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Introduction and Overview: MOSRP06

Executive Summary

Seismic processing algorithms are effective when their assumptions and prerequisites are satisfied,
and when those assumptions are violated the result is the opposite of efficacy. There are many
circumstances when the assumptions behind seismic methods are satisfied and also many significant
instances when they are not. The latter is the source of seismic challenges, and connecting to and
addressing those challenges defines relevant and differential research programs.

There are three different types of assumptions, and violating any one or more of these can cause
seismic failure and erroneous and misleading predictions and dry hole drilling. The three distinct
types of assumptions are: (1) acquisition—completeness, extent, sampling and fidelity and types
of data collected and/or extrapolated/interpolated, (2) compute power: adequate compute capa-
bility for timely turn-around, and (3) algorithmic: innate algorithmic assumptions or limitations,
and requirements, whose violations are not addressable by more complete acquisition and faster
computers.

A comprehensive response to pressing seismic challenges begins with a frank and forthright problem
definition and statement. There are cases where improved acquisition and faster computers will
match the challenge, and other cases where an innate algorithmic challenge is the issue, and another
type of response is required.

For example, there are 2D acoustic models where an adequate velocity cannot be determined for
use by leading-edge imaging methods, and other very simple 2D models where given the exact
overburden velocity model, we cannot find an adequate image beneath that perfectly provided
overburden.

Combinations of lateral varying velocity and a range of reflector dip can readily produce the latter
perfect velocity input imaging breakdown. These types of challenges, innate velocity and imaging
algorithmic shortcomings, are present and remain with perfect and ideal acquisition and fully
adequate computers. Many of our toughest sub-salt, sub-basalt and sub-karsted imaging challenges
represent innate algorithmic breakdown.

There are two ways to address the violation of a requirement or assumption: (1) remove the
violation by satisfying the assumption, and (2) avoid the violation by deriving a different method
that doesnt make that assumption.

Both responses are reasonable. And within M-OSRP we adopt one or the other as indicated for
the three different and distinct assumption types listed above. To illustrate: We can without much
difficulty imagine, e.g., more complete 3D acquisition and faster and more effective computers, or
methods of cross line extrapolation, and we are all aware of cases where added value was derived
from those types of reasonable acquisition and extrapolation initiatives and computer advances.

1



Introduction MOSRP06

The critical point here is that in marked contrast, for the innate algorithmic limitations and as-
sumptions issue, we dont know of a single candidate concept, idea or method for satisfying the
assumptions of current imaging that would allow the satisfaction of the separate, distinct and/or
combined velocity and imaging demands, within the sphere of conventional velocity analysis and
depth imaging thinking, that could even in principle accommodate the types of imaging challenges
and plays we listed above, with e.g., high rugosity boundaries, in the overburden or at the target,
and rapid heterogeneous lateral varying media.

Faced with the latter innate algorithmic assumptions reality, it is then reasonable to pursue a
response to the innate algorithmic limitations of all current velocity model and imaging methods
through the second route: derive a fundamentally new method for direct and accurate depth imaging
that both in principle and practice doesnt make conventional imaging assumptions, that doesnt
have an interest in or require the velocity model, nor any explicit nor implicit direct or indirect
need for the velocity.

Since the inverse scattering series allows in principle for all seismic processing goals to be achieved
directly and explicitly in terms of only measured data and water speed, it is natural to seek to
extend our earlier work on removing free surface and internal multiples with absolutely no need
or requirement or interest whatsoever in subsurface information, including velocity, to the tasks
associated with primaries, depth imaging and non-linear AVO. Furthermore, those earlier developed
multiple removal methods, while placing stringent demands on data acquisition, demonstrated their
mettle, and efficacy and brought added value to the tool box of multiple removal methods under
precisely the type of complex and ill-defined geologic subsurface conditions that are the current
impenetrable and insurmountable obstacles for all our current leading-edge velocity analysis and
imaging methods. You have to recognize the promise and the potential before you begin the
hunt. That ultimate potential keeps you focused and on-track and on-target, as you reach partial
objectives, and keeps you moving forward towards the prize. The idea is to provide the level of
effectiveness for imaging and inverting primaries that we earlier brought to the removal of multiples.
That capability and potential for primaries and multiples resides within one single set of equations
( e.g., equation 5 of the strategy Abstract) .

Recognizing that that potential exists and resides within the inverse scattering series, equation (5),
is one thing, locating and capturing that specific potential, for example, to attenuate or remove
internal multiples or to depth image primaries within that over-all inverse scattering series machine,
is another thing entirely.

To illustrate: Carvalho et al located the free surface multiple removal machinery and applied the
algorithm to field data within 1.5 years; Araujo et al located the attenuation of internal multiples
in 3 years, another 3-4 years to field data application.

The issues related to algorithm development for the removal of multiples were far from trivial,
but the objective itself was fairly clear, eliminate the multiple and do not damage the primaries.
Accurate depth imaging without the velocity is a more complex and complicated and subtle un-
dertaking, and the capture of partial but significant capability has been completed (F. Liu et al) ,
further capture is underway, and all of these enterprises are far from trivial. But we are experienced
hunters now, and that experience will serve us well. We have solicited data for our first field data
test, and have received a positive response and good suggestions for synthetic and field data trials
and we are going forward.

2
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Foster, Matson, Shaw, Keys, Liu, H. Zhang, J. Zhang, Nita, Innanen, Ramirez, Otnes, Jiang
et al., have pioneered the capture of direct velocity depth imaging capability within the series a
capture which currently is partial, yet impressive and lightning fast and as we discussed in earlier
communications that capture is being extended to model type generality and groomed for further
synthetic and field data tests. That imaging task capture is also being extended to other currently
elusive and imaging issues including diffractions. At the Annual Meeting we will describe the overall
imaging project status and ongoing efforts and strategy and open issues and plans.

In the Annual Meeting presentations June 5th, 6th and 7th we decided to provide separate: (1)
background/tutorial and (2) progress and plans presentations. There are basically two reasons to
include tutorials: the major reason is to provide a framework and background for those looking
for a way to grasp why what we are pursuing is possible, and then to examine how precisely these
algorithms use the amplitude and phases in the recorded data, to achieve objectives that traditional
mainstream thinking says requires e.g. velocity information.

The methods we are developing are direct generalizations of the free surface multiple removal
methods, and we will link to that now acceptable methodology to show how more complicated
tasks are achieved with similar data useage and input. The methods we progress are intrinsically
complicated, and the thinking within the inverse scattering series brain is profound. Our goal is
to make that inner logic and data flow and information and mathphysics essence accessible. The
examples in our presentations are absent of pseudo differential operators, and Lebesgue integrals,
and unnecessary abstraction, and generalized proofs in fractional and negative dimensions, and
maximal number of superscripts and subscripts, often meant to dress up and obfuscate some old
thinking in some new clothes.

Our philosophy is to illustrate the simplest incarnation of new thinking. If its a fundamental new
wave concept you can show it with simple acoustic examples for those first trying to grasp what is
going on. And if you know what you are doing you ought to be able to able to explain it in some
way to an intelligent farmer.

Among highlights:

1. AVO framework, and unambiguous message concerning data requirements, the often reported
observations of ambiguities with PP only data are not anecdotal but to be expected and
additional data is not just appreciating the PP, PS, SP, SS etc data, as practical constraints.
A message is communicated from the inverse scattering series based on first principles on
data requirements needed for AVO. This we believe is an important message for those who
practice or research AVO. AVO has fundamental theoretical open issues on the mechanical
properties estimation side of things, and not only the bridge to rock and fluid properties, and
probably deserves more attention, and not to be treated as only a tech service.

2. Interferometry as reheated Greens theorem (1828), but if are applying for a job I suggest you
tell everyone you are progressing interferometry.

3. Flat common image gathers at the correct depth without damaging amplitudes as an auto-
matic by-product of the direct velocity independent imaging algorithm.

3
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4. Progress into inverse objectives in the anelastic world, towards Q compensation without
Q, and separately, towards using the difference between the actual internal multiple and a
predicted estimate to find an accumulated overburden transmission/Q factor.

5. And, most importantly, to recognize and congratulate Dr. Haiyan Zhang and Dr. Fang Liu
for successfully completing their PhDs.

The inverse scattering series is an amazing and impressive beast in terms of how it figures out
what it has to achieve and goes about its business. I suppose that its remarkable intelligence and
purposefulness derives from the fact that it is a deterministic and direct inversion, without model
matching, or optimization or objective functions, or searching or reference medium updating. It
is unique as a prescriptive and consistent set of equations that respects the non-linear relationship
between the change in any material property of a medium and the corresponding change in the
wave-field.

Imagine a series where the individual terms first decide (for any given data set) whether the role
and objective of that term is needed or called for prior to going into action. Two examples: (1)
the term that first starts to attenuate internal multiples, first decides if you have internal multiples
in your data, and if it concludes they are present it only then proceeds to predicting and removing
those multiples, and (2) the depth imaging terms first determine if the chosen input velocity is
adequate, and only if it decides that it isnt, that it then initiates action to remove the incorrect
image and to create the correct one. The latter are examples of purposeful perturbation, very
different from a sum of terms somehow wandering around model space towards and away from the
answer.

I’ve always been and I remain impressed and frankly, more than somewhat in awe. I’m reminded
of Richard Feynman’s famous quote about quantum mechanics, he stated “I don’t understand
quantum mechanics, and those who claim they do, really don’t!”. We have mined the inverse
scattering series for multiple removal and we are currently understanding and deciphering and
capturing and testing how it responds to depth imaging and non-linear AVO challenges.

Our job within M-OSRP is to educate and mentor graduate students, while addressing the pressing
innate seismic E & P algorithmic challenges. We fully understand and appreciate and are extremely
grateful for the rare opportunity you provide us through our consortium partnership, to go after
this fundamental high impact game-changing seismic capability.

The program is on track, and moving towards and achieving our goals. We look forward to seeing
you at the Annual Meeting. Thanks.

Sincerely,

Art
Arthur B. Weglein
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Review of the deghosting algorithm derived from Green’s Theorem

J. Zhang and A. B. Weglein

Abstract

In this paper, the derivation and testing of the Green’s theorem deghosting algorithm are re-
viewed. In general, for towed streamer data, the source wavelet is necessary in order to perform
deghosting, since the vertical derivative of the wavefield is not measured. However, through
analyzing the Green’s theorem deghosting algorithm, it is concluded that the scattered field
can always be deghosted even without the source wavelet. Field data testing issues are also
discussed.

1 Introduction

Deghosting is a seismic processing procedure to remove the up-going wave on the source side and
the down-going wave on the receiver side. Ghosts produce an angle and frequency dependent seis-
mic distortion and a notch in the frequency spectrum. Deghosting can improve the resolution and
remove ghost notches in seismic data. All subsequent processing steps and objectives will benefit
from effective deghosting. Furthermore, deghosting is a specific prerequisite of all inverse scattering
series tasks, e.g., free surface multipel removal (Carvalho, 1992; Weglein et al., 1997), internal mul-
tiple attenuation (Araújo, 1994; Ramı́rez and Weglein, 2005), depth imaging without the velocity
(Shaw and Weglein, 2003; Liu et al., 2004; Innanen and Weglein, 2003) and nonlinear inversion
(Zhang and Weglein, 2005a, 2006a). For ocean bottom data, the deghosting is an important step
since the ghost notch appears at a lower frequency and has had daunting challenges due to difficulty
with stable and reliable dual sensor OBS measurements.

There is a extensive literature on deghosting (Schneider et al., 1964; Robertsson and Kragh, 2002).
The deghosting algorithm derived from Green’s/Extinction theorem has been presented and studied
previously (Weglein et al., 2002; Zhang and Weglein, 2005b, 2006b). In this paper, we first review
the derivation of the algorithm. At the same time, we will show that small changes on the derivation
will enable us to obtain the wavelet estimation algorithm (Weglein and Secrest, 1990) and field
prediction algorithm (Osen et al., 1998; Tan, 1999; Weglein et al., 2000). Moreover, through the
analysis of the deghosting theory, we will discuss issues that arise when the algorithm is applied to
field data.

2 Theory

The Green’s Second identity (Green’s theorem) is∫
V

(
ψ(r′, rs, ω)∇′2φ(r′, r, ω)− φ(r′, r, ω)∇′2ψ(r′, rs, ω)

)
dr′
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=
∮

S

[
ψ(r′, rs, ω)∇′φ(r′, r, ω)− φ(r′, r, ω)∇′ψ(r′, rs, ω)

]
· dS′, (1)

where ψ(r′, rs, ω) and φ(r′, r, ω) are two arbitrary functions and the closed surface S enclosed
volume V . In this paper, we will always associate ψ(r′, rs, ω) with the pressure wavefield in the
actual medium P (r′, rs, ω) which is assumed to satisfy

∇′2P (r′, rs, ω) +
ω2

c2(r′)
P (r′, rs, ω) = A(ω)δ(r′ − rs), (2)

in the volume integral and where A(ω) is the source wavelet. This P (r′, rs, ω) at the receiver location
will be the wavefield recorded by the hydrophone/geophone. Substituting ω2

c2(r′) with k2
0(1− α(r′))

where k2
0 = ω2

c20
, Eq. 2 becomes

∇′2P (r′, rs, ω) + k2
0P (r′, rs, ω) = A(ω)δ(r′ − rs) + k2

0α(r′)P (r′, rs, ω), (3)

where α(r′) represents the difference between the actual medium and the reference medium, wa-
ter. Throughout this paper, α(r′) is consistently regarded as consisting of two parts, αair(r′) and
αearth(r′) which respectively denote the difference between air and water and earth and water.
Thus, Eq. 3 becomes

∇′2P (r′, rs, ω) + k2
0P (r′, rs, ω) = A(ω)δ(r′ − rs) + k2

0

(
αair(r′) + αearth(r′)

)
P (r′, rs, ω). (4)

Next, the arbitrary function φ(r′, r, ω) and different volume V will be fully explored to obtain the
algorithm needed.

2.1 Derivation of the deghosting algorithm (Weglein et al., 2002)

If we substitute φ(r′, r, ω) by the causal Green’s function G+
0 (r′, r, ω) in the whole space reference

medium (water) which satisfies

∇′2G+
0 (r′, r, ω) + k2

0G
+
0 (r′, r, ω) = δ(r′ − r), (5)

then after substituting Eq. 5 and Eq. 4 into Eq. 1, we have∫
V

(
P (r′, rs, ω)∇′2G+

0 (r′, r, ω)−G+
0 (r′, r, ω)∇′2P (r′, rs, ω)

)
dr′

=
∫

V
P (r′, rs, ω)

(
δ(r′ − r)− k2

0G
+
0 (r′, r, ω)

)
dr′

−
∫

V
G+

0 (r′, r, ω)
(
A(ω)δ(r′ − rs) + k2

0

(
αair(r′) + αearth(r′)

)
P (r′, rs, ω)− k2

0P (r′, rs, ω)
)
dr′

=
∮

S

[
P (r′, rs, ω)∇′G+

0 (r′, r, ω)−G+
0 (r′, r, ω)∇′P (r′, rs, ω)

]
· dS′. (6)
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Figure 1: First configuration for derivation of the deghosting algorithm.

Now choosing the half space above the measurement surface as V , and puting r anywhere between
the free surface and the measurement surface (inside of V ) (Figure 1), Eq. 6 becomes

P (r, rs, ω)−A(ω)G+
0 (r, rs, ω)−

∫
V
G+

0 (r′, r, ω)k2
0αair(r′)P (r′, rs, ω)dr′

=
∮

S

[
P (r′, rs, ω)∇′G+

0 (r′, r, ω)−G+
0 (r′, r, ω)∇′P (r′, rs, ω)

]
· dS′ (7)

The physical meaning of Eq. 7 is analyzed as follows. The total wavefield at point r can be
separated into three parts: (1) the direct wave which travels directly from the source to r, (2) the
field whose last motion is downward from the free surface and (3) the field whose last motion is
upward from the earth. In Eq. 7 the term that contains the source wavelet is part (1) and the
volume integration term is part (2). Therefore the whole LHS of Eq. 7 corresponds to part (3),
the up-going (or the receiver side deghosted) wavefield at point r. Thus we obtain the deghosting
algorithm:

P deghosted(r, rs, ω) =
∮
S

[
P (r′, rs, ω)∇′G+

0 (r′, r, ω)−G+
0 (r′, r, ω)∇′P (r′, rs, ω)

]
· dS′ (8)

=
∫
m.s.

[
P (r′, rs, ω)∇′G+

0 (r′, r, ω)−G+
0 (r′, r, ω)∇′P (r′, rs, ω)

]
· dS′, (9)

where in the last step the Sommerfeld Radiation condition eliminates the upper half space con-
tribution at infinite distance and m.s. denotes the measurement surface. Using the reciprocity
theorem, the same kind of Green’s theorem argument on the output of Eq. 8 on the source side
will eliminate the source side ghost.

Eq. 9 can be easily understood in if we use the idea of terms of Extinction theorem, which is
an interpretation of the Green’s theorem with causal Green’s function. In optics, people use the
name of Extinction theorem in order to emphasize one of the amazing properties of the surface
integration term in Green’s theorem: if causal P (r′, r, ω) and causal Green’s function are used on the
integration surface, then the surface integration term always produces the wavefield contributions

7
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Figure 2: Second configuration for derivation of the deghosting algorithm.

due to sources inside (outside) of the volume V , if the output point r is outside (inside) of V , i.e.,
the outside (inside) source contributions have been extinguished/eliminated. Another interesting
property of the surface integration term will be mentioned later in this paper.

To derive Eq. 9 using the Extinction theorem, we can choose the same the volume V and position
r as above. Then, using Green’s causal function and according to the above metioned property,
the surface integration will eliminate wavefield contributions due to the source inside of V (which
are the active source and the air) and only contributions due to source outside of V (which is the
earth) will be kept. Since the wavefield due to the earth is up-going at r, the surface integration
term will produce the receiver side deghosted field.

Another way of using the Extinction theorem to derive Eq. 9 is to choose the volume V as the
half space below the measurement surface (Figure 2), with the position of r (outside of V ) and the
causal Green’s function being the same as above. Then the surface integration will only keep the
contribution due to the source inside of V , which is the earth. Hence the integration provides the
up-going, or receiver side deghosted wavefield.

2.2 Derivation of the wavelet estimation formula (Weglein and Secrest, 1990)

Substituting φ(r′, r, ω) by the Green’s functionGD
0 (r′, r, ω) in whole space reference medium (water)

which satisfies

∇′2GD
0 (r′, r, ω) + k2

0G
D
0 (r′, r, ω) = δ(r′ − r)− δ(r′ − rI), (10)

where rI is the mirror image of r with respect to the free surface, then after substituting Eq. 10
and Eq. 4 into Eq. 1, we have∫

V

(
P (r′, rs, ω)∇′2GD

0 (r′, r, ω)−GD
0 (r′, r, ω)∇′2P (r′, rs, ω)

)
dr′

8
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Figure 3: First configuration for derivation of the wavelet estimation algorithm.

=
∫

V
P (r′, rs, ω)

(
δ(r′ − r)− δ(r′ − rI)− k2

0G
D
0 (r′, r, ω)

)
dr′

−
∫

V
GD

0 (r′, r, ω)
(
A(ω)δ(r′ − rs) + k2

0

(
αair(r′) + αearth(r′)

)
P (r′, rs, ω)− k2

0P (r′, rs, ω)
)
dr′

=
∮

S

[
P (r′, rs, ω)∇′GD

0 (r′, r, ω)−GD
0 (r′, r, ω)∇′P (r′, rs, ω)

]
· dS′. (11)

Now, choosing the half space below the measurement surface as V , and choosing r at a point below
the measurement surface (inside of V ) (Figure 3), Eq. 11 becomes

P (r, rs, ω)−
∫

V
GD

0 (r′, r, ω)k2
0αearth(r′)P (r′, rs, ω)dr′

=
∮

S

[
P (r′, rs, ω)∇′GD

0 (r′, r, ω)−GD
0 (r′, r, ω)∇′P (r′, rs, ω)

]
· dS′ (12)

Again, the physical meaning of Eq. 12 is analyzed as follows. The total wavefield at point r can be
separated into three parts: (1) the direct wave which travels directly from the source and the direct
wave ghost, (2) the scattered field whose last travel step is from the earth, and (3) the scattered
field whose last travel step is down from the free surface. Part (3) can also be regarded as the ghost
of the part (2). It is not difficult to realize that in Eq. 12 the volume integration term is the sum
of part (2) and (3). Then the whole LHS of Eq. 12 is part (1), the direct wave and its ghost at
point r. Thus, the wavelet estimation algorithm (Weglein and Secrest, 1990) is obtained:

A(ω)GD
0 (r, rs, ω) =

∮
S

[
P (r′, rs, ω)∇′GD

0 (r′, r, ω)−GD
0 (r′, r, ω)∇′P (r′, rs, ω)

]
· dS′ (13)

9
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Figure 4: Second configuration for derivation of the wavelet estimation algorithm.

=
∫
m.s.

[
P (r′, rs, ω)∇′GD

0 (r′, r, ω)−GD
0 (r′, r, ω)∇′P (r′, rs, ω)

]
· dS′, (14)

where at the last step, the properties of P (r′, rs, ω) and GD
0 (r′, r, ω) at the free surface have been

used.

Another way of deriving Eq. 14 is to start from Eq. 11, and choose the space between the free
surface and measurement surface as volume V (Figure 4). Then we will directly obtain Eq. 14
since all sources are outside of V , except the active source δ(r′ − rs).

2.3 Derivation of the field prediction formula (Osen et al., 1998; Tan, 1999;
Weglein et al., 2000)

If we substitute φ(r′, r, ω) by the Green’s function GDD
0 (r′, r, ω) in whole space reference medium

(water) which satisfies

∇′2GDD
0 (r′, r, ω) + k2

0G
DD
0 (r′, r, ω) = δ(r′ − r) +

∞∑
i=1

aiδ(r′ − ri), (15)

where ri, for i = 1, 2, 3, . . . is the position of one of the infinite number of mirror images of r with
respect to the free surface and the measurement surface to assure the resulting GDD

0 vanishes at
both surfaces, and coefficient ai can be positive or negative 1, then after substituting Eq. 15 and
Eq. 4 into Eq. 1, we have∫

V

(
P (r′, rs, ω)∇′2GDD

0 (r′, r, ω)−GDD
0 (r′, r, ω)∇′2P (r′, rs, ω)

)
dr′

=
∫

V
P (r′, rs, ω)

(
δ(r′ − r) +

∞∑
i=1

aiδ(r′ − ri)− k2
0G

DD
0 (r′, r, ω)

)
dr′

−
∫

V
GDD

0 (r′, r, ω)
(
A(ω)δ(r′ − rs) + k2

0

(
αair(r′) + αearth(r′)

)
P (r′, rs, ω)− k2

0P (r′, rs, ω)
)
dr′

=
∮

S

[
P (r′, rs, ω)∇′GDD

0 (r′, r, ω)−GDD
0 (r′, r, ω)∇′P (r′, rs, ω)

]
· dS′. (16)

10
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Figure 5: Configuration for derivation of the field prediction algorithm.

Now, choosing the space between the free surface and the measurement surface as V , and putting
r anywhere inside of V (Figure 5), Eq. 16 becomes the field prediction equation (Osen et al., 1998;
Tan, 1999; Weglein et al., 2000)

P (r, rs, ω) =A(ω)GDD
0 (r, rs, ω)

+
∮

S

[
P (r′, rs, ω)∇′GDD

0 (r′, r, ω)−GDD
0 (r′, r, ω)∇′P (r′, rs, ω)

]
· dS′, (17)

=A(ω)GDD
0 (r, rs, ω) +

∫
m.s.

P (r′, rs, ω)∇′GDD
0 (r′, r, ω) · dS′, (18)

where the last step used the properties of P (r′, rs, ω) and GDD
0 (r′, r, ω) on the surfaces. Osen et al.

(1998) also regards the above equation as a wavelet estimation. The requirement is knowing the field
(P (r′, rs, ω)) on the measurement surface and one extra hydrophone measurement (P (r, rs, ω)) at
any position between the free surface and the measurement surface, then the only unknown variable
in Eq. 18 is the source wavelet A(ω).

In this section, using Green’s theorem, it has been demonstrated how to derive the algorithms
for deghosting, wavelet estimation and field prediction. Collecting Eq. 8, Eq. 13 and Eq. 17,
we will notice that the actual causal wavefield can always be obtained, although the volume V
and the form of Green’s function is very different. Actually, this is the other amazing property
of the surface integration term that we want to mention. That is, as long as causal P on surface
and volume integration has been used, the surface integration term will make sure the resulting
wavefield P (r, rs, ω) will always be causal, regardless of what kind of Green’s function has been
used.

In the next section, some analysis of the deghosting algorithm will be given. It will be shown that
the deghosting algorithm is closely related to the wavelet estimation and field prediction algorithm.

3 Analysis of the deghosting algorithm

The deghosting algorithm Eq. 9 can not be directly used since it requires both the wavefield
(P (r′, rs, ω)) and its vertical derivative while in practice, only the wavefield is available. This

11
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difficulty can be easily overcome (at least theoretically) if the source wavelet is known, according
to the wavelet estimation formula Eq. 14, in which the three functions P , dP

dz and A(ω) form
a triangle relationship. Any one of the functions can be calculated if the other two are known.
For towed streamer data (Zhang and Weglein, 2005b), assuming the source wavelet is known and
using the field prediction algorithm Eq. 18, the field and its vertical derivative are calculated at
a pseudo-measurement surface which is a little bit higher than the actual measurement surface.
Then Eq. 9 is used to perform deghosting. For ocean bottom data (Zhang and Weglein, 2006b),
assuming the source wavelet is known, the vertical derivative of P is calculated using the wavelet
estimation algorithm Eq. 14. Numerical tests for both cases are encouraging.

If the source wavelet is not known, usually we cannot perform deghosting using the field on the
measurement surface only. However, we can always perform deghosting on the scattered field, even
without source wavelet. This point has not been made clear before. Knowing the source wavelet
will only help to get rid of the direct wave and its ghost. Knowing the wavelet or not has nothing
to do with the deghosting of the scattered field. In the field prediction Eq. 18, the scattered
field only exists in the surface integration term, which means as long as the total wavefield on
the measurement surface is available, we will have all of the information needed for the scattered
field. The contribution of knowing source wavelet in Eq. 18 will only help to calculate the terms
containing A(ω), which only contributes to the prediction of direct wave and its ghost and has
nothing to do with the scattered field. The consequence of deghosting without knowing source
wavelet is that the scattered field will be deghosted well, while the direct wave and its ghost still
exist in the final result. This property is appealing in the area that the scattered field does not
interfere with the direct wave and its ghost.

When the deghosting algorithm is applied to the field data, there are several issues that need to
be dealt with. When the field prediction procedure Eq. 18 is used, it assumes the data on the
whole measurement surface is known. In practice, usually there are no hydrophones at very small
offsets. Also, cross line distance usually is too large to be used directly. Data interpolation and
extrapolation have to be performed in advance. Also, efficient numerical techniques have to be
used in order to deal with the large amount of calculation when dealing with 3D data. For ocean
bottom data, there are even more requirements for data interpolation and extrapolation since the
receiver interval is usually much larger than the hydrophone interval on towed streamer.

4 Conclusions

As an important seismic processing step, deghosing has been studied extensively. In this paper, the
Green’s theorem deghosting algorithm derived from Green’s theorem has been reviewed. The close
relationship among deghosting, field prediction and wavelet estimation has been demonstrated.
Deghosting usually requires the knowledge of the source wavelet. The scattered field can always be
deghosted, even when the source wavelet is not known. Data interpolation and extrapolation is a
prerequisite when the deghosting algorithm is applied to field data.
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Remarks on Green’s Theorem for seismic interferometry

A. C. Ramı́rez and A. B. Weglein

Abstract

The foundations of interferometry and virtual source methods can be found in Green’s the-
orem. This theorem, derived by George Green in 1828, gives exact equations that incorporate
boundary conditions for wavefield retrieval. It has been applied to several seismic exploration
problems ranging from deghosting and wavelet estimation, to complete removal of overburden
and source signature effects in the measured data.

In this paper we study a unifying framework for a broad class of interferometry techniques
using Green’s theorem. This framework and foundation allows errors and artifacts that occur
in certain compromised interferometry approaches to be anticipated and fully explained as a
consequence of approximations made within Green’s theorem. We also show the connection be-
tween virtual source and deconvolution techniques with designature/demultiple methods based
on the same framework provided by George Green.

Introduction

In the last few years, a number of papers on seismic interferometry have shown methods to extract
the Green’s function between a pair of receivers by convolving, deconvolving or crosscorrelating
data from a closed surface of sources (see for example Derode et al. (2003); Roux and Fink (2003);
Wapenaar (2004); Weaver and Lobkis (2004); Bakulin and Calvert (2004); Schuster and Zhou
(2006); Draganov et al. (2006); Snieder et al. (2006)). All of these methods are contained in the
framework given by Green’s theorem. Most of the current seismic interferometry methods require
dual measurements (pressure field and its normal gradient) which are not always available. The
lack of the normal derivative of the wavefield have encouraged the arrival of many algorithms using
high frequency and one-way approximations to the normal field derivative. The approximations
are compromises to the exact theory and, hence, produce artifacts.

Green’s theorem relates a surface integral of two scalar functions u and ν, and their normal deriva-
tives with a volume integral of the same functions and their Laplacians,∫

V
[u∇2ν − ν∇2u]dx =

∫
S
[u∇ν − ν∇u] · nds, (1)

where x is a three dimensional vector (x1, x2, x3) characterizing the volume V enclosed by the
surface S, and n is the unit vector normal to this surface. Green’s theorem has been extended to
displacements by Betti (1872) and elastodynamic fields by Rayleigh (1873). The importance of this
theorem lays in its generality. The functions u and ν can be any pair of scalar functions that have
normal derivatives at the surface S and Laplacians in V .
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The objective of this paper is to study and analyze different applications of Green’s theorem to
seismic exploration. For those different applications, there will be different choices of the volume
and functions u and ν introduced to satisfy equation 1. These different choices are the foundation for
applications dealing with seismic interferometry, wavelet estimation and wavefield deconvolution.
They are all connected by the same framework and their differences rely on the specific functions
and boundary conditions imposed upon Green’s theorem as well as the approximations that some of
these applications make to avoid certain requirements of the theory. The first function in equation 1,
u, will be selected to be the pressure field P corresponding to recorded values of the pressure field in
a marine seismic experiment. The second function ν will be selected depending on the application
that we want to derive.

For the first application (seismic interferometry or wavefield retrieval), an anticausal Green’s func-
tion satisfying the same Helmholtz operator as the pressure field is used as the second function ν
in equation 1 (see for example Weaver and Lobkis (2004); Wapenaar (2004); Korneev and Bakulin
(2006); Wapenaar and Fokkema (2006) and references within). The are two issues here. First, this
Green’s function requires knowledge of the medium that produced the pressure field. In general,
that medium is unknown and the Green’s function is replaced by the conjugate of a second pressure
field produced by the same medium but by a different source. Seconds, this choice of functions in
Green’s theorem requires dual measurements (pressure data and its normal derivative). Since the
normal derivative of the pressure field is not always measured, approximations are introduced into
this form of seismic interferometry. The consequence of this is that the synthesized wavefield has
errors and spurious events.

We next consider another form of seismic interferometry, direct wave seismic interferometry. This
is found by selecting the function ν as a causal or anticausal reference Green’s function satisfying
the Helmholtz operator for two homogeneous half spaces separated by a zero pressure surface
(such as the air-water surface in a marine experiment). Both choices will provide algorithms to
retrieve the wavefield within a specified volume, requiring measurements of the pressure field and
its normal derivative at the volume’s surface. We will see that a high frequency approximation
of the pressure field’s normal derivative is more forgiving when an anticausal reference Green’s
function is used (Ramı́rez et al., 2007).

The choice of a causal reference Green’s function, as the second function ν in equation 1 will also
provide an algorithm for wavelet estimation that depends on dual measurements (Weglein and
Secrest, 1990; Weglein and Devaney, 1992). A different choice for ν that removes the requirement
of the wavefield’s normal derivative is a Green’s function that vanishes at two surfaces, which is
going to be referred as Dirichlet Green’s function (Osen et al., 1998; Tan, 1999). The two surfaces
where the Dirichlet boundary conditions are imposed, in a marine experiment, are the air-water
surface and the measurement surface. This choice of functions in Green’s theorem gives a formalism
for wavelet estimation that does not require the wavefield’s normal derivative. With this choice of
functions, another form of interferometry is also found. The latter requires only measured pressure
data and it can be applied to surface seismic acquisitions (Weglein et al., 2000; Ramı́rez et al.,
2007).

The last application is wavefield deconvolution, a theory applied to the removal of overburden
effects (overburden refers to the medium above the receiver or measurement plane), e.g. removal of
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free-surface multiples (events due to the existence of the air-water surface) and source effects (due
to a source exploiting above the location of interest). For this purpose, the function ν is selected
to be a Green’s function produced by the same medium as the pressure field, but without the
existence of a zero-pressure boundary condition at the free surface (Amundsen, 1999, 2001; Holvik
and Amundsen, 2005). The algorithm derived with this choice will remove all the free-surface
multiples and the source wavelet from the pressure field, and, it will retrieved the deconvolved
wavefield at the receiver location (coincident source and receiver), effectively creating a source at
the receiver location. A similar method for wavefield deconvolution, which requires the source
wavelet, was derived by (Ziolkowski et al., 1998; Johnston and Ziolkowski, 1999).

We are going to start this analysis with a selection of a pressure field and a causal Green’s function as
u and ν in equation 1. First we are going to select a causal reference Green’s function to obtain the
general Weglein and Secrest (1990) result, which can also be derived from the Kirchhoff-Helmholtz
integral representation (Weglein and Devaney, 1992; Osen et al., 1994). This selection will also
allow us to obtain the equation for direct wave interferometry with correlations that requires dual
measurements. The results will be analyzed and the next choice of functions and applications will
be introduced.

1 Green’s Theorem with a causal Green’s function

In this section, two seismic applications, using Green’s theorem, will be derived: wavelet estimation,
and direct wave interferometry with correlations. Both methods are applied to a marine seismic
experiment. An analysis and discussion of the results will be performed at the end of the section.
This analysis will serve as motivation for the applications of Green’s theorem discussed and derived
in section 2.

In the following, we use Green’s theorem to derive an integral representation of the pressure field P ,
which satisfies the inhomogeneous Helmholtz equation for a velocity distribution c(x) and constant
density (

∇2 +
ω2

c2(x)

)
P (x|xa;ω) = s(x, ω), (2)

where s(x, ω) is the source function.

The causal Green’s function for the Helmholtz operator is given by(
∇2 +

ω2

c22(x)

)
G+(x|xb;ω) = δ(x− xb), (3)

where δ(x − xb) denotes the Dirac delta function centered at a position x = xb and the velocity
distribution is given by c2(x). In general c2(x) has no relation to c(x) in equation 2.

For simplicity, the source s(x, ω) in equation 2 is selected to be A(ω)δ(x − xa), which represents
an impulsive source at x = xa excited at t = 0 with signature A(t), producing the pressure field
P (x|xa;ω).
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Introducing 1
c(x)2

= 1
c2(x2 (1− α(x)) into equation 2, where α is the relative difference between the

two media defined by equations 2 and 3 (Weglein and Secrest, 1990), we obtain

∇2P (x|xa;ω) = − ω2

c2(x)2
P (x|xa;ω) +

ω2

c2(x)2
α(x)P (x|xa;ω) +A(ω)δ(x− xa). (4)

Substituting the wavefield P (x|xa;ω) and the causal Green’s function G+
0 (x|xb;ω) into equation

1 as u and ν, and using equations 3 and 4 in the volume integral, we obtain,∫
V

(P (x|xa;ω)[− ω2

c2(x)2
G+

0 (x|xb;ω) + δ(x− xb)]

−G+
0 (x|xb;ω)[− ω2

c2(x)2
P (x|xa;ω) +

ω2

c2(x)2
α(x)P (x|xa;ω) +A(ω)δ(x− xa)])dx

=
∮

S
[P (x|xa;ω)∇G+

0 (x|xb;ω)−G+
0 (x|xb;ω)∇P (x|xa;ω)] · n ds. (5)

If, throughout the volume V , the medium parameters for the Green’s function are chosen to be
identical to the medium parameters satisfied by the pressure field P (i.e. α = 0 within the volume),
equation 5 simplifies to∫

V

(
P (x|xa;ω)δ(x− xb)−G+(x|xb;ω)A(ω)δ(x− xa)

)
dx

=
∮

S
[P (x|xa;ω)∇G+(x|xb;ω)−G+(x|xb;ω)∇P (x|xa;ω)] · n ds, (6)

which corresponds to the Kirchhoff-Helmholtz integral representation (see, e.g., Morse and Feshbach
(1953); Weglein and Secrest (1990); Weglein and Devaney (1992)).

1.1 1st Situation: The medium parameters for both fields are only equal at the
boundary S and within the volume V

If the medium parameters for the pressure field and the Green’s function are equal only throughout
V ,

c2(x)

{
= c(x) within V
6= c(x) outside V ,

(7)

the left hand side of equation 6 gives

l.h.s. =


P (xb|xa;ω)−A(ω)G+(xa|xb;ω) if both sources are strictly inside S
P (xb|xa;ω) if only the observation point xb lies within V
−A(ω)G+(xa|xb;ω) if only the source xa lies within V ,

(8)

The observation point is the position of the Green’s function’s source.
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The third case,

−A(ω)G+(xa|xb;ω) =
∮

S
[P (x|xa;ω)∇G+(x|xb;ω)−G+(x|xb;ω)∇P (x|xa;ω)] · n ds, (9)

can be used to estimate the source wavelet in a marine seismic experiment (Weglein and Secrest,
1990; Weglein and Devaney, 1992). For this purpose, a convenient volume within the water column
bounded by the measurement surface and the air-water interface, or free surface, is selected (see
Figure 2). A reference Green’s function, satisfying the properties of the medium within the volume
and the Dirichlet boundary condition at the free-surface, is used.

Hence, the Green’s function is chosen to propagate in a homogeneous half space bounded by a free-
surface S0 at depth z = 0. In order to impose the Dirichlet boundary condition at z = 0 required
by the free-surface, the Helmholtz equation is expressed using a real source at xb = (x1b, x2b, x3b)
and an image source with negative amplitude at −χb = (x1b, x2b,−x3b) (see Figure 1 ), where x3

is the vertical direction and it is zero at the free surface. Thus,(
∇2 +

ω2

c20

)
G+

0 (x|xb;ω) = δ(x− xb)− δ(x + χb). (10)

is the reference Green’s function that is used in equation 9 to derive a method for source signature
estimation in a marine experiment.

Figure 1: Green’s function for an experiment with a free surface. On the left hand side, the method of
images is illustrated. The right hand side shows the actual reference Green’s function for a source
and receiver below the zero pressure surface.

The causal Green’s function G+
0 includes the wave that propagates directly from the real source

to the receiver, Gd+
0 , and the wave that propagates directly from the image source to the receiver,

Gd′+
0 ,

G+
0 (x|xb;ω) = Gd+

0 (x|xb;ω)− Gd′+
0 (x|−χb;ω). (11)

In this experiment, both P and G+
0 vanish at the free-surface. Therefore, the upper boundary of V

gives zero contribution to the integral. If we let the measurement surface approach infinity, then,
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Figure 2: The cylindrical volume shown is bounded by the free surface and the measurement surface. The
lateral surface of the cylinder is assumed to be at infinity.

only the measurement surface (Sm in Figure 2) will contribute to the surface integral, the lateral
surface contribution Sl will vanish according to the Sommerfeld radiation condition (Sommerfeld,
1954). Selecting the actual source for the pressure field to be inside the volume V and the ob-
servation point (real source for the Green’s function described by equation 10) to be outside the
medium, below the measurement surface, equation 9 becomes

−A(ω)G+
0 (xa|xb;ω) =

∫
Sm

[P (x|xa;ω)∇G+
0 (x|xb;ω)− G+

0 (x|xb;ω)∇P (x|xa;ω)] · n ds. (12)

This equation reproduces the result first obtained by Weglein and Secrest (1990). Equation 9 is
used to estimate the source wavelet in a marine experiment (the method has been extended to
include a source array and to accommodate a land (elastic) experiment (Weglein and Secrest, 1990;
Weglein and Devaney, 1992)). This technique relies on dual measurements (pressure field and its
normal derivative) and the direct wave G+

0 . The surface integral effectively filters the scattered
wavefield from the integral.

Using the Green’s function in equation 10 and, allowing the observation point and the actual source
to be inside the medium, a formalism for seismic interferometry is obtained. It is given by the first
case in equation 8,

P (xb|xa;ω)−A(ω)G+
0 (xa|xb;ω) =

∫
Sm

[P (x|xa;ω)∇G+
0 (x|xb;ω)− G+

0 (x|xb;ω)∇P (x|xa;ω)] · n ds.

(13)

Using the principle of source-receiver reciprocity and the fact that the scattered field Ps(xa|xb;ω) =
P (xa|xb;ω)−A(ω)G+

0 (xa|xb;ω), we obtain

Ps(xa|xb;ω) =
∫

Sm

[P (x|xa;ω)∇G+
0 (x|xb;ω)− G+

0 (x|xb;ω)∇P (x|xa;ω)], ·n ds. (14)
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which is a very desired output in seismic exploration. It retrieves the total wavefield in new locations
and removes the direct wave A(ω)G+

0 (xa|xb;ω). The output is the scattered field. With both
sources inside the volume, the surface integral effectively filters the reference field and retrieves the
scattered field between the sources (as if one source was a receiver: virtual receiver). The retrieved
scattered field is the total wavefield due to all sources being outside the volume. The “filtering”
effect provided by the surface integral in Green’s theorem in this kind of application is also known
as extinction theorem. The application of the extinction theorem, will screen the scattered field if
the observation point is outside V and, will screen the reference field for all actual sources inside
the volume if the observation point lies inside V .

The second case in equation 8, places the actual source outside and the observation point inside
V . The result is the total wavefield between the source outside and the observation point inside
the medium,

P (xb|xa;ω) =
∫

Sm

[P (x|xa;ω)∇G+
0 (x|xb;ω)− G+

0 (x|xb;ω)∇P (x|xa;ω)] · n ds. (15)

Green’s theorem retrieves the total wavefield due to all sources outside the volume, as explained
in the previous paragraph. The first and second case are both good relations to retrieve the
wavefield between two sources as if one of them was a receiver.

Equation 14 has both, the source and the virtual receiver, inside the volume and equation 15 has
either the source or the virtual receiver inside V and the other point outside. Both equation retrieve
the wavefield due to sources outside V . In terms of seismic interferometry, this would be direct
wave seismic interferometry using correlations.

1.2 2nd Situation: The medium parameters for both fields are equal everywhere

If the medium parameters for equations 2 and 3 are identical not only throughout the volume
enclosed by S, but everywhere,

c(x) ≡ c2(x), (∀x in R3), (16)

then, we use the pressure field P and the Green’s function in equation 3 in Green’s theorem. Since
the medium parametes are set to be equal, α = 0 everywhere and equation 5 reduces to equation 6.

The left hand side of equation 6 becomes

l.h.s. =


0 if both sources are strictly inside S
P (xa|xb;ω) if only the observation point xb lies within V
−P (xa|xb;ω) if only the source xa lies within V ,

(17)

where the principle of source-receiver reciprocity has been used.

The first case in equation 17 constitutes a functional relationship between P and its normal
gradient on S,

0 =
∮

S
[P (x|xa;ω)∇G+(x|xb;ω)−G+(x|xb;ω)∇P (x|xa;ω)] · n ds, (18)
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meaning that the pressure field and its normal derivative cannot be prescribed independently (Amund-
sen, 1994; Visser et al., 1998). This functional relation was used by Amundsen (1994) to develop an
inverse wavefield extrapolation that allowed reconstruction of the wavefield within the subsurface
by extrapolating the field from the measurement surface through each one of the different earth
layers and applying boundary conditions at each interface before continuing extrapolation through
the next layer. The medium between the different interfaces must be known (a smoothly varying
approximation of the medium can be used) and dual measurements of the pressure field are also
necessary. In general, imaging with Green’s theorem requires knowledge of the medium. Another
example of inverse wavefield extrapolation using the framework of green’s theorem is given by the
work of Schneider (1978).

The results in the second and third case in equation 17 are equivalent to the corresponding
results in the previous subsection. The only difference is that A(ω)G+(xa|xb;ω) is now equivalent
to the total pressure field P (x|xa;ω) not the reference pressure field.

1.3 Analysis

Using Green’s theorem, we derived formalisms that can be applied to wavelet estimation, seismic
interferometry and inverse wavefield extrapolation. All of these applications require the availability
of the pressure field and its normal derivative.

The more desired method for seismic interferometry or wavefield retrieval is the one that considers
both sources located within the medium. Therefore, causal direct wave interferometry, as described
by equation 14, seems to be the more convenient result. It can be readily applied to applications
such as wavefield extrapolation, interpolation, and regularization in a surface seismic experiment.
Using direct wave interferometry with correlations (or a causal Green’s function) provides a method
to extrapolate data into a regular grid of coincident sources and receivers in a 3D experiment by
using an analytic Green’s function G+

0 (x|xb;ω) calculated for the actual receiver positions x and
placing the observation point at the desired output locations. It is an exact method. Accordingly,
it requires measurements of the pressure field and its normal derivative at the surface.

