∞

dkzs

eikxs (x′−xs)eikys (y′−ys)eikzs (z′−zs)

k2
0 − k2

xs
− k2

ys
− k2

zs

(69)

RHS → −1

(2π)7

∫ ∞

−∞

dx′

∫ ∞

−∞

dy ′

∫ ∞

−∞

dz ′

∫ ∞

−∞

dkz′

× e−ikxg x′

e−ikyg y′

eikz′ (zg−z′)

k2
0 − k2

xg
− k2

yg
− k2

z′

k2
0α1(z

′)

∫ ∞

−∞

dx′′

∫ ∞

−∞

dy ′′

∫ ∞

−∞

dz ′′

×
∫ ∞

−∞

dkx′′

∫ ∞

−∞

dky′′

∫ ∞

−∞

dkz′′

× eikx′′(x′−x′′)eiky′′(y′−y′′)eikz′′(z
′−z′′)

k2
0 − k2

x′′ − k2
y′′ − k2

z′′

k2
0α1(z

′′)

×
∫ ∞

−∞

dkxs

∫ ∞

−∞

dkys

∫ ∞

−∞

dkzs

eikxs(x′′−xs)eikys (y′′−ys)eikzs(z′′−zs)

k2
0 − k2

xs
− k2

ys
− k2

zs

. (70)

Collecting the exponentials in x′ and y ′ and performing the integrations with respect to these
variables produces delta functions 2πδ(kxs

−kxg
) and 2πδ(kys

−kyg
) (LHS) and 2πδ(kx′′−kxg

)
and 2πδ(ky′′ − kyg

) (RHS) allowing for the kxs
and kys

(LHS) and kx′′ and ky′′ (RHS)
integrals, respectively, to be carried out:

LHS → 1

(2π)4

∫ ∞

−∞

dx′

︸ ︷︷ ︸

∫ ∞

−∞

dy ′

︸ ︷︷ ︸

∫ ∞

−∞

dz ′

∫ ∞

−∞

dkz′

eikz′ (zg−z′)

k2
0 − k2

xg
− k2

yg
− k2

z′

× k2
0α2(z

′)

∫ ∞

−∞

dkxs

∫ ∞

−∞

dkys

∫ ∞

−∞

dkzs
ei(kxs−kxg )x′

︸ ︷︷ ︸
ei(kys−kyg )y′

︸ ︷︷ ︸

× e−ikxsxse−ikysyseikzs (z′−zs)

k2
0 − k2

xs
− k2

ys
− k2

zs

→ 1

(2π)2

∫ ∞

−∞

dz ′

∫ ∞

−∞

dkz′

eikz′ (zg−z′)

k2
0 − k2

xg
− k2

yg
− k2

z′

k2
0α2(z

′)

×
∫ ∞

−∞

dkzs

e−ikxg xse−ikyg yseikzs (z′−zs)

k2
0 − k2

xg
− k2

yg
− k2

zs

(71)
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RHS → −1

(2π)7

∫ ∞

−∞

dx′

︸ ︷︷ ︸

∫ ∞

−∞

dy ′

︸ ︷︷ ︸

∫ ∞

−∞

dz ′

∫ ∞

−∞

dkz′

eikz′ (zg−z′)

k2
0 − k2

xg
− k2

yg
− k2

z′

× k2
0α1(z

′)

∫ ∞

−∞

dx′′

∫ ∞

−∞

dy ′′

∫ ∞

−∞

dz ′′

∫ ∞

−∞

dkx′′

∫ ∞

−∞

dky′′

∫ ∞

−∞

dkz′′

× ei(kx′′−kxg )x′

︸ ︷︷ ︸
ei(ky′′−kyg )y′

︸ ︷︷ ︸

e−ikx′′x′′

e−iky′′y′′

eikz′′ (z
′−z′′)

k2
0 − k2

x′′ − k2
y′′ − k2

z′′

k2
0α1(z

′′)

×
∫ ∞

−∞

dkxs

∫ ∞

−∞

dkys

∫ ∞

−∞

dkzs

eikxs(x′′−xs)eikys (y′′−ys)eikzs(z′′−zs)

k2
0 − k2

xs
− k2

ys
− k2

zs

(72)

→ −1

(2π)5

∫ ∞

−∞

dz ′

∫ ∞

−∞

dkz′

eikz′ (zg−z′)

k2
0 − k2

xg
− k2

yg
− k2

z′

k2
0α1(z

′)

×
∫ ∞

−∞

dx′′

∫ ∞

−∞

dy ′′

∫ ∞

−∞

dz ′′

∫ ∞

−∞

dkz′′

× e−ikxg x′′

e−ikyg y′′

eikz′′ (z
′−z′′)

k2
0 − k2

xg
− k2

yg
− k2

z′′

k2
0α1(z

′′)