In general, for surface seismic experiments, the normal derivative is not measured and an estimate
is not always available. To overcome this situation, an asymptotic approximation to the pressure
field’s normal derivative could be used,

∇P (x|xa;ω)] · n ≈ ikP (x|xa;ω) (19)

where k = ω
c0

. However, this is a very poor approximation for this particular situation. It is a
high frequency and one-way wave approximation taken at a location where two-way waves exist.
Asymptotic approximations, although often useful, are never equivalent to the original form. In
fact, using this approximation in equation 14, we find a zero result

0 =
∫

Sm

[P (x|xa;ω)∇G+
0 (x|xb;ω)− G+

0 (x|xb;ω)ikP (x|xa;ω)] · n ds. (20)

Hence, with the approximation in equation 19, the equation previously identified as direct wave
interferometry (with correlations) is of no use. The fact that the left hand side of equation 14
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vanishes, when the one-way wave approximation is used, can be shown by a simple 1D analytic
example for 1D pressure data with a free surface, p(z|za;ω), and the a 1D reference Green’s function
(g+(z|zb;ω)) satisfying equation 10. The 1D reference Green’s function g+ has the form:

g+(z|zb, ω) =
eik|z−zb|

2ik
− eik(z+zb)

2ik
(21)

In 1D, the surface integral in equation 20 becomes an evaluation at the receiver location, z = zr.
Introducing p(z|za;ω) and (g+(z|zb;ω)) on the right hand side of equation 20, gives

(p(z|za;ω)
d

dz
g+(z|zb;ω)− g+(z|zb;ω)ikp(z|za;ω))|zr =ikp(zr|za;ω)g+(zr|zb;ω)

− ikg+(zr|zb;ω)p(zr|za;ω) = 0. (22)

Numerical tests in 3D also confirm this result.

There are different ways of addressing this situation. The first (and more reliable) one is to provide
all the ingredients required by Green’s theorem by measuring the wavefield’s normal derivative or,
measuring the pressure field at a second surface parallel to the measurement surface and calculating
the gradient between the fields. The second solution is to find a better approximation for the normal
component of the particle velocity, we refer the interested reader to Amundsen et al. (1995); Guo
et al. (2005) and references within. A third solution is to use an anticausal Green’s function or
pressure field in the calculations (Weaver and Lobkis, 2004; Wapenaar, 2004; Korneev and Bakulin,
2006; Draganov et al., 2006; Ramı́rez et al., 2007) as explained in the next chapter. Last, but
not least, it is possible to use a different Green’s function that annihilates the requirement of the
wavefield’s normal derivative, i.e. using a Green’s function with Dirichlet boundary conditions at
the free surface and at the measurement surface (Osen et al., 1998; Tan, 1999; Weglein et al., 2000;
Ramı́rez et al., 2007) as explained in section 3.

2 Green’s theorem with an anticausal Green’s function

In this section, anticausal solutions for the Helmholtz operator will be used to derive standard
seismic interferometry and direct wave interferometry with crosscorrelations. An analysis and
discussion of these applications will be provided at the end of the section and certain limitations of
this applications (due to assumptions that will be explained) will serve as motivation for section 3.

Equations 2, 3 and 10 can have a causal solution or an anticausal solution, with outgoing or ingoing
boundary conditions, respectively. The anticausal Green’s function G−(x|xb;ω) is the complex
conjugate of G+(x|xb;ω), and P−(x|xb;ω) is the complex conjugate of P+(x|xb;ω). We define
the anticausal Green’s function by

G−(x|xb;ω) =
∫ ∞

−∞
e−iωtG+(x|xb;−t)dt. (23)

The anticausal Green’s function for the Helmholtz operator is given by(
∇2 +

ω2

c22(x)

)
G−(x|xb;ω) = δ(x− xb), (24)
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where δ(x − xb) denotes the Dirac delta function centered at a position x = xb, the velocity
distribution is given by c2(x). In general c2(x) has no relation to c(x) in equation 2.

2.1 1st Situation: The medium parameters for both fields are equal inside the
volume V and different outside

Using an anticausal Green’s function and the causal pressure field in Green’s theorem, both cor-
responding to the same medium properties at the surface and throughout the volume V , Green’s
theorem becomes∫

V

(
P (x|xa;ω)δ(x− xb)−G−(x|xb;ω)A(ω)δ(x− xa)

)
dx

=
∮

S
[P (x|xa;ω)∇G−(x|xb;ω)−G−(x|xb;ω)∇P (x|xa;ω)] · n ds, (25)

where the left hand side gives

l.h.s. =


P (xb|xa;ω)−A(ω)G−(xa|xb;ω) if both sources are strictly inside S
P (xb|xa;ω) if only the observation point xb lies within V
−A(ω)G−(xa|xb;ω) if only the source at xa lies within V .

(26)

For the current marine application of this result, a volume within the water column, bounded by
the free-surface and the measurement surface, is selected. We assume that the medium parameters,
at the closed boundary S and within the volume V (see Figure 2), producing the pressure field are
equal to the ones where the Green’s function propagates. Therefore, the surface integral in Green’s
theorem has no contribution from the upper boundary of V . Again, we let the measurement
surface tend to infinity. Using causal wavefields, the contribution from the lateral surface Sl was
assumed to vanish according to the Sommerfeld radiation condition (Sommerfeld, 1954). However,
the anticausal waves have a contribution at infinity, so we will have a small error due to lack of
measurements at this part of the surface. The measurement surface (Sm in Figure 2) will be the
only contribution considered in the surface integral.

Plugging the anticausal version (or the complex conjugate) of the reference Green’s function in
equation 10 into the first case in equation 26, we find an equation for wavefield retrieval for source
and receiver locations within V ,

P (xa|xb;ω)−A(ω)G−0 (xa|xb;ω) =∫
Sm

[P (x|xa;ω)∇G−0 (x|xb;ω)− G−0 (x|xb;ω)∇P (x|xa;ω)] · n ds, (27)

in agreement with the result derived by Ramı́rez et al. (2007). Introduce P (xa|xb;ω) = P 0(xa|xb;ω)+
P s(xa|xb;ω), where P 0 = A(ω)G+

0 (xa|xb;ω) is the reference field and P s is the scattered field,
and use it into equation 27.

The left hand side of equation 27, reduces to

P s(xa|xb;ω) +A(ω)
[
G+

0 (xa|xb;ω)− G−0 (xa|xb;ω)
]
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= P s(xa|xb;ω) + 2i A(ω) =
[
G+

0 (xa|xb;ω)
]
, (28)

where = denotes imaginary part.

Thus, in equation 27, the total scattered field between sources at xa and xb is reconstructed (as
if one source was a receiver), as well as the imaginary part of the direct wave. This result is
less desirable than the one obtained with a causal Green’s function. Using an anticausal Green’s
function the direct wave is not filtered by the surface integral. Using an anticausal reference Green’s
function, the surface integral only filters the real part of the direct wave. Let’s remember the reason
we decided to use an anticausal Green’s function: when the normal particle velocity of a two-way
wavefield is approximated by equation 19 and used in Green’s theorem, the output of the surface
integral with a causal Green’s function vanishes. This does not happen with the anticausal Green’s
function. Therefore, for marine experiments, the approximation described by equation 19 was used
in equation 28, to obtain

P (xa|xb;ω) ≈
∮

S
[P (x|xa;ω)∇G−0 (x|xb;ω)

− ikP (x|xa;ω)G−0 (x|xb;ω)] · n ds, (29)

or

P s(xa|xb;ω) + 2i A(ω) =
[
G+

0 (xa|xb;ω)
]
≈
∮

S
[P (x|xa;ω)∇G−0 (x|xb;ω)

− ikP (x|xa;ω)G−0 (x|xb;ω)] · n ds. (30)

The output is approximately equal to the scattered field and the imaginary part of the direct
wave. This result is very accurate compared to other seismic interferometry methods, when applied
to surface seismic experiment. This result was tested for data extrapolation and regularization
by Ramı́rez et al. (2007) with encouraging results in 1D and 2D acoustic synthetics (calculated
using finite difference code and the reflectivity method) as well as 3D synthetics for a marine
experiment with an elastic earth (calculated using finite difference code).

2.2 2nd Situation: The medium parameters for both fields are equal everywhere

The medium parameters for equations 2 and 3 are chosen to be identical everywhere. Using the
pressure field P and the anticausal Green’s function in equation 24 in Green’s theorem and, using
the principle of source-receiver reciprocity, the left hand side of equation 25 becomes

l.h.s. =


2i=P (xa|xb;ω) if both sources are strictly inside S
P (xb|xa;ω) if only observation point xb lies within V
−P−(xa|xb;ω) = A(ω)G−(xa|xb;ω) if only the source at xa lies within V .

(31)

where the selected volume is bounded by the free-surface and the measurement surface. Since the
medium parameters are equal everywhere, the results in equation 31 are not restricted to the water
column.
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The configuration leading the result for the first case in 31 is used as the starting point for
common approaches to seismic interferometry. In these approaches, the normal derivatives are
approximated with a far-field and one-way wave approximation shown in equation 19. After a
simple mathematical manipulation, the wavefield retrieval equation (Wapenaar, 2004; Wapenaar
and Fokkema, 2006) in ω space is obtained

2i= [P (xb|xa;ω)] ≈
∫

Sm

−2ik P (x|xa;ω)G−(x|xb;ω) dx. (32)

The original equation derived by Wapenaar (2004) for seismic interferometry used the reciprocal
experiment to the one presented in this work. In their derivation, two receivers inside the volume
were surrounded by sources at S. Using source-receiver reciprocity, the standard interferometry
equation is obtained

2i= [P (xb|xa;ω)] ≈
∫

Sm

−2ik P (xa|x;ω)G−(xb|x;ω) dx, (33)

where x corresponds to source positions at the surface Sm, and, xa and xb are receiver posi-
tions. This equation requires the knowledge of the medium everywhere, since G− satisfies the same
medium properties as the actual field.

In general, the actual medium is unknown. Hence, G− is substituted by the complex conjugate of
a second pressure field P , defining P− = conj(P ). And the pressure field P is assumed to satisfy
the same wave equation as P (equation 2). It is also assumed to be produced by the same source
gather as P and measured at a different position within the volume, xb.

To continue the analysis, and to be consistent with the rest of this paper, we retrieve the previous
notation where xa and xb represent source locations and the surface integral is taken over receiver
locations x at the measurement surface (refer to equation 32 and Figure 2). The source location
in equation 2, s(x, ω), is set to explode at a different location, i.e. s(x, ω) = B(ω)δ(x−xb), where
B(ω) is the source signature for P−. Using these two pressure fields in Green’s theorem multiplies
the output by an extra source wavelet,∫

V

(
P (x|xa;ω)B(ω)δ(x− xb)− P−(x|xb;ω)A(ω)δ(x− xa)

)
dx

=
∮

S
[P (x|xa;ω)∇P−(x|xb;ω)− P−(x|xb;ω)∇P (x|xa;ω)] · n ds, (34)

which becomes

2iB(ω)= [P (xb|xa;ω)] ≈
∫

Sm

−2ik P (x|xa; t)P−(x|xb;ω) dx, (35)

after solving the volume integrals and approximating the normal derivatives. Since only the imag-
inary part of the field is reconstructed, a Hilbert transform is used to calculate the real part of the
field.

The process of using two measured wavefields to construct new data instead of a measured wave-
field and a Green’s function introduces an extra factor of the source wavelet multiplied to the

26



Remarks on Green’s Theorem for seismic interferometry MOSRP06

reconstructed data. If we were able to calculate the anticausal Green’s function, satisfying the
same medium properties as the actual pressure field, we would not have an extra source signa-
ture (Wapenaar, 2004). This particular Green’s function could be calculated by deconvolving the
wavelet of the pressure field in a preprocessing step. However, the fact that this Green’s function is
not calculated analytically, constrains the reconstructed wavefield to locations where actual sources
or receivers exist, and requires two approximations to the exact theory.

Equations 32 and 35 are a compromised form of Green’s theorem and, hence, gives rise to spurious
multiples. The normal derivative information required by Green’s theorem, avoided by using far
field approximations, would have combined nonlinearly to cancel the so-called spurious multiples
by using differences in sign that identify opposite directions of the wavefield. The directionality
information is part of the wavefield’s normal derivative. The fact that equation 35 is compromising
the theory has been discussed in Korneev and Bakulin (2006) in their derivation of the virtual
source method.

2.3 Analysis

Using the anticausal Green’s function, it is possible to find a formalism that allows an approximate
retrieval of the Green’s function between two sources (or receivers, using reciprocity principles) as if
one of them was a receiver. Two methods were explained and both of them have compromises to the
exact theory. The first one, anticausal direct wave interferometry (Ramı́rez et al., 2007), uses an
analytic anticausal Green’s function and only makes one approximation. The output of equation 30
is a close approximation to the total scattered field plus the imaginary part of the direct wave. The
second one, standard seismic interferometry (Schuster, 2001; Derode et al., 2003; Roux and Fink,
2003; Wapenaar et al., 2002) uses the measured wavefield and its complex conjugate, making two
approximations. The double compromise to the exact theory squares the output source signature
and gives rise to the so called spurious multiples. In most surface seismic situations, the spurious
multiple can damage the retrieved data significantly since their amplitudes are comparable to the
ones for the reconstructed primaries.

The result provided by equation 35 is most commonly used for seismic interferometry and it is
often used as the starting point for further analysis and applications. Some of this analysis, and
further theoretical developments, aim to address the issues created by the compromises made to
the exact theory and framework. However, it is necessary to understand that asymptotic analysis
has, in fact two steps: (1) an asymptotic approximation (e.g., a high frequency and one-way wave
approximation) and (2) analysis, and conclusions reached from the result of the first step. The
very reason for performing asymptotic approximation is to alter algorithms and their underlying
assumptions, properties, and requirements. An approximation is not equivalent to the original
form.

The analysis and new theory launched from seismic interferometry often ignored the fact that
approximations were made. This theory aims to fix the weaknesses of interferometry, such as
the extra power of the source wavelet and the spurious multiples. For example, Snieder et al.
(2006), studies the appearance of spurious multiples and proposes types of sources and acquisition
geometries that would help diminish it. Vasconcelos and Snieder (2006) derived a theory for
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seismic interferometry that also deconvolves the source wavelet. We are not claiming that analyzing
and using the result in standard seismic interferometry to develop new theory, understanding or
applications is not a good path to follow, but there exists a danger of forgetting the assumptions
and requirements of the original theory. In many situations, the new tools are effective and on
target. For example, Otnes et al. (2006) derived a data-driven free surface demultiple algorithm
for WVSP data. The method was derived by using seismic interferometry in a synthetic and a
real WVSP experiment to effectively construct surface seismic data, which was convolved with
the WVSP data to achieve its goal of removing the free-surface multiples without any subsurface
information.

Another strategy taken was to understand that the errors in the synthesized wavefield were an
effect of the assumptions applied to satisfy Green’s theorem, as well as the functions used in its
derivation. Hence, anticausal direct wave interferometry appears to be a better approximation for
surface seismic experiments, where an analytic Green’s function is available and fewer assumptions
provide more accuracy. Furthermore, using an analytic reference Green’s function, data can be
extrapolated to positions where no receivers or sources were located and the synthesized data
would have a single source signature. Thus, direct wave interferometry provides an improvement
over traditional approaches. It is an improvement, but, the method still uses one approximation.
Anticipating the consequences due to the compromises made, allows us to look at the original
framework and attempt to find better ways to meet its requirements. If the vertical component of
the pressure field is the weakness, then we can find ways to avoid that requirement. An example
of this approach is accomplished by introducing another form of Green’s theorem in which a two-
surface Dirichlet boundary condition to the reference Green’s function is imposed. This method
does not need the normal component of the particle velocity.

3 Green’s theorem with different boundary conditions imposed

In this section we introduce different boundary conditions imposed to the functions used in Green’s
theorem. It will be shown that, for the applications discussed in the previous sections, an improve-
ment can be found in the framework given by Green’s theorem.

3.1 Dirichlet boundary conditions: The medium parameters for both fields are
equal inside the volume V and different at and below the measurement
surface

A Green’s function that vanishes on both the free and measurement surfaces eliminates the data
requirement of the normal derivative in Green’s theorem (Weglein and Devaney, 1992; Tan, 1992;
Osen et al., 1998). This boundary condition can be fulfilled by the method of images or by adding
a particular solution that contains the desired boundary conditions to the homogeneous solution
for the Helmholtz equation (Morse and Feshbach, 1953).

The double-surface Dirichlet Green’s function cannot be measured in a seismic experiment, since the
actual medium only has one zero pressure surface. Thus, it needs to be analytically calculated. We
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consider a homogeneous medium within the volume and the source point for the Green’s function
located inside V .

Let’s use the configuration shown in Figure 2, where the selected volume lies entirely in a homoge-
neous medium and is bounded by the air-water surface and the measurement surface. These two
surfaces are the ones on which the Dirichlet boundary conditions will be imposed for the Green’s
function calculation.

If we describe the two-surface Dirichlet Green’s function GD
0 by the method of images, it will include

the wave that propagates directly from the real source to the receiver and the wave that propagates
directly from each image source to the receiver. Introducing P and GD

0 (x|xb;ω) into equation 1
as u and ν, and assuming the medium parameters for both fields are equal within the volume V
(where V is the volume in Figure 2), we obtain∫

V

(
P (x|xa;ω)δ(x− xb)−GD

0 (x|xb;ω)A(ω)δ(x− xa)
)
dx

=
∫

Sm

P (x|xa;ω)∇GD
0 (x|xb;ω) · nds, (36)

where we have taken into account the boundary conditions. The left hand side gives

l.h.s. =

{
P (xb|xa;ω)−A(ω)GD

0 (xa|xb;ω) if both sources are strictly inside S
P (xb|xa;ω) if only the observation point xb lies within V .

(37)

The source for the Dirichlet Green’s function must be inside the volume to satisfy the boundary
conditions.

The first case in equation 37,

P (xa|xb;ω)−A(ω)GD
0 (xa|xb;ω) =∫

Sm

P (x|xa;ω)∇GD
0 (x|xb;ω) · n ds, (38)

shows a method to determine the wavefield above the measurement surface and below the free
surface from measured pressure on a typical surface.

The algorithm described by equation 38 doesn’t require the normal derivative of the pressure field.
This method for seismic interferometry was proposed by Ramı́rez et al. (2007). However, it has
an error of −A(ω)GD

0 (xa|xb;ω), which, according to Tan (1992) and Weglein et al. (2000), for the
typical surface seismic exploration source-receiver configurations and frequency content is small.

Equation 38 also has applications in source signature estimation (Osen et al., 1998; Tan, 1999).
This result for wavelet estimation, as well as the analogous results in the previous sections using
different Green’s function, shows that when the receiver level is below the sources, there exists
a triangle relationship between the pressure, its normal derivative, and the source wavelet. In
order to theoretically calculate any one of these quantities, the other two must be known (Weglein
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and Secrest, 1990; Amundsen, 2001). Green’s theorem with a double Dirichlet Green’s function
apparently overcomes the need of a third quantity, the normal component of the particle velocity.
However, it does not break the triangle relationship, since an extra pressure measurement at any
point above the measurement surface and below the free-surface is needed. The extra measurement
is, in general, not available and a possible solution is to introduce an approximation that alters
equation 38 as described in Guo et al. (2005)

If an estimate of the wavelet is available, or obtainable, we can easily remove the error in equation 38
for seismic interferometry by adding a factor of A(ω)GD

0 (xa|xb;ω). This will obtain an exact
equation and the only limitation for a perfect output would be due to aperture limitations in the
recorded pressure data. The rest of the ingredients required by Green’s function would be fulfilled
analytically.

When the wavelet is not available, and it is possible to separate the direct wave from the scattered
field (e.g. in a deep water experiment), we can find an exact equation for reconstructing scattered
field that does not need the source wavelet. It is given by the second case in equation 37.
Substituting P s(xa|xb;ω), the scattered field, into Green’s theorem (instead of the total wavefield),
and using the two surface Dirichlet Green’s function as the second function, will obtain

P s(xa|xb;ω) =
∫

Sm

P s(x|xa;ω)∇GD
0 (x|xb;ω) · n ds. (39)

This is possible because the scattered field obeys the wave equation without a source function,(
∇2 +

ω2

c2(x)

)
P s(x|xa;ω) = 0. (40)

Hence, only the observation point lies within the volume V . This form of Green’s theorem does not
require the normal derivative of the pressure field, nor the source signature. It only asks for the
scattered field, or the pressure field due to sources outside the medium, and an analytic Green’s
function that vanishes at the measurement and air-water surface.

In this section, it was shown that certain choices of functions (and boundary conditions) used in
Green’s theorem, can help to avoid specific requirements and assumptions of other methods with
similar purposes. An example of this requirement, is the pressure field’s normal derivative required
to satisfy the methods for wavefield retrieval and wavelet estimation discussed in sections 1 and 2.
The wavefield’s normal derivative was approximated two times for standard seismic interferometry
and once for direct wave seismic interferometry. With a double Dirichlet boundary condition applied
imposed upon the Green’s function used in Green’s theorem, a seismic interferometry method that
only requires measurements of the pressure field at a surface within the water column, in a marine
experiment, was retrieved. However, this is a very particular situation. There are circumstances
when Green’s function with a double Dirichlet boundary condition is not available (or it cannot be
calculated analytically). Hence, it is not possible to overcome a requirement of the pressure field’s
normal derivative. An example of this situation is in the derivation of the virtual source method
by Bakulin and Calvert (2004) and Korneev and Bakulin (2006) as well as in the derivation of
wavefield deconvolution by (Amundsen, 2001), as explained in the following subsection.
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3.2 Wavefield deconvolution and the virtual source method

In this section we discussed two methods to retrieve the wavefield between two receivers located at
the water bottom or beneath the subsurface in a seismic experiment. These methods are wavefield
deconvolution and the virtual source method. Both methods are based on Green’s theorem and,
in principle, both of them require dual measurements. In practice, the first method, wavefield
deconvolution, is applied using both the pressure and its normal derivative measured in a seismic
experiment (e.g. in OBC acquisitions). On the other hand, virtual source method is applied using
only the pressure field, in clear analogy with other common seismic interferometry methods.

Besides the approximations and their effect on the retrieved wavefield, virtual source has another
important difference with wavefield deconvolution: virtual source aims to retrieve the total wavefield
between two receivers located beneath the subsurface while wavefield deconvolution retrieves the
deconvolved wavefield for a coincident source-receiver experiment at the receiver location. Decon-
volution refers to the removal of overburden effects and overburden refers to the medium above the
receiver or measurement plane. In the following we are going to discuss the wavefield deconvolution
method and then relate it to the virtual source method.

Figure 3: Volumes used in wavefield deconvolution.

In a marine experiment, there exist events that owe their existence to the presence of the air-water
surface. These events are known a ghosts and free-surface multiples. In general, these events are
removed from the data since they are not used for further processing. Imposing a specific selection
of boundary conditions upon the pressure field and the Green’s function we can find a formalism
that eliminates the free-surface multiples and the wavelet from the pressure field (Amundsen, 2001;
Holvik and Amundsen, 2005).

In wavefield deconvolution, two mediums are selected:

1) A medium corresponding to a physical seismic experiment in a marine setting (shown on the
left hand side of Figure 3), it consists of the earth, a layer of water and a half space of air. The
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Figure 4: Volume used in the virtual source method.

position xs denotes the location of the source (a source array could also be chosen) and xr is the
receiver location.

2) A medium corresponding to a hypothetical experiment (shown on the left hand side of Figure 3),
it consists of the earth and a half space of water (no free-surface). The position xs is the receiver
location and xr is the source location.

The pressure field P propagates in the first medium and a second pressure wavefield P ′ propagates
in the second medium. Both pressure fields satisfy equation 2. A Dirichlet boundary condition is
imposed to P . The volume selected to evaluate Green’s theorem is shown in Figure 3. It is bounded
by the surface S0 (where the different boundary conditions are imposed) and the surface SR which
is assumed to be at infinity (it gives zero contribution to the surface integral in Green’s theorem).
Using the pressure fields P and P ′ as u and ν in Green’s theorem, equation 1, gives∫

V

(
P (xr|xs;ω)A′(ω)δ(x− xs)− P ′(xs|xr;ω)A(ω)δ(x− xr)

)
dx

=
∫

S0

[P (x|xs;ω)∇P ′(x|xr;ω)− P ′(x|xr;ω)∇P (x|xs;ω)] · n ds.

Evaluating the volume integral, we obtain an integral relation describing the relation between the
experiments with and without a free-surface:

A′(ω)P (xr|xs;ω)−A(ω)P ′(xs|xr;ω) = −
∫

S0

P ′(x|xr;ω)∇P (x|xs;ω) · n ds.

This integral equation has been derived and used for free-surface elimination by e.g. Fokkema and
van den Berg (1993) and Amundsen (2001). In contrast to the previous solutions of Green’s theorem
derived in this work, the relation described by equation 41 is not a relation that can be readily
applied to retrieve a useful result. The solution of the problem is the wavefield P ′ and it cannot
retrieved from the previous equation unless more mathematical manipulations are done. There are
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different mathematical manipulations that have been used to exploit equation 41 (the interested
reader is referred to Fokkema and van den Berg (1993); Amundsen (1999, 2001) and references
within). The method selected by Amundsen (2001), assumes that the pressure field is a sum of
upgoing and downgoing waves,

P (xr|xs;ω) = u(xr|xs;ω) + d(xr|xs;ω) (41)

and introduces the relations

u(kr, zr|xs;ω) =
1
2

(
P (kr, zr|xs;ω)− ρω

kz
∇P (kr, zr|xs;ω) · n

)
(42)

and,

d(kr, zr|xs;ω) =
1
2

(
P (kr, zr|xs;ω) +

ρω

kz
∇P (kr, zr|xs;ω) · n

)
(43)

where u and d refer to upgoing and downgoing, respectively, kr is the horizontal wavenumber
conjugate to the variables (x1r, x2r), kz is the vertical wavenumber conjugate to z, and zr = x3r

is the receiver depth. Equation 41 requires the normal derivative of the pressure field P at the
free-surface. Amundsen (2001) redatumed the normal derivative of P in the wavenumber domain,
to obtain its values at the free-surface, and introduced the relations in equations 42 and 43, to
manipulate equation 41, and obtained a second integral equation:

A′(ω)P (xr|xs;ω) = − 1
2π2

∫ ∞

−∞
(ikz)P ′(−k, zr|xr;ω)d(k, zr|xs;ω) · n ds.

where the integral is taken over the horizontal wavenumber k. This result is a Fredholm in-
tegral equation of the first kind. This is an equation difficult to solve and in general it is ill-
conditioned (Amundsen, 2001). However, when the medium is 1D (horizontally layered), a much
simpler solution is found,

P ′(−k, zr|χs = 0, zr;ω) =
−A(ω)
2ikz

P (−k, zr|χs = 0, zr;ω)
d(−k, zr|χs = 0, zs;ω)

, (44)

or,

P ′
r(−k, zr|χs = 0, zr;ω) =

−A(ω)
2ikz

u(−k, zr|χs = 0, zr;ω)
d(−k, zr|χs = 0, zs;ω)

(45)

where χs denotes the horizontal coordinates for the source position. It is set to zero because the
medium is laterally invariant. P ′ is the wavefield corresponding to an hypothetical experiment
without a free surface, and P ′

r is the scattered field in that experiment. Hence, it is assumed that
P ′ can be separated in a direct arrival P ′

0 and a scattered field P ′
r.

The right hand side of equation 45 contains a wavelet factor of A(ω). This wavelet can be selected
to be different from the original. Furthermore, A(ω) can be set to be equal to unity, and the
retrieved wavefield won’t have any source signature, it will be the pressure wavefield due to an
impulsive point source.
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The final result retrieves a wavefield without overburden effects, and with coincident source and
receiver positions. The wavefield retrieval is performed by deconvolving the total pressure field P
with the downgoing part of P at the receiver location xr. It retrieves the wavefield for coincident
source and receiver locations at xr. Hence, it effectively creates a virtual source at xr. This
method can be applied to image beneath complex structures when receivers are locating within th
earth. In those cases the removal of free-surface multiples will be extended to the removal of all
overburden effects in the retrieved wavefield. It is accurate when dual measurements exist at the
receiver location. It has been extended for an elastic medium by Holvik and Amundsen (2005).
A similar wavenumber domain scheme for wavefield deconvolution was derived by Ziolkowski et al.
(1998). This method subtracts the direct wave from the pressure and its normal derivative prior to
up-down decomposition. Hence, it requires dual measurements and benefits from the knowledge of
the source wavelet. The authors explain that the knowledge of the source wavelet helps stabilizing
the output (Johnston and Ziolkowski, 1999).

As discussed before, wavefield deconvolution has similarities with the virtual source method derived
by Bakulin and Calvert (2004) and Korneev and Bakulin (2006), whose equation is given by a
simplification of equation 35. To derive virtual source method, two pressure wavefields P and P−

are used as the functions u and ν in Green’s theorem, equation 1. The medium parameters for both
wavefields are assumed to be equal everywhere (see Section 2.2 and 2.3), and the selected volume
is a halfspace in a seismic experiment, as shown in figure 4. The volume is bounded by a surface S0

where the sources explode (which is not assumed to be a zero-pressure surface) and the surface Sr

that is assumed to be at infinity. This surface does not vanishes when anticausal or time-reversed
wavefields are used (in this case we are using the conjugate or time-reversed pressure field), but it is
not possible to have sources or measurements along this surface, hence its contribution is ignored.
Evaluating Green’s theorem with this choice of functions and boundary conditions, gives

2iA(ω)= [P (xa|xb;ω)] ≈
∫

S0

[P (xa|x;ω)∇P−(xb|x;ω)− P−(xb|x;ω)∇P (xa|x;ω)] · n ds, (46)

where the sum is performed over source locations x.

This equation is analogous to equation 34 derived in section 2.3. The difference are in the selected
volume and surfaces taken into account, and the location of the receivers. In virtual source method,
the receivers are assumed to be below a complex overburden.

2iB(ω)= [P (xb|xa;ω)] ≈
∫

Sm

−2ik P (x|xa; t)P−(x|xb;ω) dx. (47)

As in the interferometry methods discussed in section 2, the wavefield’s normal derivatives are
assumed not to be available, and the previous equation is further approximated to wit

2iB(ω)= [P (xb|xa;ω)] ≈
∫

Sm

P (x|xa; t)P−(x|xb;ω) dx. (48)

This equation is a compromise to Green’s theorem, as explained by Korneev and Bakulin (2006).
Hence, errors and artifacts are anticipated.
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Using the virtual source method an approximate wavefield retrieval at the receiver level is achieved.
In contrast to the more complete method (wavefield deconvolution), the overburden effects are not
removed. In fact, an extra power of the source signature multiplies the retrieved wavefield. The
advantage of the virtual source method is that it can be applied in the absence of the pressure
field’s normal derivative and an approximate wavefield is retrieved between two receivers located
below a complex overburden. The synthesized wavefield will contain useful phase information.

3.3 Analysis

Most of the original, somewhat intuitive, interferometry methods were formulated to work on pas-
sive data (Schuster, 2001). The closed surface boundary was formed by sources (i.e. earthquakes
or ambient fluctuations) far away from the receivers (Shapiro and Campillo, 2004; Sabra et al.,
2005; Shapiro et al., 2005; Larose et al., 2006). Wavefield crosscorrelations were applied to pairs of
receiver gathers and a noisy Green’s function was retrieved from that passive data originally seen
as noise. The theory that evolved from approximations to Green’s theorem, to the representation
theorem, or to the principle of time reversal came later to explain what was being reconstructed
with crosscorrelations. (Derode et al., 2003; Roux and Fink, 2003; Wapenaar et al., 2002; Weaver
and Lobkis, 2004; Draganov et al., 2006). New applications, analysis, and results were obtained
along the way, e.g. the virtual source method (Bakulin and Calvert, 2004), VSP and WVSP appli-
cations (Schuster and Zhou, 2006; Otnes et al., 2006), connections with energy principles (Snieder
et al., 2007), imaging, multiple removal, etc. As we explained in the analysis for the second section
of this report, most of this work was performed using a compromised version of the framework
provided by Green’s theorem.

Having a framework, allows us to review it and anticipate that things are not going to be as
accurate as we would like when we make compromises to the theory. This knowledge provides
the opportunity to correct the weaknesses (when possible) of any approximate method by going
back to first principles and attempting to better satisfy the framework instead of trying to create
new theory to correct the compromised output. With this understanding, Weglein et al. (2000);
Ramı́rez et al. (2007) proposed a method for seismic interferometry that overcomes the need for
approximations. It requires only the pressure field at the measurement surface and it will be exact
if we can input only the scattered field. Otherwise, an estimate of the wavelet would be necessary
to decrease the occurrence of a small error in the synthesized wavefield.

Conclusions

Green’s theorem is the theoretical basis that unifies a broad class of interferometry approaches.
This mathematical relation was derived by George Green in 1828 and has been widely used during
the past and present century in all kind of applications including almost any processing step in
seismic exploration (e.g. wavelet estimation, wavefield retrieval, imaging, wavefield deconvolution,
etc.). The attention given by the energy industry and the literature to methods dealing with
wavefield retrieval, or seismic interferometry, and its applications to different seismic exploration
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problems, has brought about a renewed interest in Green’s theorem. The reason for this is that
all the different approaches to what we call seismic interferometry can be derived from this single
unifying framework: Green’s theorem (and its extension for displacements by Betti (1872) and
elastodynamic fields by Rayleigh (1873)).

Throughout this paper, Green’s theorem was used to: 1) provide an overview of a broad set
of seismic applications that recognize Green’s theorem as the starting point of their theory and
algorithms;
2) show that Green’s theorem provides a platform and unifying principle for the field of seismic
interferometry;
3) explain artifacts and spurious multiples (in certain interferometry approaches) as fully anticipated
errors and as violations of the theory, rather than as some mystery or numerical manifestation that
ought to be explained with physics; 4) provide a systematic approach to understanding, comparing
and improving upon many current concepts, approximations and compromises.
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3D free-surface multiple elimination and summation in the cross-line conjugate
domain

K. A. Innanen, S. T. Kaplan and A. B. Weglein

Abstract

3D free surface multiple elimination (3D-FSME), which acts in the k-ω domain, is wave-
theoretically more complete than the x-ω domain surface-related multiple elimination (3D-
SRME) algorithm; however, the latter has available to it strategies for managing inadequate
cross-line sampling and aperture. To develop similar cross-line strategies within the context
of 3D-FSME requires that (1) it be decomposed to isolate the cross-line component of the al-
gorithm, and (2) the impact on this component of degraded sampling and aperture be both
predictable and amenable to some form of compensation. We show that the first of these re-
quirements is in place and discuss an investigative plan.

1 Introduction

The inverse scattering series free-surface multiple elimination (FSME) series (Carvalho, 1992; We-
glein et al., 1997, 2003), which is calculated in k-ω space, differs in several ways from the DELPHI
SRME algorithm (Verschuur et al., 1992a,b), which is calculated in x-ω space, primarily in the
incorporation of the obliquity factor. In the x-ω domain, however, a variety of strategies exist (van
Dedem and Verschuur, 2005; Matson and Abma, 2005; Hokstad and Sollie, 2006) for managing in-
adequate aperture and sampling in the cross-line dimension, a key part of practical implementation
of this and the 3D FSME algorithm, the latter of which is in progress (Kaplan et al., 2005). With
respect to cross-line data issues, two possible avenues are open for FSME. First, the algorithm could
be inverse Fourier transformed into the x-ω domain, and the obliquity factor could be approximated
and applied as a spatial filter. Second, we could examine the 3D FSME algorithm in k-ω space, its
natural environs, and look for ways to isolate and manage the cross-line aperture/sampling issues
therein. Both are reasonable approaches; here, we follow the second.

We present two main results, and some basic analysis. First, we re-cast the 3D algorithm to separate
out in k-ω space the influence of the cross-line sampling/aperture from the influence of the other
data dimensions. In effect, we express the 3D FSME algorithm as a set of applications of 2D FSME,
that are summed together in a final step. Second, we characterize this last step by examining the
multiple prediction just before performing the sum, analogous to the 3D “pre-summation gather”
analysis done in the x-ω domain.
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2 Isolation of the cross-line component of FSME

Let us begin by placing ourselves in a Cartesian coordinate system such that depth increases with
positive z, the in-line (sail-line) dimension is x, and the cross-line direction is y. Furthermore,
we assume that the goal is to compute the first term of the FSME series, which predicts the
correct phase of all free-surface multiples and, provided all pre-requisites are in place, the correct
amplitude. Deviations from these pre-requisites are addressed with adaptive subtraction methods
(Abma et al., 2005; Kaplan and Innanen, 2006). In 3D, the deghosted data set with direct wave
removed, is Fourier-transformed in the 4 lateral shot/receiver coordinates and over time. Calling
this data D(kxg, kyg, zg, kxs, kys, zs, ω), the multiple prediction is then M3D, where

M3D(kxg,kyg, zg, kxs, kys, zs, ω)

=
A

S(ω)

∫ ∫
dk′xdk

′
yq
′eiq

′(zg+zs)

×D(kxg, kyg, zg, k
′
x, k

′
y, zs, ω)D(k′x, k

′
y, zg, kxs, kys, zs, ω),

(1)

and where

q′ =
ω

c0

√
1− k′2x c

2
0

ω2
−
k′2y c

2
0

ω2
(2)

is the obliquity factor; A contains some constant integration factors and S is the source wavelet.
Let us next re-express equation (1) such that the cross-line (y) activity is isolated. Consider first
the 2D version of the algorithm (with variation in the in-line dimension only), in which the multiple
prediction is M2D:

M2D(kxg, zg, kxs, zs, ω)

=
A′

S(ω)

∫
dk′xq̃

′eiq̃
′(zg+zs)D(kxg, zg, k

′
x, zs, ω)D(k′x, zg, kxs, zs, ω),

(3)

and where A′ contains 2D integration factors, and the obliquity factor is slightly simpler:

q̃′ =
ω

c0

√
1− k′2x c

2
0

ω2
. (4)

We note that within equation (1) are many instances of equation (3). In fact, if we define M∗
2D as

a modified version of M2D:

M∗
2D(kxg, kyg, zg, kxs, kys, zs, ω|k′y)

=
A

S(ω)

∫
dk′xq

′eiq
′(zg+zs)

×D(kxg, kyg, zg, k
′
x, k

′
y, zs, ω)D(k′x, k

′
y, zg, kxs, kys, zs, ω),

(5)

i.e., a function that is built in exactly the same way as M2D, but which involves three additional
variables (and the 3D version of q′), then the 3D algorithm becomes

M3D(kxg, kyg, zg, kxs, kys, zs, ω)

=
∫
dk′yM

∗
2D(kxg, kyg, zg, kxs, kys, zs, ω|k′y).

(6)
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Two of the three extra variables are the cross-line wavenumbers of the prediction, kyg and kys, and
one of the three is the cross-line conjugate integration variable, k′y. Equation (6) in processing terms
is a straightforward stack across k′y. The formulation effectively isolates the influence of cross-line
sampling and aperture on the prediction process.

3 Cross-line gathers

If cross-line sampling and aperture are adequate, M∗
2D(k′y) is completely filled with prediction

information, and the sum can be satisfactorily carried out. If the cross-line sampling and aperture
are significantly compromised, the M∗

2D(k′y) spectrum will also be compromised. In either case, the
influence of the cross-line spectrum on the prediction will be most apparent in the examination of

M∗
2D(k′y, ω)|kxg ,kyg ,kxs,kys . (7)

Equation (7) represents a k′y-ω gather resulting from the fixture of all surface wavenumber coordi-
nates.

4 Discussion

The main purpose here is to present a basic strategy for isolating and treating the cross-line com-
ponent of a three-dimensional implementation of the k-ω domain free-surface multiple elimination
algorithm; this dimension tends to be the one most compromised in terms of both sampling and
aperture.

Sampling and aperture impact the pre-processing of the data, prior to application of the 3D FSME
algorithm, since Fourier transforms must be taken over all coordinates; in fact, if it turns out to be
optimal to do so, we may treat sampling/aperture as entirely pre-processing issues. That is, if we
can entirely (somehow) correct the Fourier transforms for inadequate sampling and aperture, we
will in principle have no more problems left to deal with and may expect impeccable FSME results.
But data corrections in practice must be driven and tuned by what is to come next, so there is no
avoiding the need to characterize 3D FSME in terms of acquisition and its current limitations.

As a case in point, sophisticated technology exists for performing Fourier transforms and/or re-
constructions in aperture- and sampling-compromised settings (Sacchi and Ulrych, 1996; Zwartjes
and Sacchi, 2007, e.g.). Often the methods rely on some level of prior information, for instance,
the assumption that the spectrum that would be derived in aperture unlimited experiments are
the sum of a limited set of monochromatic plane waves. By more completely understanding the
response of 3D FSME to aperture and sampling issues, we might determine whether or not such
assumptions are practically valid in a given case, and if so, under what circumstances. We continue
to pursue these issues.
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Estimating plane-wave transmission loss with the inverse scattering internal
multiple attenuation algorithm: concept and an application to Q estimation

J. E. Lira, K. A. Innanen, A. B. Weglein and A. C. Ramirez

Abstract

The inverse scattering series internal multiple attenuation algorithm suppresses internal multi-
ples to within an amplitude error that is determined by plane wave transmission losses down to,
and across, the reflector acting as the multiple generator (the reflector at which the shallowest
downward reflection of the multiple takes place). In this paper we propose that this be exploited
to address the problem of estimating and removing overburden effects on reflected primaries, to
the benefit of current leading edge imaging and inversion algorithms. We note that this is not
inversion, but the calculation of a correction factor with no assumption about where the factor
comes from, e.g., specific influences of rock mechanical properties. However, the approach can
be used in a further, ad hoc scheme as a means to provide such a link. For instance, if an over-
burden is absorptive, the difference between the predicted and actual multiple spectra may be
related to the integral of its Q profile. Furthermore, within a specific Q model, this estimation
can be made insensitive to any scalar error in the multiple prediction arising from, e.g., nu-
merical implementation. Early-stage synthetic examples provide evidence that extraction and
calculation of the predicted and actual multiples’ spectra, using straightforward FFT meth-
ods, stably provides estimates of the integrated Q profile. The average error in the estimation
is approximately 5.5%. Research is ongoing on fundamental/analytic and practical/numerical
aspects of this potential algorithm.

1 Introduction

The distinct inverse scattering subseries for removing multiples, depth imaging primaries and im-
proving seismic resolution, all carry out their objectives without requiring the traditional subsurface
velocity information or subsurface absorptive properties, respectively. A reasonable question that
is frequently asked is: “Although we understand the fact that these algorithms don’t require the
velocity or Q model, could you nevertheless back out an estimated velocity or Q model after all is
said and done, and after your velocity independent depth algorithm has found the depth image?”
The answer is, you certainly can estimate bulk average properties. In this report that perennial
question is raised and investigated regarding the issue of resolution and Q, and backing out a bulk
Q estimate. And, the answer is affirmative.

A primary is a recorded seismic event with one upward reflection. These events are considered the
source of subsurface information for structural mapping, parameter estimation, and, ultimately,
petroleum delineation at the target. In all current leading-edge processing of primaries the ability
to infer useful information at depth critically depends upon the ability to estimate and to remove
the impact of the overburden on the character of the wave, during propagation from the source down
to the reflector and from the reflector up to the receiver. The ability to effectively estimate (and
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remove) the effects of the down and up propagation legs determines the level of realistic ambition in
subsequent processing of primaries. In this paper we propose a new method to estimate overburden
effects, turning a deficiency of the internal multiple attenuation into an asset—an indirect source
of this important overburden information.

The inverse scattering series has provided a set of algorithms for the removal of all orders of free-
surface and internal multiples (Weglein et al., 1997, 2003). Within the overall class of events
referred to as internal multiples, events are further catalogued by order, meaning the number of
downward reflections experienced. The algorithm of Araújo (1994) and Weglein et al. (1997) is
a series for the attenuation of all orders of internal multiples, the first term of which attenuates
the first-order event. It is to this first term that we direct our current attention. In practice, this
component of the full algorithm has often been fully adequate; however, there are occasions when
an elimination rather than attenuation algorithm would provide distinct added value. Ramı́rez
and Weglein (2005a) have provided a closed-form elimination algorithm for the first-order internal
multiple to fill this requirement. The key here is that the two above algorithms, attenuation and
elimination, and the understood properties of the former (Weglein et al., 1997; Weglein and Matson,
1998; Ramı́rez and Weglein, 2005b), may be exploited to provide seismic information at depth. The
value of this information and the applicability of this idea is of moment as the algorithm is refined
(Nita and Weglein, 2004) and implemented in multiple dimensions for large data sets (Kaplan et al.,
2005).

The amplitude discrepancy between the actual first-order internal multiple and the attenuator de-
scribed above is a direct expression of plane wave amplitude loss down to a particular reflector. We
propose that this be exploited to address the problem of estimating and removing overburden ef-
fects on reflected primaries, to the benefit of current leading edge imaging and inversion algorithms.
The ambitious goal of separation and extraction of a well-located and accurate angle dependent
reflection coefficient at depth is typically hindered by the experience of the primary wavefield as
it propagates through an unknown overburden, which cloaks the event with spurious amplitude
changes. Contemporary methodologies to counter these effects are generally inconsistent with wave
theoretic processing, and rarely go forward without a well-tie. The information provided by the
internal multiple algorithm is a direct, immediate correcting factor for the cloaked primary.