×
∫ ∞

−∞

dkxs

∫ ∞

−∞

dkys

∫ ∞

−∞

dkzs

eikxs (x′′−xs)eikys (y′′−ys)eikzs (z′′−zs)

k2
0 − k2

xs
− k2

ys
− k2

zs

(73)

As in the inversion for α1, the two wavenumber integrals (over kz′ and kzs
) on the left-hand

side can now be evaluated:

LHS → k2
0

(2π)2
e−ikxg xse−ikyg ys

∫ ∞

−∞

dz ′α2(z
′)

(

−
∫ ∞

−∞

dkz′

eikz′ (zg−z′)

(kz′ − qg)(kz′ + qg)

)

×
(

−
∫ ∞

−∞

dkzs

eikzs (z′−zs)

(kzs
− qg)(kzs

+ qg)

)

→ k2
0

(2π)2
e−ikxg xse−ikyg ys

∫ ∞

−∞

dz ′α2(z
′)

(
πi

qg

eiqg|zg−z′|

) (
πi

qg

eiqg|z′−zs|

)

→−k2
0

4q2
g

e−ikxg xse−ikyg yse−iqg(zg+zs)

∫ ∞

−∞

dz ′α2(z
′)e2iqgz′

. (74)

Meanwhile, the right-hand side can be simplified:

RHS → −1

(2π)5

∫ ∞

−∞

dz ′

∫ ∞

−∞

dkz′

eikz′ (zg−z′)

k2
0 − k2

xg
− k2

yg
− k2

z′

︸ ︷︷ ︸

k2
0α1(z

′)

∫ ∞

−∞

dx′′e−ikxg x′′

×
∫ ∞

−∞

dy ′′e−ikyg y′′

∫ ∞

−∞

dz ′′

∫ ∞

−∞

dkz′′

eikz′′ (z
′−z′′)

k2
0 − k2

xg
− k2

yg
− k2

z′′

︸ ︷︷ ︸

k2
0α1(z

′′)

×
∫ ∞

−∞

dkxs
eikxs (x′′−xs)

∫ ∞

−∞

dkys
eikys (y′′−ys)

∫ ∞

−∞

dkzs

eikzs (z′′−zs)

k2
0 − k2

xs
− k2

ys
− k2

zs
︸ ︷︷ ︸

(75)
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where

∫ ∞

−∞

dkz′

eikz′ (zg−z′)

k2
0 − k2

xg
− k2

yg
− k2

z′

= −πi

qg

eiqg |zg−z′| (76)

∫ ∞

−∞

dkz′′

eikz′′(z
′−z′′)

k2
0 − k2

xg
− k2

yg
− k2

z′′

= −πi

qg

eiqg |z′−z′′| (77)

∫ ∞

−∞

dkzs

eikzs (z′′−zs)

k2
0 − k2

xs
− k2

ys
− k2

zs

= −πi

qs

eiqs|z′′−zs|. (78)

Substituting (76)–(78) into (75) yields

RHS → −1

(2π)5

∫ ∞

−∞

dz ′

(

−πi

qg

eiqg(z′−zg)

)

k2
0α1(z

′)

∫ ∞

−∞

dx′′e−ikxg x′′

×
∫ ∞

−∞

dy ′′e−ikyg y′′

∫ ∞

−∞

dz ′′

(

−πi

qg

eiqg|z′−z′′|

)

k2
0α1(z

′′)

×
∫ ∞

−∞

dkxs
eikxs (x′′−xs)

∫ ∞

−∞

dkys
eikys (y′′−ys)

(

−πi

qs

eiqs(z′′−zs)

)

(79)

and the integrations over x′′ and y ′′ produce two more delta functions 2πδ(kxs
− kxg

) and
2πδ(kys

− kyg
)

RHS → −1

(2π)3

∫ ∞

−∞

dz ′

(

−πi

qg

eiqg(z′−zg)

)

k2
0α1(z

′)

∫ ∞

−∞

dz ′′

(

−πi

qg

eiqg|z′−z′′|

)

k2
0α1(z

′′)

× e−ikxg xse−ikyg ys

(

−πi

qs

eiqg(z′′−zs)

)

. (80)

Then expanding the absolute value in the exponential and simplifying:

RHS →−ik4
0

8q3
g

∫ ∞

−∞

dz ′eiqg(z′−zg)α1(z
′)

(∫ ∞

−∞

dz ′′H(z ′ − z ′′)eiqg(z′−z′′)α1(z
′′)

+

∫ ∞

−∞

dz ′′H(z ′′ − z ′)eiqg(z′′−z′)α1(z
′′)

)

e−ikxg xse−ikyg yseiqg(z′′−zs)