Practical motivation for use of this amplitude information is several-fold. First, the information
is a by-product of an existing part of the wave-theoretic processing flow–the demultiple phase–
and comes at no additional cost. Second, this occurs at a convenient point during processing,
just prior to its likely use in primary processing/inversion. Third, it is consistent with wave-
theoretic processing. Fourth, it is not restricted to a production setting, but is also applicable in
reconnaissance and exploration settings. Fifth, in addition to its potential value for current high-
bar imaging and inversion/AVO processing, it would act to make the non-linear inverse scattering
target identification series (Zhang and Weglein, 2005) an exploration as well as production tool,
again by eliminating the requirement for a well-tie.

In this paper we present a simple, early stage study and example of such information extraction.
By our previous statements, if a medium or target overburden is characterized by non-negligible
Q, which will tend to dominate transmission effects, the difference between the predicted and
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actual spectra of the multiple event will bear interpretable information about the Q values in
the overburden. We present basic theory and examples illustrating the use of internal multiple
prediction as a means for Q estimation. In the first section we review the mathematical form of the
internal multiple attenuation algorithm in 1D, its behavior in terms of the data sub-events, and the
provenance of the amplitude error in the prediction. In the second section we review the influence
of a well-known model for absorptive-dispersive wave propagation on the effective transmission
coefficients present in reflection seismic data. In the third section, by generalizing the predicted
internal multiple error to accommodate the above Q-type transmission coefficients, we demonstrate
that the spectral ratio of the predicted and actual interbed multiples may be used to invert for the
cumulative (integral) Q value down to and across the multiple generator. In the fourth section we
carry this out on a layered medium model. We comment on the potential for extension of such
methods to multiple dimensions and other avenues of research.

Determination of general attenuation vs. elimination properties

As a brief aside, let us comment on how the properties of the attenuation vs. elimination algo-
rithms may be understood and thereafter exploited. It is known in principle (via the downward
continuation/interface removal idea) that given complete medium information down to and across
an interface acting as the downward reflector for a first-order internal multiple, that multiple may
be precisely eliminated. This corresponds, then, to the information that would be required for brute
transformation of the attenuated multiple into an eliminated multiple. Although the elimination
series (Ramı́rez and Weglein, 2005a) does this task in the absence of such information, we then
note that the brute division of the attenuated multiple by the actual multiple must correspond to
the accumulation of the aforementioned overburden information.

2 IMA and predicted vs. actual amplitudes

The full multiple attenuation algorithm is a series of terms that attenuate sequentially higher orders
of multiples in fully 3D pre-stack reflection data (Weglein et al., 2003). For the purposes of this
paper, reducing the algorithm to its 1D form for normal incidence data with a plane wave source,
and considering the first term only, we have the predicted multiple algorithm (Araújo, 1994):

b3IM (kz) =
∫ ∞

−∞
dz′1b1(z

′
1)e

ikzz′1

×
∫ z′1−ε

−∞
dz′2b1(z

′
2)e

−ikzz′2

∫ ∞

z′2+ε
dz′3b1(z

′
3)e

ikzz′3 ,

(1)

where ε is a small constant determined by the approximate length of the wavelet. In implementing
the algorithm, our first job is to transform the data into the input term b1(z). This required
form can be obtained (Weglein et al., 1997) by (i) taking the surface recorded data D(t), Fourier
transforming over time to produce D(ω); (ii) performing a change of variables to the pseudo-depth
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conjugate variable kz = 2(ω/c0), where c0 is waterspeed, and calling the data expressed in this
variable b1(kz); and (iii) performing an inverse Fourier transform over kz to generate the pseudo-
depth quantity b1(z). Each of these steps occurs entirely in terms of the measured data and a
homogeneous background medium with wavespeed c0.

The algorithm itself may then be applied. Using b1(z) as input, equation (1) searches for sub-events
that obey the geometry dictated by the limits of the three integrals. Roughly speaking, the search
proceeds as follows: via the outermost integral an event anywhere in b1(z), i.e., on z = (−∞,∞),
is sought. When an event is located, others are then sought at shallower pseudo-depths via the
middle integral. Finally, if one or more shallower events are found a multiple is predicted by the
final integral for any deeper event (including but not exclusive to the first). With the search over,
eqn (1) essentially convolves the two deeper events, and then cross-correlates the result with the
shallower event. This sums the travel-times of the deeper events and subtracts the travel-time of
the shallower event, the correct time of the multiple is predicted (Figure 1). This second step, and
hence the entire algorithm, also occurs entirely in terms of the data (via b1) and the wavespeed c0
(in the integral kernels).

Importantly for our current purposes, the predicted amplitudes are scaled by a factor that is re-
lated to the transmission coefficients of the interfaces above the generator, the reflector at which
the downward reflection of the multiple takes place. See again Figure 1 and the Introduction.
The discrepancy is a direct expression of any cumulative transmission losses above the generator.
Hence, a correction of these losses could proceed with no assumptions made about their cause.
Alternatively, if we are comfortable assuming a certain mechanism dominates the transmission
loss, this information can also be used to derive specific estimates of overburden medium param-
eters, as well as thereafter providing corrections. Let us pursue this second route by assuming an
absorptive/dispersive overburden.

3 Transmission coefficients in absorbing media

To do this, we must select an appropriate (quantitative) description of the influence of absorption
on transmission above a multiple generator. Intrinsic attenuation describes amplitude and phase
alterations in a wave due to friction. These alterations are modeled by a generalization of the (nomi-
nally real) wavefield phase velocity to a complex, frequency-dependent quantity, often parametrized
in terms of Q, a measure of wave amplitude or energy lost per cycle. A reasonably well-accepted Q
model (Aki and Richards, 2002; Kjartansson, 1979) alters the wavenumber describing propagation
in a scalar medium, k = ω/c(z), to

K =
ω

c(z)

[
1 +

F (ω)
Q(z)

]
, (2)

where F (ω) = i
2 −

1
π log (ω/ω0). The reference frequency ω0, at which the wave propagates with

speed c, may be considered a parameter to be estimated, or assumed to be the largest frequency
available to a given experiment. Notice that the model divides propagation up into three parts:
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Figure 1: Sub-events and amplitudes in the IMA algorithm.

a propagation component, an attenuation component, and a dispersion component. Consider a
plane wave of unit amplitude, normally-incident on a single layer (with interface depths z1 and z2)
embedded in a homogeneous whole-space of wavespeed c0, having departed from a source/receiver
plane at depth z = 0 at t = 0. If the layer is acoustic with wavespeed c1, amongst other components
of the reflected field, the primary from the deeper interface (at z2) may be written:

PR(ω) = e
i ω

c0
z1T10e

i ω
c1

(z2−z1)
R2e

i ω
c1

(z2−z1)
T01e

i ω
c0

z1 , (3)

where T10 = 2c0/(c0 + c1) and T01 = 2c1/(c0 + c1), and R2 is the reflection coefficient of the z2
interface. If the layer is instead absorptive such that it obeys eqn (2), with parameters c1 and Q1,
the primary may instead be written as

PRQ(ω) = e
i ω

c0
z1T10e

i ω
c1

(z2−z1)
R2e

i ω
c1

(z2−z1)T01e
i ω

c0
z1 , (4)

where the transmission coefficients are generalized:

T01 =
2c1[1 + F (ω)/Q1]−1

c0 + c1[1 + F (ω)/Q1]−1
exp

[
i
ω

c1

F (ω)
Q1

(z2 − z1)
]
, (5)

and

T10 =
2c0

c0 + c1[1 + F (ω)/Q1]−1
exp

[
i
ω

c1

F (ω)
Q1

(z2 − z1)
]
. (6)
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The transmission has been altered in two ways. First, the wave amplitude/phase is altered as
it crosses the boundary at z1 going down and coming up; this small but potentially informative
filtering operation on the field also has an impact on reflection coefficients (Lam et al., 2004), in our
case R2. Much more important, however, are the new exponential terms, sensitive to the properties
and extent of the absorbing medium above the reflection point; this operator decays the amplitudes
in accordance with the attenuation law. Separating out the components of eqns (5)–(6) that do not
contribute to this (dominant) exponential amplitude attenuation into a multiplicative factor W ,
the combined effective transmission coefficients due to the absorbing overburden may be expressed
as

T01T10(z2) = W exp
[
−ω 1

c1Q1
(z2 − z1)

]
. (7)

Generalizing to an arbitrary c(z), Q(z) profile above a reflector at depth z, and considering only
the amplitude, we have

|T01T10(z)| ≈ exp
[
−ω

∫ z

0

dz′

c(z′)Q(z′)

]
. (8)

4 Estimating the integrated Q-profile

The internal multiple attenuation algorithm requires no knowledge of nor assumptions about the
medium giving rise to the data (Weglein et al., 1997). What we are proposing is the use of the
error in the algorithm in an ad hoc estimation scheme whose assumptions and requirements are
independent of those of the algorithm. With that in mind, let us consider that a number of
circumstances are in place. First, we have measured data above a reflector of interest; second,
this reflector acts as the generator of an internal multiple; third, that the multiple is sufficiently
separable within the data set (and the prediction) that its local spectrum may be estimated.

Weglein and Matson (1998) show analytically in a single layer acoustic case that the predicted
internal multiple amplitude PRED and the actual internal multiple amplitude MULT are related
by

PRED = T01T10 MULT, (9)

where the transmission coefficients are as defined in the previous section. To determine the trans-
mission loss down to and across the generator requires the ratio of the predicted and actual multiples
to be calculated, viz.

T01T10 =
PRED
MULT

. (10)

In the case of an attenuating overburden, the transmission down to and across a given reflector has
been generalized and approximated in equation (8). That is, upon estimating the spectra of the
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actual and predicted multiple, we surmise their ratio is related to Q by∣∣∣∣PRED(ω)
MULT(ω)

∣∣∣∣ ≈ exp
[
−ω

∫ z

0

dz′

c(z′)Q(z′)

]
. (11)

This allows us access to the integrated effect of Q down to the generator. Calling

QC ≡
∫ z

0

dz′

c(z′)Q(z′)
, (12)

we have

QC ≈ − 1
ω

log
∣∣∣∣PRED(ω)
MULT(ω)

∣∣∣∣ . (13)

Notice that QC is independent of ω and hence may be estimated at any available frequency; or, all
available frequencies may be used in (say) a least-squares estimation procedure. This situation is
of course contingent on the particular Q model we have chosen.

Dealing with additional scalar error in the prediction

As a practical matter (that may occur when, e.g., using packaged FFT algorithms), when computing
the internal multiple prediction, we may further wish to guard against the case in which the multiple
prediction is modified by an unknown scalar factor, that is, in which the relation

A

∣∣∣∣PRED(ω)
MULT(ω)

∣∣∣∣ ≈ e−ωQC, (14)

with A unknown, holds. In the absence of attenuation there is no recourse, but the frequency-
dependence (spectral shape) arising in the attenuation case provides an alternate route. Consider
two frequencies in the spectrum, ω1 and ω2; since each provides a valid estimate of QC, we may
calculate equation (14) with each, and divide, canceling out the scalar error and leaving∣∣∣∣PRED(ω1)MULT(ω2)

MULT(ω1)PRED(ω2)

∣∣∣∣ ≈ e−(ω1−ω2)QC, (15)

which leads to a further slightly altered estimation

QC(ω1, ω2) ≈ −
1

ω1 − ω2
log
∣∣∣∣PRED(ω1)MULT(ω2)
MULT(ω1)PRED(ω2)

∣∣∣∣ . (16)

For further robustness, QC can be averaged thus over all available pairs of frequencies in the
experiment.
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5 Synthetic examples

In this section we present synthetic testing of the estimation procedure proposed in the previous
section, using a layered medium with changing absorptive properties (Q). See Table 1.

Layer depths (m) c (m/s) Model Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

000-300 1500 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
300-480 2200 300 200 150 100 80 75 60 50 30 20
480-855 2800 150 100 75 50 40 37.5 30 25 15 10
855-∞ 3300 75 50 37.5 25 20 18.0 15 12.5 7.5 5

Table 1. 10 two-layer Earth models. First (left-most) column contains the depths of the layers;
second contains the fixed layer velocities; the remaining columns contain the 10 sets of layer Q
values used. Qn is the name of the n’th model.

The internal multiple algorithm of equation (1) is applied to these data, predicting the polarity-
reversed internal multiple (an example data set is illustrated in Figure 2b for the case of Q=300).
The spectra of the predicted and actual multiples are computed and compared (Figure 3a). Per
the developments of the previous section, within the chosen Q model we may estimate QC (the
integrated Q(z), c(z) profile down to the internal multiple generator) either with the absolute
amplitudes of the spectra (Figure 3a), or with their relative shape (Figure 3b). The latter of these
is here illustrated by shifting the actual spectrum such that the lowest frequency matches that of
the predicted spectrum. We perform the same procedure for each one of the Q-models, using their
relative shape and equation (7). Then we compare the estimated values with the values of QCint.

The spectral shape approach involves choosing sets of frequency values to be used in pairs. To
determine these, we first defined a frequency interval from which to choose such pairs that is
consistent with seismic frequencies, from 12–86 Hz. Within this interval a set of 7 frequency pairs
were tested (see Table 2).

Interval Freq. 1 Freq. 2
Pair 1 12 16
Pair 2 12 20
Pair 3 20 27
Pair 4 27 47
Pair 5 47 66
Pair 6 66 86
Pair 7 12 86

Table 2. Frequency pairs tested.

Each of the 10 data sets were subjected to the estimation procedure for each frequency pair. The
full results are tabulated in Appendix A; here we focus on some details. In particular, especially
for lower Q (i.e., greater attenuation), we find that the estimated QC values are variable from pair
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Figure 2: Synthetic data. The requisite events in a normal incidence data set from a single absorptive layer
are computed (a); the internal multiple is then predicted (b)and the predicted and actual events
are compared.

to pair (see the comparison between QC estimates for models 1 vs. 9, in Table 3). This is not an
unexpected result. At high frequencies, the influence of Q is greatest, but because these frequencies
have been preferentially suppressed, so has useable signal. Meanwhile, at low frequencies, where
the signal is intact, Q has had no influence to be detected. Hence, we expect going in that some
pairs of frequencies will be more amenable than others to providing stable, accurate estimation.

Pair Model Q9 Model Q1

1 0.0004 0.0001
2 0.0029 0.0002
3 -0.0001 -0.0002
4 0.0002 0.0002
5 0.0041 0.0002
6 0.0008 0.0001
7 0.0022 0.0002

Table 3. QC estimate for a model with large Q and a model with small Q at each of the 7 frequency
pairs. See Table 1.

Comparing the estimated to the known, exact values of QC, we find overall favorable results (see
Appendix A), but that the best estimates are always found, for all models tested, with the frequency
pair (12 Hz, 20 Hz) for each Q-models. Interestingly, all other (less accurate) estimates were too
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Figure 3: Predicted vs. actual multiple spectra. The multiples may be compared in terms of (a) their
absolute amplitudes, or (b) their relative spectral shape.

small. Table 4 contains the actual and the predicted values of QC for the frequency pair (12 Hz,
20 Hz).

Model No. Actual QC QC-Est.
Q10 0.0040 0.0043
Q9 0.0029 0.0027
Q8 0.0016 0.0016
Q7 0.0014 0.0013
Q6 0.0011 0.0010
Q5 0.0010 0.0010
Q4 0.0008 0.0008
Q3 0.0005 0.0005
Q2 0.0004 0.0004
Q1 0.0003 0.0002

Table 4. Estimated QC vs. actual QC for all 10 models using the frequency pair (12 Hz, 20 Hz).

The integrated effect of Q down to the multiple generator interface was estimated and its values
displayed on previous table. Strictly in order to better convey the accuracy of the prediction, let
us use an assumed single layer (which we know to be the model) to estimate Q values from the
integrated profiles, and compare them to the actual Q of each model. These are displayed in Table
5.
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Model No. Actual Q Q-Est.
Q1 20.00 19.07
Q2 30.00 28.28
Q3 50.00 51.25
Q4 60.00 63.08
Q5 75.00 82.00
Q6 80.00 85.11
Q7 100.00 102.50
Q8 150.00 169.46
Q9 200.00 205.00
Q10 300.00 410.00

Table 5. Estimated Q vs. actual Q for all 10 models using the frequency pair (12 Hz, 20 Hz).

6 Conclusions

We have proposed that a discrepancy between a certain version of the inverse scattering series
internal multiple attenuation algorithm be exploited to address the problem of estimating and
removing overburden effects on reflected primaries. This includes, for instance, characterizing a Q
profile down to and across an isolated internal multiple generator.

The results shown on table 4 encourage us to keep on working. Among several chosen pairs the
best results were achieved between frequencies of 12 to 20 Hz for all models. The reason why it is
the best interval is still not clear, we are investigating this at the moment. We intend to analyze
these results for data with different frequency contents.

We anticipate that the information garnered from this specific application of the broad potential
we are introducing, would be useful in two ways. First, it can be brought into a Q compensation
operator and used to correct the primary in terms of resolution (as well as overall amplitude/phase).
Second, within a further set of assumptions, it can be used to estimate the Q profile itself. As
part of this ongoing study we further anticipate examination of a number of extensions of the
methodology. First, to layered media with offset data, and beyond to multidimensional subsurface
structure. Second, to more complete descriptions of the overburden in addition to acceptable Q
models, e.g., elastic, for whom the transmission error has already been studied and characterized
(Weglein et al., 2003).

The calculation of Q-values was used just to give a better idea of the accuracy of the procedure, since
the main idea is to progress into a compensation operator without the need of finding the Q-values
itself. The values displayed on table 5 show encouraging results for the procedure presented on this
paper. We understand that there are several different kinds of models, with different features and
properties, that we could have tested the procedure. But this is the beginning of a research and we
intend to test and analyze the method for different models in the near future.
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Finally, let us reiterate the broad beneficial aspects of the methodology we are developing: first, the
information to be derived comes at no additional cost; second, it is derived at a convenient point
during processing; third, it is consistent with wave-theoretic processing; fourth, it is applicable in
reconnaissance and exploration as well as production settings; and fifth, it has the potential to
transform the non-linear inverse scattering target identification series into an exploration tool, by
eliminating the requirement for a well-tie.
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8 Appendix A

In this section we displayed the QC values generated from the Q-models presented in the main text.
The following table shows the estimate values of QCint for every Q-model and for all frequency
intervals. The variability of the estimations decreases with the increase in Q values. The best
estimates are shown in bold face.

Pair Q10 Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1

1 -0.0002 0.0004 0.0006 0.0006 0.0005 0.0005 0.0004 0.0003 0.0002 0.0001
2 0.0043 0.0029 0.0016 0.0013 0.0010 0.0010 0.0008 0.0005 0.0004 0.0002
3 0.0016 -0.0001 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0003 -0.0002 -0.0002
4 0.0034 0.0002 0.0013 0.0010 0.0008 0.0007 0.0005 0.0003 0.0002 0.0002
5 0.0091 0.0041 0.0015 0.0011 0.0007 0.0007 0.0005 0.0003 0.0002 0.0002
6 -0.0008 0.0008 0.0002 0.0001 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001
7 0.0037 0.0022 0.0009 0.0007 0.0005 0.0004 0.0003 0.0002 0.0002 0.0002

Table 3. QC estimation values tabulated for all models and frequency pairs.
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Abstract

The inverse scattering processing methods use nonlinear combinations of measured data and
propagation in a reference medium. The method for multiple attenuation, based on the inverse
scattering series, first separates free-surface multiples from primaries and internal multiples,
and, subsequently, primaries from internal multiples. The separation is performed through
task specific series in terms of measured data and propagation in reference medium. These
series result in distinct algorithms for free-surface and internal multiple removal and neither
requires a model of the subsurface reflectors that generate the multiples. The free-surface
algorithm predicts free-surface multiples from data composed of primaries, internal, and free-
surface multiples; the internal-multiple algorithm predicts internal multiples from data that
consists of primaries and internal multiples.

Internal multiples are distinguished from primaries in the measured wavefield because pri-
maries only experience one upward reflection in the subsurface while internal multiples experi-
ence at least one downward reflection (two upward reflections) in the subsurface. The first term
in the subseries for internal multiple elimination is an attenuator. It predicts the correct travel
time and an amplitude always less than the true internal multiples’ amplitude. The leading and
higher order terms in the elimination series corrects the amplitude predicted by the attenuator
moving the algorithm towards an eliminator. The leading order terms in this series are identified
as terms in a subseries with nonlinear self-interactions at the generating reflector. The loca-
tion where the downward reflection of the first order internal multiple takes place is called the
genarating reflector. Adding the leading order terms, we obtain a leading order closed form that
eliminates all internal multiples generated at the first reflector and improves the attenuation
of the remaining multiples. A second subseries improved the elimination of internal multiples
generated at deeper reflectors. The main part of this second subseries is summed to find a higher
order closed form that eliminates the internal multiples generated at the second reflector and
further improves the reduction of all internal multiples.

1 Introduction

There has been a renewed interest in the elimination of internal multiples from measured seismic
data in the literature and in the energy industry. This interest concerns on possible ways to
extend and advance beyond current capability. To that end it is natural to pursue an examination
of the ideas behind the wave theoretic inverse scattering internal multiple algorithm. This data
driven method is derived from a formalism based on the inverse scattering series, where a piece
of the third equation, that allowed for a lower-higher-lower diagram resembling the ray-form of
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an internal multiple, was found to start a series that removes all internal multiples without any
subsurface information (Weglein et al., 1981; Araújo, 1994; Weglein et al., 2003).

The first research efforts to attenuate internal multiples from marine seismic data without using
any knowledge of the subsurface were done by Araújo et al. (1994) and Weglein et al. (1997).
Attenuation refers to the amplitude reduction of certain event, or sets of events, in the seismic
data. The algorithm derived by Araújo et al. (1994) and Weglein et al. (1997) is the first term
in an infinite series that deals with internal multiple elimination. It is known as the attenuator.
An analysis of the effectiveness of the attenuator shows that its travel time prediction is exact
and the difference between elimination and attenuation resides in extra transmission coefficients
in the prediction, when compared to the true multiple in the data(Weglein et al., 2003; Ramı́rez
and Weglein, 2005b). The extra transmission coefficients correspond to coefficients down to, and
including, the internal multiple’s shallowest downward reflection. For example, an internal multiple
having its shallowest downward reflection at the water bottom, in a marine experiment, has an
error in its prediction related to the transmission coefficients at the water bottom. This error, or
attenuation factor, is totally and completely independent of how many layers and how deep into
the earth the multiple travels below the water bottom.

The first research efforts to address the complete removal of internal multiples from marine seismic
data, without destroying primary reflections and without any subsurface information, were done
by Ramı́rez and Weglein (2005a) (for the interested reader, a timetable with history highlights for
the internal multiple is provided in Figure 1). Elimination refers to a complete removal of the
amplitude of that event, or set of events, from the data. The overall purpose to develop a theory
to eliminate internal multiples is to place internal multiples and free-surface multiples on the same
footing (Carvalho, 1992; Weglein et al., 1997, 2003). The objective is to reach the same level of
elimination effectiveness that the free-surface algorithm has, in which each single term completely
removes all free-surface multiples of a certain order.

In seismic exploration, there are circumstances when: 1) internal multiple identification, or atten-
uation, is sufficient; and 2) when a residual, left from internal multiple attenuation, is a challenge
and impediment for further processing. Depending on which of these circumstances are been faced
(e.g. depending on the details of the geology and the level of ambition and demands of the pro-
cessing and exploration objectives) an attenuator or an eliminator of internal multiples would be
required. Among the circumstances when internal multiple elimination would provide value above
that provided by an attenuator (for towed streamer marine data) are: 1) converted wave internal
multiples; 2) proximal, or interfering, primaries and internal multiples at the target; 3) when there
is a need to reduce the burden on adaptive subtraction to account for missing deterministic predic-
tive capability. It is anticipated that internal multiple elimination will place greater demands on
preprocessing steps such as data collection and wavelet estimation.

The methods presented here never move from not needing to need subsurface information when we
progress from attenuate to eliminating internal multiples.
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Figure 1: History highlights

Prerequisites for internal multiple elimination

The inverse scattering series task associated with internal multiple removal promises to accomplish
its objective directly in terms of the measured data and reference propagation (Weglein et al.,
2003). It never assumes that the reference medium is the actual. The reference medium is never
moved or altered towards the actual. Inverse scattering internal multiple elimination is a wave
equation demultiple approach that does not make assumptions about the earth below the receivers,
nevertheless, it is subject to some constrains or prerequisites. It assumes that the data have been
deghosted, there are no free-surface multiples and the source wavelet is known. For the most com-
mon practical implementations, the source wavelet is estimated during the multiple subtraction
process by assuming that the source signature is the one that minimizes the energy in the demul-
tipled wavefield. The energy minimizing adaptive subtraction, is often useful. However, it tends
to fail precisely under the most complex circumstances where the underlying demultiple methods
have their greatest strengths. For example, when interfering events and multiples of different orders
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are proximal to primaries, adaptive subtraction will eliminate the primary along with the multiple.
Hence, the internal multiple elimination have a high bar on the source signature estimation as
well as deghosting and free-surface multiple elimination. If we are able to satisfy this high bar of
prerequisite, then the internal multiple elimination method would have the opportunity to reach its
potential. The work that Guo et al. (2005) and Zhang and Weglein (2006) have pioneered provide
new robust methods for wavelet estimation and deghosting, respectively. These new methods, and
further developments, will help to satisfy the prerequisites of the internal multiple algorithm.

Internal multiple elimination

The third term in the inverse scattering series: (G0V1G0V1G0V1G0) contains the leading order
contribution for the removal series of 1st order internal multiples (Weglein et al., 1997). This
leading order term is the internal multiple attenuator Araújo et al. (1994).

To simplify the analysis of the attenuator, a medium that only varies in depth will be assumed.
The 1D earth and normal incidence wave version (Weglein et al., 2003) of the first order internal
multiple attenuator is

b1(k) = D(ω), (1)

bIM1
3 (k) =

∫ ∞

−∞
dz1e

ikz1b1(z1)
∫ z1−ε

−∞
dz2e

−ikz2b1(z2)
∫ ∞

z2+ε
dz3e

ikz3b1(z3), (2)

where k = 2 ω
c0

is the vertical wave number, D(ω) is the temporal Fourier transform of the measured
scattered field (data), ε is a small positive parameter chosen to insure that the relations z1 > z2
and z3 > z2 are satisfied, the pseudodepths z1 and z2 are defined with the reference velocity c0 to
be zi = c0ti

2 , and the superscript IM1 refers to the 1st order internal multiple elimination series.

The attenuator’s prediction is performed by a nonlinear combination of three sets of data. This
nonlinear combination predicts the exact travel time and an amplitude estimate of the true internal
multiple in the data. The estimate is always less than the actual amplitude. The difference between
the estimate and the true amplitude is the attenuation factor given by the formula (Ramı́rez and
Weglein, 2005b)

(AFP.IM )j =


T01T10 for j = 1

Πj−1
i=1

(
T 2

i i−1T
2
i−1 i

)
Tj j−1Tj−1 j for 1 < j < J

(3)

where j represents the generating reflector, Tj−1 j and Tj j−1 are the transmission coefficients
going down and up through the interface j, respectively, and J is the total number of interfaces
in the model. The interfaces are numbered with integers, starting with the shallowest location.
In a single layer medium, the first order internal multiple has an amplitude of −T01R2R1R2T10

and bIM1
3 predicts a first order internal multiple with an amplitude of T01T10R2R1R2T10T01. In

agreement with equation (3), the predicted internal multiple is attenuated by a factor of T01T10

when compared to the true internal multiple. The attenuation factor, equation(3), is affected by
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Figure 2: First order internal multiple with downward reflection at j = 1.

the history of the event down to and including only the depth of the generating reflector. It is a
factor independent of the place where the two upward reflections occurred.

The first order internal multiple elimination series starts with bIM1
3 . The multiples are predicted as

traces in the same form as the effective data. The attenuation process is a simple addition b1+bIM1
3 ,

since bIM1
3 contains internal multiples with opposite sign to the ones in the effective data. Each

internal multiple predicted by bIM1
3 , and generated at a certain j reflector, is attenuated by a factor

of (AFP.IM )j . The purpose of the higher order terms in the elimination series is to remove the
effect of the attenuation factor. The higher order terms improve the effectiveness of the attenuator
towards the objective of completely subtract the amplitude of multiples within the data. In order
to achieve an elimination method, the inverse scattering subseries for internal multiple elimination
must be able to predict the true amplitude for these events.

In the attenuator’s prediction, the factor that multiplies the internal multiples generated at the first
reflector, (IM)j=1, is T01T10. Analytic analysis of this algorithm (Weglein et al., 2003; Ramı́rez
and Weglein, 2005b) shows that this attenuation factor corresponds to the first term in the Taylor
expansion of (T01T10)/(T01T10) = 1,

T01T10

(
1

T01T10

)
= T01T10

1
(1−R2

1)

= T01T10

(
1 +R2

1 +R4
1 +R6

1 +R8
1 · · ·

)
. (4)

Following the same analysis, it is found that the factor (T01T10)2T12T21 multiplying the prediction
of internal multiples generated at the second reflector, (IM)j=2, corresponds to the first term in
the more complicated geometric series for:

(T01T10)2T12T21

(T01T10)2T12T21
= (T01T10)2T12T21

1
(1−R2

1)2(1−R2
2)
, (5)

= (T01T10)2T12T21

(
1 + 2R2

1 +R2
2 + 3R4

1 + 2R2
2R

2
1 + · · ·

)
.

Each one of the terms in the Taylor expansions, equations (4) and (5), are calculated by higher
order terms in the inverse scattering internal multiple elimination series. Identifying and adding
these higher order terms builds a sum of amplitude corrections that improves the prediction and
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subtraction of internal multiples from the data. The amplitude corrections are given by algorithms,
found in the internal multiple elimination series bIM1

3 + bIM1
5 + bIM1

7 + · · · (Ramı́rez and Weglein,
2005a), that only require measured values of the scattered field and the reference Green’s function.

DATA

Go

Figure 3: Diagrams for the fifth term in the internal multiple elimination series

The second term in the elimination series, b5IM1 , is fifth order in the data. It resides within the
fifth term in the inverse series. It is the first step to move the attenuator towards an algorithm
that eliminates 1st order internal multiples. It is given by

bIM1
5 (k) =

∫ ∞

−∞
dzeikzb1(z)

×
∫ z−ε

−∞
dz′e−ikz′

[
b1(z′)3 + 2 b1(z′)

∫ z′−ε

−∞
dz′′′ b1(z′′′)2

]

×
∫ ∞

z′+ε
dz′′eikz′′b1(z′′). (6)

and it can be separated in two parts (represented with the diagrams in Figure(3)),

bIM1
51 (k) =

∫ ∞

−∞
dzeikzb1(z)

×
∫ z−ε

−∞
dz′e−ikz′b1(z′)3

∫ ∞

z′+ε
dz′′eikz′′b1(z′′), (7)

bIM1
52 (k) =

∫ ∞

−∞
dzeikzb1(z)

×
∫ z−ε

−∞
dz′e−ikz′2 b1(z′)

∫ z′−ε

−∞
dz′′′ b1(z′′′)2

∫ ∞

z′+ε
dz′′eikz′′b1(z′′). (8)

The diagram located on the left of Figure (3) corresponds to equation (7) and it belongs to a series
that eliminates all 1st order internal multiples that were downward reflected at the shallowest
reflector. This term combines nonlinearly five sets of data. When added to the attenuator b3 it
provides extra amplitude information and the correct time of the internal multiples. The three
hits in the diagram indicate triple self interaction at the generating reflector. Hence, the extra
amplitude information given by the self-interacting data corresponds to powers of the reflection
coefficient of each generating reflector, which is in agreement with the analysis in equations (4)
and (5).

63



Inverse scattering internal multiple elimination MOSRP06

The analysis of the properties of this term, using its diagram representation and numerical examples,
showed that it is the main contribution of bIM1

5 to the elimination of internal multiples (Ramı́rez
and Weglein, 2005a). Its mathematical representation resembles the one of the attenuator, which
is the leading order term of the series by itself. We can find the leading order terms by examining
each term in the internal multiple elimination series and selecting the ones that only have data self-
interactions at the generating reflector. The leading order terms are represented with the diagrams
shown in Figure (4). The sum of these diagrams leads to the leading order closed form term

bIM1
LO =

∫ ∞

−∞
dzeikzb1(z)

×
∫ z−ε

−∞
dz′e−ikz′

(
1

1− b1(z′)2

)
b1(z′)

∫ ∞

z′+ε
dz′′eikz′′b1(z′′). (9)

This equation is the infinite sum of the main contributions in the inverse scattering internal multiple
elimination series. It includes the first order term, the attenuator, and the main contribution from
each subsequent term in the elimination series. The leading order eliminator, bIM1

LO , predicts all 1st

order internal multiples generated at the shallowest reflector without requiring a-priori information,
nor a velocity model. The elimination step is performed in terms of the effective data, b1, and the
reference velocity contained in k = 2ω

c0
. Furthermore, the leading order eliminator helps to better

attenuate all the internal multiples generated at deeper reflectors.

Figure 4: Leading order diagrams.

The diagram located on the right of Figure (3) represents equation (8). This equation contains
I = 2b1(z′)

∫ z′−ε
−∞ dz′′′ b1(z′′′)2 in the middle integral. The term I, represented by the middle part of

the diagram, has two self-interacting data within the overburden of the generating reflector. This
double self interaction provides the series with second order corrections for any interface above the
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generating reflector and, it only acts on internal multiples downward reflected at interfaces below
the shallowest reflector. The internal multiples generated at the shallowest reflector are completely
eliminated with the leading order closed form term in equation (9). The double self-interacting
diagram further attenuates all 1st order internal multiples generated at deeper reflectors1. The
main part of these second subseries can be summed in a higher order closed form term,

bIM1
HO =

∫ ∞

−∞
dzeikzb1(z)∫ z−ε

−∞
dz′e−ikz′

2G1(z′)
∫ z′−ε
−∞ dz′′′ J(z′′′)

1−
∫ z′

−∞ dz′′′ J(z′′′)

∫ ∞

z′+ε
dz′′eikz′′b1(z′′). (10)

J(z′′′) =
b1(z′′′)

2

1− b1(z′′′)
2 (11)

G1(z′) =
b1(z′)

1− b1(z′)
2 (12)

The higher order eliminator, assumes that the action of the leading order eliminator has taken
effect prior to its calculation. The leading order closed form added to the effective data eliminates
all multiples generated at the first reflector. The only task left, in terms of internal multiples, is
to finish correcting the amplitude of the deeper internal multiples and eliminate them. This is the
task performed by the higher order eliminator, bIM1

HO .

Figure 5: Higher order diagrams.

Some of the diagrams included in equation (10) are shown in Figure 5. Equation (10) is the infinite
sum of the main terms in the higher order subseries of the internal multiple elimination series.
The higher order eliminator includes diagrams that have extra data self-interactions above the
generating reflector. The reason it is not including all the higher order terms is because, these
terms in the inverse series for internal multiple elimination have different integer weights, which

1Where deeper refers to all reflector located below the shallowest one.
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means that a specific higher order diagram is required to act more than once in the removal process.
From the form of equation (10), the closed form only contains a weighting factor of 2 (please refer
to the middle integral) in agreement to the weighting factor needed by equation 8. The first term
included in the higher order closed form corresponds to equation 8, which is represented by the
first diagram in Figure 5.

Figure 6: The left hand side shows the predicted internal multiples. The right hand side shows data
containing primaries and internal multiples.

An elimination algorithm for internal multiples based on inverse scattering series has the potential
of removing difficult internal multiples, leaving all primaries unaffected. Although the internal
multiple amplitudes are reduced by the attenuator, bIM1

3 , and substantially reduced (and a subset
is eliminated) by the leading order closed form, bIM1

LO , there is in some cases an observable residual
that can be further attenuated with the action of the higher order closed form, bIM1

HO . The higher
order closed form term of the internal multiple elimination series complements the elimination of
the amplitude of the remaining internal multiples by adding nonlinear contributions in terms of
data and a reference Green’s function. The combination of the leading order closed form with the
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higher order closed form term gives an improved algorithm for the removal of internal multiples.
A 1.5D numerical example of the internal multiple prediction with bIM1

LO in a half space of water
and a horizontally layered elastic medium representing the earth, is shown in Figure 6. The finite
differences synthetic data, on the right of this figure, contains primaries and internal multiples
due to an elastic halfspace. The traces on the right show the predicted internal multiples. Notice
that all multiples were predicted at the exact time. The data were deconvolved with an statistical
estimate of the wavelet. The wavelet used to model the data was not used in the internal multiple
prediction. Hence, the predicted multiples have a different wavelet. The fact that the internal
multiple elimination algorithm, with an acoustic background, predicts internal multiples propagated
in an elastic Earth is a remarkable result of the model-type independent nature of the algorithm.

2 2D extension of the algorithm

In the theory presented in the previous section, no assumptions about the earth below the receivers
are made, this characteristic makes it ideal for addressing one of the current challenges in exploration
seismology: removing multiples, locating and identifying targets in highly complex medium. When
the medium is complicated, an accurate velocity model that would allow modeling and subtraction
of internal multiples is unobtainable. Hence, the extension to a multidimensional earth is a necessary
step.

The attenuation algorithm for a 2D earth, presented in Araújo (1994); Weglein et al. (1997) and
Weglein et al. (2003), is

b1(kg, ks, qg + qs) = −2iqsD(kg, ks, ω), (13)

bIM1
3 (kg, ks, qg + qs) =

1
(2π)2

∫ ∞

−∞
dk1e

iq1(xs−xg)

∫ ∞

−∞
dk2e

iq2(εg−εs)

×
∫ ∞

−∞
dz1e

i(qg+q1)z1b1(kg,−k1, z1)

×
∫ z1−ε2

−∞
dz2e

i(−q1−q2)z2b1(k1,−k2, z2)

×
∫ ∞

z2+ε1

dz3e
i(q2+qs)z3b1(k2,−ks, z3), (14)

where ω represents the temporal frequency, c0 is the acoustic velocity of water; kg and ks are the
horizontal wave numbers corresponding to receiver and source coordinates: xg and xs, respectively;
the 2-D wave vectors: kg = (kg,−qg) and ks = (ks, qs) are constrained by |kg| = |ks| = ω

c0
; the

vertical wave numbers are qg = sign(ω)
√

( ω
c0

)2 − kg
2 and qs = sgn(ω)

√
( ω

c0
)2 − ks

2, and εi is a
small positive parameter chosen to insure that the relations z1 > z2 and z3 > z2 are satisfied.

In equations (13) and (14), the effective data b1(kg, ks, qg +qs) is defined as a source obliquity factor
times the 2D measured values of the scattered field, D. The variable z is the Fourier conjugate to
the sum of the vertical wave numbers, kz = −(qg + qs). The attenuation of multiples is performed
by adding the attenuator, bIM1

3 , to the effective data, b1.
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As we showed in 1D, the second term in the 1st order internal multiple elimination series can be
separated in two equations. The 2D form, of the first equation is

bIM1
51 (kg, ks, qg + qs) =

1
(2π)2

∫ ∞

−∞
dk1e

iq1(xs−xg)

∫ ∞

−∞
dk2e

iq2(εg−εs)

×
∫ ∞

−∞
dz1e

i(qg+q1)z1b1(kg,−k1, z1)

×
∫ z1−ε2

−∞
dz2e

i(−q1−q2)z2 [b1(k1,−k2, z2)]
3

×
∫ ∞

z2+ε1

dz3e
i(q2+qs)z3b1(k2,−ks, z3), (15)

which have the same diagrammatic representation as shown in Figure (3). Studying the higher order
terms in the inverse scattering internal multiple elimination series in a multidimensional model type
independent form, we find that the form of the terms with self-interacting data at the generating
reflector conserves the properties and characteristics found in the simple 1D case. Analogous to
the 1D case, the first term in the leading order elimination series is the attenuator, equation (18),
and the second term is given by equation (15). The next terms in the leading order series have the
form:

bIM1
51 (kg, ks, qg + qs) =

∞∑
N=0

1
(2π)2

∫ ∞

−∞
dk1e

iq1(xs−xg)

∫ ∞

−∞
dk2e

iq2(εg−εs)

×
∫ ∞

−∞
dz1e

i(qg+q1)z1b1(kg,−k1, z1)

×
∫ z1−ε2

−∞
dz2e

i(−q1−q2)z2 [b1(k1,−k2, z2)]
2N+1

×
∫ ∞

z2+ε1

dz3e
i(q2+qs)z3b1(k2,−ks, z3), (16)

We can add the leading order terms in the multidimensional case to a closed form, which is given
by,

b1(kg, ks, qg + qs) = −2iqsD(kg, ks, ω), (17)

bIM
LO (kg, ks, qg + qs) =

1
(2π)2

∫ ∞

−∞
dk1e

iq1(xs−xg)

∫ ∞

−∞
dk2e

iq2(εg−εs)

×
∫ ∞

−∞
dz1e

i(qg+q1)z1b1(kg,−k1, z1)

×
∫ z1−ε2

−∞
dz2e

i(−q1−q2)z2
b1(k1,−k2, z2)

1− b1(k1,−k2, z2)
2

×
∫ ∞

z2+ε1

dz3e
i(q2+qs)z3b1(k2,−ks, z3), (18)

This is a 2D model type independent leading order elimination algorithm for internal multiples.
The leading order eliminator is a data-driven algorithm written in terms of effective data b1 (see
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equation (17)). The leading order closed form, bIM1
LO , gives the main contribution towards eliminat-

ing internal multiples. It completely removes all 1st order internal multiples generated at the first
reflector and improves the attenuation of the remaining multiples. Leading order as an eliminator
means it eliminates a class of internal multiples and further attenuates the rest. In a 2D medium,
the multiples that have no cumulative transmission error (the ones with downward reflection at
the shallowest reflector) are eliminated by the algorithm in equation (18), b1 + bIM1

LO . The higher
order closed form is being examined for a 2D extension. It is not always possible to generalize a
1D closed form to 2D; an algorithm in 2D have more variables and different dependencies than the
same algorithm in 1D. However, we are studying the 2D expressions for the higher order terms
in the elimination series. For a multidimensional world, the leading order eliminator provides the
removal of all first order internal multiples generated at the first reflector and effectively attenuates
the rest of the multiples.

There is an important subset of first order internal multiples that is now eliminated, and other
internal multiples are reduced beyond attenuation. The former subset in practice can often be
the most significant from a practical field viewpoint. The leading order elimination algorithm
automatically eliminates those multiples that have their first reflection at the shallowest reflector,
the water bottom, in marine exploration. The water bottom property is neither required nor
determined for this eliminator algorithm, nor is information below the water bottom input to
provide that ancillary benefit. The degree of the latter secondary benefit will vary but is always
present. The fact that the new algorithm is not at all more expensive than the attenuator is
worth noting. The sensitivity of the new algorithm for input wavelet is expected to be higher. In
particular, an accurate estimation of the source wavelet will be needed to perform the division in
the innermost integral. It will also allow convergence of the leading order closed form.

3 Internal multiples are predicted in terms of effective data

When the prerequisites of the internal multiple algorithm are satisfied, the predicted internal mul-
tiples can be attenuated/removed from the effective data b1 by a simple addition b1 + bIM1

3 , for
the attenuator, and b1 + bIM

LO , for the leading order eliminator. The output of this addition will
be effective data with certain internal multiples removed and the rest attenuated. If instead of
removing the internal multiples from effective data, one would like to remove them from measured
data, then an extra obliquity factor is required as explained in the next lines.

The first inverse scattering equation,

D(kg, ks, ω) =
e−iqgzg

−2iqg
V1(kg, ks,g +qs)

e−iqszs

−2iqs
, (19)

is used to define the effective data as

b1(kg, ks, qg + qs) = −2iqsD(kg, ks, ω), (20)

or

b1(kg, ks, qg + qs) =
e−iqgzg

−2iqg
V1(kg, ks,g +qs)e−iqszs . (21)
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The internal multiple attenuation algorithm is found in the third inverse scattering equation, and
is given by the algorithm in equation 14,

bIM1
3 (kg, ks, qg + qs) =

1
(2π)2

∫ ∞

−∞
dk1e

iq1(xs−xg)

∫ ∞

−∞
dk2e

iq2(εg−εs)

×
∫ ∞

−∞
dz1e

i(qg+q1)z1b1(kg,−k1, z1)

×
∫ z1−ε2

−∞
dz2e

i(−q1−q2)z2b1(k1,−k2, z2)

×
∫ ∞

z2+ε1

dz3e
i(q2+qs)z3b1(k2,−ks, z3). (22)

The left hand side of this equation, bIM1
3 , is effective data consisting of internal multiples only.

Therefore, its relation with measured data is

b3(kg, ks, qg + qs) = −2iqsDIM (kg, ks, ω), (23)

where DIM represents data consisting of internal multiples. In other words, the output of the
attenuator needs to be divided by a source obliquity factor of −2iqs in order to have a prediction
in terms of measured data. By induction, this analysis can be extended for the higher order terms
in the internal multiple elimination series and leading order closed form.

We can predict a dataset consisting of internal multiples only by the attenuator or the leading order
closed form by a factor of −2iqs, and then subtract the multiples directly from the recorded data
D −DIM

3 or D −DIM
LO , where

DIM
3 (kg, ks, qg + qs) =

1
(2π)2

1
−2iqs

∫ ∞

−∞
dk1e

iq1(xs−xg)

∫ ∞

−∞
dk2e

iq2(εg−εs)

×
∫ ∞

−∞
dz1e

i(qg+q1)z1b1(kg,−k1, z1)

×
∫ z1−ε2

−∞
dz2e

i(−q1−q2)z2b1(k1,−k2, z2)

×
∫ ∞

z2+ε1

dz3e
i(q2+qs)z3b1(k2,−ks, z3). (24)

and

DIM
LO (kg, ks, qg + qs) =

1
(2π)2

1
−2iqs

∫ ∞

−∞
dk1e

iq1(xs−xg)

∫ ∞

−∞
dk2e

iq2(εg−εs)

×
∫ ∞

−∞
dz1e

i(qg+q1)z1b1(kg,−k1, z1)

×
∫ z1−ε2

−∞
dz2e

i(−q1−q2)z2
b1(k1,−k2, z2)

1− b1(k1,−k2, z2)
2

×
∫ ∞

z2+ε1

dz3e
i(q2+qs)z3b1(k2,−ks, z3), (25)

70



Inverse scattering internal multiple elimination MOSRP06

Conclusions

The first order term in the inverse scattering internal multiple series, known as the attenuator, pro-
vides an effective solution for many circumstances encountered in exploration seismology (Weglein
et al., 2003). It predicts the correct arrival time and an estimate of the true amplitude of internal
multiples in the data. There are circumstances when the attenuation, or identification, of internal
multiples is not enough. An example of those possible circumstances (for towed streamer pressure
measurements) is the possibility of either having a residual that is far from small (e.g. converted
wave internal multiples) or where having a small residual interfering with a target primary, and the
latter is itself small. In these cases, the attenuation is not enough and other algorithms need to
be developed to extend the previous methods and advance beyond current capability. The internal
multiple elimination series and closed forms aim to reduce residual internal multiples where the
magnitude of the residual can be significant.

The higher order terms in the series add contributions to the attenuator to improve its effectiveness
towards an elimination of internal multiples. The algorithm presented is based on inverse scattering,
and it goes further in the removal of first order internal multiples. Two closed forms were obtained
and used in examples. The first one, adds the leading order terms elimination subseries and it
is an algorithm that completely eliminates all first order internal multiples generated at the first
reflector. The second closed form adds the main contribution of the higher order terms. It shows
a better estimate of the amplitudes, and provides an improvement towards the elimination of 1st

order internal multiples. In this theory, no assumptions about the earth below the receivers are
made.

The extension to a multidimensional earth was achieved for the leading order closed form term.
The leading order eliminator provides the removal of all first order internal multiples generated
at the shallowest reflector and effectively attenuates the rest of the multiples. The extension to a
multidimensional earth of the higher order terms as well as extensions of definitions is our current
subject of study.

The output of the attenuator (Weglein et al., 1997), and the leading order eliminator, is a wavefield
of internal multiples in terms of effective data. In order to have traces consisting of internal multiples
in terms of data, the obliquity factor −2iqS needs to be deconvolved from the prediction.
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Imaging at depth without the velocity: M-OSRP goals, overall strategy and
specific coordinated initiatives within that campaign

A. B. Weglein

In this note, we review the basic logic behind the imaging at depth strategy we are pursuing. That
logic begins with the goal of addressing the innate algorithmic assumptions/limitations component
of a comprehensive response to pressing seismic E & P challenges. In the Introduction we placed
our program’s goals within that broader landscape of overall issues related to seismic effectiveness.

Basically, we are recognizing and then seeking to capture the potential within the inverse scattering
series to provide imaging algorithms that avoid the distinct limiting assumptions of both current
velocity analysis and imaging methods and thus can provide useful and accurate images when
current imaging methods have difficulty or fail. In short: to provide an accurate depth image
under conditions of exploration interest where there is a target reflector but we currently have an
erroneous or misplaced image or no image.

The purpose of this note is to provide a perspective of where we are in that campaign and what are
the different activities currently being pursued within M-OSRP as we move forward and achieve
those goals.

Several key points:

1. It is conceptually easier to understand finding the depth with the velocity than finding the
depth without the velocity. The former is d = vt and Green’s theorem consistent, and the
latter is counter-intuitive and strange. Furthermore, finding the depth with (and needing)
the velocity is consistent with modeling (where all modeling methods—including forward
scattering series modeling methods— require every single and precise detail of the medium,
including velocity, to predict primaries and multiples) and perhaps most important it is
consistant with linear inverse scattering, the basis of all migration-inversion and conventional
migration theory (F-K, Kirchhoff, phase-shift, phase-screen, beam, reversed-time, split-step,
CFP, CRS, Feedback Loop imaging, etc.). The need to have the velocity to determine the
depth is also in agreement with both model matching and iterative linear inversion. The
inverse scattering series (and the task specific subseries for depth imaging) stands alone on
that point.

2. The inverse scattering series responds to the different issues that are required to be addressed
to achieve inversion related tasks, that are automatically established and set in motion and
called into play by the infrastructure of the L, L0, and V operators. For example, as soon as
the spatial dimension and number of acoustic, elastic, or anelastic parameters, number and
types of reference velocities, and constant, slowly-varying or discontinuous reference media
are defined, the inverse scattering series automatically, definitively, directly and purposefully
responds to the tasks of inversion within each different context and infrastructure. The

73



Imaging at depth without the velocity: M-OSRP goals, overall strategy and initiatives MOSRP06

tasks of, e.g., imaging with or without a velocity in a one parameter, one dimensional earth
are fundamentally different than the issues faced in a multi-dimensional, multi-parameter
subsurface. To illustrate: there are no diffractions in 1D and no diffractions to collapse, with or
without the velocity. In a one dimensional earth, a single horizontal reflector beneath a known
homogeneous overburden is not an imaging challenge. In a multidimensional earth a single
high-rugosity reflector beneath a known homogeneous overburden is an imaging challenge.
The latter issue gives rise to terms in the inverse scattering series and ultimately in a multi-D
depth imaging algorithm that don’t exist (nor are they needed) for a 1-D earth.

The above list of migration methods (in item 1) represents a huge set of experiences and investment
in terms of intellectual capital, careers, and associated expertise, insights and issues to be addressed,
all defined within that framework.

To provide a superseding (imaging) vision one must: (1) match current capability within the sphere
of its assumptions and usefulness, and (2) demonstrate new predictive capability that moves outside
the sphere of current assumptions and expands the range of accommodation and effectiveness. The
inverse scattering series imaging capability has the potential of providing a superseding imaging vi-
sion. That potential and promise remains high; and in fact recent partial capture imaging algorithm
results are more encouraging in terms of efficacy and efficiency, than we had ever anticipated.

Our central goal and objective is to examine the current effective but partial imaging capture, and
a more complete capture (which we are pursuing), to test, evaluate and determine their ability to
first match and then go beyond our current best velocity analysis and imaging capability. To date,
we have focused our attention on developing imaging algorithms that are tested, where progress is
measured in abolute terms. We plan to begin the real test: the evaluation of the inverse scattering
series imaging capability in relative terms: i.e., how well do these new algorithms stack-up against
our best current methods to determine the velocity and to use that velocity to provide depth images.

There is a set of imaging challenges, each with different types and degrees of velocity and/or imaging
breakdown. We anticipate that different degrees of capture of imaging capability within the inverse
scattering series will be needed to match these different velocity and/or imaging challenges.

With the standard notation used in forward and inverse scattering formulations we have

Earth︷ ︸︸ ︷
G0︸︷︷︸

water

, V → D︸︷︷︸
Data

7−→ . . . forward

G0︸︷︷︸
water

, D︸︷︷︸
data

→ V︸︷︷︸
earth

7−→ . . . , inverse

where G0 is the water speed Green’s function, G is the actual Green’s function, V is the difference
between earth properties and water, and the data, D, is the measured values of (G−G0)m.
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The forward and inverse scattering series input and output

The forward and inverse scattering series respect and honor the non-linearity within the forward
and inverse maps G0, V → D and G0, D → V . Linear inverse scattering (first term only) with
V1 ≈ V , and requires G0 ≈ G for a reasonable estimate of V .

For those comfortable with Taylor series the forward series can be cast as:

ψ − ψ0 = D(m)−D(m0) = D′(m0)∆m+
D′′(m0)(∆m)2

2
+ . . . , (1)

and the inverse series as (D0 = D(m0))

V = m(D)−m(D0)︸ ︷︷ ︸
m0

= m′(D0)D +
m′′(D0)D2

2
+ . . . . (2)

For those happier with the Lippman-Schwinger scattering equation:

G−G0 = G0V G

(1−G0V )G = G0 (3)

G =
G0

1−G0V

The forward series is

G = G0 +G0V G0 + . . . (4)

and in Taylor series terms

D(m) = D(m0) +D′(m0)∆m+ · · · .

The forward scattered series is

G−G0 =
G0 − (1−G0V )G0

1−G0V
=

G0V G0

1−G0V
,

(5)

then from Eq. 4,

ψs ≡ G−G0 = G0V G0 +G0V G0V G0 + · (6)
= (ψs)1 + (ψs)2 + · · · .

In the inverse direction:

G−G0 = G0V G

ψs =
G0V G0

1−G0V
(7)
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(G−G0)(1−G0V ) = G0V G0

G−G0 = G0V (G−G0) +G0V G0

= G0V G−G0 +G0

G−G0

G−G0 +G0
= G0V (8)

(G−G0)G0

G−G0 +G0
= G0V G0

G−G0

1 + G−G0
G0

= G0V G0

G0V G0 = G−G0 −
(G−G0)2

G0
. . . ,

for the inverse problem relating V to G−G0) on the measurement surface

(G0V G0)m = (G−G0)m −
(

(G−G0)2

G0

)
m

+ . . . , (9)

where subscript m indicates the measurement surface.

The right hand side of equation 9 is a power series in (G−G0)m, i.e. the data, D.

The terms on the RHS of different orders contribute to V as the portion of V n-th order in the
data, (G−G0)m. If Vn is the portion of V n-th order in the data and V =

∑∞
n=1 Vn, then:

(G0V1G0)m = (G−G0)m

(G0V2G0)m = −
(

(G−G0)2

G0

)
(10)

= −(G0V1G0G0V1G0)m

G0

(G0V2G0)m = −(G0V1G0V1G0)m

The latter demonstration is merely a pedagogic device and a cartoon “derivation” that relates to
the inverse series. To actually derive the inverse series requires a little more respect for operators.
(Weglein et al., 1997, 2001; Shaw et al., 2002; Weglein et al., 2003).

The message is don’t truncate the series: respect, honor it and understand it and the potential of a
superseding imaging vision arrives. It is that simple. It’s that simple but it’s not that easy. Locating
imaging only capability within the series is neither simple nor complete and arranging those (infinite
upon infinite number of imaging) terms into reasonable algorithms is also a trick. That objective
is partially achieved. Much has been achieved, and the current types of imaging capture will
be extended to more general models (e.g., elastic) for use on field data; and simultaneously and
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separately the imaging capture net within a model type will be broadened to include types of
imaging ability beyond our current algorithms.

The current imaging capture is for a single parameter (velocity only) multi-dimensional acoustic
earth. In addition, within that world only terms which retain a purpose in a 1D world have been
captured, and leading order and higher order terms are collected but not all the orders (beyond
higher order) within even that framework. The algorithm by Liu et al. (2006) is not in any way
a repeated application of a 1D imaging formula at different mid-point locations assuming a quasi-
local 1D earth. It is a full 2D imaging formula. It has a 1D analog, but it is not a patching
together a several 1D imaging results. It is a closed form and lightning speed fast and part of our
strategy is to generalize it to more than a single parameter to provide enough realism to allow the
accommodation of amplitude and phase relations for field data application. In conventional imaging
methods the location is determined by using the time (phase) information of primary events and
the velocity model to locate structure. That’s it. For imaging a reflector without the velocity the
inverse scattering series algorithms use a communication that involves the amplitude and phase
of a collection of primaries. The inverse scattering series velocity independent imaging series is a
more subtle, and sophisticated and complicated undertaking and the event conversation towards
imaging needs to be examined to assume that events from the real earth will have the appropriate
conversation required in their world. That is being pursued from several different directions; one
gleans lessons and patterns from examining imaging activity in models with two or three parameters
and a second is coming from a diagram perspective.

While the current imaging capture and theory is being extended for field data readiness, other
initiatives are being pursued to bring fully multi-dimensional issues, e.g., imaging breakdown with
a perfect velocity, collapsing diffractions and beyond higher order terms into our imaging algorithms’
grasp.

Why is the imaging capture so diffcult?

Stated succintly:

1. One term in the inverse series eliminates one order of free surface multiple;

2. One term in the inverse series attenuates one order of internal multiple; an entire series is
required to eliminate one order, or any one individual internal multiple;

3. One term in the imaging series indicates that there is an imaging issue and an entire series
is necessary to partially deal with an imaging problem (that series is called leading order
imaging series); a cascaded series is necessary for further imaging capability, called higher
order imaging series, and there are terms beyond what is being called higher order.

Hence, when you locate a term, e.g., that is dealing with uniquely 2D issues such as collapsing
diffractions, that is a good thing and a start but far from capturing a collapsing diffraction
capability. The latter requires examing further terms and patterns of terms with that diffrac-
tion collapsing interest and to generalize (sometimes by guessing) what terms beyond what
you can derive would look like and collecting them into an algorithm.
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The algorithm will be an infinite series; and, more likely a cascaded infinite series and then
you need to be able to compute it. Can you find a closed form, or a recursive form or are
stuck with computing terms. If the latter is the case, then convergence, rate of convergence
and use of a variable velocity background to speed up convergence might be indicated. That’s
why it is complicated and that’s why all of that full multi-D imaging capture is yet to be
achieved. Accurate depth imaging beneath a complex ill-defined medium or imaging a com-
plex boundary is a complex and difficult problem. And complex equals complex: one simple
sum (one term) of a complex highly demanding term (actual velocity and data) or a highly
complex sum of a very undemanding set of terms (water speed and data).

The inverse scattering series prescribes the highly complex sum. Sometimes the highly com-
plex sum reduces to a simple closed form. Then you have the collapse of a complex cascaded
double infinite sum of a simple water speed migration ingredient into a very simple form in
terms of the simple ingredient. That’s amazing. That’s the status of current imaging capture.
In that current capture, the entire algorithm runs in 1.3 times the time for a single water speed
FK migration. No velocity, no tomographic velocity analysis, no residual velocity analysis, no
interpretation, no picking, no iterates with migration to different depths and marching down.
With that Stolt FK migration speed and partial multi-D imaging capture, why wouldn’t we
want to extend Fang Liu’s imaging algorithm to more realistic models to allow for field data
tests?

In summary, we are: (1) going to extend to current imaging algorithm to be able to accommo-
date a minimally realistic earth model; (2) test these imaging algorithms with more complex
synthetics and compare with best available methods that estimate the velocity and use con-
ventional imaging; (3) collect a set of field data examples (for testing) with ever increasing
imaging challenges, beginning with fault shallow zones; and (4) broaden the imaging capture.
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A note: data requirements for inverse theory

A. B. Weglein

1. What does linear in the data mean?

2. Linear in what data?

3. Conservation of dimension (having enough degrees of freedom in your data to “solve” an
equation) is not a sufficient condition to define “what data” and being able to solve an
equation (in isolation) is not the same as finding a physically meaningful solution or even a
linear estimate;

4. Solving an equation without the context and framework within which that equation resides,
and ignoring the assumptions that lead to that equation is a dangerous path towards an
inverse illusion;

5. Implications for data collection and target identification.

Scattering theory relates the perturbation (the difference between the reference and actual medium
properties) to the scattered wave field (the difference between the reference medium’s and the
actual medium’s wave field). It is therefore reasonable that in discussing scattering theory, we
begin with the basic wave equations governing the wave propagation in the actual and reference
medium, respectively,

LG = δ, (1)

L0G0 = δ, (2)

where L and L0 are respectively the differential operators that describe wave propagation in the
actual and reference medium, and G and G0 are the corresponding Green’s operators. The δ on
the right hand side of both equations is a Dirac delta operator and represents an impulsive source.

The perturbation is defined as V = L0 − L. The Lippmann-Schwinger equation,

G = G0 +G0V G, (3)

relates G,G0 and V (see, e.g., Taylor, 1972). Iterating this equation back into itself generates the
forward scattering series

G = G0 +G0V G0 +G0V G0V G0 + · · · . (4)

Then the scattered field ψs ≡ G−G0 can be written as

ψs = G0V G0 +G0V G0V G0 + · · ·
= (ψs)1 + (ψs)2 + · · · , (5)
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where (ψs)n is the portion of ψs that is nth order in V . The measured values of ψs are the data,
D, where

D = (ψs)ms = (ψs)on the measurement surface.

In the inverse scattering series, expanding V as a series in orders of D,

V = V1 + V2 + V3 + · · · , (6)

then substituting Eq. 6 into Eq. 5, and evaluating Eq. 5 on the measurement surface yields

D = [G0(V1 + V2 + · · · )G0]ms + [G0(V1 + V2 + · · · )G0(V1 + V2 + · · · )G0]ms + · · · . (7)

Setting terms of equal order in the data equal, leads to the equations that determine V1, V2, . . .
directly from D and G0.

D = [G0V1G0]ms, (8)

0 = [G0V2G0]ms + [G0V1G0V1G0]ms, (9)

0 =[G0V3G0]ms + [G0V1G0V2G0]ms + [G0V2G0V1G0]ms

+ [G0V1G0V1G0V1G0]ms, (10)

etc. Equations (8) ∼ (10) permit the sequential calculation of V1, V2, . . ., and, hence, achieve
full inversion for V (see Eq. 6) from the recorded data D and the reference wave field (i.e., the
Green’s operator of the reference medium) G0. Therefore, the inverse scattering series is a multi-
D inversion procedure that directly determines physical properties using only reflection data and
reference medium information.

1 Acoustic case

In this section, we will consider a 1D acoustic two parameter earth model (e.g. bulk modulus and
density or velocity and density). We start with the 3D acoustic wave equations in the actual and
reference medium: [

ω2

K(r)
+∇ · 1

ρ(r)
∇
]
G(r, rs;ω) = δ(r− rs), (11)[

ω2

K0(r)
+∇ · 1

ρ0(r)
∇
]
G0(r, rs;ω) = δ(r− rs), (12)

where G(r, rs;ω) and G0(r, rs;ω) are respectively the free-space causal Green’s functions that
describe wave propagation in the actual and reference medium. K = c2ρ, is P-wave bulk modulus,
c is P-wave velocity and ρ is the density. The quantities with subscript “0” are for the reference
medium, and those without the subscript are for the actual medium. The perturbation is

V = L0 − L =
ω2α

K0
+∇ · β

ρ0
∇, (13)
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where α = 1− K0
K and β = 1− ρ0

ρ are the two parameters we choose to do the inversion. Assuming
both ρ0 and c0 are constants, Eq. 12 becomes(

ω2

c20
+∇2

)
G0(r, rs;ω) = ρ0δ(r− rs). (14)

For the 1-D case, the perturbation V has the following form

V (z,∇) =
ω2α(z)
K0

+
1
ρ0
β(z)

∂2

∂x2
+

1
ρ0

∂

∂z
β(z)

∂

∂z
. (15)

V (z,∇), α(z) and β(z) can be expanded respectively as

V (z,∇) = V1(z,∇) + V2(z,∇) + · · · , (16)

α(z) = α1(z) + α2(z) + · · · , (17)

β(z) = β1(z) + β2(z) + · · · . (18)

Then we have

V1(z,∇) =
ω2α1(z)
K0

+
1
ρ0
β1(z)

∂2

∂x2
+

1
ρ0

∂

∂z
β1(z)

∂

∂z
, (19)

V2(z,∇) =
ω2α2(z)
K0

+
1
ρ0
β2(z)

∂2

∂x2
+

1
ρ0

∂

∂z
β2(z)

∂

∂z
, (20)

....

Substituting Eq. 19 into Eq. 8, we can get the linear solution for α1 and β1 in the frequency
domain

D̃(qg, θ, zg, zs) = −ρ0

4
e−iqg(zs+zg)

[
1

cos2 θ
α̃1(−2qg) + (1− tan2 θ)β̃1(−2qg)

]
. (21)

Let zs = zg = 0,

D(z, θ) = −ρ0

4

( 1
cos2 θ

α1(z) + (1− tan2 θ)β1(z)
)

(22)

Let’s consider the following logic. Eq. 22 is an exact equation for the linear estimates α1(z) and
β1(z), and choosing two (or more) values of θ will allow you to solve Eq. 22 for α1(z) and β1(z).

For a single reflector model, the left hand side of Eq. 22 is the migration of the surface recorded
data. The migration provides a step-function at the depth of the reflector whose angle dependent
amplitude is the reflector’s angle dependent reflection coefficient.

The right hand side of Eq. 22 can be rewritten as

−ρ0

4

(
α1(z) + β1(z) + (α1(z)− β1(z)) tan2 θ

)
. (23)
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Separately, we know that the exact plane wave reflection coefficient is (e.g., Keys, 1989)

R(θ) =
(ρ1/ρ0)(c1/c0)

√
1− sin2 θ −

√
1− (c21/c

2
0) sin2 θ

(ρ1/ρ0)(c1/c0)
√

1− sin2 θ +
√

1− (c21/c
2
0) sin2 θ

. (24)

and we can find a Taylor series in R as a function of sin2 θ or another Taylor series using

sin2 θ = tan2 θ
1+tan2 θ

.

This series is

R(θ) =R(tan2 θ)

=R(tan2 θ = 0) +
(dR(tan2 θ)
d(tan2 θ)

)∣∣∣∣∣
tan2 θ=0

· tan2 θ

+
(dR(tan2 θ)
d(tan2 θ)

)∣∣∣∣∣
tan2 θ=0

· tan4 θ + · · ·

(25)

Eq. 25 is exact and the amplitude of the step-function in Eq. 23 is

R(tan2 θ) = α1 + β1 + (α1 − β1) tan2 θ. (26)

The first term in the inverse scattering series is (claimed to be) an exact equation for the linear
estimate of α and β, α1 and β1, respectively.

How can you reconcile Eq. 26 being exact with Eq. 25 being exact?

Eq. 26 would seem to represent a truncated; and, therefore, approximate form of the Zoeppritz
exact reflection coefficient (Eq. 25).

If we don’t accept Eq. 26 as an approximation as being acceptable then we must alter either Eq.
25 or Eq.26, and we are not going to alter Zoeppritz Eq. 25.

We are forced to conclude that consistency between Eq. 25 and Eq. 26 requires that α1 and β1

must be functions of θ.

Let’s see where that supposition then takes us from Eq. 26:

R(tan2 θ) = α1(θ) + β1(θ) + [α1(θ)− β1(θ)] tan2 θ; (27)

and, if you choose two value of θ, say θ1 and θ2, then Eq. 27 will lead to two equations in four
unknowns, α1(θ1), α1(θ2), β1(θ1) and β1(θ2). Not a positive moment.

What the problem is here is we have forgotten the basic meaning and starting point in defining α,
β and α1, β1.

In an inverse scattering series expansion for a parameter in orders of the data it is critically im-
portant to assure that the data in terms of which you are expanding the parameter is sufficient
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to determine that parameter. The data needed to determine a parameter is dependent upon what
other parameters are (or are not) in your model; i.e., it depends on the context within which that
parameter resides.

Now consider a two parameter world defined by α(z) and β(z), and the expansions of α and β in
orders of the data. In this case, if we suppose that α and β are expandable in terms of data at
two different plane wave angles assuming that such a relationship between D(z, θ1), D(z, θ2) and
α and β exists and is sufficient to determine α and β (not α1 and β1) then we can write the series
for α(z) and β(z) as follows:

α(z) = α1(z,D(z, θ1), D(z, θ2)) + α2(z,D(z, θ1), D(z, θ2)) + · · ·

and in a compact notation

α(z) = α1(z, θ1, θ2) + α2(z, θ1, θ2)) + · · ·

where α1 is the portion of α linear in the data set (D(z, θ1), D(z, θ2)). Similarly,

β(z) = β1(z, θ1, θ2) + β2(z, θ1, θ2) + · · · (28)

If the model only allowed bulk modulus changes, but not density variation then the data required
for solving for α would only consist of data at a single angle; and in that single parameter world

α(z) = α1(z, θ1) + α2(z, θ1) + . . . . (29)

Now in the two parameter inverse problem, the data is(
D(z, θ1)
D(z, θ2)

)
and then D = G0V1G0 is equal to

(
D(z, θ1)
D(z, θ2)

)
=
(

(1 + tan2 θ1) (1− tan2 θ1)
(1 + tan2 θ2) (1− tan2 θ2)

)(
α1(z, θ1, θ2)
β1(z, θ1, θ2)

)
(30)

and
(
α1(z, θ1, θ2)
β1(z, θ1, θ2)

)
is linearly related to

(
D(z, θ1)
D(z, θ2)

)
. α1 and β1 will depend upon which par-

ticular angles θ1 and θ2 were chosen, and that is anticipated and perfectly reasonable, since being
a linear approximation in the data could(and should) be a different linear estimate depending on
the data subset you are considering.

Eq. 30, a matrix equation, is the first term in the inverse series and determines α1 and β1, the
linear estimate of α and β.

The lesson here is that the inverse problem doesn’t start with G0V1G0 = D but with V = V1 +V2 +
V3 + . . . and the latter equation is driven by a view of what data set can determine the operator
V .
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This might seem like a somewhat useless academic exercise, since Eq. 30 is the equation you would
have solved for α1 and β1 if you just ignored their θ dependence entirely. It is anything but that.
There are at least two problems with that conclusion. The value of the above analysis is: (1) with
α1 and β1 independent of θ, you have difficulty claiming or satisfying the important requirement
that the first equation in the inverse series is exact; and (2) more importantly you can get into
serious conceptual and practical problems in the elastic case if you don’t have very clear grasp of
the underlying inverse issues and relationships in the acoustic case.

2 Elastic case

The scattering theory and the inverse scattering series for the 1-D isotropic elastic earth is developed
in Zhang and Weglein (2007)

2.1 Background for 2D elastic inversion

In this section we consider the inversion problem in two dimensions for an elastic medium. We
start with the displacement space, and then, for convenience (Weglein and Stolt, 1992; Aki and
Richards, 2002, e.g.), we change the basis and transform the equations to PS space. Finally, we do
the elastic inversion in the PS domain.

2.2 In the displacement space

We begin with some basic equations in the displacement space (Matson, 1997):

Lu = f , (31)

L0u = f , (32)

LG = δ, (33)

L0G0 = δ, (34)

where L and L0 are the differential operators that describe the wave propagation in the actual
and reference medium, respectively, u and f are the corresponding displacement and source terms,
respectively, and G and G0 are the corresponding Green’s operators for the actual and reference
medium.

Following closely Weglein et al. (1997), Weglein et al. (2002) and Weglein et al. (2003), defining
the perturbation V = L0 − L, the Lippmann- Schwinger equation for the elastic media in the
displacement space is

G = G0 +G0V G. (35)

Iterating this equation back into itself generates the Born series

G = G0 +G0V G0 +G0V G0V G0 + · · · . (36)
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We define the data D as the measured values of the scattered wave field. Then, on the measurement
surface, we have

D = G0V G0 +G0V G0V G0 + · · · . (37)

Expanding V as a series in orders of D we have

V = V1 + V2 + V3 + · · · . (38)

Substituting Eq. 38 into Eq. 37, evaluating Eq. 37, and setting terms of equal order in the data
equal, the equations that determine V1, V2, . . . from D and G0 would be obtained.

D = G0V1G0, (39)

0 = G0V2G0 +G0V1G0V1G0, (40)
....

In the actual medium, the 2-D elastic wave equation is (Weglein and Stolt, 1992)

Lu ≡
[
ρω2

(
1 0
0 1

)
+
(

∂1γ∂1 + ∂2µ∂2 ∂1(γ − 2µ)∂2 + ∂2µ∂1

∂2(γ − 2µ)∂1 + ∂1µ∂2 ∂2γ∂2 + ∂1µ∂1

)][
u1

u2

]
= f , (41)

where

u =
[
u1

u2

]
= displacement,

ρ = density,

γ = bulk modulus (≡ ρα2 where α = P-wave velocity),

µ = shear modulus (≡ ρβ2 where β = S-wave velocity),

ω = temporal frequency (angular), ∂1 and ∂2 denote the derivative over x and z, respectively, and

f is the source term.

For constant (ρ, γ, µ) = (ρ0, γ0, µ0), (α, β) = (α0, β0), the operator L becomes

L0 ≡
[
ρ0ω

2

(
1 0
0 1

)
+
(
γ0∂

2
1 + µ0∂

2
2 (γ0 − µ0)∂1∂2

(γ0 − µ0)∂1∂2 µ0∂
2
1 + γ0∂

2
2

)]
. (42)

Then,

V ≡L0 − L

=− ρ0

[
aρω

2 + α2
0∂1aγ∂1 + β2

0∂2aµ∂2 ∂1(α2
0aγ − 2β2

0aµ)∂2 + β2
0∂2aµ∂1

∂2(α2
0aγ − 2β2

0aµ)∂1 + β2
0∂1aµ∂2 aρω

2 + α2
0∂2aγ∂2 + β2

0∂1aµ∂1

]
, (43)

where aρ ≡ ρ
ρ0
− 1, aγ ≡ γ

γ0
− 1 and aµ ≡ µ

µ0
− 1 are the three parameters we choose to do the

elastic inversion. For a 1D earth (i.e. aρ, aγ and aµ are only functions of depth z), the expression
above for V becomes

V = −ρ0

[
aρω

2 + α2
0aγ∂

2
1 + β2

0∂2aµ∂2 (α2
0aγ − 2β2

0aµ)∂1∂2 + β2
0∂2aµ∂1

∂2(α2
0aγ − 2β2

0aµ)∂1 + β2
0aµ∂1∂2 aρω

2 + α2
0∂2aγ∂2 + β2

0aµ∂
2
1

]
. (44)
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2.3 Transforming to PS space

For convenience, we can change the basis from u =
[
u1

u2

]
to
(
φP

φS

)
to allow L0 to be diagonal,

Φ =
(
φP

φS

)
=
[
γ0(∂1u1 + ∂2u2)
µ0(∂1u2 − ∂2u1)

]
, (45)

also, we have (
φP

φS

)
= Γ0Πu =

[
γ0(∂1u1 + ∂2u2)
µ0(∂1u2 − ∂2u1)

]
, (46)

where Π =
(
∂1 ∂2

−∂2 ∂1

)
, Γ0 =

(
γ0 0
0 µ0

)
. In the reference medium, the operator L0 will transform

in the new basis via a transformation

L̂0 ≡ ΠL0Π−1Γ−1
0 =

(
L̂P

0 0
0 L̂S

0

)
,

where L̂0 is L0 transformed to PS space, Π−1 =
(
∂1 −∂2

∂2 ∂1

)
∇−2 is the inverse matrix of Π,

L̂P
0 = ω2/α2

0 +∇2, L̂S
0 = ω2/β2

0 +∇2, and

F = Πf =
(
FP

FS

)
. (47)

Then, in PS domain, Eq. 32)becomes,(
L̂P

0 0
0 L̂S

0

)(
φP

φS

)
=
(
FP

FS

)
. (48)

Since G0 ≡ L−1
0 , let ĜP

0 =
(
L̂P

0

)−1
and ĜS

0 =
(
L̂S

0

)−1
, then the displacement G0 in PS domain

becomes

Ĝ0 = Γ0ΠG0Π−1 =
(
ĜP

0 0
0 ĜS

0

)
. (49)

So, in the reference medium, after transforming from the displacement domain to PS domain, both
L0 and G0 become diagonal.

Multiplying Eq. 35 from the left by the operator Γ0Π and from the right by the operator Π−1, and
using Eq. 49,

Γ0ΠGΠ−1 = Ĝ0 + Ĝ0

(
ΠVΠ−1Γ−1

0

)
Γ0ΠGΠ−1

= Ĝ0 + Ĝ0V̂ Ĝ, (50)

where the displacement Green’s operator G is transformed to the PS domain as

Ĝ = Γ0ΠGΠ−1 =
(
ĜPP ĜPS

ĜSP ĜSS

)
. (51)
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The perturbation V in the PS domain becomes

V̂ = ΠVΠ−1Γ−1
0 =

(
V̂ PP V̂ PS

V̂ SP V̂ SS

)
, (52)

where the left superscripts of the matrix elements represent the type of measurement and the right
ones are the source type.

Similarly, applying the PS transformation to the entire inverse series gives

V̂ = V̂1 + V̂2 + V̂3 + · · · . (53)

It follows, from Eqs. 50 and 53 that
D̂ = Ĝ0V̂1Ĝ0, (54)

Ĝ0V̂2Ĝ0 = −Ĝ0V̂1Ĝ0V̂1Ĝ0, (55)

...

where D̂ =
(
D̂PP D̂PS

D̂SP D̂SS

)
are the data in the PS domain.

In the displacement space we have, for Eq. 31,

u = Gf . (56)

Then, in the PS domain, Eq. 56 becomes

Φ = ĜF. (57)

On the measurement surface, we have

Ĝ = Ĝ0 + Ĝ0V̂1Ĝ0. (58)

Substituting Eq. 58 into Eq. 57, and rewriting Eq. 57 in matrix form:(
φP

φS

)
=
(
ĜP

0 0
0 ĜS

0

)(
FP

FS

)
+
(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP

0 0
0 ĜS

0

)(
FP

FS

)
. (59)

This can be written as the following two equations

φP = ĜP
0 F

P + ĜP
0 V̂

PP
1 ĜP

0 F
P + ĜP

0 V̂
PS
1 ĜS

0F
S , (60)

φS = ĜS
0F

S + ĜS
0 V̂

SP
1 ĜP

0 F
P + ĜS

0 V̂
SS
1 ĜS

0F
S . (61)

We can see, from the two equations above, that for homogeneous media, (no perturbation, V̂1 = 0),
there are only direct P and S waves and that the two kind of waves are separated. However, for
inhomogeneous media, these two kinds of waves will be mixed together. If only the P wave is
incident, FP = 1, FS = 0, then the two Eqs. 60 and 61 above are respectively reduced to

φP = ĜP
0 + ĜP

0 V̂
PP
1 ĜP

0 , (62)
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φS = ĜS
0 V̂

SP
1 ĜP

0 . (63)

Hence, in this case, there is only the direct P wave ĜP
0 , and no direct wave S. But there are two

kinds of scattered waves: one is the P-to-P wave ĜP
0 V̂

PP
1 ĜP

0 , and the other is the P-to-S wave
ĜS

0 V̂
SP
1 ĜP

0 . For the acoustic case, only the P wave exists, and hence we only have one equation
φP = ĜP

0 + ĜP
0 V̂

PP
1 ĜP

0 .

Similarly, if only the S wave is incident, FP = 0, FS = 1, and the two Eqs. 60 and 61 are,
respectively, reduced to

φP = ĜP
0 V̂

PS
1 ĜS

0 , (64)

φS = ĜS
0 + ĜS

0 V̂
SS
1 ĜS

0 . (65)

In this case, there is only the direct S wave ĜS
0 , and no direct P wave. There are also two kinds of

scattered waves: one is the S-to-P wave ĜP
0 V̂

PS
1 ĜS

0 , the other is the S-to-S wave ĜS
0 V̂

SS
1 ĜS

0 .

2.4 Linear inversion of a 1D elastic medium

Writing Eq. 54 in matrix form(
D̂PP D̂PS

D̂SP D̂SS

)
=
(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP

0 0
0 ĜS

0

)
, (66)

leads to four equations
D̂PP = ĜP

0 V̂
PP
1 ĜP

0 , (67)

D̂PS = ĜP
0 V̂

PS
1 ĜS

0 , (68)

D̂SP = ĜS
0 V̂

SP
1 ĜP

0 , (69)

D̂SS = ĜS
0 V̂

SS
1 ĜS

0 . (70)

For zs = zg = 0, in the (ks, zs; kg, zg;ω) domain, we get the following four equations relating the
linear components of the three elastic parameters and the four data types:

D̃PP (kg, 0;−kg, 0;ω) =− 1
4

(
1−

k2
g

ν2
g

)
ã(1)

ρ (−2νg)−
1
4

(
1 +

k2
g

ν2
g

)
ã(1)

γ (−2νg)

+
2k2

gβ
2
0

(ν2
g + k2

g)α2
0

ã(1)
µ (−2νg), (71)

D̃PS(νg, ηg) = −1
4

(
kg

νg
+
kg

ηg

)
ã(1)

ρ (−νg − ηg)−
β2

0

2ω2
kg(νg + ηg)

(
1−

k2
g

νgηg

)
ã(1)

µ (−νg − ηg), (72)

D̃SP (νg, ηg) =
1
4

(
kg

νg
+
kg

ηg

)
ã(1)

ρ (−νg − ηg) +
β2

0

2ω2
kg(νg + ηg)

(
1−

k2
g

νgηg

)
ã(1)

µ (−νg − ηg), (73)
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Figure 1: Response of incident compressional wave on a planar elastic interface. α0, β0 and ρ0 are the
compressional wave velocity, shear wave velocity and density of the upper layer, respectively; α1,
β1 and ρ1 denote the compressional wave velocity, shear wave velocity and density of the lower
layer. RPP , RSP , TPP and TSP denote the coefficients of the reflected compressional wave,
the reflected shear wave, the transmitted compressional waveand the transmitted shear wave,
respectively (Foster et al., 1997).

D̃SS(kg, ηg) = −1
4

(
1−

k2
g

η2
g

)
ã(1)

ρ (−2ηg)−

[
η2

g + k2
g

4η2
g

−
2k2

g

η2
g + k2

g

]
ã(1)

µ (−2ηg), (74)

where

ν2
g + k2

g =
ω2

α2
0

,

η2
g + k2

g =
ω2

β2
0

.

For the P-wave incidence case (see Fig. 1), using k2
g/ν

2
g = tan2 θ and k2

g/(ν
2
g + k2

g) = sin2 θ, where
θ is the P-wave incident angle, Eq. 71 becomes

D̃PP (νg, θ) = −1
4
(1− tan2 θ)ã(1)

ρ (−2νg)−
1
4
(1 + tan2 θ)ã(1)

γ (−2νg) +
2β2

0 sin2 θ

α2
0

ã(1)
µ (−2νg). (75)

In this case, when β0 = β1 = 0, Eq. 75 reduces to the acoustic two parameter case Eq. (7) in
Zhang and Weglein (2005) for zg = zs = 0.

D̃(qg, θ) = −ρ0

4

[
1

cos2 θ
α̃1(−2qg) + (1− tan2 θ)β̃1(−2qg)

]
, (76)
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2.5 Direct non-linear inversion of 1D elastic medium

Writing Eq. 55 in matrix form:(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

2 V̂ PS
2

V̂ SP
2 V̂ SS

2

)(
ĜP

0 0
0 ĜS

0

)
= −

(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP

0 0
0 ĜS

0

)
, (77)

leads to four equations

ĜP
0 V̂

PP
2 ĜP

0 = −ĜP
0 V̂

PP
1 ĜP

0 V̂
PP
1 ĜP

0 − ĜP
0 V̂

PS
1 ĜS

0 V̂
SP
1 ĜP

0 , (78)

ĜP
0 V̂

PS
2 ĜS

0 = −ĜP
0 V̂

PP
1 ĜP

0 V̂
PS
1 ĜS

0 − ĜP
0 V̂

PS
1 ĜS

0 V̂
SS
1 ĜS

0 , (79)

ĜS
0 V̂

SP
2 ĜP

0 = −ĜS
0 V̂

SP
1 ĜP

0 V̂
PP
1 ĜP

0 − ĜS
0 V̂

SS
1 ĜS

0 V̂
SP
1 ĜP

0 , (80)

ĜS
0 V̂

SS
2 ĜS

0 = −ĜS
0 V̂

SP
1 ĜP

0 V̂
PS
1 ĜS

0 − ĜS
0 V̂

SS
1 ĜS

0 V̂
SS
1 ĜS

0 . (81)

Since V̂ PP
1 relates to D̂PP , V̂ PS

1 relates to D̂PS , and so on, the four components of the data will
be coupled in the non-linear elastic inversion. We cannot perform the direct non-linear inversion
without knowing all components of the data. As shown in Zhang and Weglein (2005) and this note,
when the work on the two parameter acoustic case is extended to the present three parameter elastic
case, it is not just simply adding one more parameter, but there are more issues involved. Even for
the linear case, the linear solutions found in (71) ∼ (74) are much more complicated than those of
the acoustic case. For instance, four different sets of linear parameter estimates are produced from
each component of the data. Also, generally four distinct reflector mislocations arise from the two
reference velocities (P-wave velocity and S-wave velocity).

The three parameters we are seeking to determine

• aγ → relative change in bulk modulus,

• aρ → relative change in density,

• aµ → relative change in shear modulus,

are to be expanded as a series in the data. What data?

The answer is once again the data needed to determine those three quantities.

What H. Zhang’s thesis has demonstrated for the first time is not only an explicit and direct set
of equations for improving upon linear estimates of the changes in those elastic properties, but
perhaps equally and maybe even more important, is for the first time the absolutely clear data
requirements for determining aγ , aρ and aµ.

The data requirements are

D =
(
D̂PP D̂PS

D̂SP D̂SS

)
, (82)
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for a 2D earth and generalize to a 3× 3 matrix for a 3D earth with SH and SV shear waves.

The 2D message is delivered in Eq. 77 , Eq. 78-81 that the first non-linear contribution to aγ , aµ,
aρ requires that data; and, hence the exact determination of those elastic quantities also require
that data set. (

V PP V PS

V SP V SS

)
=
(
V PP

1 V PS
1

V SP
1 V SS

1

)
+
(
V PP

2 V PS
2

V SP
2 V SS

2

)
+ · · · (83)

The logic is as follows: aγ

aµ

aρ

 requires
(
D̂PP D̂PS

D̂SP D̂SS

)
since

 a
(2)
γ

a
(2)
µ

a
(2)
ρ

 requires
(
D̂PP D̂PS

D̂SP D̂SS

)
. Hence

 a
(1)
γ

a
(1)
µ

a
(1)
ρ


must mean linear in

(
D̂PP D̂PS

D̂SP D̂SS

)
, i.e., linear in the data needed to determine

 aγ

aµ

aρ

.

Inverting

D̂PP = GP
0 V

PP
1 GP

0

alone for a(1)
γ , a(1)

µ and a
(1)
ρ while mathematically achievable is a challenged and incorrect linear

relationship since what you determine from that procedure doesn’t represent the linear estimate of
those quantities in terms of a data that can actually determine those quantities.

Solving for a(1)
γ , a(1)

µ and a(1)
ρ from D̂PP alone is an injured or challenged linear estimate.

The inverse scattering series and task specific subseries need to : (1) treat the linear term with
respect and then (2) the higher order terms can carry out their purpose.

If you injure the linear estimate, the inverse scattering series cannot recover or compensate–it wants
the linear estimate to be the linear estimate, and never expects it to be exact or close to exact, but
it never expects it to be less than linear, as well. Let linear be linear.

The power and promise of the inverse scattering series derives from its deliberate and physically
consistent and explicit nature. It recognizes that when you perturb anything in a medium the
associated perturbation in the wavefield is always non-linearly related to that change.

The inverse implies that the medium perturbation is itself non-linearly related to the perturbation
in the wavefield; including the change in the wavefield on the measurement surface.

ψs = (ψs)1 + (ψs)2 + (ψs)3 + . . . (84)
V = V1 + V2 + V3 + . . . , (85)

where (ψs)n is the portion of ψs nth order in V and where Vn is the portion of V n’th order in the
measured values of ψs. That’s it, Eq. 84 and 85. That is all you assume, and that is hard to argue
against.
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Beyond that point the process and procedure for determining V1, V2, V3, . . . is out of your hands
and away from your control. How you find V1 from D is prescribed and what you do with V1

to determine V2 is also prescribed. That non-linear explicit and direct nature, and the steps to
determine those terms V1, V2, V3, . . . are not decision making opportunities for you. If you decide
what to do with V1 rather than have the non-linear relationship between data and V decide, then
you step away from a single and defined physics into, e.g., the math world of iterative linear inversion
or model matching. How do you formulate a multiple removal algorithm concept in iterative linear
inverse or model matching scheme? The latter immediately aim to either improve or match the
models properties with the subsurface. From the inverse scattering series perspective, the latter
all or nothing strategy is: (1) missing the opportunity to achieve other useful but less daunting
tasks, i.e., multiple removal and depth imaging; and (2) moving at the first step straight into the
most challenging task: parameter estimation, with all of the pitfalls of insufficient modeltypes and
bandwidth sensitivities.

For the inverse scattering series the decisions are not under your control or influence. It is away
from you and it is carrying out its single-minded purpose. It has one physical model and a single
unchanged separation of the earth into a reference medium and the perturbation and an all at once
set of direct equations to solve.