→−ik4
0

8q3
g

e−ikxg xse−ikyg yse−iqg(zg+zs)

∫ ∞

−∞

dz ′α1(z
′)

×
(

2

∫ ∞

−∞

dz ′′H(z ′ − z ′′)eiqg(z′−z′′)α1(z
′′)

)

eiqg(z′+z′′)

→−ik4
0

4q3
g

e−ikxg xse−ikyg yse−iqg(zg+zs)

∫ ∞

−∞

dz ′α1(z
′)e2iqgz′

×
∫ ∞

−∞

dz ′′H(z ′ − z ′′)α1(z
′′). (81)
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Now equating the left-hand and right-hand sides, (74) and (81), the phases exp(−ikxg
xs),

exp(−ikyg
ys) and exp (−iqg (zg + zs)) cancel leaving

∫ ∞

−∞

dz ′α2(z
′)e2iqgz′

=
ik2

0

qg

∫ ∞

−∞

dz ′α1(z
′)e2iqgz′

∫ ∞

−∞

dz ′′H(z ′ − z ′′)α1(z
′′). (82)

Integrating the right-hand side by parts

u =

∫ ∞

−∞

dz ′′α1(z
′′)H(z ′ − z ′′)α1(z

′)

dv =
ik2

0

qg

e2iqgz′

dz ′

du

dz ′
=α2

1(z
′) +

∫ ∞

−∞

dz ′′α1(z
′′)H(z ′ − z ′′)

dα1(z
′)

dz ′

=α2
1(z

′) +

∫ z′

−∞

dz ′′α1(z
′′)

dα1(z
′)

dz ′

v =
k2

0

2q2
g

e2iqgz′

Therefore,

∫ ∞

−∞

dz ′e2iqgz′

α2(z
′) =

[
k2

0

2q2
g

e2iqgz′

∫ ∞

−∞

dz ′′α1(z
′′)H(z ′ − z ′′)α1(z

′)

]∞

z′=−∞

−
∫ ∞

−∞

dz ′e2iqgz′ k2
0

2q2
g

(

α2
1(z

′) +

∫ z′

−∞

dz ′′α1(z
′′)

dα1(z
′)

dz ′

)

, (83)

the boundary terms are zero (assuming α1, like α, is confined to a finite region) and so

α̃2(−2qg) = −
∫ ∞

−∞

dz ′e2iqgz′ k2
0

2q2
g

(

α2
1(z

′) +

∫ z′

−∞

dz ′′α1(z
′′)

dα1(z
′)

dz ′

)

. (84)

Performing an inverse Fourier transform and holding the angle of incidence constant gives

α2(z, θ0) = − 1

2 cos2 θ0

(

α2
1(z, θ0) +

∫ z

−∞

α1(z
′, θ0)dz ′∂α1(z, θ0)

∂z

)

(85)

C Isolation of the leading order imaging portion from

the third term, α3

For a detailed derivation and separation of the third term in the inverse series, the reader is
referred to the appendices of Shaw et al. (2003). For the purposes of this paper, we include
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only the steps taken to get to the generalized constant θ0 form. The integral equation to be
solved for the third term in the series is

∫ ∞

−∞

d~x ′G0 (~x g|~x ′ ; ω) k2
0α3(z

′)G0 (~x ′ |~x s; ω)

= −
∫ ∞

−∞

d~x ′G0 (~x g|~x ′ ; ω) k2
0α1(z

′)

×
∫ ∞

−∞

d~x ′′G0 (~x ′ |~x ′′ ; ω) k2
0α2(z

′′)G0 (~x ′′ |~x s; ω)

−
∫ ∞

−∞

d~x ′G0 (~x g|~x ′ ; ω) k2
0α2(z

′)

×
∫ ∞

−∞

d~x ′′G0 (~x ′ |~x ′′ ; ω) k2
0α1(z

′′)G0 (~x ′′ |~x s; ω)

−
∫ ∞

−∞

d~x ′G0 (~x g|~x ′ ; ω) k2
0α1(z

′)

×
∫ ∞

−∞

d~x ′′G0 (~x ′ |~x ′′ ; ω) k2
0α1(z

′′)

×
∫ ∞

−∞

d~x ′′′G0 (~x ′′ |~x ′′′ ; ω) k2
0α1(z

′′′)G0 (~x ′′′ |~x s; ω) . (86)

Fourier transform both sides of (86) over xg and yg and following the same steps as in deriving
(74), the left-hand side of (86) becomes

LHS →−k2
0

4q2
g

e−ikxg xse−ikyg yse−iqg(zg+zs)

∫ ∞

−∞

α3(z
′)e2iqgz′

dz ′. (87)

Meanwhile, the right-hand side becomes

RHS →− ik4
0

4q3
g

e−ikxg xse−ikyg yse−iqg(zg+zs)