Only that 100% physics consistent inverse formalism predicted that you required
(
D̂PP D̂PS

D̂SP D̂SS

)
to even linearly estimate elastic properties. Iterative linear tries to substitute a set of constantly
changed problems with linear updates for a single entirely prescriptive, consistent and explicit non-
linear physics. The latter is the inverse scattering series, the former has an attraction to linear
inverses (and generalized inverses) which has no single physical theory and consistency. Linear
inversion and generalized inverse theory are part of standard graduate training in geophysics; and,
hence it’s easy to understand trying to recast the actual non-linear problem into a set of iterative
linear problems where the tools are familiar. The model matching schemes and iteratively linear
inversion are reasonable and sometimes useful but they are more math than physics and have no
way to provide the framework for inversion that staying consistent with the physics will provide.
The table that follows represents an informal report card of different inverse methods:

Count Direct Compute Physics Understandable/Accessible
Model matching V V F F A
Iterative linear H V C C A
Inverse scattering H H A A F

where:

• V → Violates ( or can violate);

• H → Honors ( respects);

• A = good;
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• F = bad;

• C = forget about it.

The table shows a report card comparing model matching, iterative linear, and the inverse scattering
series. There are times that model matching can be an effective tool even though on a scale of F
to A it is F in terms of physics driven.

Modeling matching for the subtraction of 3D multiples earns it a F for compute requirements
compared at A for ISS.

There is a unique and unambiguous data requirement message sent out from the inverse scattering
series. Other methods and approaches that look at the inverse problem either linear or beyond
linear, e.g., iterative linear or model matching have never and will never provide that clarity and
definition. We can model-matchDpp or iteratively invertDpp until the cows come home and you will
find ambiguities and resolution challenges, and when those methods use more data they sometimes
produce less ambiguity and better resolution, but we don’t know why.

As a final remark it is interesting to note that the first and linear term of the elastic inverse problem
was not only influenced by the non-linear term, it was in fact defined by that term. That data
requirement message, along with the entire inverse series apparatus, results from the observation
that the perturbed wavefield and the perturbation are non-linearly related. Honor and respect
that fundamental non-linear relationship and a physics driven set of consistent, deliberate and
purposeful algorithms and a clear platform and unambiguous framework (rather than anecdotal
experiences) are the dividend and reward.
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Direct non-linear inversion of 1D acoustic media using inverse scattering
subseries

H. Zhang and A. B. Weglein

Abstract

A task specific multi-parameter 1 direct non-linear inversion subseries of the inverse scattering
series is derived and tested for a velocity and density varying 1D acoustic media. Numerical test
results indicate that one term beyond linear provides added values beyond standard practice.
Imaging and inversion for two parameter media are much more complicated than that of the
one parameter case. Three important messages (purposeful perturbation, leakage and special
parameter for linear inversion) have been discussed by analyzing the two parameter non-linear
result.

1 Introduction

The objective of seismic exploration is to determine the location (imaging) and mechanical proper-
ties (inversion) of hydrocarbon resources in the earth using recorded data. The recorded data have
a non-linear relationship with the property changes across a reflector. Current inversion methods
include: (1) the linear approximation (Clayton and Stolt, 1981; Weglein and Stolt, 1992, e.g.,)
which is often useful, especially in the presence of small earth property changes across the bound-
ary and/or small angle reflections, and (2) indirect model matching methods with global searching
(Tarantola et al., 1984; Sen and Stoffa, 1995, e.g.,) which define an objective function assumed to
be minimized when the best fitting model is obtained. The assumptions of the former methods (like
the small contrast assumptions) are often violated in practice and can cause erroneous predictions;
the latter category usually involves a significant and often daunting computation effort (especially
in multi-D cases) and/or sometimes have reported erroneous or ambiguous results.

In this paper, a more comprehensive multi-parameter multi-dimensional direct non-linear inversion
framework is developed based on the inverse scattering task-specific subseries (see, e.g., Weglein
et al. (2003)). In order to provide more accurate and reliable target identification especially with
large contrast, large angle target geometry, we isolated the inverse scattering subseries responsible
for non-linear amplitude inversion of data.

The original inverse scattering series research aimed at separating imaging and inversion tasks on
primaries was developed for a 1D acoustic one parameter case (constant density medium, only
velocity variable in depth) and a plane wave at normal incidence (Weglein et al., 2002; Shaw et al.,
2003). In this paper we move a step closer to seismic exploration relevance by extending that earlier
work to a multi-parameter case — two parameter case (velocity and density vary vertically in depth)
and allowing for point sources and receivers over a 1D acoustic medium. Clayton and Stolt (1981)

1More than one mechanical property changes across a reflector.
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gave a two parameter linear inversion solution for 2D acoustic media (velocity and density vary
both vertically and laterally). In this paper, we use the same parameters but concentrate on 1D
acoustic media to derive the direct non-linear inversion solution. In the application of the direct
non-linear inverse algorithm, we move one step each time (e.g., from one parameter 1D acoustic
case to two parameter 1D acoustic case, or to one parameter 2D acoustic case, instead of ‘jumping’
directly to two parameter 2D acoustic case) so that we can solve the problem step by step and
learn lessons from each step which would guide us to step further towards greater realism. For
one parameter 1D and 2D acoustic media, some work on direct non-linear imaging with reference
velocity is presented by Shaw (2005) and Liu et al. (2005). It has been shown in this paper that
imaging and inversion for two parameter medium are much more complicated compared to one
parameter case, although it seems like just simply adding one parameter. Examples of the new
messages that come up are leakage, purposeful perturbation and the identification of the special
parameter for inversion, and all of them will be discussed in the following.

For the direct non-linear inversion solution obtained in this paper, the tasks for imaging-only and
inversion-only terms are separated. Tests with analytic data indicate significant added value for
parameter predictions, beyond linear estimates, in terms of both the proximity to actual value and
the increased range of angles over which the improved estimates are useful.

A closed form of the inversion terms for the one-interface case is also obtained. This closed form
might be useful in predicting the precritical data using the postcritical data.

A special parameter ∆c (∆c = c−c0) (P-wave velocity change across an interface) is also found. Its
Born inversion (∆c)1 always has the right sign. That is, the sign of (∆c)1 is always the same as that
of ∆c. In practice, it could be very useful to know whether the velocity increases or decreases across
the interface. After changing parameters, from α (relative changes in P-wave bulk modulus) and β
(relative changes in density) to velocity and β, another form of the non-linear solution is obtained.
There is no leakage correction (please see details in the section on three important messages) in
this solution. This new form clearly indicates that the imaging terms care only about velocity
errors. The mislocation is due to the wrong velocity. This is suggestive of possible generalization
to multi-D medium, and also of possible model-type independent imaging which only depends on
velocity changes.

The following section is a brief introduction of the inverse scattering subseries. We then gave the
derivation in detail and followed by the numerical tests. Last is a further discussion about the
special parameters.

2 Inverse scattering subseries

Scattering theory relates the perturbation (the difference between the reference and actual medium
properties) to the scattered wave field (the difference between the reference medium’s and the
actual medium’s wave field). It is therefore reasonable that in discussing scattering theory, we
begin with the basic wave equations governing the wave propagation in the actual and reference
medium, respectively 2,

LG = δ, (1)

L0G0 = δ, (2)
2In this introductory math development, we follow closely Weglein et al. (1997); Weglein et al. (2002); Weglein

et al. (2003).

97



Direct non-linear inversion of 1D acoustic media using inverse scattering subseries MOSRP06

where L and L0 are respectively the differential operators that describe wave propagation in the
actual and reference medium, and G and G0 are the corresponding Green’s operators. The δ on
the right hand side of both equations is a Dirac delta operator and represents an impulsive source.

The perturbation is defined as V = L0 − L. The Lippmann-Schwinger equation,

G = G0 +G0V G, (3)

relates G,G0 and V (see, e.g., (Taylor, 1972)). Iterating this equation back into itself generates the
forward scattering series

G = G0 +G0V G0 +G0V G0V G0 + · · · . (4)

Then the scattered field ψs ≡ G−G0 can be written as

ψs = G0V G0 +G0V G0V G0 + · · ·
= (ψs)1 + (ψs)2 + · · · , (5)

where (ψs)n is the portion of ψs that is nth order in V . The measured values of ψs are the data,
D, where

D = (ψs)ms = (ψs)on the measurement surface.

In the inverse scattering series, expanding V as a series in orders of D,

V = V1 + V2 + V3 + · · · , (6)

then substituting Eq. (6) into Eq. (5), and evaluating Eq. (5) on the measurement surface yields

D = [G0(V1 + V2 + · · · )G0]ms + [G0(V1 + V2 + · · · )G0(V1 + V2 + · · · )G0]ms + · · · . (7)

Setting terms of equal order in the data equal, leads to the equations that determine V1, V2, . . .
directly from D and G0.

D = [G0V1G0]ms, (8)

0 = [G0V2G0]ms + [G0V1G0V1G0]ms, (9)

0 =[G0V3G0]ms + [G0V1G0V2G0]ms + [G0V2G0V1G0]ms

+ [G0V1G0V1G0V1G0]ms, (10)

etc. Equations (8) ∼ (10) permit the sequential calculation of V1, V2, . . ., and, hence, achieve
full inversion for V (see Eq. 6) from the recorded data D and the reference wave field (i.e., the
Green’s operator of the reference medium) G0. Therefore, the inverse scattering series is a multi-
D inversion procedure that directly determines physical properties using only reflection data and
reference medium information.

3 Derivation of α1, β1 and α2, β2

In this section, we will consider a 1D acoustic two parameter earth model (e.g. bulk modulus and
density or velocity and density). We start with the 3D acoustic wave equations in the actual and
reference medium ((Clayton and Stolt, 1981); (Weglein et al., 1997))[

ω2

K(r)
+∇ · 1

ρ(r)
∇
]
G(r, rs;ω) = δ(r− rs), (11)
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[
ω2

K0(r)
+∇ · 1

ρ0(r)
∇
]
G0(r, rs;ω) = δ(r− rs), (12)

where G(r, rs;ω) and G0(r, rs;ω) are respectively the free-space causal Green’s functions that
describe wave propagation in the actual and reference medium. K = c2ρ, is P-wave bulk modulus,
c is P-wave velocity and ρ is the density. The quantities with subscript “0” are for the reference
medium, and those without the subscript are for the actual medium. The perturbation is

V = L0 − L =
ω2α

K0
+∇ · β

ρ0
∇, (13)

where α = 1− K0
K and β = 1− ρ0

ρ are the two parameters we choose to do the inversion. Assuming
both ρ0 and c0 are constants, Eq. (12) becomes(

ω2

c20
+∇2

)
G0(r, rs;ω) = ρ0δ(r− rs). (14)

For the 1-D case, the perturbation V has the following form

V (z,∇) =
ω2α(z)
K0

+
1
ρ0
β(z)

∂2

∂x2
+

1
ρ0

∂

∂z
β(z)

∂

∂z
. (15)

V (z,∇), α(z) and β(z) can be expanded respectively as

V (z,∇) = V1(z,∇) + V2(z,∇) + · · · , (16)

α(z) = α1(z) + α2(z) + · · · , (17)

β(z) = β1(z) + β2(z) + · · · . (18)

Then we have

V1(z,∇) =
ω2α1(z)
K0

+
1
ρ0
β1(z)

∂2

∂x2
+

1
ρ0

∂

∂z
β1(z)

∂

∂z
, (19)

V2(z,∇) =
ω2α2(z)
K0

+
1
ρ0
β2(z)

∂2

∂x2
+

1
ρ0

∂

∂z
β2(z)

∂

∂z
, (20)

....

Substituting Eq. (19) into Eq. (8), we can get the linear solution for α1 and β1 in the frequency
domain

D̃(qg, θ, zg, zs) = −ρ0

4
e−iqg(zs+zg)

[
1

cos2 θ
α̃1(−2qg) + (1− tan2 θ)β̃1(−2qg)

]
, (21)

where the subscripts s and g denote source and receiver quantities respectively, and qg, θ and
k = ω/c0 shown in Fig. 1, have the following relations (Matson, 1997)

qg = qs = k cos θ,
kg = ks = k sin θ.

Similarly, substituting Eq. (20) into Eq. (9), we can get the solution for α2(z) and β2(z) as a
function of α1(z) and β1(z)

1
cos2 θ

α2(z) + (1− tan2 θ)β2(z) =− 1
2 cos4 θ

α2
1(z)−

1
2
(1 + tan4 θ)β2

1(z) +
tan2 θ

cos2 θ
α1(z)β1(z)
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Figure 1: The relationship between qg, kg and θ.

− 1
2 cos4 θ

α′1(z)

z∫
0

dz′[α1(z′)− β1(z′)]

+
1
2
(tan4 θ − 1)β′1(z)

z∫
0

dz′[α1(z′)− β1(z′)], (22)

where α′1(z) = dα1(z)
dz , β′1(z) = dβ1(z)

dz .

The first two parameter direct non-linear inversion of 1D acoustic media for a 2D experiment has
been obtained. As shown in Eq. (21) and Eq. (22), given two different angles θ, we can determine
α1, β1 and then α2, β2. For a single-interface example, it can be shown that only the first three
terms on the right hand side contribute to parameter predictions, while the last two terms perform
imaging in depth since they will be zero after the integration across the interface (see the section
on three important messages). Therefore, in this solution, the tasks for imaging-only and inversion-
only terms are separated.

For the θ = 0 and constant density case, Eq. (22) reduces to the non-linear solution for 1D one
parameter normal incidence case (Shaw, 2005, e.g., ))

α2(z) = −1
2

α2
1(z) + α′1(z)

z∫
−∞

dz′α1(z′)

 . (23)

If another choice of free parameter other than θ (e.g., ω or kh) is selected, then the functional
form between the data and the first order perturbation Eq. (21) would change. Furthermore, the
relationship between the first and second order perturbation Eq. (22) would, then, also be different,
and new analysis would be required for the purpose of identifying specific task separated terms.
Empirically, the choice of θ as free parameter (for a 1D medium) is particularly well suited for
allowing a task separated identification of terms in the inverse series.

There are several important messages that exist in Eq. (21) and Eq. (22): (1) purposeful perturba-
tion, (2) leakage, and (3) the special parameter for inversion. These three concepts will be discussed
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later in this paper. In Eq. (21), it seems simple and straightforward to use data at two angles in
order to obtain α1 and β1. This is what we do in this paper. However, by doing this, it requires a
whole new understanding of the definition of “the data”. That is part of the discoveries of on-going
research activities by Weglein et al. (2007). The imaging algorithm given by Liu et al. (2005) has
been generalized to the two parameter case by Weglein et al. (2007) based on the understanding
of Eq. (22).

4 A special case: one-interface model

In this section, we derive a closed form for the inversion-only terms. From this closed form, we can
easily get the same inversion terms as those in Eqs. (21) and (22). We also show some numerical
tests using analytic data. From the numerical results, we see how the corresponding non-linear
terms contribute to the parameter predictions such as the relative changes in the P-wave bulk
modulus

(
α = ∆K

K

)
, density

(
β = ∆ρ

ρ

)
, impedance

(
∆I
I

)
and velocity

(
∆c
c

)
.

4.1 Closed form for the inversion terms

1. Incident angle not greater than critical angle, i.e. θ ≤ θc

For a single interface example, the reflection coefficient has the following form (Keys, 1989)

R(θ) =
(ρ1/ρ0)(c1/c0)

√
1− sin2 θ −

√
1− (c21/c

2
0) sin2 θ

(ρ1/ρ0)(c1/c0)
√

1− sin2 θ +
√

1− (c21/c
2
0) sin2 θ

. (24)

After adding 1 on both sides of Eq. (24), we can get

1 +R(θ) =
2 cos θ

cos θ + (ρ0/ρ1)
√(

c20/c
2
1

)
− sin2 θ

. (25)

Then, using the definitions of α = 1− K0
K1

= 1− ρ0c20
ρ1c21

and β = 1− ρ0

ρ1
, Eq. (25) becomes

4R(θ)
(1 +R(θ))2

=
α

cos2 θ
+ (1− tan2 θ)β − αβ

cos2 θ
+ β2 tan2 θ, (26)

which is the closed form we derived for the one interface two parameter acoustic inversion-only
terms.

2. Incident angle greater than critical angle, i.e. θ > θc

For θ > θc, Eq. (24) becomes

R(θ) =
(ρ1/ρ0)(c1/c0)

√
1− sin2 θ − i

√
(c21/c

2
0) sin2 θ − 1

(ρ1/ρ0)(c1/c0)
√

1− sin2 θ + i
√

(c21/c
2
0) sin2 θ − 1

. (27)

Then, Eq. (25) becomes

1 +R(θ) =
2 cos θ

cos θ + i (ρ0/ρ1)
√

sin2 θ −
(
c20/c

2
1

) , (28)
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which leads to the same closed form as Eq. (26)

4R(θ)
(1 +R(θ))2

=
α

cos2 θ
+ (1− tan2 θ)β − αβ

cos2 θ
+ β2 tan2 θ.

As we see, this closed form is valid for all incident angles.

In addition, for normal incidence (θ = 0) and constant density (β = 0) media, the closed form Eq.
(26) will be reduced to

α =
4R

(1 +R)2
. (29)

This represents the relationship between α and R for the one parameter 1D acoustic constant
density medium and 1D normal incidence obtained by Innanen (2003). In this case, α becomes
1− c20/c

2
1 and R becomes (c1 − c0) / (c1 + c0).

3. Derivation of the inversion terms from the closed form

From the closed form Eq. (26), using Taylor expansion on the left hand side

1
(1 +R(θ))2

=
[
1−R(θ) +R2(θ)− . . .

]2
,

and setting the terms of equal order in the data equal, we have

α1

cos2 θ
+ (1− tan2 θ)β1 = 4R(θ), (30)

α2

cos2 θ
+ (1− tan2 θ)β2 = −1

2
α2

1

cos4 θ
− 1

2
(1 + tan4 θ)β2

1 +
tan2 θ

cos2 θ
α1β1. (31)

For a one-interface example (in Fig. 2), Eqs. (21) and (22) will respectively reduce to the same
form as Eqs. (30) and (31), which is shown below.

Assume the interface surface is at depth z = a, and suppose zs = zg = 0. Using the analytic data

000 ,, Kc

111 ,, Kc

zz

xx

aa

00

Figure 2: 1D one-interface acoustic model.
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(Clayton and Stolt, 1981; Weglein et al., 1986),

D̃(qg, θ) = ρ0R(θ)
e2iqga

4πiqg
, (32)

and substituting Eq. (32) into Eq. (21), after Fourier transformation over 2qg, for z > a and fixed
θ, we get

1
cos2 θ

α1(z) + (1− tan2 θ)β1(z) = 4R(θ)H(z − a). (33)

Also, the non-linear solution Eq. (22) will reduce to

1
cos2 θ

α2(z) + (1− tan2 θ)β2(z) =− 1
2 cos4 θ

α2
1(z)−

1
2
(1 + tan4 θ)β2

1(z)

+
tan2 θ

cos2 θ
α1(z)β1(z), (34)

The two equations Eqs. (33) and (34) agree with Eqs. (30) and (31), respectively.

4.2 Numerical tests

From Eq. (33), we choose two different angles to solve for α1 and β1

β1(θ1, θ2) = 4
R(θ1) cos2 θ1 −R(θ2) cos2 θ2

cos(2θ1)− cos(2θ2)
, (35)

α1(θ1, θ2) = β1(θ1, θ2) + 4
R(θ1)−R(θ2)

tan2 θ1 − tan2 θ2
. (36)

Similarly, from Eq. (34), given two different angles we can solve for α2 and β2 in terms of α1 and
β1

β2(θ1, θ2) =
[
−1

2
α2

1

(
1

cos2 θ1
− 1

cos2 θ2

)
+ α1β1

(
tan2 θ1 − tan2 θ2

)
− 1

2
β2

1

×
(

cos2 θ1 − cos2 θ2 +
sin4 θ1
cos2 θ1

− sin4 θ2
cos2 θ2

)]
/ [cos(2θ1)− cos(2θ2)] , (37)

α2(θ1, θ2) =β2(θ1, θ2) +
[
−1

2
α2

1

(
1

cos4 θ1
− 1

cos4 θ2

)
+ α1β1

(
tan2 θ1
cos2 θ1

− tan2 θ2
cos2 θ2

)
−1

2
β2

1

(
tan4 θ1 − tan4 θ2

)]
/
(
tan2 θ1 − tan2 θ2

)
; (38)

where α1 and β1 in Eqs. (37) and (38) denote α1(θ1, θ2) and β1(θ1, θ2), respectively.

For a specific model, ρ0 = 1.0g/cm3, ρ1 = 1.1g/cm3, c0 = 1500m/s and c1 = 1700m/s, in the
following figures we give the results for the relative changes in the P-wave bulk modulus

(
α = ∆K

K

)
,

density
(
β = ∆ρ

ρ

)
, impedance

(
∆I
I

)
and velocity

(
∆c
c

)
corresponding to different pairs of θ1 and

θ2.

From Fig. 3, we can see that when we add α2 to α1, the result is much closer to the exact value
of α. Furthermore, the result is better behaved; i.e., the plot surface becomes flatter, over a larger
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range of precritical angles. Similarly, as shown in Fig. 4, the results of β1 + β2 are much better
than those of β1. In addition, the sign of β1 is wrong at some angles, while, the results for β1 + β2

always have the right sign. So after including β2, the sign of the density is corrected, which is very
important in the earth identification, and also the results of ∆I

I (see Fig. 5 ) and ∆c
c (see Fig. 6)

are much closer to their exact values respectively compared to the linear results.

Especially, the values of
(

∆c
c

)
1

are always greater than zero, that is, the sign of (∆c)1 is always
positive, which is the same as that of the exact value ∆c. We will further discuss this in the next
section.

Figure 3: α1 (top) and α1 +α2 (bottom) displayed as a function of two different angles. The graphs on the
right are the corresponding contour plots of the graphs on the left. In this example, the exact
value of α is 0.292.
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5 Three important messages

As mentioned before, in general, since the relationship between data and target property changes
is non-linear, linear inversion will produce errors in target property prediction. When one actual
property change is zero, the linear prediction of the change can be non-zero. Also, when the actual
change is positive, the predicted linear approximation can be negative. There is a special parameter
for linear inversion of acoustic media, that never suffers the latter problem.

From Eq. (24) we can see that when c0 = c1, the reflection coefficient is independent of θ, then
from the linear form Eq. (36), we have(

∆c
c

)
1

=
1
2
(α1 − β1) = 0 when ∆c = 0,

i.e., when ∆c = 0, (∆c)1 = 0. This generalizes to (∆c)1 > 0 when ∆c > 0, or (∆c)1 < 0 when
∆c < 0, as well. This can be shown mathematically (See Appendix B for details).

Therefore, we can, first, get the right sign of the relative change in P-wave velocity from the linear
inversion (∆c)1, then, get more accurate values by including non-linear terms.

Another interesting point is that the image does not move when the velocity does not change across
an interface, i.e., c0 = c1, since, in this situation, the integrands of imaging terms α1 − β1 in Eq.
(22) are zero. We can see this more explicitly when we change the two parameters α and β to ∆c

c
and β. Using the two relationships below (See details in Appendix A)(

∆c
c

)
1

=
1
2
(α1 − β1),

and (
∆c
c

)
2

=
1
2

[
1
4
(α1 + β1)2 − β2

1 + (α2 − β2)
]
,

rewriting Eq. (22) as

1
cos2 θ

(
∆c
c

)
2

(z) + β2(z) =
cos2 θ − 2
2 cos4 θ

(
∆c
c

)2

1

(z)− 1
2
β2

1(z)

− 1
cos4 θ

(
∆c
c

)′
1

(z)

z∫
0

dz′
(

∆c
c

)
1

− 1
cos2 θ

β′1(z)

z∫
0

dz′
(

∆c
c

)
1

. (39)

This equation indicates two important concepts. One is leakage: there is no leakage correction at
all in this expression. Here the leakage means that, if the actual value of α (relative changes in
P-wave bulk modulus) is zero, its linear approximation α1 could be non-zero since α and β are
coupled together (like the coupled term α1β1 in Eq. 22) and α1 could get leakage values from β1.
While in Eq. (39), no such coupled term is present at all and thus, if the actual changes in the
velocity are zero, then its linear inversion

(
∆c
c

)
1

would be zero and there would be no leakage from
β1. This leakage issue or coupled term has no analogue in the 1D one parameter acoustic case
(Eq. 23) since in this case we only have one parameter and there is no other parameter to leak
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into. In other words, in the one parameter (velocity) case, each ‘jump’ in the amplitude of the data
(primaries only) corresponds to each wrong location with a wrong amplitude for the parameter
predicted in the linear inverse step; while in the two parameter case of this paper, each ‘jump’ in
the data no longer has the simple one-to-one relationship with the amplitude and location of the
two parameters.

The other concept is purposeful perturbation. The integrand
(

∆c
c

)
1

of the imaging terms clearly
tells that if we have the right velocity, the imaging terms will automatically be zero even without
doing any integration; otherwise, if we do not have the right velocity, these imaging terms would
be used to move the interface closer to the right location from the wrong location. The conclusion
from this equation is that the depth imaging terms depend only on the velocity errors.

6 Conclusion

In this paper, we derive the first two parameter direct non-linear inversion solution for 1D acoustic
media with 2D experiment. Numerical tests show that the terms beyond linearity in earth property
identification subseries provide added value. Although the model we used in the numerical tests is
simple (for some readers), Eqs. (21) and (22) also work for more complex models since the inverse
scattering series is a direct inversion procedure which inverts data directly without knowing the
specific properties of the target.

As shown above, adding one parameter in the wave equation makes the problem much more com-
plicated than the one parameter case. Three important concepts (purposeful perturbation, leakage
and special parameter for inversion) have been discussed on the linear and non-linear derivations.
More discoveries are being obtained through on-going research.

The work presented in this paper is an important step for target identification towards more realism.
The encouraging numerical results motivated us to move one step further — extension of our work
to the elastic case (Boyse and Keller, 1986, e.g.,) using three parameters.
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Appendix A

In this appendix, we derive the expressions of
(

∆c
c

)
1
,
(

∆c
c

)
2
,
(

∆I
I

)
1

and
(

∆I
I

)
2

in terms of α1, β1

and α2, β2. Define ∆c = c− c0, ∆I = I − I0, ∆K = K −K0 and ∆ρ = ρ− ρ0.

Since K = c2ρ, then we have

(c−∆c)2 =
K −∆K
ρ−∆ρ

.

Divided by c2, the equation above will become

2
(

∆c
c

)
−
(

∆c
c

)2

=
∆K
K − ∆ρ

ρ

1− ∆ρ
ρ

.
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Remember that α = ∆K
K and β = ∆ρ

ρ , the equation above can be rewritten as

2
(

∆c
c

)
−
(

∆c
c

)2

=
α− β

1− β
.

Then we have

2
(

∆c
c

)
−
(

∆c
c

)2

= (α− β)(1 + β + β2 + · · · ), (40)

where the series expansion is valid for |β| < 1.

Similar to Eqs. (17) and (18), ∆c
c can be expanded as(

∆c
c

)
=
(

∆c
c

)
1

+
(

∆c
c

)
2

+ · · · . (41)

Then substitute Eqs. (41), (17) and (18) into Eq. (40), and set those terms of equal order equal
on both sides of Eq. (40), we can get (

∆c
c

)
1

=
1
2
(α1 − β1), (42)

and (
∆c
c

)
2

=
1
2

[
1
4
(α1 + β1)2 − β2

1 + (α2 − β2)
]
. (43)

Similarly, using I = cρ, we have

(I −∆I)2 = (K −∆K)(ρ−∆ρ).

Divided by I2, the equation above will become

2
(

∆I
I

)
−
(

∆I
I

)2

= α+ β − αβ. (44)

Expanding ∆I
I as (

∆I
I

)
=
(

∆I
I

)
1

+
(

∆I
I

)
2

+ · · · , (45)

and substitute Eqs. (45), (17) and (18) into Eq. (44), setting those terms of equal order equal on
both sides of Eq. (44), we can get (

∆I
I

)
1

=
1
2
(α1 + β1), (46)

and (
∆I
I

)
2

=
1
2

[
1
4
(α1 − β1)2 + (α2 + β2)

]
. (47)
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Appendix B

In this appendix, we show that
(

∆c
c

)
1

has the same sign as ∆c. For the single interface example,
from Eqs. (36) and (42), we have (

∆c
c

)
1

= 2
R(θ1)−R(θ2)

tan2 θ1 − tan2 θ2
.

The reflection coefficient is

R(θ) =
(ρ1/ρ0)(c1/c0)

√
1− sin2 θ −

√
1− (c21/c

2
0) sin2 θ

(ρ1/ρ0)(c1/c0)
√

1− sin2 θ +
√

1− (c21/c
2
0) sin2 θ

.

Let
A(θ) = (ρ1/ρ0)(c1/c0)

√
1− sin2 θ,

B(θ) =
√

1− (c21/c
2
0) sin2 θ.

Then
R(θ1)−R(θ2) = 2

A(θ1)B(θ2)−B(θ1)A(θ2)
[A(θ1) +B(θ1)] [A(θ2) +B(θ2)]

,

where the denominator is greater than zero. The numerator is

2 [A(θ1)B(θ2)−B(θ1)A(θ2)] =2(ρ1/ρ0)(c1/c0)
[√

1− sin2 θ1

√
1− (c21/c

2
0) sin2 θ2

−
√

1− sin2 θ2

√
1− (c21/c

2
0) sin2 θ1

]
.

Let
C =

√
1− sin2 θ1

√
1− (c21/c

2
0) sin2 θ2,

D =
√

1− sin2 θ2

√
1− (c21/c

2
0) sin2 θ1.

Then,

C2 −D2 =
(
c21
c20
− 1
)

(sin2θ1 − sin2θ2).

When c1 > c0 and θ1 > θ2 , we have (Noticing that both C and D are positive.)(
c21
c20
− 1
)

(sin2θ1 − sin2θ2) > 0,

so
R(θ1)−R(θ2) > 0;

Similarly, when c1 < c0 and θ1 > θ2 , we have(
c21
c20
− 1
)

(sin2θ1 − sin2θ2) < 0,

so
R(θ1)−R(θ2) < 0.

Remembering that
(

∆c
c

)
1

= 2 R(θ1)−R(θ2)
tan2 θ1−tan2 θ2

. So for c1 > c0, (∆c)1 > 0 and for c1 < c0, (∆c)1 < 0 .
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Weglein, A. B., F. V. Araújo, P. M. Carvalho, R. H. Stolt, K. H. Matson, R. T. Coates, D. Corrigan,
D. J. Foster, S. A. Shaw, and H. Zhang. “Inverse scattering series and seismic exploration.”
Inverse Problems 19 (2003): R27–R83.

Weglein, A. B., D. J. Foster, K. H. Matson, S. A. Shaw, P. M. Carvalho, and D. Corrigan. “Predict-
ing the correct spatial location of reflectors without knowing or determining the precise medium
and wave velocity: initial concept, algorithm and analytic and numerical example.” Journal of
Seismic Exploration 10 (2002): 367–382.

Weglein, A. B., F. A. Gasparotto, P. M. Carvalho, and R. H. Stolt. “An inverse-scattering series
method for attenuating multiples in seismic reflection data.” Geophysics 62 (1997): 1975–1989.

Weglein, A. B. and R. H. Stolt. 1992 “Approaches on linear and non-linear migration-inversion.”.
Personal Communication.

109



Direct non-linear inversion of 1D acoustic media using inverse scattering subseries MOSRP06

Weglein, A. B., P. B. Violette, and T. H. Keho. “Using multiparameter Born theory to obtain
certain exact multiparameter inversion goals.” Geophysics 51 (1986): 1069–1074.

110



Direct non-linear inversion of 1D acoustic media using inverse scattering subseries MOSRP06

Figure 4: β1 (top) and β1 + β2 (bottom). In this example, the exact value of β is 0.09.
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Figure 5: Linear approximation to relative change in impedance (see details in Appendix A)
(

∆I
I

)
1

=
1
2 (α1 + β1) (top). Sum of linear and first non-linear terms

(
∆I
I

)
1

+
(

∆I
I

)
2

=
(

∆I
I

)
1

+
1
2

[
1
4 (α1 − β1)2 + (α2 + β2)

]
(bottom). In this example, the exact value of ∆I

I is 0.198.
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Figure 6: Linear approximation to relative change in velocity (see details in Appendix A)
(

∆c
c

)
1

=
1
2 (α1 − β1) (top). Sum of linear and first non-linear terms

(
∆c
c

)
1

+
(

∆c
c

)
2

=
(

∆c
c

)
1

+
1
2

[
1
4 (α1 + β1)2 − β2

1 + (α2 − β2)
]

(bottom). In this example, the exact value of ∆c
c is 0.118.
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Direct non-linear inversion of multi-parameter 1D elastic media using the
inverse scattering series

H. Zhang and A. B. Weglein

Abstract

In this paper, we present the first non-linear direct target identification method and algorithm
for 1D elastic media (P velocity, shear velocity and density vary in depth) from the inverse
scattering series. The results clearly demonstrate that, in order to achieve full elastic inversion,
all four components of data (D̂PP , D̂PS , D̂SP and D̂SS) are needed. The terms for moving
mislocated reflectors are separated from amplitude correction terms. Although in principle this
direct inversion approach requires all four components of elastic data, synthetic tests indicate
that consistent value-added results may be achieved given only D̂PP measurements. We can
reasonably infer that further value would derive from actually measuring D̂PP , D̂PS , D̂SP and
D̂SS as the method requires. For the case that all four components of data are available, we
give one consistent method to solve for all of the second terms (the first terms beyond linear).
The method is direct with neither a model matching nor cost function minimization.

1 Introduction

The ultimate objective of inverse problems is to determine medium and target properties from
measurements external to the object under investigation. At the very first moment of problem defi-
nition, there is an immediate requirement and unavoidable expectation, that the model type of the
medium be specified. In that step of model type specification, the number and type of parameters
and dimension of spatial variation of those parameters are given, and carefully prescribed, and in
that way you provide the inverse problem with clarity and meaning. Among the different model
types used in exploration seismology are, e.g., acoustic, elastic, heterogeneous, anisotropic, and
anelastic, and perhaps most important, the dimension of variability of the properties associated
with these model types. One would reasonably expect that the details of methods and algorithms
for inversion objectives, and any tasks associated with achieving those ultimate objectives, would
overall and each separately depend upon that starting assumption on model type. However, the
ultimate objective of seismic inversion has never been achieved in a straight ahead single step man-
ner directly from the seismic data, and that lack of success has not been due to a lack of computer
power. The indirect model matching procedures have that computer power problem, especially in
the applications to a multi-dimensional complex earth, where it is rare to have a reasonable proxi-
mal starting model. Those complex ill-defined geologic circumstances are the biggest impediments
and challenges to current exploration and production seismic effectiveness.

The only direct multi-dimensional inversion procedure for seismic application, the inverse scattering
series, does not require a proximal starting model and only assumes reference medium information.
Of course, the whole inverse series has very limited application (Carvalho et al., 1992). What makes
the inverse scattering series powerful is the so-called task isolated subseries which is a subset of
the whole series that acts like only one task is performed for that subset (Weglein et al., 2003).
All of these subseries act in a certain sequence so that the total seismic data can be processed
accordingly. The order of processing is : (1) free-surface multiple removal, (2) internal multiple
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removal, (3) depth imaging without velocity, and (4) inversion or target identification. Since the
entire process requires only reflection data and reference medium information, it is reasonable to
assume that these intermediate steps, i.e., all of the derived subseries which are associated with
achieving that objective, would also be attainable with only the reference medium and reflection
data and no subsurface medium information is required.

The free surface multiple removal and internal multiple attenuation subseries have been presented by
(Carvalho, 1992; Araújo, 1994; Weglein et al., 1997; Matson, 1997). Those two multiple procedures
are model type independent, i.e., they work for acoustic, elastic and anelastic medium. Taking
internal multiples from attenuation to elimination is being studied (Ramı́rez and Weglein, 2005).
The task specific subseries associated with primaries (i.e., for imaging and inversion) have been
progressed too: (1) imaging without the velocity for one parameter 1D and then 2D acoustic media
(Weglein et al., 2002; Shaw and Weglein, 2003; Shaw et al., 2003a; Shaw et al., 2003b; Shaw et al.,
2004; Shaw and Weglein, 2004; Liu and Weglein, 2003; Liu et al., 2004; Liu et al., 2005), and
(2) direct non-linear inversion for multi-parameter 1D acoustic and then elastic media (Zhang and
Weglein, 2005). Furthermore, recent work (Innanen and Weglein, 2004; Innanen and Weglein, 2005)
suggests that some well-known seismic processing tasks associated with resolution enhancement
(i.e., “Q-compensation”) can be accomplished within the task-separated inverse scattering series
framework. In this paper, we focus on item (2) above.

Compared with model type independent multiple removal procedures, there is a full expectation
that tasks and algorithms associated with primaries will have a closer interest in model type. For
example, there is no way to even imagine that medium property identification can take place without
reference to a specific model type. Tasks and issues associated with structural determination,
without knowing the medium, are also vastly different depending on the dimension of variation
number of velocities that are required for imaging. Hence, a staged approach and isolation of tasks
philosophy is essential in this yet tougher neighborhood, and even more in demand for seeking
insights and then practical algorithms for these more complicated and daunting objectives. We
adopt the staged and isolation of issues approach for primaries. The isolated task achievement
plan can often spin-off incomplete but useful intermediate objectives. The test and standard is not
necessarily how complete the method is but rather how does it compare to, and improve upon,
current best practice.

The stages within the strategy for primaries are as follows: (1) 1D earth, with one parameter,
velocity as a function of depth, and a normal incidence wave, (2) 1D earth with one parameter
subsurface and offset data, one shot record; (3) 2D earth with one parameter, velocity, varying in
x and z, and a suite of shot records; (4) 1D acoustic earth with two parameters varying, velocity
and density, one propagation velocity, and one shot record of PP data, and (5) 1D elastic earth,
two elastic isotropic parameters and density, and two wave speeds, for P and S waves, and PP, PS,
SP, and SS shot records data collected. This paper takes another step of direct non-linear inversion
methodology, and task isolation and specifically for tasks associated with primaries, to the 1D
elastic case, stage (5). The model is elastic and another paper in acoustic has been presented in
Zhang and Weglein (2005). We take these steps and learn to navigate through this complexity and
steer it towards useful and powerful algorithms.

However, more realism is more complicated with more issues involved. Following the task separation
strategy, we ask the question what kind of tasks should we expect in this more complex, elastic,
setting? In the acoustic case, for example, the acoustic medium only supports P-waves, and hence
only one reference velocity (P-wave velocity) is involved. Therefore, when only one velocity is
incorrect (i.e., poorly estimated), there exists only one “mislocation” for each parameter, and the
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imaging terms only need to correct this one mislocation. When we extend our previous work
on the two parameter acoustic case to the present three parameter elastic case, there will be four
mislocations because of the two reference velocities (P wave velocity and S velocity). Our reasoning
is that the elastic medium supports both P- and S-wave propagation, and hence two reference
velocities (P-wave velocity and S-wave velocity) are involved. When both of these velocities are
incorrect, generally, there exist four mislocations due to each of four different combinations 1 of the
two wrong velocities. Therefore, in non-linear elastic imaging-inversion, the imaging terms need to
correct the four mislocations arising from linear inversion of any single mechanical property, such
that a single correct location for the corresponding actual change in that property is determined.

In this paper, the first non-linear inversion term for three parameter 1D elastic medium is presented.
It is demonstrated that under the inverse scattering series inversion framework, all four components
of the data are needed in order to perform full elastic inversion. For the case that we don’t have
all four components data and only PP data are available, encouraging inversion results have been
obtained by constructing other components of data from PP data. This means that we could
perform elastic inversion only using pressure measurements, i.e. towed streamer data. For the case
that all four components of data are available, a consistent method is provided.

The paper has the following structure: the next section is a brief introduction to the inverse
scattering series and then presents, respectively, the derivations and numerical tests for elastic non-
linear inversion when only PP data is available. A full non-linear elastic inversion method is also
provided. Finally we will present some concluding remarks.

2 Background for 2D elastic inversion

In this section we consider the inversion problem in two dimensions for an elastic medium. We
start with the displacement space, and then, for convenience (see e.g., Weglein and Stolt, 1992; Aki
and Richards, 2002), we change the basis and transform the equations to PS space. Finally, we do
the elastic inversion in the PS domain.

2.1 In the displacement space

We begin with some basic equations in the displacement space (Matson, 1997):

Lu = f , (1)

L0u = f , (2)

LG = δ, (3)

L0G0 = δ, (4)

where L and L0 are the differential operators that describe the wave propagation in the actual
and reference medium, respectively, u and f are the corresponding displacement and source terms,

1The “four combinations” refers to PP, PS, SP and SS, where, for instance, PP means P-wave incidence, and
P-wave reflection. Since P-waves non-normal incidence on an elastic interface can produce S-waves, or vice versa,
which in those cases are known as converted waves (Aki and Richards, 2002), the elastic data generally contain four
components: PP, PS, SP and SS.
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respectively, and G and G0 are the corresponding Green’s operators for the actual and reference
medium.

Following closely Weglein et al. (1997); Weglein et al. (2002) and Weglein et al. (2003), defining
the perturbation V = L0 − L, the Lippmann- Schwinger equation for the elastic media in the
displacement space is

G = G0 +G0V G. (5)

Iterating this equation back into itself generates the Born series

G = G0 +G0V G0 +G0V G0V G0 + · · · . (6)

We define the data D as the measured values of the scattered wave field. Then, on the measurement
surface, we have

D = G0V G0 +G0V G0V G0 + · · · . (7)

Expanding V as a series in orders of D we have

V = V1 + V2 + V3 + · · · . (8)

Substituting Eq. (8) into Eq. (7), evaluating Eq. (7), and setting terms of equal order in the data
equal, the equations that determine V1, V2, . . . from D and G0 would be obtained.

D = G0V1G0, (9)

0 = G0V2G0 +G0V1G0V1G0, (10)
....

In the actual medium, the 2-D elastic wave equation is (Weglein and Stolt, 1992)

Lu ≡
[
ρω2

(
1 0
0 1

)
+
(

∂1γ∂1 + ∂2µ∂2 ∂1(γ − 2µ)∂2 + ∂2µ∂1

∂2(γ − 2µ)∂1 + ∂1µ∂2 ∂2γ∂2 + ∂1µ∂1

)][
u1

u2

]
= f , (11)

where

u =
[
u1

u2

]
= displacement,

ρ = density,

γ = bulk modulus (≡ ρα2 where α = P-wave velocity),

µ = shear modulus (≡ ρβ2 where β = S-wave velocity),

ω = temporal frequency (angular), ∂1 and ∂2 denote the derivative over x and z, respectively, and

f is the source term.

For constant (ρ, γ, µ) = (ρ0, γ0, µ0), (α, β) = (α0, β0), the operator L becomes

L0 ≡
[
ρ0ω

2

(
1 0
0 1

)
+
(
γ0∂

2
1 + µ0∂

2
2 (γ0 − µ0)∂1∂2

(γ0 − µ0)∂1∂2 µ0∂
2
1 + γ0∂

2
2

)]
. (12)

Then,

V ≡L0 − L
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=− ρ0

[
aρω

2 + α2
0∂1aγ∂1 + β2

0∂2aµ∂2 ∂1(α2
0aγ − 2β2

0aµ)∂2 + β2
0∂2aµ∂1

∂2(α2
0aγ − 2β2

0aµ)∂1 + β2
0∂1aµ∂2 aρω

2 + α2
0∂2aγ∂2 + β2

0∂1aµ∂1

]
, (13)

where aρ ≡ ρ
ρ0
− 1, aγ ≡ γ

γ0
− 1 and aµ ≡ µ

µ0
− 1 are the three parameters we choose to do the

elastic inversion. For a 1D earth (i.e. aρ, aγ and aµ are only functions of depth z), the expression
above for V becomes

V = −ρ0

[
aρω

2 + α2
0aγ∂

2
1 + β2

0∂2aµ∂2 (α2
0aγ − 2β2

0aµ)∂1∂2 + β2
0∂2aµ∂1

∂2(α2
0aγ − 2β2

0aµ)∂1 + β2
0aµ∂1∂2 aρω

2 + α2
0∂2aγ∂2 + β2

0aµ∂
2
1

]
. (14)

2.2 Transforming to PS space

For convenience, we can change the basis from u =
[
u1

u2

]
to
(
φP

φS

)
to allow L0 to be diagonal,

Φ =
(
φP

φS

)
=
[
γ0(∂1u1 + ∂2u2)
µ0(∂1u2 − ∂2u1)

]
, (15)

also, we have (
φP

φS

)
= Γ0Πu =

[
γ0(∂1u1 + ∂2u2)
µ0(∂1u2 − ∂2u1)

]
, (16)

where Π =
(
∂1 ∂2

−∂2 ∂1

)
, Γ0 =

(
γ0 0
0 µ0

)
. In the reference medium, the operator L0 will transform

in the new basis via a transformation

L̂0 ≡ ΠL0Π−1Γ−1
0 =

(
L̂P

0 0
0 L̂S

0

)
,

where L̂0 is L0 transformed to PS space, Π−1 =
(
∂1 −∂2

∂2 ∂1

)
∇−2 is the inverse matrix of Π,

L̂P
0 = ω2/α2

0 +∇2, L̂S
0 = ω2/β2

0 +∇2, and

F = Πf =
(
FP

FS

)
. (17)

Then, in PS domain, Eq. (2) becomes,(
L̂P

0 0
0 L̂S

0

)(
φP

φS

)
=
(
FP

FS

)
. (18)

Since G0 ≡ L−1
0 , let ĜP

0 =
(
L̂P

0

)−1
and ĜS

0 =
(
L̂S

0

)−1
, then the displacement G0 in PS domain

becomes

Ĝ0 = Γ0ΠG0Π−1 =
(
ĜP

0 0
0 ĜS

0

)
. (19)

So, in the reference medium, after transforming from the displacement domain to PS domain, both
L0 and G0 become diagonal.

Multiplying Eq. (5) from the left by the operator Γ0Π and from the right by the operator Π−1,
and using Eq. (19),

Γ0ΠGΠ−1 = Ĝ0 + Ĝ0

(
ΠVΠ−1Γ−1

0

)
Γ0ΠGΠ−1
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= Ĝ0 + Ĝ0V̂ Ĝ, (20)

where the displacement Green’s operator G is transformed to the PS domain as

Ĝ = Γ0ΠGΠ−1 =
(
ĜPP ĜPS

ĜSP ĜSS

)
. (21)

The perturbation V in the PS domain becomes

V̂ = ΠVΠ−1Γ−1
0 =

(
V̂ PP V̂ PS

V̂ SP V̂ SS

)
, (22)

where the left superscripts of the matrix elements represent the type of measurement and the right
ones are the source type.

Similarly, applying the PS transformation to the entire inverse series gives

V̂ = V̂1 + V̂2 + V̂3 + · · · . (23)

It follows, from Eqs. (20) and (23) that

D̂ = Ĝ0V̂1Ĝ0, (24)

Ĝ0V̂2Ĝ0 = −Ĝ0V̂1Ĝ0V̂1Ĝ0, (25)

...

where D̂ =
(
D̂PP D̂PS

D̂SP D̂SS

)
are the data in the PS domain.

In the displacement space we have, for Eq. (1),

u = Gf . (26)

Then, in the PS domain, Eq. (26) becomes

Φ = ĜF. (27)

On the measurement surface, we have

Ĝ = Ĝ0 + Ĝ0V̂1Ĝ0. (28)

Substituting Eq. (28) into Eq. (27), and rewriting Eq. (27) in matrix form:(
φP

φS

)
=
(
ĜP

0 0
0 ĜS

0

)(
FP

FS

)
+
(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP

0 0
0 ĜS

0

)(
FP

FS

)
. (29)

This can be written as the following two equations

φP = ĜP
0 F

P + ĜP
0 V̂

PP
1 ĜP

0 F
P + ĜP

0 V̂
PS
1 ĜS

0F
S , (30)

φS = ĜS
0F

S + ĜS
0 V̂

SP
1 ĜP

0 F
P + ĜS

0 V̂
SS
1 ĜS

0F
S . (31)

We can see, from the two equations above, that for homogeneous media, (no perturbation, V̂1 = 0),
there are only direct P and S waves and that the two kind of waves are separated. However, for
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inhomogeneous media, these two kinds of waves will be mixed together. If only the P wave is
incident, FP = 1, FS = 0, then the two Eqs. (30) and (31) above are respectively reduced to

φP = ĜP
0 + ĜP

0 V̂
PP
1 ĜP

0 , (32)

φS = ĜS
0 V̂

SP
1 ĜP

0 . (33)

Hence, in this case, there is only the direct P wave ĜP
0 , and no direct wave S. But there are two

kinds of scattered waves: one is the P-to-P wave ĜP
0 V̂

PP
1 ĜP

0 , and the other is the P-to-S wave
ĜS

0 V̂
SP
1 ĜP

0 . For the acoustic case, only the P wave exists, and hence we only have one equation
φP = ĜP

0 + ĜP
0 V̂

PP
1 ĜP

0 .

Similarly, if only the S wave is incident, FP = 0, FS = 1, and the two Eqs. (30) and (31) are,
respectively, reduced to

φP = ĜP
0 V̂

PS
1 ĜS

0 , (34)

φS = ĜS
0 + ĜS

0 V̂
SS
1 ĜS

0 . (35)

In this case, there is only the direct S wave ĜS
0 , and no direct P wave. There are also two kinds of

scattered waves: one is the S-to-P wave ĜP
0 V̂

PS
1 ĜS

0 , the other is the S-to-S wave ĜS
0 V̂

SS
1 ĜS

0 .

3 Linear inversion of a 1D elastic medium

Writing Eq. (24) in matrix form(
D̂PP D̂PS

D̂SP D̂SS

)
=
(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP

0 0
0 ĜS

0

)
, (36)

leads to four equations
D̂PP = ĜP

0 V̂
PP
1 ĜP

0 , (37)

D̂PS = ĜP
0 V̂

PS
1 ĜS

0 , (38)

D̂SP = ĜS
0 V̂

SP
1 ĜP

0 , (39)

D̂SS = ĜS
0 V̂

SS
1 ĜS

0 . (40)

For zs = zg = 0, in the (ks, zs; kg, zg;ω) domain, we get the following four equations relating the
linear components of the three elastic parameters and the four data types:

D̃PP (kg, 0;−kg, 0;ω) =− 1
4

(
1−

k2
g

ν2
g

)
ã(1)

ρ (−2νg)−
1
4

(
1 +

k2
g

ν2
g

)
ã(1)

γ (−2νg)

+
2k2

gβ
2
0

(ν2
g + k2

g)α2
0

ã(1)
µ (−2νg), (41)

D̃PS(νg, ηg) = −1
4

(
kg

νg
+
kg

ηg

)
ã(1)

ρ (−νg − ηg)−
β2

0

2ω2
kg(νg + ηg)

(
1−

k2
g

νgηg

)
ã(1)

µ (−νg − ηg), (42)

D̃SP (νg, ηg) =
1
4

(
kg

νg
+
kg

ηg

)
ã(1)

ρ (−νg − ηg) +
β2

0

2ω2
kg(νg + ηg)

(
1−

k2
g

νgηg

)
ã(1)

µ (−νg − ηg), (43)
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D̃SS(kg, ηg) = −1
4

(
1−

k2
g

η2
g

)
ã(1)

ρ (−2ηg)−

[
η2

g + k2
g

4η2
g

−
2k2

g

η2
g + k2

g

]
ã(1)

µ (−2ηg), (44)

where

ν2
g + k2

g =
ω2

α2
0

,

η2
g + k2

g =
ω2

β2
0

.

For the P-wave incidence case (see Fig. 1), using k2
g/ν

2
g = tan2 θ and k2

g/(ν
2
g + k2

g) = sin2 θ, where
θ is the P-wave incident angle, Eq. (41) becomes

D̃PP (νg, θ) = −1
4
(1− tan2 θ)ã(1)

ρ (−2νg)−
1
4
(1 + tan2 θ)ã(1)

γ (−2νg) +
2β2

0 sin2 θ

α2
0

ã(1)
µ (−2νg). (45)

In this case, when β0 = β1 = 0, Eq. (45) reduces to the acoustic two parameter case Eq. (7) in
Zhang and Weglein (2005) for zg = zs = 0.

D̃(qg, θ) = −ρ0

4

[
1

cos2 θ
α̃1(−2qg) + (1− tan2 θ)β̃1(−2qg)

]
, (46)

In Eq. (45), it seems straightforward that using the data at three angles to obtain the linear
inversion of aρ, aγ and aµ, and this is what we do in this paper. However, by doing this it requires
a whole new understanding of the definition of “the data”. This point has been discussed by
Weglein et al. (2007).

4 Direct non-linear inversion of 1D elastic medium

Writing Eq. (25) in matrix form:(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

2 V̂ PS
2

V̂ SP
2 V̂ SS

2

)(
ĜP

0 0
0 ĜS

0

)
= −

(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP

0 0
0 ĜS

0

)
, (47)

leads to four equations

ĜP
0 V̂

PP
2 ĜP

0 = −ĜP
0 V̂

PP
1 ĜP

0 V̂
PP
1 ĜP

0 − ĜP
0 V̂

PS
1 ĜS

0 V̂
SP
1 ĜP

0 , (48)

ĜP
0 V̂

PS
2 ĜS

0 = −ĜP
0 V̂

PP
1 ĜP

0 V̂
PS
1 ĜS

0 − ĜP
0 V̂

PS
1 ĜS

0 V̂
SS
1 ĜS

0 , (49)

ĜS
0 V̂

SP
2 ĜP

0 = −ĜS
0 V̂

SP
1 ĜP

0 V̂
PP
1 ĜP

0 − ĜS
0 V̂

SS
1 ĜS

0 V̂
SP
1 ĜP

0 , (50)

ĜS
0 V̂

SS
2 ĜS

0 = −ĜS
0 V̂

SP
1 ĜP

0 V̂
PS
1 ĜS

0 − ĜS
0 V̂

SS
1 ĜS

0 V̂
SS
1 ĜS

0 . (51)

Since V̂ PP
1 relates to D̂PP , V̂ PS

1 relates to D̂PS , and so on, the four components of the data will be
coupled in the non-linear elastic inversion. We cannot perform the direct non-linear inversion with-
out knowing all components of the data. As shown in Zhang and Weglein (2005) and this chapter,
when the work on the two parameter acoustic case is extended to the present three parameter elas-
tic case, it is not just simply adding one more parameter, but there are more issues involved. Even
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for the linear case, the linear solutions found in (41) ∼ (44) are much more complicated than those
of the acoustic case. For instance, four different sets of linear parameter estimates are produced
from each component of the data. Also, generally four distinct reflector mislocations arise from the
two reference velocities (P-wave velocity and S-wave velocity).

However, in some situations like the towed streamer case, we do not have all components of data
available. A particular non-linear approach to be presented in the next section, has been chosen
to side-step a portion of this complexity and address our typical lack of four components of elastic
data: using D̂PP as the fundamental data input, and perform a reduced form of non-linear elastic
inversion, concurrently asking: what beyond-linear value does this simpler framework add? We will
see from the numerical tests presented in the following section.

4.1 Only using D̂PP — a particular non-linear approach and the numerical tests

When assuming only D̂PP are available, first, we compute the linear solution for a(1)
ρ , a(1)

γ and a(1)
µ

from Eq. (41). Then, substituting the solution into the other three equations (42), (43) and (44),
we synthesize the other components of data — D̂PS , D̂SP and D̂SS . Finally, using the given D̂PP

and the synthesized data, we perform the non-linear elastic inversion, getting the following second
order (first term beyond linear) elastic inversion solution from Eq. (48),

(
1− tan2 θ

)
a(2)

ρ (z) +
(
1 + tan2 θ

)
a(2)

γ (z)− 8b2 sin2 θa(2)
µ (z)

=− 1
2
(
tan4 θ − 1

) [
a(1)

γ (z)
]2

+
tan2 θ

cos2 θ
a(1)

γ (z)a(1)
ρ (z)

+
1
2

[(
1− tan4 θ

)
− 2
C + 1

(
1
C

)(
α2

0

β2
0

− 1
)

tan2 θ

cos2 θ

] [
a(1)

ρ (z)
]2

− 4b2
[
tan2 θ − 2

C + 1

(
1

2C

)(
α2

0

β2
0

− 1
)

tan4 θ

]
a(1)

ρ (z)a(1)
µ (z)

+ 2b4
(

tan2 θ − α2
0

β2
0

)[
2 sin2 θ − 2

C + 1
1
C

(
α2

0

β2
0

− 1
)

tan2 θ

] [
a(1)

µ (z)
]2

− 1
2

(
1

cos4 θ

)
a(1)′

γ (z)
∫ z

0
dz′
[
a(1)

γ

(
z′
)
− a(1)

ρ

(
z′
)]

− 1
2
(
1− tan4 θ

)
a(1)′

ρ (z)
∫ z

0
dz′
[
a(1)

γ

(
z′
)
− a(1)

ρ

(
z′
)]

+ 4b2 tan2 θa(1)′
µ (z)

∫ z

0
dz′
[
a(1)

γ

(
z′
)
− a(1)

ρ

(
z′
)]

+
2

C + 1
1
C

(
α2

0

β2
0

− 1
)

tan2 θ
(
tan2 θ − C

)
b2
∫ z

0
dz′a(1)

µ z

(
(C − 1) z′ + 2z

(C + 1)

)
a(1)

ρ

(
z′
)

− 2
C + 1

2
C

(
α2

0

β2
0

− 1
)

tan2 θ

(
tan2 θ − α2

0

β2
0

)
b4
∫ z

0
dz′a(1)

µ z

(
(C − 1) z′ + 2z

(C + 1)

)
a(1)

µ

(
z′
)

+
2

C + 1
1
C

(
α2

0

β2
0

− 1
)

tan2 θ
(
tan2 θ + C

)
b2
∫ z

0
dz′a(1)

µ

(
z′
)
a(1)

ρ z

(
(C − 1)z′ + 2z

(C + 1)

)
− 2
C + 1

1
2C

(
α2

0

β2
0

− 1
)

tan2 θ
(
tan2 θ + 1

) ∫ z

0
dz′a(1)

ρ

(
z′
)
a(1)

ρ z

(
(C − 1) z′ + 2z

(C + 1)

)
, (52)
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where a(1)
ρ z

(
(C−1)z′+2z

(C+1)

)
= d

[
a

(1)
ρ

(
(C−1)z′+2z

(C+1)

)]
/dz, b = β0

α0
and C = ηg

νg
=
√

1−b2 sin2 θ

b
√

1−sin2 θ
.

The first five terms on the right side of Eq. (52) are inversion terms; i.e., they contribute to
parameter predictions. The other terms on the right side of the equation are imaging terms. The
arguments for the remarks above are the same as in the acoustic case in (Zhang and Weglein,
2005). For one interface model, there is no imaging task. The only task is inversion. In this case,
all of the integration terms on the right side of Eq. (52) are zero, and only the first five terms
can be non-zero. Thus, we conclude that the integration terms (which care about duration) are
imaging terms, and the first five terms are inversion terms. Both the inversion and imaging terms
(especially the imaging terms) become much more complicated after the extension of acoustic case
(Zhang and Weglein, 2005) to elastic case. The integrand of the first three integral terms is the
first order approximation of the relative change in P-wave velocity. The derivatives a(1)′

γ , a(1)′
ρ and

a
(1)′
µ in front of those integrals are acting to correct the wrong locations caused by the inaccurate

reference P-wave velocity. The other four terms with integrals will be zero as β0 → 0 since in this
case C →∞.

In the following, we test this approach numerically.

For a single interface 1D elastic medium case, as shown in Fig. 1, the reflection coefficient RPP has
the following form (Foster et al., 1997)

RPP =
N

D
, (53)

where

N =− (1 + 2kx2)2b
√

1− c2x2
√

1− d2x2 − (1− a+ 2kx2)2bcdx2

+ (a− 2kx2)2cd
√

1− x2
√

1− b2x2

+ 4k2x2
√

1− x2
√

1− b2x2
√

1− c2x2
√

1− d2x2 − ad
√

1− b2x2
√

1− c2x2

+ abc
√

1− x2
√

1− d2x2, (54)

D =(1 + 2kx2)2b
√

1− c2x2
√

1− d2x2 + (1− a+ 2kx2)2bcdx2

+ (a− 2kx2)2cd
√

1− x2
√

1− b2x2

+ 4k2x2
√

1− x2
√

1− b2x2
√

1− c2x2
√

1− d2x2 + ad
√

1− b2x2
√

1− c2x2

+ abc
√

1− x2
√

1− d2x2, (55)

where a = ρ1/ρ0, b = β0/α0, c = α1/α0, d = β1/α0, k = ad2 − b2 and x = sin θ, and the subscripts
“0” and “1” denote the reference medium and actual medium respectively. Similar to the acoustic
case, using the analytic data (Clayton and Stolt, 1981; Weglein et al., 1986)

D̃PP (νg, θ) = RPP (θ)
e2iνga

4πiνg
, (56)

where a is the depth of the interface. Substituting Eq.(56) into Eq.(45), Fourier transforming
Eq.(45) over 2νg, and fixing z > a and θ, we have

(1− tan2 θ)a(1)
ρ (z) + (1 + tan2 θ)a(1)

γ (z)− 8
β2

0

α2
0

sin2 θa(1)
µ (z) = 4RPP (θ)H(z − a). (57)
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In this section, we numerically test the direct inversion approach on the following four models:

Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 = 2.46g/cm3;
α0 = 2627m/s, α1 = 4423m/s; β0 = 1245m/s, β1 = 2939m/s.

Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3; α0 = 2627m/s,
α1 = 3251m/s; β0 = 1245m/s, β1 = 2138m/s.

Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 = 2.08g/cm3;
α0 = 2627m/s, α1 = 2330m/s; β0 = 1245m/s, β1 = 1488m/s.

Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3; α0 = 3251m/s,
α1 = 3507m/s; β0 = 2138m/s, β1 = 2116m/s.

To test and compare methods, the top of sand reflection was modeled for oil sands with porosities
of 10, 20, and 30%. The three models used the same shale overburden. An oil/water contact model
was also constructed for the 20% porosity sand.

The low porosity model (10%) represents a deep, consolidated reservoir sand. Pore fluids have little
effect on the seismic response of the reservoir sand. It is difficult to distinguish oil sands from brine
sands on the basis of seismic response. Impedance of the sand is higher than impedance of the
shale.

The moderate porosity model (20%) represents deeper, compacted reservoirs. Pore fluids have a
large impact on seismic response, but the fluid effect is less than that of the high porosity case.
The overlying shale has high density compared to the reservoir sand, but the P-wave velocity of
the oil sand exceeds that of the shale. As a result, impedance contrast is reduced, and shear wave
information becomes more important for detecting the reservoir.

The high porosity model (30%) is typical of a weakly consolidated, shallow reservoir sand. Pore
fluids have a large impact on the seismic response. Density, P-wave velocity, and the α/β ratio
of the oil sand are lower than the density, P-wave velocity, and α/β ratio of the overlying shale.
Consequently, there is a significant decrease in density and P-wave bulk modulus and an increase
in shear modulus at the shale/oil sand interface.

The fourth model denotes an oil/water contact in a 20% porosity sand. At a fluid contact, both
density and P-wave velocity increase in going from the oil zone into the wet zone. Because pore
fluids have no affect on shear modulus, there is no change in shear modulus.

Using these four models, we can find the corresponding RPP from Eq. (53). Then, choosing three
different angles θ1, θ2 and θ3, we can get the linear solutions for a(1)

ρ , a(1)
γ and a(1)

µ from Eq. (57) ,
and then get the solutions for a(2)

ρ , a(2)
γ and a(2)

µ from Eq. (52).

There are two plots in each figure. The left ones are the results for the first order, while the right
ones are the results for the first order plus the second order. The red lines denote the corresponding
actual values. In the figures, we illustrate the results corresponding to different sets of angles θ1
and θ2. The third angle θ3 is fixed at zero.

The numerical results indicate that all the second order solutions provide improvements over the
linear solutions for all of the four models. When the second term is added to linear order, the
results become much closer to the corresponding exact values and the surfaces become flatter in
a larger range of angles. But the degrees of those improvements are different for different models.
How accurately D̂PP effectively synthesize D̂PS and D̂SP (as shown in Figs. 14 ∼ 17) determined
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the degree of benefit provided by the non-linear elastic approach. All of the “predicted” values in
the figures are predicted using the linear results from D̂PP . And the “actual” values are calculated
from the Zoeppritz’ equations.

In principle, the elastic non-linear direct inversion in 2D requires all four components of data.
However, in this section we introduce an approach which requires only D̂PP and approximately
synthesizes the other required components. Based on this approach, the first direct non-linear
elastic inversion solution is derived. Value-added results are obtained from the non-linear inversion
terms beyond linear. Although D̂PP can itself provide useful non-linear direct inversion results,
the implication of this research is that further value would derive from actually measuring D̂PP ,
D̂PS , D̂SP and D̂SS , as the method requires. In the following section, we give a consistent method
and solve all of the second order Eqs. (48), (49), (50) and (51) with all four components of data
available.
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Figure 1: Response of incident compressional wave on a planar elastic interface. α0, β0 and ρ0 are the
compressional wave velocity, shear wave velocity and density of the upper layer, respectively; α1,
β1 and ρ1 denote the compressional wave velocity, shear wave velocity and density of the lower
layer. RPP , RSP , TPP and TSP denote the coefficients of the reflected compressional wave,
the reflected shear wave, the transmitted compressional wave and the transmitted shear wave,
respectively. (Foster et al., 1997)
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Figure 2: Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.46g/cm3;α0 = 2627m/s, α1 = 4423m/s;β0 = 1245m/s, β1 = 2939m/s. For this model, the
exact value of aρ is 0.06. The linear approximation a

(1)
ρ (left) and the sum of linear and first

non-linear a(1)
ρ + a

(2)
ρ (right).

Figure 3: Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.46g/cm3;α0 = 2627m/s, α1 = 4423m/s;β0 = 1245m/s, β1 = 2939m/s. For this model, the
exact value of aγ is 2.01. The linear approximation a

(1)
γ (left) and the sum of linear and first

non-linear a(1)
γ + a

(2)
γ (right).
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Figure 4: Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.46g/cm3;α0 = 2627m/s, α1 = 4423m/s;β0 = 1245m/s, β1 = 2939m/s. For this model, the
exact value of aµ is 4.91. The linear approximation a

(1)
µ (left) and the sum of linear and first

non-linear a(1)
µ + a

(2)
µ (right).

Figure 5: Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3;α0 = 2627m/s, α1 =
3251m/s;β0 = 1245m/s, β1 = 2138m/s. For this model, the exact value of aρ is -0.022. The linear
approximation a(1)

ρ (left) and the sum of linear and first non-linear a(1)
ρ + a

(2)
ρ (right).
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Figure 6: Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3;α0 = 2627m/s, α1 =
3251m/s;β0 = 1245m/s, β1 = 2138m/s. For this model, the exact value of aγ is 0.498. The linear
approximation a(1)

γ (left) and the sum of linear and first non-linear a(1)
γ + a

(2)
γ (right).

Figure 7: Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3;α0 = 2627m/s, α1 =
3251m/s;β0 = 1245m/s, β1 = 2138m/s. For this model, the exact value of aµ is 1.89. The linear
approximation a(1)

µ (left) and the sum of linear and first non-linear a(1)
µ + a

(2)
µ (right).
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Figure 8: Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.08g/cm3;α0 = 2627m/s, α1 = 2330m/s;β0 = 1245m/s, β1 = 1488m/s. For this model, the
exact value of aρ is -0.103. The linear approximation a

(1)
ρ (left) and the sum of linear and first

non-linear a(1)
ρ + a

(2)
ρ (right).

Figure 9: Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.08g/cm3;α0 = 2627m/s, α1 = 2330m/s;β0 = 1245m/s, β1 = 1488m/s. For this model, the
exact value of aγ is -0.295. The linear approximation a

(1)
γ (left) and the sum of linear and first

non-linear a(1)
γ + a

(2)
γ (right).
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Figure 10: Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.08g/cm3;α0 = 2627m/s, α1 = 2330m/s;β0 = 1245m/s, β1 = 1488m/s. For this model, the
exact value of aµ is 0.281. The linear approximation a

(1)
µ (left) and the sum of linear and first

non-linear a(1)
µ + a

(2)
µ (right).

Figure 11: Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3;α0 =
3251m/s, α1 = 3507m/s;β0 = 2138m/s, β1 = 2116m/s. For this model, the exact value of
aρ is 0.022. The linear approximation a

(1)
ρ (left) and the sum of linear and first non-linear

a
(1)
ρ + a

(2)
ρ (right).
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Figure 12: Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3;α0 =
3251m/s, α1 = 3507m/s;β0 = 2138m/s, β1 = 2116m/s. For this model, the exact value of
aγ is 0.19. The linear approximation a

(1)
γ (left) and the sum of linear and first non-linear

a
(1)
γ + a

(2)
γ (right).

Figure 13: Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3;α0 =
3251m/s, α1 = 3507m/s;β0 = 2138m/s, β1 = 2116m/s. For this model, the exact value of
aµ is 0.001. The linear approximation a

(1)
µ (left) and the sum of linear and first non-linear

a
(1)
µ + a

(2)
µ (right).
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Figure 14: The comparison between the synthesized values and the actual values of Rsp (top) and Rps
(bottom) for Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.46g/cm3;α0 = 2627m/s, α1 = 4423m/s;β0 = 1245m/s, β1 = 2939m/s.
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Figure 15: The comparison between the synthesized values and the actual values of Rsp (top) and Rps
(bottom) for Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3;α0 =
2627m/s, α1 = 3251m/s;β0 = 1245m/s, β1 = 2138m/s.
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Figure 16: The comparison between the synthesized values and the actual values of Rsp (top) and Rps
(bottom) for Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.08g/cm3;α0 = 2627m/s, α1 = 2330m/s;β0 = 1245m/s, β1 = 1488m/s.
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Figure 17: The comparison between the synthesized values and the actual values of Rsp (top) and Rps (bot-
tom) for Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3;α0 =
3251m/s, α1 = 3507m/s;β0 = 2138m/s, β1 = 2116m/s.
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4.2 Using all four components of data — full direct non-linear elastic inversion

Using four components of data, one consistent method to solve for the second terms is, first, using
the linear solutions as shown in Eqs. (41), (42), (43) and (44), we can get the linear solution for
a

(1)
ρ , a(1)

γ and a(1)
µ in terms of D̂PP , D̂PS , D̂SP and D̂SS through the following waya

(1)
ρ

a
(1)
γ

a
(1)
µ

 = (OTO)−1OT


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D̂SP

D̂SS

 , (58)

where the matrix O is
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, (59)

and OT is the transpose of matrix O, the superscript −1 denotes the inverse of the matrix OTO.

Let the arguments of a(1)
ρ and a(1)

µ in Eqs. (41), (42), (43) and (44) equal, we need

−2νPP
g = −νPS

g − ηPS
g = −νSP

g − ηSP
g = −2ηSS

g ,

which leads to (please see details in Appendix A)
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From the expression above, given θPP , as shown in Fig. 18, we can find the corresponding angles
θPS , θSP and θSS which appear in matrix O

θPS = cos−1

[
4b2 cos2 θPP + 1− b2

4b cos θPP

]
,
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)
,

where b = β0

α0
.

Then, through the similar way, we can get the solution for a(2)
ρ , a(2)

γ and a
(2)
µ in terms of a(1)

ρ , a(1)
γ

and a(1)
µ a
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 = (OTO)−1OTQ, (60)
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Figure 18: Different incident angles.

where the matrix Q is in terms of a(1)
ρ , a(1)

γ and a(1)
µ .

Based on this idea, we get the following non-linear solutions for Eqs. (48), (49), (50) and (51)
respectively.

The form of the solution for Eq. (48), i.e.,
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0 V̂

PS
1 ĜS
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is the same as Eq. (52). In the (ks, zs; kg, zg;ω) domain, we get the the other three solutions
respectively, for Eqs. (49), (50) and (51).
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0 V̂

PP
1 ĜP
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β2
0

ω2

)
×
[

1
2C

∫ z

0
dz′a(1)

µ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)

ρ

(
z′
)

+
1

C + 1
a(1)′

ρ (z)
∫ z

0
dz′a(1)

µ (z′)
]

+
1

4ηgν2
g

(
Cν2

gkg − 2Cν2
gk

3
g

β2
0

ω2
+
β2

0

α2
0

k3
g − 2k5

g

β2
0

ω2

)
×
[

1
2C

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)

µ

(
z′
)
− 1
C + 1

a(1)′
µ (z)

∫ z

0
dz′a(1)

ρ (z′)
]

+
1

4ηgν2
g

(
2C2ν2

gk
3
g

β2
0

ω2
− 2Cν2

gk
3
g

β2
0

ω2
− 1

2
kg
ω2

β2
0

)
×
[

1
2C

∫ z

0
dz′a(1)

µ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)

ρ

(
z′
)
− 1
C + 1

a(1)′
ρ (z)

∫ z

0
dz′a(1)

µ (z′)
]
,

the solution for Eq. (50), i.e.,

ĜS
0 V̂

SP
2 ĜP

0 = −ĜS
0 V̂

SP
1 ĜP

0 V̂
PP
1 ĜP

0 − ĜS
0 V̂

SS
1 ĜS

0 V̂
SP
1 ĜP

0 ,

is

1
4

(
kg

νg
+
kg

ηg

)
a(2)

ρ (z) +
β2

0

2ω2
kg (νg + ηg)

(
1−

k2
g

νgηg

)
a(2)

µ (z)

=
{
− 1

2ηgν2
g

[
2(C − 1)ν2

gk
5
g

β4
0

ω4
+
(

1− β2
0

α2
0

C

)
ν2

gk
3
g

β2
0

ω2

]
− β2

0

α2
0

k3
g

νg

β2
0

ω2
+

kg

2ηg

(
2k2

g

β2
0

ω2
− 1
)

+
(

1
2C

+
1

C + 1

)
1

4η2
gνg

(
6k3

g − 12k5
g

β2
0

ω2
− kg

ω2

β2
0

+ 8k7
g

β4
0

ω4
+ 8C3ν2

gk
5
g

β4
0

ω4
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−4
β2

0

α2
0

C3ν2
gk

3
g

β2
0

ω2

)
−
(

1
2C

− 1
C + 1

)
1

4ηgν2
g

(
4
β2

0

α2
0

k3
g − 8k5

g

β2
0

ω2
− kg

ω2

α2
0

+ 2k3
g − 4Cν2

gk
3
g

β2
0

ω2
+ 8Cν2

gk
5
g

β4
0

ω4

−4
β2

0

α2
0

k5
g

β2
0

ω2
+ 8k7

g

β4
0

ω4

)}
a(1)

µ (z)a(1)
µ (z)

+
[(

1
2

+
1

C + 1

)
kg

8ηgν2
g

(
Ck2

g + ν2
g

)
−
(

1
2
− 1
C + 1

)
kg

8ηgν2
g

(
k2

g + Cν2
g

)
+
(

1
2C

+
1

C + 1

)
kg

8η2
gνg

(
C3ν2

g + k2
g

)
−
(

1
2C

− 1
C + 1

)
kg

8ηgν2
g

(
k2

g + Cν2
g

)]
a(1)

ρ (z)a(1)
ρ (z)

+
[(

1
2

+
1

C + 1

)
β2

0

α2
0

1
4ν3

g

kg

(
k2

g − ν2
g

)
+
(

1
2
− 1
C + 1

)
1

4ηgν2
g

(
kg
ω2

α2
0

− 2
β2

0

α2
0

k3
g

)
+
β2

0

α2
0

kg

2νg

]
a(1)

µ (z)a(1)
γ (z)

−

[(
1
2

+
1

C + 1

)
kg

(
k2

g + ν2
g

)
8ν3

g

−
(

1
2
− 1
C + 1

)
kg

(
k2

g + ν2
g

)
8ηgν2

g

]
a(1)

ρ (z)a(1)
γ (z)

−
[(

1
2

+
1

C + 1

)
1

4ηgν2
g

(
2ν2

gk
3
g

β2
0

ω2
− ν2

gkg + 2Ck5
g

β2
0

ω2
− β2

0

α2
0

Ck3
g

)
−
(

1
2
− 1
C + 1

)
1

4ηgν2
g

(
2Cν2

gk
3
g

β2
0

ω2
− β2

0

α2
0

Cν2
gkg + 2k5

g

β2
0

ω2
− k3

g

)
−
(

1
2C

+
1

C + 1

)
1

4η2
gνg

(
3k3

g +
β2

0

α2
0

C3ν2
gkg − 4C3ν2

gk
3
g

β2
0

ω2
− 4k5

g

β2
0

ω2
− 1

2
kg
ω2

β2
0

)
+
(

1
2C

− 1
C + 1

)
1

4ηgν2
g

(
Cν2

gkg + 2k3
g +

β2
0

α2
0

k3
g − 4k5

g

β2
0

ω2
− 4Cν2

gk
3
g

β2
0

ω2
− 1

2
kg
ω2

β2
0

)
−(C − 1)

k3
g

2ηg

β2
0

ω2

]
a(1)

ρ (z)a(1)
µ (z)

− 1
2ηgν2

g

[
2(C − 1)ν2

gk
5
g

β4
0

ω4
+
(

1− β2
0

α2
0

C

)
ν2

gk
3
g

β2
0

ω2

]
×
∫ z

0
dz′a(1)

µ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)

µ

(
z′
)

+
1

4η2
gνg

(
6k3

g − 12k5
g

β2
0

ω2
− kg

ω2

β2
0

+ 8k7
g

β4
0

ω4
+ 8C3ν2

gk
5
g

β4
0

ω4
− 4

β2
0

α2
0

C3ν2
gk

3
g

β2
0

ω2

)
×
[

1
2C

∫ z

0
dz′a(1)

µ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)

µ

(
z′
)

+
1

C + 1
a(1)′

µ (z)
∫ z

0
dz′a(1)

µ (z′)
]

− 1
4ηgν2

g

(
4
β2

0

α2
0

k3
g − 8k5

g

β2
0

ω2
− kg

ω2

α2
0

+ 2k3
g − 4Cν2

gk
3
g

β2
0

ω2
+ 8Cν2

gk
5
g

β4
0

ω4
− 4

β2
0

α2
0

k5
g

β2
0

ω2
+ 8k7

g

β4
0

ω4

)
×
[

1
2C

∫ z

0
dz′a(1)

µ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)

µ

(
z′
)
− 1
C + 1

a(1)′
µ (z)

∫ z

0
dz′a(1)

µ (z′)
]

+
kg

(
Ck2

g + ν2
g

)
8ηgν2

g

[
1
2

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)

ρ

(
z′
)
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+
1

C + 1
a(1)′

ρ (z)
∫ z

0
dz′a(1)

ρ (z′)
]

−
kg

(
k2

g + Cν2
g

)
8ηgν2

g

[
1
2

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)

ρ

(
z′
)

− 1
C + 1

a(1)′
ρ (z)

∫ z

0
dz′a(1)

ρ (z′)
]

+
C3kgν

2
g + k3

g

8η2
gνg

[
1

2C

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)

ρ

(
z′
)

+
1

C + 1
a(1)′

ρ (z)
∫ z

0
dz′a(1)

ρ (z′)
]

−
kg

(
k2

g + Cν2
g

)
8ηgν2

g

[
1

2C

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)

ρ

(
z′
)

− 1
C + 1

a(1)′
ρ (z)

∫ z

0
dz′a(1)

ρ (z′)
]

+
β2

0

α2
0

kg

(
k2

g − ν2
g

)
4ν3

g

[
1
2

∫ z

0
dz′a(1)

γ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)

µ

(
z′
)

+
1

C + 1
a(1)′

µ (z)
∫ z

0
dz′a(1)

γ (z′)
]

+
1

4ηgν2
g

(
kg
ω2

α2
0

− 2
β2

0

α2
0

k3
g

)[
1
2

∫ z

0
dz′a(1)

γ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)

µ

(
z′
)

− 1
C + 1

a(1)′
µ (z)

∫ z

0
dz′a(1)

γ (z′)
]

−
kg

(
k2

g + ν2
g

)
8ν3

g

[
1
2

∫ z

0
dz′a(1)

γ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)

ρ

(
z′
)

+
1

C + 1
a(1)′

ρ (z)
∫ z

0
dz′a(1)

γ (z′)
]

+
kg

(
k2

g + ν2
g

)
8ηgν2

g

[
1
2

∫ z

0
dz′a(1)

γ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)

ρ

(
z′
)

− 1
C + 1

a(1)′
ρ (z)

∫ z

0
dz′a(1)

γ (z′)
]

− 1
4ηgν2

g

(
2ν2

gk
3
g

β2
0

ω2
− ν2

gkg + 2Ck5
g

β2
0

ω2
− β2

0

α2
0

Ck3
g

)
×
[
1
2

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)

µ

(
z′
)

+
1

C + 1
a(1)′

µ (z)
∫ z

0
dz′a(1)

ρ (z′)
]

+
1

4ηgν2
g

(
2Cν2

gk
3
g

β2
0

ω2
− β2

0

α2
0

Cν2
gkg + 2k5

g

β2
0

ω2
− k3

g

)
×
[
1
2

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)

µ

(
z′
)
− 1
C + 1

a(1)′
µ (z)

∫ z

0
dz′a(1)

ρ (z′)
]

+ (C − 1)
k3

g

2ηg

β2
0

ω2

∫ z

0
dz′a(1)

µ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)

ρ

(
z′
)
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− 1
4η2

gνg

(
−2k3

g + 2C3ν2
gk

3
g

β2
0

ω2
+ 2k5

g

β2
0

ω2
+

1
2
kg
ω2

β2
0

)
×
[

1
2C

∫ z

0
dz′a(1)

µ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)

ρ

(
z′
)

+
1

C + 1
a(1)′

ρ (z)
∫ z

0
dz′a(1)

µ (z′)
]

− 1
4η2

gνg

(
−k3

g −
β2

0

α2
0

C3ν2
gkg + 2C3ν2

gk
3
g

β2
0

ω2
+ 2k5

g

β2
0

ω2

)
×
[

1
2C

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)

µ

(
z′
)

+
1

C + 1
a(1)′

µ (z)
∫ z

0
dz′a(1)

ρ (z′)
]

− 1
4ηgν2

g

(
2k3

g − 2k5
g

β2
0

ω2
− 2Cν2

gk
3
g

β2
0

ω2
− 1

2
kg
ω2

β2
0

)
×
[

1
2C

∫ z

0
dz′a(1)

µ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)

ρ

(
z′
)
− 1
C + 1

a(1)′
ρ (z)

∫ z

0
dz′a(1)

µ (z′)
]

− 1
4ηgν2

g

(
Cν2

gkg +
β2

0

α2
0

k3
g − 2k5

g

β2
0

ω2
− 2Cν2

gk
3
g

β2
0

ω2

)
×
[

1
2C

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)

µ

(
z′
)
− 1
C + 1

a(1)′
µ (z)

∫ z

0
dz′a(1)

ρ (z′)
]
,

and the solution for Eq. (51), i.e.,

ĜS
0 V̂

SS
2 ĜS

0 = −ĜS
0 V̂

SP
1 ĜP

0 V̂
PS
1 ĜS

0 − ĜS
0 V̂

SS
1 ĜS

0 V̂
SS
1 ĜS

0 ,

is

− 1
4

(
1−

k2
g

η2
g

)
a(2)

ρ (z)−

[
k2

g + η2
g

4η2
g

−
2k2

g

k2
g + η2

g

]
a(2)

µ (z)

=−
{

1
8η4

g

(
8k2

gη
2
g −

ω4

β4
0

)
− 1

4η2
g

(
ω2

β2
0

− 4
β2

0

ω2
η2

gk
2
g

)
− β2

0

α2
0

k2
g

β2
0

ω2

+
1

η2
g(C + 1)

[
k2

g

(
β4

0

α4
0

C2 − 1
)
− 4k4

g

β2
0

ω2

(
β2

0

α2
0

C2 − 1
)

+ 4k6
g

β4
0

ω4
(C2 − 1)

]}
a(1)

µ (z)a(1)
µ (z)

−
[

1
8η4

g

(
η4

g − k4
g

)
+

1
4η2

g

k2
g(C − 1)

]
a(1)

ρ (z)a(1)
ρ (z)

+
{
k2

g

η2
g

− 1
η2

g(C + 1)

[
k2

g

(
β2

0

α2
0

C2 − 1
)
− 2

β2
0

ω2
k4

g

(
C2 − 1

)]}
a(1)

µ (z)a(1)
ρ (z)

− 1
8η4

g

(
8k2

gη
2
g −

ω4

β4
0

)
a(1)′

µ (z)
∫ z

0
dz′a(1)

µ (z′)

− 1
8η4

g

(
η4

g − k4
g

)
a(1)′

ρ (z)
∫ z

0
dz′a(1)

ρ (z′)

+
k2

g

2η2
g

[
a(1)′

µ (z)
∫ z

0
dz′a(1)

ρ (z′) + a(1)′
ρ (z)

∫ z

0
dz′a(1)

µ (z′)
]

− 1
8η2

g

(
η2

g − 3k2
g

) [
a(1)′

µ (z)
∫ z

0
dz′a(1)

ρ (z′)− a(1)′
ρ (z)

∫ z

0
dz′a(1)

µ (z′)
]

− 1
η2

g(C + 1)

[
k2

g

(
β4

0

α4
0

C2 − 1
)
− 4k4

g

β2
0

ω2

(
β2

0

α2
0

C2 − 1
)

+ 4k6
g

β4
0

ω4
(C2 − 1)

]
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×
∫ z

0
dz′a(1)

µ z

(
2Cz − (C − 1) z′

(C + 1)

)
a(1)

µ

(
z′
)

− 1
4η2

g

k2
g(C − 1)

∫ z

0
dz′a(1)

ρ z

(
2Cz − (C − 1) z′

(C + 1)

)
a(1)

ρ

(
z′
)

− 1
2η2

g(C + 1)

[
k2

g

(
β2

0

α2
0

C2 − 1
)
− 2

β2
0

ω2
k4

g

(
C2 − 1

)]
×
[∫ z

0
dz′a(1)

µ z

(
2Cz − (C − 1) z′

(C + 1)

)
a(1)

ρ

(
z′
)

+
∫ z

0
dz′a(1)

ρ z

(
2Cz − (C − 1) z′

(C + 1)

)
a(1)

µ

(
z′
)]

+
Ck2

g

2(C + 1)η2
g

(
β2

0

α2
0

− 1
)

×
[∫ z

0
dz′a(1)

µ z

(
2Cz − (C − 1) z′

(C + 1)

)
a(1)

ρ

(
z′
)
−
∫ z

0
dz′a(1)

ρ z

(
2Cz − (C − 1) z′

(C + 1)

)
a(1)

µ

(
z′
)]
,

where ηg = Cνg, k
2
g + ν2

g = ω2/α2
0 and k2

g + η2
g = ω2/β2

0 .

After we solve all (four) of the second order equations, future research is to perform numerical tests
with all four components of data available.

5 Conclusion

In this paper, a framework and algorithm have been developed for more accurate target identi-
fication. The elastic non-linear inversion requires all four components of data. In this paper we
analyzed an algorithm which inputs only D̂PP . Although D̂PP can itself provide useful non-linear
direct inversion results, the implication of this research is that further value would derive from
actually measuring D̂PP , D̂PS , D̂SP and D̂SS , as the method requires. For the case that all four
components of data available, we also provided a consistent method to solve for all of the second
terms.
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Appendix A

In this Appendix, we give the different coefficients before every linear quantity (a(1)
γ , a

(1)
ρ , a

(1)
µ ) —

different incidence angle θ. For P to P case, we have

kPP
g =

ω

α0
sin θPP ,

νPP
g =

ω

α0
cos θPP ,
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For S to P case,

kPS
g =

ω

β0
sin θPS ,

νPS
g =

ω

α0

√
1− α2

0

β2
0

sin2 θPS

ηPS
g =

ω

β0
cos θPS ,

For P to S case,

kSP
g =

ω

α0
sin θSP ,

νSP
g =

ω

α0
cos θSP

ηSP
g =

ω

β0

√
1− β2

0

α2
0

sin2 θSP ,

For S to S case,

kSS
g =

ω

β0
sin θSS ,

ηSS
g =

ω

β0
cos θSS ,

Let the arguments of a(1)
ρ and a(1)

µ in Eqs. (41), (42), (43) and (44) equal, we need

−2νPP
g = −νPS

g − ηPS
g = −νSP

g − ηSP
g = −2ηSS

g ,

which leads to

2
ω

α0
cos θPP =

ω

α0

√
1− α2

0

β2
0

sin2 θPS +
ω

β0
cos θPS

=
ω

α0
cos θSP +

ω

β0

√
1− β2

0

α2
0

sin2 θSP = 2
ω

β0
cos θSS ,

From the expression above, given θPP , we can find the corresponding θPS , θSP and θSS .

θPS = cos−1

[
4b2 cos2 θPP + 1− b2

4b cos θPP

]
,

θSP = cos−1

[
4b2 cos2 θPP − 1 + b2

4b2 cos θPP

]
,

θSS = cos−1
(
b cos θPP

)
,

where b = β0

α0
.
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Comprehending and analyzing the leading order and higher order imaging
closed forms derived from inverse scattering series

J. Zhang, F. Liu, K. A. Innanen, and A. B. Weglein

Abstract

All current leading-edge migration/imaging methods locate the depths of subsurface reflectors
using the phase in the reflected data and the velocity above the reflector. The subseries for
imaging without the velocity (Weglein et al., 2003), which is part of the whole inverse scattering
series (ISS), has the capability of directly producing reflector images using only the data. The
imaging subseries is a cascaded series in the sense that the coefficient of each term is again an
infinite series (Shaw, 2005). Part of this cascaded series was captured and called leading-order
imaging series (LOIS) (Shaw et al., 2003). Then, more imaging terms were identified and added
to the LOIS. This more capable series is called higher order imaging series (HOIS) (Liu, 2006). It
is worth mentioning that the HOIS has not captured all of the terms for imaging. Both LOIS and
HOIS have closed forms. The closed form HOIS has an unusal implicit form that was developed
by Liu (2006) using an intuitive leap and the conviction that only shallower events in the linear
approximate image (α1) should help any particular event to determine its location, through
non-linear multiplicative communication. The same intuitive leap can be applied to the LOIS
closed form. The closed forms without using Liu’s intuitive leap seem unreasonable at present,
since they need deeper medium information in order to locate shallower interfaces. However, the
ISS only promise the final result will be correct, without guaranteeing any intermediate results
are reasonable or correct. This is one of the lessons we learned from the application of ISS on
free surface multiple removal. On free surface multiple removal, all of the free surface multiples
will be eliminated after all of the multiple removing terms are added to the data. However, at
any intermediate step, some free surface multiples may become even stronger than they were in
the original data. More details on this issue will be discussed in the following.