∫ ∞

−∞

dz ′α1(z
′)

∫ ∞

−∞

dz ′′H(z ′ − z ′′)α2(z
′′)e2iqgz′

− ik4
0

4q3
g

e−ikxg xse−ikyg yse−iqg(zg+zs)

∫ ∞

−∞

dz ′α2(z
′)

∫ ∞

−∞

dz ′′H(z ′ − z ′′)α1(z
′′)e2iqgz′

− k4
0

(2π)4
e−ikxg xse−ikyg ys

∫ ∞

−∞

dz ′

∫ ∞

−∞

dkz′

eikz′ (zg−z′)

k2
0 − k2

xg
− k2

yg
− k2

z′

× α1(z
′)

∫ ∞

−∞

dz ′′

∫ ∞

−∞

dkz′′

eikz′′(z
′−z′′)

k2
0 − k2

xg
− k2

yg
− k2

z′′

α1(z
′′)

×
∫ ∞

−∞

dz ′′′

∫ ∞

−∞

dkz′′′

eikz′′′ (z
′′−z′′′)

k2
0 − k2

xg
− k2

yg
− k2

zg

α1(z
′′′)

∫ ∞

−∞

dkzs

eikzs (z′′′−zs)

k2
0 − k2

xg
− k2

yg
− k2

zs

.

(88)
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Simplifying gives
∫ ∞

−∞

α3(z
′)e2iqgz′

dz ′ =
ik2

0

qg

∫ ∞

−∞

dz ′α1(z
′)

∫ ∞

−∞

dz ′′H(z ′ − z ′′)α2(z
′′)e2iqgz′

ik2
0

qg

∫ ∞

−∞

dz ′α2(z
′)

∫ ∞

−∞

dz ′′H(z ′ − z ′′)α1(z
′′)e2iqgz′

+
k2

0

4q2
g

∫ ∞

−∞

dz ′eiqgz′

α1(z
′)

∫ ∞

−∞

dz ′′eiqg |z′−z′′|α1(z
′′)

∫ ∞

−∞

dz ′′′eiqg |z′′−z′′′|α1(z
′′′)eiqgz′′′

. (89)

Then, integrating by parts and inverse Fourier transforming holding θ0 constant gives

α3(z, θ0) =
−k2

0

q2
g

α1(z, θ0)α2(z, θ0) −
−k2

0

2q2
g

α1(z, θ0)

∫ z

−∞

α2(z
′, θ0)dz ′∂α1(z, θ0)

∂z

− k2
0

2q2
g

α2(z, θ0)

∫ z

−∞

α1(z
′, θ0)dz ′∂α2(z, θ0)

∂z

− k2
0

4q2
g

∫ ∞

−∞

dz ′

∫ ∞

−∞

dz ′′

∫ ∞

−∞

dz ′′′α1(z
′, θ0)α1(z

′′, θ0)α1(z
′′, θ0)

×
(

H(z ′ − z ′′)H(z ′′ − z ′′′)e2iqgz′

e−iqgz′′′

+H(z ′ − z ′′)H(z ′′′ − z ′′)eiqgz′

e−2iqgz′′

eiqgz′′′

+H(z ′′ − z ′)H(z ′′ − z ′′′)e−iqgz′

e2iqgz′′

e−iqgz′′′

+H(z ′′ − z ′)H(z ′′′ − z ′′)e−iqgz′

eiqgz′′′

)

. (90)

By comparison with the 1-D normal incidence derivation (Shaw et al., 2003; Innanen, 2003),

α3(z, θ0) =
1

cos4 θ0

(

3

16
α3

1(z, θ0) +
1

8

(∫ z

−∞

α1(z
′, θ0)dz ′

)2 [
∂2

∂z2
α1(z, θ0)

]

+
5

8
α1(z, θ0)

∫ z

−∞

α1(z
′, θ0)dz ′

[
∂

∂z
α1(z, θ0)

]

+
1

8

[
∂

∂z
α1(z, θ0)

] ∫ z

−∞

(
∫ z′

−∞

α1(z
′′, θ0)dz ′′

[
∂

∂z ′
α1(z

′, θ0)

])

dz ′

− 1

16

∫ z

−∞

∫ z

−∞

[
∂

∂z ′
α1(z

′, θ0)

] [
∂

∂z ′′
α1(z

′′, θ0)

]

α1(z
′′ + z ′ − z, θ0)dz ′′dz ′

)

(91)

and the amplitude-only and leading order imaging contributions are

α3(z, θ0) =
3

16

1

cos4 θ0

α3
1(z, θ0) +

1

8

1

cos4 θ0

(∫ z

−∞

α1(z
′, θ0)dz ′

)2
∂2α1(z, θ0)

∂z2
+ · · · (92)

respectively.
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