1 Introduction

Migration/Imaging is the process of locating reflectors at depth using reflected seismic data. This
process uses the arrival time of the signal and the wave velocity of the medium through which the
signal traveled. Current migration algorithms obtain the latter from another procedure, velocity
analysis. These migration algorithms are, on one hand, very stable. For example, with current data
acquisition which often miss small and cross-line offsets measurements, and zero/low frequency
information, these imaging algorithms manage to provide satisfactory results for most cases. On
the other hand, for cases (e.g., sub-salt imaging) in which the velocity analysis has difficulties, the
performance of velocity dependent migration procedures will be affected too. In these situations,
one has two choices: either improving the performance of the velocity analysis, or pursuing a new
imaging procedure which does not require the actual medium velocity. Efforts have been expended
on both choices. This paper, among many others (Weglein et al., 2000; Shaw et al., 2002; Innanen
and Weglein, 2003; Liu et al., 2005), is pursuing the latter choice.

The idea of performing imaging without the actual medium velocity is so contradictory to common
sense that it is reasonable to ask: how could it be possible? We would like to answer this question
by first pointing out that the velocity information that migration uses comes from nowhere but the
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data. So essentially all information comes from the data (Figure 1a). We would argue that given
this, the existence of such an algorithm that could directly produce the image of the subsurface,
without a separate velocity analysis step (Figure 1b) is not counter-intuitive at all. The main
difference is that, the imaging without the velocity algorithm derived from the ISS is capable of
using the amplitude information of the data as well as the arrival time. The significance of this
capability is explained below. Figure 2 illustrates the two primaries for a 1D normal incidence
experiment. The arrival times of the two primaries are ta and tb respectively. Assuming the wave
speed in the medium between the source and the first interface is c0 (which is called the reference
medium velocity), the water bottom is easy to locate: za = ta∗c0/2. Imaging the second interface is
also not difficult if the velocity of the medium between the two interfaces is known. However, note
that the first signal contains more information than just the arrival time. Its amplitude directly
relates to the property contrast across the first interface: R = c1−c0

c1+c0
. So the velocity below the first

interface can be obtained as long as the amplitude of the signal and the reference medium velocity
are known. The question is whether or not such an algorithm can be found that can directly
extract all of the necessary information from the data to perform imaging without finding the
velocity through a separate step. The imaging without the velocity algorithm is such an algorithm.

The framework and logic about the ISS are discussed by Weglein et al. (2003). It mentioned that
the whole ISS has very limited applicability due to convergence issues (Carvalho, 1992). So, certain
terms are identified and grouped together to perform one task only (multiple removal, imaging, or
inversion) and act like no other task exists at all. These subseries might have better convergence
properties than the whole series. This is the idea of isolated task-specific subseries. In other words,
it is the latter isolated task specific concept and math-physics interpretation that makes the inverse
series practically useful.

The imaging capability within the inverse scattering series is a series in terms of powers of the
distance between the pseodo depth and the actual depth, and the latter difference in depths, are
in turn each be a power series in the data. If only the first term in the expansion of the difference
between actual and pseudo depth in terms of the data is retained, the result is a leading order
imaging series (Shaw et al., 2003) and has effectiveness when the overall difference between actual
and reference properties is not large. If you retain more than the leading order terms in the data
in the cascaded imaging series then this is called higher order imaging capture (Liu et al., 2006)
and has a broader region of contrast accommodation. The capture called higher order imaging is
not the full cascaded imaging series. These ideas were first put forward in Weglein et al. (2001)
and Shaw et al. (2002). Both the leading order imaging series (LOIS) and the higher order imaging
series (HOIS) have closed forms. The first step in performing imaging without the velocity is to
obtain α1(z) (Weglein et al., 2001; Shaw et al., 2002; Liu et al., 2005) which is very close to the
Stolt migration result using reference medium velocity. Then we use the obtained LOIS and HOIS
closed forms to improve the reflector locations in α1. In this paper, through analysis of those closed
forms and the work of Innanen (2005), their accuracy and meaning are discussed.

The leading-order closed-form (LOIS) imaging series is

αLOIS(z) = α1

(
z − 1

2

∫ z

0
α1(z′)dz′

)
; (1)
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(a) Conventional (b) Imaging without the
velocity

Figure 1: Imaging strategies

and the high-order closed-form imaging series (HOIS) is

αHOIS
(
z +

1
2

∫ z

0

α1(z′)
1− 1

4α1(z′)
dz′
)

= α1(z). (2)

The functions αLOIS(z) and αHOIS(z) provide better reflector locations compared to α1. One may
notice that in Eq. 1, the argument of αLOIS is very simple and that of α1 is relatively complicated,
while in Eq. 2, it is αHOIS that has the relatively complicated argument. Why this transfer of
complexity? What difference will it make? What is the performance/accuracy of these closed
forms? We will try to answer these questions, without becoming too involved in the math or
diagrams of the ISS.

2 Interpretation of the closed forms

There are several ways to interpret Eq. 1:
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Figure 2: 1D normal incidence two primaries. Depth of the first and second interfaces are za and zb

respectively.

1. The value of αLOIS at z equals the value of α1 at z − 1
2

∫ z
0 α1(z′)dz′ = z′b; or,

2. The value of αLOIS at z = z′b + 1
2

∫ z
0 α1(z′)dz′ equals the value of α1 at z′b; or in reverse,

3. The value of α1 at z′b equals to the value of αLOIS at z = z′b + 1
2

∫ z
0 α1(z′)dz′.

Imagine that there is an interface at z′b in α1. Then based on the third interpretation, this interface
will be moved to another depth z, and the distance to be moved is determined by: 1

2

∫ z
0 α1(z′)dz′,

which is an integration to depth z, not z′b. So, if z is bigger than z′b, then α1 values from greater
depths contribute to the moving of this shallower interface. This conclusion is actually a little
strange since the diagram analysis only permit shallower events helping the locations of deeper
events. Even from physical instincts, it seems strange that the moving of shallower events care
about deeper events. What is going on here?

Innanen (2005) proposed a coupled imaging-inversion algorithm. In an attempt to obtain the
imaging only equation, a “natural” isolated form would seem to be

αHOIS(z) = α1

(
z − 1

2

∫ z

0

α1(z′)
1− 1

4α1(z′)
dz′
)
, (3)

which is very similar to Eq. 2 except where the complicated argument stays.
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Eq. 3 was tested and found that the results were poor. Then from physical intuition, Liu intuitively
moved the argument to the left hand side and obtained Eq. 2 which provided very good results
(Liu, 2006). To understand this move, let’s apply the same operation to Eq. 1:

αSLOIS
(
z +

1
2

∫ z

0
α1(z′)dz′

)
= α1(z), (4)

where SLOIS denotes “Shifted LOIS”. Let’s analyze its meaning in a similar way:

1. The value of αSLOIS at z + 1
2

∫ z
0 α1(z′)dz′ equals to the value of α1 at z; or, reversely,

2. The value of α1 at z equals to the value of αSLOIS at z + 1
2

∫ z
0 α1(z′)dz′; so,

3. The value of α1 at z′b equals to the value of αSLOIS at z′b + 1
2

∫ z′b
0 α1(z′)dz′.

Clearly, if it happens that there is an interface at z′b in α1 then it will be moved to depth z and
the distance to move is determined by an integration to depth z′b. No deeper events will contribute
to the movement of shallower ones. Based on the idea that it is overburden information that is
used to locate reflectors, it seems that Eq. 4 might be more reasonable than Eq. 1, just like Eq. 2
compared to Eq. 3.

3 Accuracy of the closed forms

Although neither of the two closed forms has the full imaging capability of the imaging subseries,
in many cases they provide very promising results. For example, in Figures 3 and 4, for a relatively
small contrast model, both the LOIS and HOIS result is very satisfactory (Liu, 2006). While in
Figures 5-6, for a large contrast model, HOIS gives much better result compared to LOIS (Liu,
2006).

One might still want to know how well HOIS can locate the interface? In the following, through
a simple analytic example, we would demonstrate analytically that the HOIS can correctly locate
the first interface below water bottom.

In Figure 7, the depth of the water bottom is za and the interface below the water bottom is at zb.
The velocities are c0 and c1 for medium at z < za and za < z < zb respectively. Using the reference
medium velocity c0, the interface za will be located correctly in α1 since the reference medium is
the correct velocity. But the interface at zb will be located at z′b = za + c0

c1
(zb − za) which will be

shallower than the correct depth. The objective of the imaging subseries is to shift the interface
at z′b to its correct location zb. It would be interesting to evaluate the performance of the HOIS.
According to Eq. 2, the interface at z′b in α1 will be shifted to a deeper depth (in this case) by the
amount of

δz =
1
2

∫ z′b

0

α1(z′′)
1− 1

4α1(z′′)
dz′′
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Figure 3: Small constrast model.

Figure 4: Satisfactory results.
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Figure 5: Large constrast model.

Figure 6: HOIS generates superior results.
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Figure 7: 1D normal incidence α and α1.

= (z′b − za)
2R

1−R

= zb − z′b, (5)

where α1 = 4RH(z− za) and R = c1−c0
c1+c0

(Shaw et al., 2003). So, the correct amount of shifting has
been performed by the HOIS for the first interface below the water bottom. Deeper interfaces in
general will not be shifted accurately to the correct place by the HOIS.

4 Discussion

From the above analysis and previous numerical tests, there is no doubt that Eq.4 and Eq.2 provide
similar or better results compared to Eq.1 and Eq.3. However, Eq.4 and Eq.2 are obtained using
physical intuition at the end of derivation, while the straightforward application of the idea of iso-
lated imaging subseries seems to produce Eq.1 and Eq.3. The intuitive leap is certainly beneficiary
by providing better results. However, is it always necessary when the whole imaging subseries is
pursued? Our current best understanding regarding this issue is that the ISS or the isolated imaging
subseries promises that (in principle) the final imaging result will be correct, without guaranteeing
that any part of the imaging subseries will be necessarily comprehensible to us in terms of the
overall progress. Eq.1 and Eq.3 might not seem quite reasonable at the moment, but it is possible
that it will eventually become comprehensible by adding more terms.

This is not the first time that terms within an isolated task specific subseries produce seemingly mo-
mentarily incomprehensible results. It happens when it is applied to remove free surface multiples.
The free surface multiple removal (FSMR) algorithm derived from inverse scattering series removes
the free surface multiples order by order. The second term when added to data will eliminate all of
the first order free surface multiples, while at the same time, altering the amplitude of higher order
multiples. And most importantly, it in general will boost the amplitude of higher order multiples,
which seems strange and unreasonable, since the series is designed to eliminate multiples. But
when further free surface removal terms are included, that original alteration (which sometimes has
increased amplitude) of higher order multiples is necessary and deliberate to allow the next term
in the FSMR series to remove them. Although this point has been explained previously (Carvalho,

156



Analysis of leading and higher order imaging closed forms MOSRP06

1992; Weglein et al., 1997; Zhang and Weglein, 2005), in the following, we would like to illustrate
it using simple diagrams without involving math.

In Figure 8a, the data contain primary and many different orders of free surface multiple. The first
term in the ISS free surface multiple removal algorithm is the data set convolved with itself (Figure
8b). After adding Figure 8b to Figure 8a, we find that the first order free surface multiple has
been eliminated (Figure 8c). However, instead of being removed or attenuated, the amplitude of
the third order free surface multiple has been amplified. But if we keep on going, it will eventually
be eliminated. For example, Figure 8d is the second term in the free surface multiple removal
series. Adding it to Figure 8c produces Figure 8e, which eliminates the second order free surface
multiple. The third order free surface multiple has at the same time been brought down to a
smaller amplitude, ready to be removed by the third term. Note in the above demonstration,
adaptive subtraction, which is impossible to avoid in real data, has not been mentioned. The
burden of adaptive subtraction, however, can be lower if we use deghosted data and perform the
convolution carefully by including factors such as obliquity factor, source wavelet and source and
receiver depth.

Figure 8: Demonstration of free surface multiple removal.

5 Conclusions

The difference and accuracy between different forms of imaging closed forms have been analyzed.
None of the closed forms has captured the whole imaging subseries. This paper explains how
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the implicit form of the HOIS closed form is comprehensible and reasonable. That HOIS closed
form was deduced based on some intuitive sense of how capability beyond leading order imaging
would appear in a closed form. Among points we are interested in communicating here are: (1)
sometimes partial capture seems incomprehensible in isolation, but can become comprehensible
when a broaden context, capture and goal is considered; and (2) real progress beyond current
imaging capture will require staying close to the higher order imaging diagrams so it would be
better to define what has been and what has not been accommodated within imaging algorithms.
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Direct horizontal common image gathers without the velocity or “ironing”

F. Liu, A. B. Weglein, K. A. Innanen, B. G. Nita, and J. Zhang

Abstract

Traditional migration requires an accurate velocity to find an adequate image. There are circum-
stances where directly producing the velocity is difficult to realize and an indirect measurement
of an adequate image is sought as a way to find the velocity. A necessary condition that a
correctly located image would satisfy (with the correct velocity) is that images from different
subsets of the data produce the image at the same depth. That is called a flat (i.e., horizontal)
common-image gather. In AVO (Amplitude Variation with Offset) analysis, the amplitudes of
reflected waves with different incident angles are studied to deduce lithology information be-
yond the structure map obtained by seismic imaging algorithms. The quantitative analysis of
the amplitude, relies on common-image gathers being flat (or equivalently, at the same depth).
But the waves with different incident angles will have different apparent velocities, resulting in
different depths for the same image point at different angles, or non-flat common image gathers.
In many scenarios, non-flat common-image gather are flattened by trim means at the cost of
compromising zero-crossing and polarity-reversal information. This work presents an automatic
solution based on the seismic imaging subseries of the inverse scattering series (ISS) that flattens
the common image gather without knowing or determining the subsurface velocity, and without
any harmful amplitude consequences.

This work illustrates that the higher-order imaging algorithm automatically produces as
a simple and reasonable by product the horizontal common-image gather. Every image for
different fixed angle θ-value produces its image at the same depth.

1 Introduction

Inverse scattering series (ISS) is a comprehensive theory for processing primaries and multiples
without the traditional need for a subsurface velocity. Several task-specific subseries of ISS (Weglein
et al., 2003) have been identified. These subseries correspond to classical objectives of seismic
data processing: (1) eliminating free-surface multiple (Carvalho et al., 1991; Carvalho, 1992), (2)
eliminating the internal multiples (Weglein et al., 1997; Araújo, 1994; Matson, 1997; Ramı́rez and
Weglein, 2005), (3) imaging reflectors at depth (Weglein et al., 2000, 2002; Shaw et al., 2003;
Innanen et al., 2004; Shaw, 2005; Liu, 2006), (4) determining the parameter changes across the
reflectors (Zhang and Weglein, 2003, 2004; Zhang, 2006). This article is specific to task (3): the
image of the same reflector in the same lateral coordinate, flattened and migrated to the same
(actual) depth without knowing or determining the subsurface reflector or its overburden.
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2 Description of the problem

For simplicity, consider an exploration problem in 2D where zs (the elevation of the source) and zg
(the elevation of the receiver) are fixed. In this case, the seismic data is considered a function of
three variables: xs (the horizontal coordinate of the source), xg (the horizaontal coordinate of the
receivers), and t (time).

Physical properties at points in the subsurface, including reflector location in space, are not in
any way dependent on the surface reflection data, or any subset of the data, used to determine
or estimate those properties. That criteria is used in current leading-edge imaging as a necessary
condition that an imaging algorithm with a correct velocity would satisfy. For example, images from
different offset components of the data ought to locate at the same point in space if the velocity is
correct. That concept is simple but in practice often not easy to realize. Methods to force or “iron”
the common-image gather data flat and horizontal can have very serious and harmful consequences
on subsequent analysis with lost polarity reversals and difficulty identifying class I and class II AVO
anomalies.

In this paper we demonstrate that the higher-order velocity-independent imaging subseries auto-
matically produces the flat common-image gather, as you would expect from an imaging algorithm
that produces the image at the correct depth. Not only is there no velocity, but the flatness is
achieved without damaging the offset dependent amplitude information in the imaged data.

This phenomenon can be illustrated by the two experiments shown in Figure 1.

Although Experiment 1 and Experiment 2 correspond to the same earth, their incident wavefields
are different, and consequently the input data and seismic imaging results will be different, as
illustrated in Figure 2.

The phenomena described above will compromise the AVO analysis, where the reflection event
from the same reflection point should be flat. Flattened events are very desirable for quantitative
estimation of the reflection strength. This phenomena had already been studied in Shaw (2005) for
earth even without lateral variation and dealt with by using the leading order imaging subseries.

3 Theory

For a constant-density acoustic model, the mathematical description of the 2D wave-propagation
is,

(
∂2

∂x2
+

∂2

∂z2
+

ω2

c2(x, z)

)
G(x, z, xs, zs, ω) = δ(x− xs)δ(z − zs), (1)

where ω is the temporary frequency (the Fourier conjugate of time t), G(x, z, xs, zs, ω) is the wave-
field, the function c(x, z) is the velocity field.

Equation (1) can be systematically solved by the inverse scattering series (Weglein et al., 2003)
with the help of a wave parapagation in a much simpler reference velocity c0,
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Figure 1: In Experiment 1 (left panel), a normal incident plane wave is used to study an earth without
lateral variation. In Experiment 2 (right panel), a plane wave with non-zero incident angle θ is
used to study the same earth as in Experiment 1.
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Figure 2: The left panel is the input data with different angles. The right panel is the corresponding com-
mon image gather (FK migration with homogeneous water velocity c0 = 1500m/s) for different
incident angles. It is obvious that no event in the input data is flat. In the common image gather,
the first reflector (water bottom) is flattened, but the reflectors below are still curved.
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(
∂2

∂x2
+

∂2

∂z2
+
ω2

c20

)
G0(x, z, xs, zsω) = δ(x− xs)δ(z − zs), (2)

where G0(x, z, xs, zsω) is the reference wave-field.

In the inverse series, equation (1) is computed in an order-by-order fashion via the inverse scattering
series (equation (11)∼(13) of Weglein et al. (2003)) as,

G0k
2α1G0 = D = G−G0, (3)

G0k
2α2G0 = −G0k

2α1G0k
2α1G0, (4)

G0k
2α3G0 =−G0k

2α1G0k
2α2G0 −G0k

2α2G0k
2α1G0

−G0k
2α1G0k

2α1G0k
2α1G0,

(5)

where k = ω/c0; D in equation (3) is the input data for the inverse scattering series and is the
difference between the actual wavefield G and the reference wavefield G0; α1, α2, · · · are iteratively
computed and can be used to construct α = α1 + α2 + α3 + · · · , which is related to the subsurface
geology via α = 1 − c20/c

2(x, z). Equation (3) can be solved via Fourier transform. Following the
notation in Clayton and Stolt (1981), we use kz, kg, ks, km and kh to denote the Fourier conjugate
of z, xg, xs, xm = 0.5(xg + xs) and xh = xg − xs respectively. In the examples in this article, the
reference velocity (the velocity actually used in migration) c0 is chosen as whole-space constant
water velocity. The detailed derivation of the equations in this article can be found in Liu (2006)
and the final solution is summarized below.

4 The solution of the first term α1

The data is chosen according to the following relation,

kh = kg + ks = 2 ω
c0

sin (θ) kg − ks = km . (6)

where the constant θ is the incident angle of synthesized plane wave by Radon transform defined
in the CMP (common-mid point) gather (see equation (9)). With equation (6) as constraint, the
temporary frequency ω can be expressed as a function of km and kz,

ω =
c0kz

2

√
k2

z + k2
m

k2
z cos2(θ)− k2

m sin2(θ)
. (7)
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With ω defined in equation (7), our generalized migration formulism can be expressed as,

˜̃α1 (km, kz) = − 4qgqs
ω2/c20

∞∫
−∞

dxme
−ikmxm

∞∫
−∞

dτeiωτDτp (xm, τ) . (8)

where the double tidle signs in the equation above are used to denote the fact that the expression
had been Fourier transformed twice from its original form in the spatial domain (x, z) to frequency-
wave number domain (km, kz), and Dτp is computed via Radon transform,

Dτp (xm, τ) =

∞∫
−∞

dxhD

(
xm +

xh

2
, xm − xh

2
, τ + xh

sin (θ)
c0

)
. (9)

Equation (6) of Liu et al. (2006) can be considered as a special case of equation (8) where the angle
θ is chosen as zero.

5 Higher order imaging subseries

The higher-order imaging subseries (HOIS) in equation (11) of Liu et al. (2006) is generalized for
non-zero θ as,

αHOIS

x, z +
1
2

z∫
0

α1(x, z′)dz′

cos2 θ − 0.25α1(x, z′)

 = α1 (x, z) (10)

Interested readers may refer to Liu (2006) for detailed derivation and discussion for equation (10).

6 Numerical examples

The synthetic data set (see examples in Figure 4) used in this article was generated upon a salt
model shown in Figure 3.

The linear images (α1) of the inverse scattering series with different angles are calculated via
equation (8) and the imaging results for two typical angles are shown in Figure 5 and Figure 6.

In order to consistently use the migration result in Figure 5 and Figure 6 in AVO analysis, it is
very desirable that they share the same depth. In order to study the performance of our algorithm
in different geological conditions, we picked four locations (illustrated by the vertical green lines
in Figure 5). It is clear that, in α1 with water speed, only the images of the water-bottom share
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Figure 3: A salt model designed by Peter Traynin from ExxonMobil.
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Figure 4: Two typical shot gathers extracted from the data set generated from the salt model in Figure 3.

167



Direct horizontal common image gathers without the velocity or “ironing” MOSRP06

Figure 5: The linear image α1 (see equation (8)) with θ = 0◦. In this figure and Figure (6, 7, 8, 13), partial
derivative over z operation ∂/∂z is taken before the display, and the red lines are bench-marks
indicating the actual location of various reflectors. The vertical green lines indicate four location
in the x-coordinate where the common-image gather is extracted and studied in detail. Those
four loctions are denoted as A, B, C, and D, respectively, as indicated by the symbols below each
location.
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Figure 6: The linear image α1 (see equation (8)) with θ = 9◦. Due to the truncation artifacts (below 2500m)
caused by unavailability of the data, θ = 9◦ is the maximal angle we studied in this article.
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the same depth, as indicated by the flat water-bottom in the common-image gather in Figure 9(a),
10(a), 11(a), 12(a). The images of the reflectors below the water-bottom are not flat, as indicated by
the bumpy refletors in Figure 9(a), 10(a), 11(a), 12(a). Since the angles we studied in this example
are very small (between 0◦ and 9◦), the curvature of the non-flat events is not easily visible. For
display purpose, we duplicate each imaging result for an angle 100 times. We then introduce 100
copies of imaging result for another angle θ, etc, · · · . Since the imaging result for a specific angle is
duplicated 100 times, this 100 identical traces will produce a smooth-looking background. In this
manner, even the small changes between the imaging results of adjacent angles can be easily seen
against the smooth background produced by trace duplication.

After the application of the higher-order imaging subseries, all the reflection events become hori-
zontal, see Figure 9(c), 10(c), 11(c), 12(c). There is clearly lots of useful information in the common
image gathers, either in α1, or in the higher-order imaging subseries: the reflection events are much
more coherent than the un-collapsed diffraction energy; the diffraction energy looks more diffusive
than in the original (x, z)-domain; the difference between the diffraction events and reflection events
become more obvious.

Since after applying the higher-order imaging subseries, all the reflection events are imaged to
the same location, where the diffraction events are further dispersed into different locations, as
indicated by Figure 9, 10, 11, 12, it is reasonable to sum all the higher-order images together to
have an improved image with better signal/noise ratio, as displayed in Figure 13.

7 Conclusions

In this paper, the efficacy of the higher order imaging subseries is further demonstrated by automat-
ically and accurately producing common-image gathers, without the velocity, and with amplitude
intact and ready for subsequent AVO analysis.
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Figure 7: The higher-order imaging subseries (see equation (10)) with θ = 0◦.

171



Direct horizontal common image gathers without the velocity or “ironing” MOSRP06
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Figure 10: The common-image gather taken from location B in Figure 5, where x = −2, 600m. There are
reflection and diffraction events visible in this region since the lateral variation is big. (a) is the
common image gather taken from the linear image α1, (b) is same as (a) except for the fact that
horizontal red lines are drawn to bench-mark the flatness of the common-image gather. Please
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Figure 11: The common-image gather taken from location C in Figure 5, where x = 2, 300m. There are
reflection and diffraction events visible in this region since the lateral variation is big. (a) is the
common image gather taken from the linear image α1, (b) is same as (a) except for the fact that
horizontal red lines are drawn to bench-mark the flatness of the common-image gather. Please
notice that although the fourth and fifth reflectors (around the fourth and fifth red horizontal
lines in (c)) are noticeably curved, they are much flatter and more coherent than the diffraction
events. (c) is the common image gather taken from the higher-order image series, (d) is same
as (c) except for the fact that horizontal red lines are drawn to bench-mark the flatness of the
common-image gather. It is obvious that all reflectors become much flatter, although the fourth
and fifth reflectors are noisy due to un-clasped diffractions.
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Figure 12: The common-image gather taken from location D in Figure 5, where x = 11, 000m. There are
only reflection events visible in this region since the lateral variation is very small. (a) is the
common image gather taken from the linear image α1, (b) is same as (a) except for the fact
that horizontal red lines are drawn to bench-mark the flatness of the common-image gather. It
is noticeable that the fourth reflector (around the fourth red-lines in (b)) is not flat, and it is
obvious that the fifth (around the fifth red-lines in (b)) is not flat. (c) is the common image
gather taken from the higher-order image series, (d) is same as (c) except for the fact that
horizontal red lines are drawn to bench-mark the flatness of the common-image gather. It is
obvious that all reflectors become flat.
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Figure 13: The sum of all the higher-order images. Since the reflection events are migrated to the same
depth by the higher-order imaging subseries, they sum to each other constructively. But the
residual diffractions are not migrated to the same depth, and hence they sum to each other
destructively and become much weaker compared to the imaging result for any single fixed angle
θ.
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F. Liu, A. B. Weglein, B. G. Nita, K. A. Innanen, J. Zhang

Abstract

The first step of the inverse scattering series is the calculation of α1. The parameter α1 can
be seen as the perturbation in the Born approximation. The first-order approximation to the
velocity perturbation, α1, as well as similar first-order perturbation forms are extensively used
in the following procedures: internal multiple removal algorithms (in the form of a model-
type independent first-order perturbation form b1), the leading-order imaging subseries, the
simultaneous imaging and inversion subseries, and the higher-order imaging subseries. The
best-effort calculation of α1 is very critical for the subsequent implementations. This article
summarizes our best efforts to achieve an α1 with imperfect data acquisition. The discussion is
based on 2D, but can be extended to 3D with very little modification.

1 Introduction

In the inverse scattering series (Weglein et al., 2003), the first term is the migration inversion
(Clayton and Stolt, 1981) result based on the inaccurate velocity field c0. The basic idea of the
inverse scattering series is to construct the second term, the third term, etc., using this as input.
Compared with the true earth, this starting point is generally dramatically different, due to the
inaccurate reference velocity (or migration velocity) used in migration. This implies that, we have
a long way to go to reach our inverse objectives. The purpose of this article is to describe the
practical construction of the linear term.

There are several lessons from our experience: (1) implementation steps must honor the physics
in the inverse scattering series; (2) argument based on ray theory should be used carefully. In
this paper, we are going to describe the implementation of α1 used to achieve the 2D velocity-
independent acoustic imaging results shown in Liu (2006). The reason why we need an accurate
and reliable calculation of α1 from measured data is that α1 is the input to further processing in the
inverse scattering series. And α1 as an input for processing data non-linearly requires amplitude
and phase information to be treated appropriately.

2 Theory

For a constant-density acoustic model, the mathematical description of the wave-propagation prob-
lem is,

(
∂2

∂x2
+

∂2

∂z2
+

ω2

c2(x, z)

)
P (x, z, xs, zs, ω) = δ(x− xs)δ(z − zs)A(ω), (1)
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where ω is the temporal frequency (the Fourier conjugate of time t), P (x, z, xs, zs, ω) is the wave-
field, A(ω) is the source signature (or wavelet) in the frequency domain, and the function c(x, z)
is the velocity field governing the wave propagation in the subsurface. If the wavelet is known and
its effect had been compensated for, we can use A(ω) = 1, and the corresponding wave-field is
called the Green’s function (or impulse response) in the medium c(x, z),

(
∂2

∂x2
+

∂2

∂z2
+

ω2

c2(x, z)

)
G(x, z, xs, zs, ω) = δ(x− xs)δ(z − zs). (2)

The inverse scattering series (ISS) is a procedure to construct the medium property distribution
c(x, z) using an arbitrary reference velocity c0 and its corresponding Green’s function G0,

(
∂2

∂x2
+

∂2

∂z2
+

ω2

c20(x, z)

)
G0(x, z, xs, zs, ω) = δ(x− xs)δ(z − zs). (3)

Although in the ISS, the reference medium can be arbitrary, it is chosen to be homogeneous in the
current imaging subseries. Hence c0(x, z) = c0. The major reason to choose the constant reference
velocity is the availability of the analytic solution for its Green’s function and exact analytic inverse
for the corresponding integral equation.

The input data D (available only on the measurement surface) for the inverse scattering series is
the difference between the Green’s function in the actual and reference medium:

D(xg, zg, xs, zs, ω) = G(xg, zg, xs, zs, ω)−G0(xg, zg, xs, zs, ω) (4)

The data in the inverse scattering series can also be considered as the recorded wave-field G with
the direct arrival G0 removed.

With the data defined in equation (4), the first term of the inverse series can be computed as,

D(xg, zg, xs, zs, ω) =
∫ ∞

−∞
dz′
∫ ∞

−∞
dx′G0(xg, zg, x

′, z′, ω)V1(x′, z′)G0(x′, z′, xs, zs, ω), (5)

where

V1(x, z) =
ω2

c20
α1(x, z), (6)

and α1(x, z) is the 1st-order component of the wavespeed perturbation α(x, z) =
∞∑

n=1
αn(x, z), whose

reconstruction is the aim of the inverse scattering series.

In equation (3), if the reference velocity c0 is constant, we have the Green’s function in the reference
medium (Morse and Feshbach, 1953, Equation (7.2.18)),
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G0(xg, zg, xs, zs, ω) =
1
2π

∞∫
−∞

dkg
eikg(xg−xs)eiqg |zg−zs|

2iqg
, (7)

where kg is the Fourier conjugate to xg, qg = sgn(ω)
√

(ω/c0)
2 − k2

g . The quantities (xg, zg) and
(xs, zs) denote the spatial coordinates of the receivers and sources, respectively. Throughout this
article, the function sgn is defined as the sign of its argument:

sgn(x) =


1 (x > 0)
0 (x = 0)
−1 (x < 0)

(8)

For convenience, let me summarize all the variables and their corresponding Fourier conjugates in
the table below:

Physical meaning Variable name Fourier conjugate
x-coordinate of the receiver xg kg

x-coordinate of the source xs ks

Time t ω

x-coordinate of the mid-point xm = 0.5(xg + xs) km = kg − ks

Offset xh = xg − xs kh = kg + ks

With the Green’s function defined in equation (7), equation (5) can be elegantly solved by applying
two nested Fourier transforms 1:

∫∞
−∞ dxg

∫∞
−∞ dxse

iksxs−ikgxg , over the lateral source and receiver
coordinates to obtain α1. After the Fourier transform above, the nested integral on the right-hand-
side of equation (5) is reduced to a simple product:

˜̃
D (kg, ks, ω) = − ω2

4qgqsc20
˜̃α1(kg − ks, qg + qs), (9)

where ˜̃α1 is the double Fourier transform of α1(x, z):

˜̃α1(km, kz) =

∞∫
−∞

dxe−ikmx

∞∫
−∞

dzeikzzα1(x, z),

and qg = sgn(ω)
√

(ω/c0)2 − k2
g , qs = sgn(ω)

√
(ω/c0)2 − k2

s .
˜̃
D is the triple Fourier transform of

the data D(xg, xs, t):

˜̃
D (kg, ks, ω) =

∞∫
−∞

dxge
ikgxg

∞∫
−∞

dxse
−iksxs

∞∫
−∞

dteiωtD(xg, xs, t).

1Note that the “sign convention” of the Fourier transform is different for the source and geophone coordinates.
See Clayton and Stolt (1981) for detail of this choice of Fourier transform.
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In this article, We put the tilde sign ∼ on top of a function to express its Fourier transform.
Equation (9) can be rearranged as:

˜̃α1(kg − ks, qg + qs) = −4
qgqs
ω2/c20

˜̃
D (kg, ks, ω) , (10)

By a simple transformation of coordinates, the data can be transformed to the mid-point xm and
offset xh coordinate,

xm =
xg + xs

2
, xh = xg − xs. (11)

Equation (10) can be written in an equivalent form,

˜̃α1(km, kz) = −4
qgqs
ω2/c20

˜̃
D (km, kh, kz) . (12)

It is clear that there is one extra degree of freedom in the data than in α1, and the reduction of
the extra freedom is not unique. The reduction methods in this article are based on the ability to
reduce to the redundant freedom to what had been achieved by Zhang and Weglein (2004); Shaw
and Weglein (2004a); Liu et al. (2005).

In Liu et al. (2005), the extra degree of freedom is fixed by choosing the offset conjugate kh to be
zero.

The extra freedom in the data has been studied by Zhang and Weglein (2004), by fixing the ratio
between ω and qg = qs,

qg = qs =
ω

c0
cos(θ), where : θ = constant,

kg = ks.
(13)

Similar treatment can be found from the first equation in page-161 of Shaw and Weglein (2004a).
Our objective is to generalize the work mentioned above to allow both lateral variations in the
medium and extra freedom in the data. This extra freedom is critical for research beyond seismic
imaging, i.e., amplitude analysis for parameter inversion.

To generalize equation (13), we define a fixed angle θ without restricting kh = kg − ks = 0:

kg + ks = 2
ω

c0
sin (θ) . (14)

The result used by Liu et al. (2005) can be considered as the special case of θ = 0. With this data
choice, the relationship in Liu et al. (2005) can be generalized as:
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kh = kg + ks = 2 ω
c0

sin (θ) kg − ks = km . (15)

One important reason to choose angle θ as our parameterization is that parameter inversion is
normally done as a function of angle. Please notice that the angle is defined in the offset domain,
the coordinate orthogonal to the mid-point coordinate. A comprehensive description of the variables
in this articles is provided in table (2).

For an arbitrary angle θ, we will solve equation (10) under the constraint of equation (15). Conse-
quently, for each km and ω, the corresponding vertical wave-number kz can be calculated by:

kz = qg + qs = sgn(ω)

√(
ω

c0

)2

−
(
ω

c0
sin (θ) +

km

2

)2

+ sgn(ω)

√(
ω

c0

)2

−
(
ω

c0
sin (θ)− km

2

)2

.

For fixed km and θ, let us consider the equation above as a function of ω:

kz = κ(ω). (16)

For the same fixed km and θ, the relation above can be inverted to express ω as a function of kz:

ω = κ−1(kz) =
c0kz

2

√
k2

z + k2
m

k2
z cos2(θ)− k2

m sin2(θ)
. (17)

With ω being defined in equation (17), our generalized formalism can be expressed as:

˜̃α1 (km, kz) = − 4qgqs
ω2/c20

˜̃̃
D

(
ω sin(θ)
c0

+
km

2
,
ω sin(θ)
c0

− km

2
, ω

)

=− 4qgqs
ω2/c20

∞∫
−∞

dxge
−ikgxg

∞∫
−∞

dxse
iksxs

∞∫
−∞

dteiωtD (xg, xs, t) .
(18)

Let us change the integration variable from (xg,xs) to (xm = 0.5(xg + xs), xh = xg − xs):
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− 4qgqs
ω2/c20

∞∫
−∞

dxm

∞∫
−∞

dxhe
−ikg [xm+0.5xh]eiks[xm−0.5xh]

∞∫
−∞

dteiωtD (xm + 0.5xh, xm − 0.5xh, t)

= − 4qgqs
ω2/c20

∞∫
−∞

dxme
−i(kg−ks)xm

∞∫
−∞

dxhe
−i(kg+ks)xh/2

∞∫
−∞

dteiωtD (xm + 0.5xh, xm − 0.5xh, t)

= − 4qgqs
ω2/c20

∞∫
−∞

dxme
−ikmxm

∞∫
−∞

dxhe
−i

ω sin(θ)
c0

xh

∞∫
−∞

dteiωtD (xm + 0.5xh, xm − 0.5xh, t)

= − 4qgqs
ω2/c20

∞∫
−∞

dxme
−ikmxm

∞∫
−∞

dt

∞∫
−∞

dxhe
iω

h
t− sin(θ)xh

c0

i
D (xm + 0.5xh, xm − 0.5xh, t)

With another change of the integration variable from t to (τ = t − sin(θ)xh

c0
), the expression above

can be written as:

− 4qgqs
ω2/c20

∞∫
−∞

dxme
−ikmxm

∞∫
−∞

eiωτdτ

∞∫
−∞

dxhD

(
xm + 0.5xh, xm − 0.5xh, τ +

sin(θ)xh

c0

)

= − 4qgqs
ω2/c20

∞∫
−∞

dxme
−ikmxm

∞∫
−∞

dτeiωτDτp (xm, τ)

where Dτp is simply the linear Radon transform of all traces within a CMP gather 2:

Dτp (xm, τ) =

∞∫
−∞

dxhD

(
xm +

xh

2
, xm − xh

2
, τ + xh

sin (θ)
c0

)
. (19)

The equation above is defined for the expression of α1 :

˜̃α1 (km, kz) = − 4qgqs
ω2/c20

∞∫
−∞

dxme
−ikmxm

∞∫
−∞

dτeiωτDτp (xm, τ) . (20)

Equation (20) can be Fourier transformed from kz to z by the Fourier operator (1/2π)
∞∫

−∞
dkze

−ikzz.

But for our purposes, when an angle θ 6= 0 is used, there is a lower limit for the kz value, namely
2CMP means “common mid-point”. A CMP-gather is the set of seismic data sharing the same mid-point xm.
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min(|kz|), defined in eqiation (23). Therefore, our Fourier transform back into space is actually
band-limited:

α̃1 (km, z) =

∞∫
−∞

dxme
−ikmxm

∞∫
−∞

dτDτp 1
2π

∫
|kz |>min(|kz |)

dkz
−4qgqs
ω2/c20

eiωτe−ikzz. (21)

Please notice that in the equation above, the rightmost integral is independent of the data, we only
need to calculate it once, and used for later FK-migration tasks,

f(km, τ, z) =
1
2π

∫
|kz |>min(|kz |)

dkz
−4qgqs
ω2/c20

ei(ωτ−kzz). (22)

For the calculation of the factor f(km, τ, z) in equation (22), we kept the uniform sampling in kz to
allow the Fast Fourier Transform, and the frequency ω in the integral is computed via equation (17).

The advantage of pre-calculating f(km, τ, z) in equation (22) first, and used for later migration task
is the saving in computation.

The advantages of expressing data in equation (19) are: (1) an easier cut of the direct-arrivals, and
(2), very straightforward control over the amplitude and waveform 3.

There are also pre-processing procedures that can be more easily and quickly done in the τ − p
domain (the data after slant stacking) than in the original domain; the computation cost can be
greatly reduced since the freedom of the data is reduced.

Missing spectrum

In equation (20), the frequency ω is calculated as in equation (17). Only in the special case of
θ = 0, can we sweep the data in the (kg, ks, ω) domain to achieve a complete spectrum of α1 for
−∞ ≤ km ≤ +∞, and −∞ ≤ kz ≤ +∞. Otherwise, for km 6= 0, there is always a missing band in
the spectrum. The efforts below are meant to maximally gather the frequency contents available
in the spectrum of α1.

If we require that both qg and qs are real, we have:

∣∣∣∣ ωc0
∣∣∣∣ ≥ ∣∣∣∣ω sin(θ)

c0
± km

2

∣∣∣∣
3The sources in seismic exploration are localized in space, which produce reflection data with varying waveform

for different offsets even for the simplest horizontal reflectors. But after applying the linear Radon transform, which
can be easily implemented, we have a physical problem with plane-wave incidence. For a horizontal reflector, the
reflection responses to an incident plan-wave share the same waveform for different incident angles.
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Let us consider an easy case where ω ≥ 0. We require:

 ω
c0
≥ ±

(
ω sin(θ)

c0
+ km

2

)
=⇒ ω ≥ ±0.5kmc0

1∓sin(θ)

ω
c0
≥ ±

(
ω sin(θ)

c0
− km

2

)
=⇒ ω ≥ ∓0.5kmc0

1∓sin(θ)


=⇒ ω ≥ |0.5km|c0

1− | sin (θ)
| = max

(
∓0.5kmc0
1∓ sin(θ)

,
±0.5kmc0
1∓ sin(θ)

)

Likewise, for ω < 0, we have:

 − ω
c0
≥ ±

(
ω sin(θ)

c0
+ km

2

)
=⇒ ω ≤ ±0.5kmc0

−1∓sin(θ)

− ω
c0
≥ ±

(
ω sin(θ)

c0
− km

2

)
=⇒ ω ≤ ∓0.5kmc0

−1∓sin(θ)


=⇒ ω ≤ −|0.5km|c0

1− | sin (θ) |
= min

(
∓0.5kmc0
−1∓ sin(θ)

,
±0.5kmc0
−1∓ sin(θ)

)

Combining the two relations above, we have:

|ω| ≥ 1
2

|km|c0
1− | sin (θ) |

Let us denote the lower limit above as: ωmin, the relation above can be expressed as,

ωmin =
1
2

|km|c0
1− | sin (θ) |

I then consider when the lower-limit ωmin is reached, what would be all the possible values for the
corresponding kz:

(
ω sin (θ)

c0
± km

2

)2

=
(

0.5 |km| c0
1− |sin (θ)|

sin (θ)
c0

± km

2

)2

=
k2

m

4

(
sin (θ)

1− |sin (θ)|
± 1
)2

=
k2

m

4

(
sin (θ)∓ |sin (θ)| ± 1

1− |sin (θ)|

)2

=


k2

m
4

(
1

1−|sin(θ)|

)2
= ω2

min

c20
or
k2

m
4

(
1−2|sin(θ)|
1−|sin(θ)|

)2
= ω2

min

c20
(1− 2 |sin(θ)|)2

 .

Consequently, in this case, the kz value will be,
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Figure 1: In the (km, kz)-plane, the spectrum is missing for the two shaded triangular regions.

kz = qg + qs =

√
ω2

c20
−
(
ω sin (θ)

c0
+
km

2

)2

+

√
ω2

c20
−
(
ω sin (θ)

c0
− km

2

)2

=
ωmin

c0

√
1− {1− 2 |sin(θ)|}2 = 2

ωmin

c0

√
|sin(θ)| −

∣∣sin2(θ)
∣∣ = |km|

√
| sin(θ)|

1− | sin(θ)|
.

Consequently, we have the low limit for kz,

min(|kz|) = |km|

√
| sin(θ)|

1− | sin(θ)|
. (23)

From equation (23), it is clear that the lower-limit for kz is proportional to km. The missing part
of the spectrum is displayed in the shaded region of Fig. 1.

The slope of the boundary of the shaded regions in the figure above is
√

|sin(θ)|
1−|sin(θ)| , it will be empty

if θ = 0. This means that for the special case of θ = 0, the shaded region vanishes and the spectrum
is complete.

During the process of Fourier transform the spectrum is put back into space, i.e., the right-most
integral in equation (21), we must keep in mind the missing spectrum in Fig. (1).

3 What is the “ideal” and adequate data acquisition?

In the α1 calculation, we have to Fourier transform the input data in equation (4) into wave-number
domain,

˜̃
D(kg, ks, t) =

∞∫
−∞

dxg

∞∫
−∞

dxse
i(kgxg−ksxs)D(xg, xs, t) (24)
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Figure 2: τ−p transform with different ∆x. The gray (∆x = 5) and black (∆x = 10) curves are not visible
since they are covered by green (∆x = 20) curve. For large time, little difference between green
(∆x = 20) and yellow (∆x = 40) is visible. After ∆x increases to 80m (orange) or 160m (red),
the negative effects of sparse sampling in the x-direction is clearly visible for large time (from
1.5s an on). For small time, i.e., t < 1.2s, only the red curve (∆x = 160) is visible because all
the other curves share the same value, and hence were covered by the last drawn red curve.

Any single value in the wave-number spectrum (for example, a single ˜̃D(kg, ks, t)) requires the wave
field at every source and receiver location −∞ ≤ xg, xs ≤ ∞. This implies two sampling issues:
(1) infinitely small sampling intervals; and (2) infinitely large aperture from −∞ to ∞; practical
seismic acquisition clearly does not permit this.

Let’s discuss those two issues separately. The first issue does not tend to cause problems, since the
wave fields are used in integrals, a reasonably fine sampling rate gives a very good result. In Fig. (2),
we show the effects of different ∆x (sampling rate in the horizontal direction) in the τ−p transform
in equation (19) ( a step most sensitive to ∆x). It is obvious that a sampling interval of 20m gives
an almost exactly same result as the one given by a sampling rate of 5m. We further obtain good
results with ∆x = 40m, a sampling rate already provided by current seismic acquisition.

The wave-field used in equation (24) is the wave-field at a receiver point due to a localized source.
Source and receiver array will tend to affect the accuracy of the integral. We have not yet tested
the imaging subseries with regard to this issue.

The second issue states that, theoretically, we need the data from −∞ < x < ∞ to properly do
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Figure 3: A sample shot gather. The recording length of this shot gather is TM = 4.2(s), and for this
duration, the wave energy had not reached the phones at the left and right edge. For this
recording duration, we will receive no additional wave energy from the source if we increase the
horizontal aperture.

the Fourier transform, a very daunting requirement for the current seismic acquisition. But in the
actual implementation, if the maximal recording time is TM , then due to the finite speed of the
wave propagation, wave energy can only have traveled a finite distance away from the source, and
hence we only need a finite aperture in the lateral direction. This can be illustrated by the example
in Fig. (3). In the example in Fig. (3), the maximal offset is 12, 250m, which is much larger than
the one in standard practice. Further research is needed to study the effects of missing data in
the small and large offsets. We have not yet tested our algorithms against this issue. However,
Stolt and Benson (1987); Stolt (2002); Ramı́rez et al. (2007) have provided many methods for data
reconstruction and extrapolation that can be used to extend the recorded data offset to the desired
one.

4 Pre-processing

Inverse scattering imaging subseries assumes that the following tasks have already been achieved:
wavelet estimation, data reconstruction and regularization, de-ghosting, free-surface multiple re-
moval, internal multiple removal, etc.
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Figure 4: A shot gather from finite difference modleing in shown in (a), the direct arrival (see (b)) is
generated using a whole space homogeneous water speed. The direct arrival is removed by
subtracting (b) from (a), and pure reflection data is shown in (c). This is the only pre-processing
actually happened here.

4.1 Wavelet estimation, de-ghosting, free-surface multiple removal

In practice, normally both the source and the receiver are located very close to the air-water
interface, termed the free-surface. The presence of the free-surface will generate ghosts and free-
surface multiples. The effects of free-surface can be removed using de-ghosting (Weglein et al., 2000,
2002; Zhang and Weglein, 2005, 2006) and free-surface multiple removal (Carvalho et al., 1991;
Weglein et al., 1992; Carvalho and Weglein, 1994). After de-ghosting and free-surface multiple
removal, the marine seismic experiment can be considered as if the free-surface does not exist. In
the finite-difference modeling, we avoid the free-surface issue by putting a free-surface very far away
from the sources and receivers such that the presence of the free-surface is not visible in the input
data (see Fig. 4(a)). We generate the direct wave using whole-space homogeneous water velocity
(see Fig. 4(b)), then subtract the direct wave from the original data to produce pure reflection data
in Fig. 4(c).

Although we assume internal multiples have been removed from the input data, in finite-difference
modeling procedure, there is no way of excluding internal multiples. However, since the major task
of this research is seismic imaging, and since their amplitudes are very small here, we have not
removed them from the data.
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Figure 5: The temporal variation of the Ricker wavelet is shown in (a), please notice its symmetrical side
lobes. Even for the simplest geology and acquisition geometry shown in (c), the asymmetrical
recorded reflection packet, shown in (b), is noticeably different from the symmetrical-looking
wavelet.

5 Wavelet estimtion and reconstruction

5.1 What is “wavelet”?

In this article, by “wavelet” we mean the source term on the right-hand-side of the wave equation
(for example, Ã(ω) in equation (1)), not the discrete wave packet recorded by the phones 4. Fig (5)
illustrate the difference. Fig 5-(a) is the temporal variation of the wavelet; Fig 5-(b) is the reflection
wave packet recorded at zero offset; the configuration of the experiment is shown in Fig 5-(c). It is
obvious that the symmetrical shape of the Ricker wavelet is not kept by the reflection data, event
in the simplest geology without lateral variation.

Interested readers may refer to Weglein and Secrest (1990); Guo (2004) for a comprehensive de-
scription of wavelet estimations.

5.2 Wavelet reconstruction

Ideally speaking, in order to have a Green’s function, the A(ω) term in the right-hand side of
equation (1) should be a constant. In the time domain, a constant A(ω) implies an ideal spike,

4This is different from the definition of the wavelet popular in exploration seismology. According to the SEG
website, the definition of wavelet, for example, “embedded wavelet”, “basic wavelet”, or “equivalent wavelet” is the
time-domain reflection shape from a single positive reflector at normal incidence.
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A(ω) = 1 ⇔ 1
2π

∞∫
−∞

dωA(ω)e−iωt = δ(t),

where δ(t) is the Dirac δ-function. Ideal δ-function changes infinitely rapidly at t = 0; it can neither
be generated by any mechanical or electronical means, nor can it propagate through the subsurface
medium. Dirac δ-function and Green’s functions are popularly used in method derivations bacause
they best express the principle of superposition and are best for mathematical manipulations.
Luckily, the inverse scattering imaging algorithms of Shaw et al. (2003); Shaw and Weglein (2003);
Shaw et al. (2004); Shaw and Weglein (2004b); Shaw (2005); Liu (2006) do not require the idealistic
spike wavelet to work effectively, but a band-limited δ-function, just as the free-surface multiple and
internal multiple removal algorithms (Carvalho, 1992; Araújo, 1994; Weglein et al., 1997; Matson,
1997). For example, Shaw (2005) used a wavelet which is a box function in the frequency domain;
in Liu (2006), the wavelet is recovered to a smooth Gaussian function. In both cases, the missing
high frequency do not cause any problem for the series. Actually, the lower the frequency, the faster
the convergance rate, as observed by Shaw et al. (2004).

In practice, high frequencies are missing due to attenuation, low frequencies are also missing due
to the finite energy of the source, spectrum limit of the phones, etc. Shaw (2005) obtained good
results with wavelet missing low frequency information. In this section, we demonstrate how to
recover the low frequency information using simple techniques of integration.

Our first example of band-limited wavelet is the wavelet which is the first derivative of Gaussian.
Equation (25) shows the temporal variation A(t) and frequency spectrum Ã(ω) of a typical Gaussian
derivative wavelet. The low frequency energy gradually vanishes when frequency approaches zero.
Although zero frequency is missing, this wavelet can be easily reconstructed back to a Gaussian
wavelet by a straight-forward temporal integral in equation (26).

A(t) = −a
4

√
a

π
te−at2/4 ⇔ Ã(ω) = −iωe−ω2/a (25)

t∫
−∞

dτA(τ) =

t∫
−∞

dτ − a

4

√
a

π
τe−aτ2/4 =

√
a

4π
e−at2/4 (26)

The procedure in equation (26) works fine for the Gaussian-derivative wavelet, but it is not generally
sufficient for any wavelet. For example, the most popular wavelet in the exploration seismology is
the second derivative of Gaussian, or the Ricker wavelet, whose temporal variation and frequency
spectrum are shown in equation (27).

A(t) = −a
4

√
a

π

(
1− 0.5at2

)
e−at2/4 ⇔ Ã(ω) = −ω2e−ω2/a (27)

193



The first term of the inverse scattering series: practical strategies and issues MOSRP06

Figure 6: Examples of band-limited wavelets successfully used in the imaging subseries. Liu (2006) recon-
struct the wavelet in the seismic data to Gaussian (see (a) and (b) for its frequency spectrum
and temporal variation). Shaw et al. (2004) use Sinc wavelet, whose frequency spectrum and
temporal variation is shown (c) and (d), respectively. In both wavelet, the high frequencies are
missing, but both wavelets had been demonstrated to be sufficient for the purpose of the imaging
subseries.
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Figure 7: The input data for the experiment to recover Ricker wavelet to Gaussian. The data in (a) is
generated using finite-difference modeling with a Ricker wavelet in equation (27). The direct
wave in (b) was generated using whole-space water speed and was subtracted from (a) to obtain
the input data in (c).

If we integrate it over time once, we only reach the first derivative of Gaussian, still not sufficient for
the imaging subseries. But if we integrate it twice, as indicated in equation (28), we can reconstruct
Gaussian,

t∫
−∞

du

u∫
−∞

dv
−a
4

√
a

π

(
1− 0.5av2

)
e−av2/4 =

t∫
−∞

du(t− u)
(
a

4

√
a

π

(
0.5au2 − 1

)
e−au2/4

)
(28)

Let’s look at one numerical example to study the transformation of the Ricker wavelet. The finite
difference input data in Fig. (7) was generated using a Ricker wavelet in equation (27). Then a
Radon transform (see equation (19) was performed, the zero-angle Radon transform result was
shown in Fig. (8). It is clear that although each reflector in the trace had been well recovered to
the first dervative of Gaussian (the integral of the Ricker wavelet). We then apply the reconstruct
method in equation (28) to reach the satisfactory recovery in Fig. (9).

So far, the treatment for band-limited wavelet to make it ready for the imaging subseries are very
encouraging, although we demonstrated the solution in a case by case sense, and we do not have a
general solution for this topic.

In this article, we focused on recovering the wavelet in the data to Gaussian since studying missing
low frequency is not the main topic of this research. For more detailed study, interested reader
may refer to Shaw and Weglein (2004b).
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Figure 8: The zero-angle Radon transform of the data in Fig. 7(c).

Figure 9: The recovery of a Ricker wavelet to Gaussian. The input data are generated from a layered
medium using finite-difference modeling. The recovery is done by integrating over time twice.
The α1 trace again had the box looking of an impedance display. Ricker wavelet contains far
less low-frequency information than the first derivative of Gaussian, but its recovery is achieved
using a little treatment.
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Figure 10: (a): A shot gather generated by a 3rd-party finite difference software. (b): Zero-angle Radon
transform result.

Due to that fact that the accurate implementation of the wavelet is not critical for the purposes
of developing current seismic imaging algorithms, the most critical information for them is the
travel-time. Consequently, the accurate implementation of the wavelet is not the most important
objective for many numerical modeling procedures. Let’s illustrate this issue with one very simple
example. A 3rd party finite difference modeling software was used to generate a shot gather upon
a layered medium. The software was given the maximal freedom to choose the peak frequency and
the sampling rate in time, we only specify the geological model and the sampling rate in space.
Although the 3rd-party program applies transparent boundary conditions to minimize the boundary
artifacts, we made the model so big (width=15000m, height=5000m) that the receivers will not
receive the unwanted boundary-artifacts from the top, bottom, left and right edges.

From its documentation, we know the 3rd modeling code uses the Ricker wavelet. The data was
shown in the left of Fig. (10), it’s clear that the linear travel time of the direct wave, and the
hyperbolic look of the reflection data, are all very reasonable. But if we sum all the traces together
(zero-angle Radon transform), we obtain the resulting trace shown on the right of Fig. (10). Let’s
look at the wave-form of the first and second primary. Due to the fact that the integral of Ricker
is the first derivative of Gaussian, the positive lobe and negative lobe should be of the same size.
But in this case, the differences in the sizes of the positive and negative lobes are 32.8 and 35.6
percent, respectively.

6 Migrate the DC-component separately

Let’s consider a model without lateral variation. For this model, the result from equation (19) has
no lateral variation, i.e., is not a function of xm. It’s Fourier transform in equation (20) will be a
δ-function in space because the Fourier transform of a constant is a δ-function. Spiky spectrum
like this is often straight-forwardly approximated by an array of floating points. We found that a
much better process is to remove the DC component from the data. Then we have a data without

197



The first term of the inverse scattering series: practical strategies and issues MOSRP06

Figure 11: The idea of duplicate a function to make it even with respect to the middle. In this case,
an uneven function in (a) is duplicated on the right by its mirror image to construct an even
function in (b).

DC-component. The nice property of the data without DC-component is that, its spectrum is no
longer spiky, and we don’t have the problem of approximate the spiky spectrum.

The spiky spectrum is actually essential for a earth model which extends to infinity. For example,
if we have a function that has values in −X < x < X, the sampling rate for the earth model
spectrum, which is proportional to the reciprocal of X, approaches zero if X approaches infinity.
If we localize the non-vanishing range of the data, its spectrum will no longer be spiky and we can
well approximate it by an affordable sampling rate. Our idea is to subtract a DC component from
the data. And we hope after subtracting the DC component, the data will be localized.

The problem for this idea is that, the left and right edges of the data are generally different, this
implies that we have different DC component to the left than to the right. For this kind of data,
no matter how we choose the DC component, the data cannot vanish on both edges. The approach
we used is to produce a mirror image of the data on the other side of the edge. And by doing so,
we have a data which is even with respect to the center. The idea of duplication is summarized in
Fig. (11). In all the models we had tested, the lateral variation on both edges are very small and the
duplication will not introduce much artifacts. If we choose the single trace at the left edge, we have
a data which vanishes to the left and right edge, and hence becomes localized in the x-direction.
Another nice property of this approach is that, since after the removal of the DC-component, the
data near the edges vanish, there is no boundary artifacts at the edges.

For the salt model we had tested, the τ−p transform result is shown in Fig. (12). It was duplicated
on the right edge to have the symmetrical data in Fig. (13). The data in Fig. (13) was migrated
using equation (21) to have the FK migration result in Fig. (14).

The DC-component has no lateral variation, and can be migrated by a simple rescale, very little
extra work is introduced.
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Figure 12: The data after τ − p transform for the salt model.

Figure 13: The data in Fig. (12) was duplicated to the right to make left and right edges identical.

199



The first term of the inverse scattering series: practical strategies and issues MOSRP06

Figure 14: The FK migration result using the data in Fig. (13). The right half is removed since it is just
the mirror image of the left half.

7 Caution against using post-stack data

Pre-stack data has more degrees of freedom than the target subsurface geology. However, post-stack
data has the same degrees of freedom as the the target subsurface geology. In practice, post-stack
sections were migrated to achieve the depth image. We highly recommend the original pre-stack
data against post-stack intermediate results.

8 Conclusions

We explained our implementation for α1 in terms of synthetic acoustic data. The computation of
α1 is very important for the inverse scattering series because it is the input for nonlinear processing
that requires amplitude and phase information to be preserved in α1. In the process of preparing
α1, we found that it is very important to try our best to live up to the physics in the inverse
scatttering equations, especially the physics in the understanding of wavelet, sampling, aperture,
and better approximation of the spiky spectrum of the earth. Techniques such as duplicating the
data on the edge, migrating the DC component separately, pre-calculating the migration operator
are proven to be helpful for us on the way towards the best effort α1.
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Note on velocity independent contributions in the inverse scattering series for
processing primaries

A. C. Ramı́rez, B. G. Nita, A. B. Weglein and E. Otnes

Abstract

Direct-inversion denotes an algorithm that inputs data and outputs medium properties with-
out any modeling. More than 20 years ago, based on the inverse scattering series, Weglein et al.
(1981, 1997) imagined direct inversion as a progression of specific and independent operations
acting on the data: (1) removal of free-surface multiples; (2) removal of internal multiples; (3)
imaging of primaries at their correct depth location; and finally (4) AVO inversion for earth
properties. Since the overall direct inversion method in the inverse scattering series operates
without any a priori subsurface information, then each one of the four tasks must achieve its
goal without any subsurface information as well. The direct inversion series and task specific
approach must allow the separation of an imaging subseries from the full series. We present
and propose a formalism to find the velocity independent contributions (up to second order
in the data) in the inverse scattering series for processing primaries. These contributions are
found in terms of a general perturbation, such as the one that was used to find a model type
independent internal multiple algorithm. With this perturbation, a separation into two terms of
the second order term in the series is performed. The first term does not require knowledge of
the earth model type or any subsurface information. The second term in this formalism requires
the specification of a model type in order to be computed. When a model type is given, such
an acoustic or elastic type, the second part of this term is readily computable. We want to
find a general formulation for imaging terms within the inverse series that does not require this
specification. Hence, we identify and select only the parts that do not require a model type,
and use diagrams to select the terms that we expect will be involved only in the imaging task.
We present our initial efforts to this approach.

Introduction

One of the most important objectives of seismic imaging is to place reflectors in their correct spatial
location. Seismic imaging beneath complex media (e.g. image beneath salt in locations like deep
water GOM) is one of the most challenging problems faced in seismic exploration. The reason
is that the success of current methods for imaging seismic data depends on the degree to which
we can estimate earth properties above the target, in particular changes in velocity. Even in cases
where an accurate velocity model exists or can be obtained, combinations of lateral varying velocity
and a range of reflector dip can make current imaging methods fail. A highly accurate estimate of
velocity or earth-properties is difficult to achieve in practice and, even when it is achievable, the
current imaging technology has shortcomings. This provides a strong motivation for new thinking
and for studying new algorithms where fewer assumptions would provide more effectiveness under
complex circumstances.
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Previously, a subseries of the inverse series in an acoustic medium had been isolated –for a 1D
normal incidence experiment (Shaw et al., 2002; Shaw and Weglein, 2003; Innanen, 2003), for
1D prestack data (Shaw, 2005) and for 2D data (Liu et al., 2005, 2006)- that moves reflectors
towards their correct spatial location using an inadequate constant reference velocity. We are using
the inverse scattering series, a multidimensional direct inversion procedure, to derive a formalism
that, if successful, would accurately depth image seismic data directly in terms of data itself and
a background medium without any subsurface information. Unlike the present state of the art
procedures, this formalism does not make any a priori assumptions on the type and properties
of the medium investigated. In practice, these assumptions are often erroneous and can lead to
algorithm failures.

In this work, we present our initial efforts to locate and isolate velocity independent imaging
terms from the inverse scattering series using a generalized perturbation operator. Our efforts
launched from the knowledge and lessons provided by the internal multiple algorithm (Araújo,
1994; Araújo et al., 1994; Weglein et al., 2003) in which a model type independent theory was
derived as a subseries of the inverse scattering series using this generalized form of the perturbation
operator. These subseries have been effectively used to attenuate multiples in towed streamer, multi-
component ocean bottom, and on-shore synthetic and field datasets (Coates and Weglein, 1996;
Matson et al., 1999) without the requirement of a priori information concerning the subsurface. At
the same time, the present work aims to the future generalization of the ideas presented by Weglein
et al. (2000) in which the concept of total wavefield at depth with a direct algorithm that only
depends on measured data and a background medium was first proposed. This concept combined
with an imaging condition attempts to locate the total wavefield at its correct space location (the
idea was further developed by Weglein et al. (2006)). Their formulation uses an acoustic model type
for the perturbation operator, and uses the complete perturbation at every order of approximation
instead of selecting only the velocity independent imaging terms. Our goals are a step beyond
Weglein et al. (2006)) novel idea. We are proposing to use only the imaging terms in the wavefield
at depth series described in Nita et al. (2007). We expect the output to be an image of the data at
the correct spatial location, but, with incorrect amplitude information. Our stretch goal is similar
to the one for the internal multiple algorithm in which the selected terms use what is possible
to achieve within the inverse scattering subseries for multiples without discussing a model type.
An accurate image of the wavefield at depth that only uses imaging terms from the inverse series,
could be reached with the theory developed in this report combined with a model type independent
version of the work presented by Nita et al. (2007).

Derivation for the velocity independent imaging terms with a gen-
eralized perturbation operator

Note: The material presented in this section is well known. It follows the definitions and concepts
introduced by Weglein et al. (1981, 1997), and further developed in Weglein et al. (2000, 2003).

In principle, the inverse scattering series allows for all seismic processing goals to be achieved directly
and explicitly in terms of only measured data and a reference background. It never attempts to
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change the imprecise input (background medium properties) towards precise input (actual medium
properties); it predicts precise output in terms of imprecise input.

The inverse scattering multiple removal technology, demonstrated efficacy and an advantage over
model-dependent methods by providing added value under complex and ill-defined geologic sub-
surface conditions. The same complex conditions are, nowadays, the main obstacle to effective
data imaging, since an accurate description of the earth properties (velocity in particular) is not
achievable. Our conjecture is that identifying velocity independent imaging terms with a general-
ized perturbation by following the lessons learned in the internal multiple removal work will lead
to a similar level of effectiveness for imaging primaries. The formalism we propose aims to im-
age primaries at their correct spatial location with no requirement or estimate of any subsurface’s
property.

We start by recognizing that potential exists and resides within the inverse scattering series,

(G0V1G0)ms = D (1)
(G0V2G0)ms = −(G0V1G0V1G0)ms (2)
(G0V3G0)ms = −(G0V1G0V1G0V1G0 +G0V1G0V2 −G0V2G0V1)ms (3)

...

where the subscript ms refers to evaluation at the measurement surface, G0 is the reference Green’s
function,

∑∞
i Vi is the ith approximation of the perturbation V , i denotes the order in the data and

we define the perturbation operator V as the difference between the differential wave operators:
V = L0 − L. The differential operators L0 and L define the wave propagation in reference and
actual medium, respectively. In the following we are not going to give a specific form to V in terms
of a model type. Instead, we are going to give it spatial and frequency degrees of freedom. In
principle, enough to include different earth model types.

We are going to start off by assuming that the actual medium varies only in depth (later, we are
going to generalize the result to a multi-D earth). This will help to simplify the analysis and location
of the velocity independent imaging terms. Within this formulation we are going to split the inverse
scattering terms into a part achievable only through a model type specification and a part that does
not require that knowledge. We then select the part that is independent of a model type and further
separate it into imaging and inversion terms by looking at their diagram and using analogies from
diagrams and results in the forward series (Matson, 1996; Nita et al., 2004; Innanen and Weglein,
2003; Ramı́rez and Otnes, 2006). The reasoning behind this idea comes from the internal multiple
experience (Weglein, 1995; Weglein et al., 1997, 2003), where the third term in the inverse series
was examined and split into a model type dependent and independent part. The part that did
not require knowledge of the earth properties, was put into a “W” Feynman diagram (Feynman,
1949; Weglein et al., 2003) as a result of the conjecture that, “if you achieved this, then you would
have reached an algorithm that attenuates multiples without requiring any subsurface information”.
This conjecture for the internal multiples algorithm has been demonstrated to be successful when
applied to synthetic and real data examples under complex geology (Coates and Weglein, 1996;
Matson et al., 1999). We start with the same conjecture, “if we can look at the inverse series and
locate the terms that process primaries without requiring a model type, and, separate these terms
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to identify the parts corresponding to diagrams that act on location issues only, then we would have
reached our goal of locating model type independent imaging terms”. These terms are then going
to be used as input for the wavefield at depth algorithm, and we expect to obtain an algorithm
with properties similar to the ones of the internal multiple algorithm.

In the following sections, we calculate the first and second orders of the velocity independent
imaging terms within the inverse scattering series using a generalized perturbation operator, all in
terms of the data and the reference medium only.

Calculation of the effective data

Using a homogeneous reference Green’s function,

G0(z|z′;ω) =
eik|z−z′|

2ik
,

into the first equation in the inverse scattering series,D = G0V1G0, we obtain

D(zg|zs;ω) =
∫ ∞

−∞
dz′
∫ ∞

−∞
dz′′

eik(z′−zg)

2ik
V1(z′|z′′;ω)

eik(z′′−zs)

2ik
,

D(zg|zs;ω) =
∫ ∞

−∞
dz′
∫ ∞

−∞
dz′′

eik(z′−zg)

2ik
V1(z′|z′′;ω)

eik(z′′−zs)

2ik
,

D(zg|zs;ω) =
1

2ik
e−ik(zs+zg)V1(k|k;ω)

1
2ik

,

(4)

It is observed that the first order of the perturbation has 2 degrees of freedom, 1 degree for space
freedom (in a 1D experiment there is only one depth variable, hence z′ = z′′) and 1 degree for
frequency/time freedom. The data, for a 1D normal incident field only has one degree of freedom
since the depth variables zg and zs are constant locations for receiver and source, respectively.
The fact that the data has less degrees of freedom than the perturbation creates a problem. The
perturbation wants all possible combinations of the k and ω, and the only way to fulfill this
requirement is by measuring the data everywhere. We can find a solution for this problem by
constraining k to be equal to ω/c0. This provides a form to calculate the on-shell projection of the
perturbation, which is the part of the perturbation achievable only from the measured data at zg.

D(zg|zs;ω) =
1

2ik
e−ik(zs+zg)V1(2k)

1
2ik

(5)

The last step is possible since k depends on ω according to the relation k = ω/c0.

Introducing the definition for the effective data b1(zg |zs;kz)
2ik = D(zg|zs;ω/c0) = D(zg|zs; kz) into

equation 5 (Araújo et al., 1994), yields

b1(zg|zs; kz) =
1

2ik
e−ik(zs+zg)V1(2k) (6)

where kz = 2k is defined as the vertical wavenumber. This is the general form of the effective data.
However, for the sake of simplicity, in the following calculations we will assume that zs = zg = 0
and write b1(zg = 0|zs = 0; kz) = b1(kz).
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Calculation of the second order term

The second equation in the inverse scattering series, G0V2G0 = −G0V1G0V1G0, gives

1
2ik

V2(2k)
1

2ik
=
∫ ∞

−∞
dz

∫ ∞

−∞
dz′

eikz

2ik
V1(z|z′;ω)

∫ ∞

−∞
dz′′

∫ ∞

−∞
dz′′′

eik|z
′−z′′|

2ik
V1(z′′|z′′′;ω)

eikz′′′

2ik
.

(7)

We separate the contributions of the absolute value in the second integral into the part that acts
when z > z′ and when z′ > z by using Heaviside step functions H(z−z′) and H(z′−z),respectively,

V2(2k) =
∫ ∞

−∞
dz

∫ ∞

−∞
dz′eikzV1(z|z′;ω)

∫ ∞

−∞
dz′′

∫ ∞

−∞
dz′′′

eik(z′−z′′)

2ik
H(z′ − z′′)V1(z′′|z′′′;ω)eikz′′′ ,

=
∫ ∞

−∞
dz

∫ ∞

−∞
dz′eikzV1(z|z′;ω)

∫ ∞

−∞
dz′′

∫ ∞

−∞
dz′′′

eik(z′′−z′)

2ik
H(z′′ − z′)V1(z′′|z′′′;ω)eikz′′′ .

(8)

which becomes

V2(2k) = 2
∫ ∞

−∞
dz

∫ ∞

−∞
dz′eikzV1(z|z′;ω)

∫ ∞

−∞
dz′′

∫ ∞

−∞
dz′′′

eik(z′′−z′)

2ik
H(z′′ − z′)V1(z′′|z′′′;ω)eikz′′′ .

(9)

Introducing the Heaviside integral representation,

H(z′′ − z′) = lim
ε→0

1
2π

∫ ∞

−∞

1
i(p− iε)

e−ip(z′′−z′)dp, (10)

into equation 9, we obtain

V2(2k) = 2 lim
ε→0

1
2π

∫ ∞

−∞
dz

∫ ∞

−∞
dz′eikzV1(z|z′;ω)

∫ ∞

−∞
dz′′

∫ ∞

−∞
dz′′′

eik(z′′−z′)

2ik∫ ∞

−∞
dp
e−ip(z′′−z′)

i(p− iε)
V1(z′′|z′′′;ω)eikz′′′ ,

= 2 lim
ε→0

1
2π

1
2ik

∫ ∞

−∞
dp

1
i(p− iε)

∫ ∞

−∞
dzeikz

∫ ∞

−∞
dz′V1(z|z′;ω)ei(−k+p)z′

∫ ∞

−∞
dz′′ei(k−p)z′′∫ ∞

−∞
dz′′′V1(z′′|z′′′;ω)eikz′′′ .

recognizing that the last two integrals are simple Fourier transforms, we get

V2(2k) = 2 lim
ε→0

1
2π

∫ ∞

−∞
dp

1
2ik

V1(k| − k + p;ω)V1(k − p|k;ω)
i(p− iε)

.
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This integral can be solved through a contour integral, which will be separated into a principal
value (P.V.) and the contribution around the pole p = iε.

V2(2k) = lim
ε→0

2
2iπ

∫ ∞

−∞
dp iπ δ(p− iε)

V1(k| − k + p;ω)V1(k − p|k;ω)
2ik

+ P.V.

(
1

i(p− iε)

)
. (11)

The portion of V2 which depends on the principal value part of the integral is not computable in
terms of the data without specifying a model type. We will exclude that part from the computation.
Then, we select the contribution from integrating around the pole and take the limit as ε→ 0 to
obtain

V2(2k) =
1

2ik
V1(k| − k;ω)V1(k|k;ω),

=
1

2ik
V1(0)V1(2k). (12)

where only the on-shell projection of the perturbation was used. In terms of effective data, the
previous result reads

b2(kz) = b1(0)b1(kz). (13)

Figure 1: Transmission and reflection diagram for the second order model type independent terms in the
inverse scattering series.

The original interpretation of the result in equations 12 and 13 was that transmission data was
needed since b1(0) and V1(k| − k;ω) represent a vector that gets transmitted (the transmition
diagram for V1(k| − k;ω) and the reflection diagram for V1(k| − k;ω) are shown in Figure 1).
However, by performing a Fourier transform and setting k = 0, we can write equation 13 in terms
of reflection data only,

b2(kz) = b1(0)b1(kz) =
(∫ ∞

−∞
dz b1(z)

)(∫ ∞

−∞
dz′ b1(z′)eikzz′

)
. (14)

where z represents the pseudodepth z = c0t/2 at constant velocity c0, and its the conjugate variable
of kz.
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Figure 2: A diagram for the term b22. The information from the primary above is given to the deeper
primary.

Figure 3: A diagram for the term b23. The deeper primary gives amplitude information to the shallower
primary.

Separation of b2 into task independent terms

The identification of the imaging term comes from two sources: 1) an analogy with the diagrams in
the forward series that produce the correct travel time in the predicted wavefield and, 2) from the
imaging only diagrams identified within the imaging subseries for 1-parameter acoustic media. Fol-
lowing the derivation of the internal multiple algorithm, the result in equation 14 can be separated
into different task specific contributions depending on the relative positions of the pseudodepths z
and z′. Thus,

b2(kz) =
∫ ∞

−∞
dz1 b1(z1)

∫ ∞

−∞
dz2 b1(z2)eikzz2 δ(z2 − z1)

+
∫ ∞

−∞
dz1 b1(z1)

∫ ∞

−z1+ε
dz2 b1(z2)eikzz2

+
∫ ∞

−∞
dz1 b1(z1)

∫ z1−ε

−∞
dz2 b1(z2)eikzz2

b2(kz) =
∫ ∞

−∞
dz1b

2
1(z1)e

ikzz1 +
∫ ∞

−∞
dz1 b1(z1)

∫ ∞

−z1+ε
dz2 b1(z2)eikzz2
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+
∫ ∞

−∞
dz1 b1(z1)

∫ z1−ε

−∞
dz2 b1(z2)eikzz2 (15)

=b21 + b22 + b23. (16)

By analogy with the internal multiple elimination series diagrams (Weglein et al., 1997; Ramı́rez
and Weglein, 2005) and the imaging series (Shaw et al., 2002), the first term (b21) contains a self
interaction and is expected to be an amplitude corrector. A second analogy with the separate
diagrams in the imaging series (Shaw and Weglein, 2003) and the transmission-like diagrams in the
forward series (Ramı́rez and Otnes, 2006) leads to an interpretation of b22 as the candidate for the
velocity independent imaging term. These statements can be supported by the following analytic
example:

1D Analytic example

Imagine a 1D experiment with two reflectors and a plane wave source. The primary-only data for
this experiment is

D(t) = R1δ(t− t1) +R′
2δ(t− t2), (17)

D(kz) = b1(kz) = R1e
ikzz1 +R′

2e
ikzz2 , (18)

hence,

b1(z) = R1δ(z − z1) +R′
2δ(z − z2). (19)

With these data, we find the following second order terms:

The first term,

b21(kz) = R2
1e

ikzz1 +R
′2
2 e

ikzz2 , (20)

is clearly an amplitude term since it does not change the depth/time/phase of the data.

The second term,

b22(kz) =
∫ ∞

−∞
dz
(
R1δ(z − z1) +R

′
2δ(z − z2)

)
(
R1e

ikzz1H(z1 − z) +R′
2e

ikzz2H(z2 − z)
)

(21)

= R2
1e

ikzz1H(z1 − z1) +R1R
′
2e

ikzz2H(z2 − z1)

+R1R
′
2e

ikzz1H(z1 − z2) +R
′2
2 e

ikzz2H(z2 − z1) (22)

= R1R
′
2e

ikzz2H(z2 − z1), (23)

allows nonlinear communication between the primaries, and the extra contribution is given to the
deeper primary (see Figure 2).
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The third term,

b23(kz) =
∫ ∞

−∞
dz
(
R1δ(z − z1) +R

′
2δ(z − z2)

)
(
R1e

ikzz1H(z − z1) +R′
2e

ikzz2H(z − z2)
)

(24)

= R2
1e

ikzz1H(z1 − z1) +R1R
′
2e

ikzz2H(z1 − z2)

+R1R
′
2e

ikzz1H(z2 − z1) +R
′2
2 e

ikzz2H(z1 − z2) (25)

= R1R
′
2e

ikzz1H(z2 − z1), (26)

allows the deeper reflector to contribute to the one above it. It is not imaging and not an amplitude
term since. Further research is required to understand the purpose of this term (see Figure 3).

Extension to multi-D

Calculation of the effective data

Starting with equation 1

D(xg, zg|xs, zs;ω) =
∫ ∞

−∞
dx

∫ ∞

−∞
dx

′
∫ ∞

−∞
dz

∫ ∞

−∞
dz

′
G0(xgzg|x, z;ω)V1(x, z|x

′
, z

′
;ω)G0(x

′
, z

′ |xs, zs;ω)

(27)

where xg, zg, xs and zs are the spatial coordinates corresponding to source and receiver locations
used to record the data D.

The Green’s function propagating in a homogeneous medium is given by

G0(xg, zg|x, z, ω) = − 1
2π

∫ ∞

−∞
dkge

ikg(xg−x) e
iqg |z−zg |

2iqg
, (28)

where kg is the horizontal wavenumber and qg is the vertical wavenumber defined as kz =
√
k2 − k2

x

and k = ω/c0. The corresponding Green’s function for the source side wavenumbers ks and qs is
given by

G0(x, z|xs, zs, ω) = − 1
2π

∫ ∞

−∞
dkse

iks(x−xs) e
iqs|z−zs|

2iqs
. (29)

Using the Green’s functions in equations 28 and 29 in equation 27, we find,

D(xg, zg|xs, zs;ω) =
(

1
2π

)2 ∫ ∞

−∞
dx

∫ ∞

−∞
dx

′
∫ ∞

−∞
dz

∫ ∞

−∞
dz

′
∫ ∞

−∞
dkg e

ikg(xg−x) e
iqg |z−zg |

2iqg
V1(x, z|x

′
, z

′
;ω)

×
∫ ∞

−∞
dkse

iks(x
′−xs) e

iqs|z
′−zs|

2iqs
, (30)
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and, performing a Fourier transform over the horizontal coordinates xs and xg,

D(kg, zg|ks, zs;ω) =
(

1
2π

)2 ∫ ∞

−∞
dxge

−ik
′
gxg

∫ ∞

−∞
dxge

ik
′
sxs

∫ ∞

−∞
dx

∫ ∞

−∞
dx

′
∫ ∞

−∞
dz

∫ ∞

−∞
dz

′

∫ ∞

−∞
dkge

ikg(xg−x) e
iqg |z−zg |

2iqg
V1(x, z|x

′
, z

′
;ω)

∫ ∞

−∞
dkse

iks(x
′−xs) e

iqs|z
′−zs|

2iqs
.

(31)

The integrals over source and receiver coordinates give a contribution of 2πδ(k
′
g−kg) and 2πδ(k

′
s−

ks), respectively, which allow us to easily solve the integrals over kg and ks, to obtain

D(kg, zg|ks, zs;ω) =
∫ ∞

−∞
dx

∫ ∞

−∞
dx

′
∫ ∞

−∞
dz

∫ ∞

−∞
dz

′
e−ikgx e

iqg |z−zg |

2iqg
V1(x, z|x

′
, z

′
;ω)eiksx e

iqs|z−zs|

2iqs
.

(32)

In a surface seismic experiment zg > z and zs > z, since the perturbation operator V (x, z) has its
support only below the measurement surface. At the measurement surface and above, the reference
medium is assumed and selected to correspond to the actual medium. Hence, there is no need for
the absolute values in equation 32, and the solution of the integrals gives

D(kg, zg|ks, zs;ω) =
e−iqgzge−iqszs

−4qgqs
V1(kg, qg|ks, qs;ω). (33)

The effective data b1(kg, ks, qg +qs) is defined as a source obliquity factor times the measured values
of the scattered field, D(kg, ks, ω),

b1(kg, zg|ks, zs; qg + qs) = −2iqsD(kg, zg|ks, zs;ω) =
e−iqgzge−iqszs

−2iqg
V1(kg, qg|ks, qs;ω), (34)

where the vectors kg = (kg,−qg) and ks = (ks,−qs) are constrained by |kg| = |ks| = ω/c0 and the
third variable dependence in the effective data is denoted by kz. Once more, we are only computing
the part of the perturbation operator achievable with measurements at the surface, which is the
on-shell part of the operator. To find the general form of the operator, V1(kg, qg|ks, qs;ω), explicitly
in terms of data would require measurement of the data everywhere. Since we only have data at
the measurement surface, only a projection of this operator is achievable. Hence, we need to relate
the vertical wavenumbers with ω and the horizontal wavenumbers. The formalism that provides
the possibility to achieve an on-shell projection of the perturbation operator in terms of surface
data was provided by Razavy (1975) and reviewed by Weglein et al. (2003).

The variable kz is defined as

kz = −(qg + qs) (35)
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and it is the Fourier conjugate of the pseudodepth variable z. In equation 35

qg = sgn ω

√
ω2

c20
− k2

g , (36)

and

qs = sgn ω

√
ω2

c20
− k2

s . (37)

Calculation of the second order term

We now start with the second equation in the inverse series, equation 2,∫ ∞

−∞
dx

∫ ∞

−∞
dx

′
∫ ∞

−∞
dz

∫ ∞

−∞
dz

′
G0(xgzg|x, z, ω)V2(x, z|x

′
, z

′
;ω)G0(x

′
, z

′ |xs, zs, ω) =

−
∫ ∞

−∞
dx

∫ ∞

−∞
dx

′
∫ ∞

−∞
dz

∫ ∞

−∞
dz

′
G0(xgzg|x, z, ω)V1(x, z|x

′
, z

′
;ω)

∫ ∞

−∞
dx

′′
∫ ∞

−∞
dx

′′

×
∫ ∞

−∞
dz

′′′
∫ ∞

−∞
dz

′′′
G0(x

′
, z

′ |x′′
, z

′′
, ω)V1(x

′′
, z

′′ |x′′′
, z

′′′
;ω)G0(x

′′′
, z

′′′ |xs, zs, ω)

(38)

To solve this equation, we start by introducing the reference Green’s functions, equations 28 and 29,
and performing a Fourier transform over the horizontal coordinates xs and xg.

The left hand side is solved in the same way as the equation for V1 is solved in the previous section.

l.h.s.(kg, qg|ks, qs;ω) =
e−iqgzge−iqszs

−4qgqs
V2(kg, qg|ks, qs;ω). (39)

In terms of the second order effective data b2,

b2(kg, qg|ks, qs;ω) =
e−iqgzge−iqszs

−2iqg
V2(kg, qg|ks, qs;ω). (40)

For the right hand side, we recognize that for a surface seismic experiment z > zs and z > zg, then,

r.h.s.(kg, qg|ks, qs;ω) =
(

1
2π

)2 ∫ ∞

−∞
dxge

−ik
′
gxg

∫ ∞

−∞
dxse

ik
′
sxs∫ ∞

−∞
dx

∫ ∞

−∞
dx

′
∫ ∞

−∞
dz

∫ ∞

−∞
dz

′
∫ ∞

−∞
dkge

ikg(xg−x) e
iqg(z−zg)

2iqg
V1(x, z|x

′
, z

′
;ω)∫ ∞

−∞
dx

′′
∫ ∞

−∞
dx

′′′
∫ ∞

−∞
dz

′′
∫ ∞

−∞
dz

′′′
∫ ∞

−∞
dkλe

ikλ(x
′−x

′′
) e

iqλ|z
′−z

′′ |

−2iqλ

214



Velocity independent contributions in the inverse scattering series for primaries MOSRP06

× V1(x
′′
, z

′′ |x′′′
, z

′′′
;ω)

∫ ∞

−∞
dkse

iks(x
′′′−xs) e

iqs(z
′′′−zs)

2iqs
. (41)

The integrals over horizontal variables xg and xs give a factor of 2πδ(kg − kλ) and 2πδ(ks − kλ),
respectively. Next, we solve the integrals over horizontal wavenumbers kg and ks and rearrange the
order of integration, to obtain

r.h.s.(kg, qg|ks, qs;ω) =
∫ ∞

−∞
dkλ

∫ ∞

−∞
dz

∫ ∞

−∞
dz

′ eiqg(z−zg)

2iqg

∫ ∞

−∞
dx

∫ ∞

−∞
dx

′
e−ikgxV1(x, z|x

′
, z

′
;ω)eikλx

′

∫ ∞

−∞
dz

′′
∫ ∞

−∞
dz

′′′ eiqλ|z′−z′′|

−2iqλ

∫ ∞

−∞
dx

′′
∫ ∞

−∞
dx

′′′ eiqs(z′′′−zs)

2iqs

× e−ikλx
′′
V1(x

′′
, z

′′ |x′′′
, z

′′′
;ω)eiksx

′′′
, (42)

which becomes

r.h.s.(kg, qg|ks, qs;ω) =
∫ ∞

−∞
dkλ

∫ ∞

−∞
dz

∫ ∞

−∞
dz

′ eiqg(z−zg)

2iqg
V1(kg, z|kλ, z

′
;ω)∫ ∞

−∞
dz

′′
∫ ∞

−∞
dz

′′′ eiqλ|z′−z′′|

−2iqλ
V1(kλ, z

′′ |ks, z
′′′

;ω)
eiqs(z′′′−zs)

2iqs
, (43)

We introduce the Heaviside step functions H(z − z′) and H(z′ − z) to separate the contributions
of the absolute value in the second exponential for z > z′ and z′ > z, respectively, and write

r.h.s.(kg, qg|ks, qs;ω) = lim
ε→0

1
2π

∫ ∞

−∞
dkλ

∫ ∞

−∞
dz

∫ ∞

−∞
dz

′ eiqg(z−zg)

2iqg
V1(kg, z|kλ, z

′
;ω)

∫ ∞

−∞
dz

′′
∫ ∞

−∞
dz

′′′

× 1
−2iqλ

(
eiqλ(z′−z′′)

∫ ∞

−∞
dp
e−ip(z′−z′′)

i(p− iε)
+ eiqλ(z′′−z′)

∫ ∞

−∞
dp
e−ip(z′′−z′)

i(p− iε)

)

× V1(kλ, z
′′ |ks, z

′′′
;ω)

eiqs(z′′′−zs)

2iqs
(44)

where the Heaviside integral representation (equation 10) was used. Rearranging the order of
integration and solving the integrals over z′ and z, we find

r.h.s.(kg, qg|ks, qs;ω) = lim
ε→0

1
2π

∫ ∞

−∞
dkλ

e−iqszse−iqgzg

−(2iqλ)(2iqg)(2iqs)

∫ ∞

−∞
dp

1
i(p− iε)

× [ V1(kg, qg|kλ, qλ − p;ω) V1(kλ,−qλ + p|ks, qs;ω)
+ V1(kg, qg|kλ,−qλ + p;ω) V1(kλ, qλ − p|ks, qs;ω) ]. (45)

We solve the integral over p through a contour integral, which separates it into a principal value
and a contribution around the pole at p = iε (see the solution for equation 11). The principal value
part of this integral can only be solved by specifying a model type. This part is ignored in this
formalism.

The contribution from the pole is the only part achievable without the need for a model type. We
are interested in locating an imaging term that does not require knowledge of the earth subsurface
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properties. Therefore, we exclude the principal value and obtain an expression for the second order
inverse scattering equation that only depends on data and propagation in the background medium,

e−iqgzge−iqszs

−4qgqs
V2(kg, qg|ks, qs;ω) =

1
2

∫ ∞

−∞
dkλ

e−iqszse−iqgzg

−(2iqλ)(2iqg)(2iqs)

× [ V1(kg, qg|kλ, qλ;ω) V1(kλ,−qλ|ks, qs;ω)
+ V1(kg, qg|kλ,−qλ;ω) V1(kλ, qλ|ks, qs;ω) ]. (46)

This result is related to the effective data. Using the definition in equation 34, such that,

V1(k1, q1|k2, q2;ω) =
−2iq1

e−iq1zge−iq2zs
b1(k1, zg|k2, zs; q1 + q2), (47)

Hence,

e−iqgzge−iqszs

−4qgqs
V2(kg − ks,−qg − qs) =

1
2

∫ ∞

−∞
dkλ

e−iqszse−iqgzg

(−2iqλ)(−2iqg)(−2iqs)

× [
−2iqg

e−iqgzgeiqλzs
b1(kg, zg|kλ, zs, qg − qλ)

−2iqλ
e−iqλzge−iqszs

b1(kλ, zg|ks, zs; qλ + qs)

+
−2iqg

e−iqgzge−iqλzs
b1(kg, zg|kλ, zs, qg + qλ)

−2iqλ
eiqλzge−iqszs

b1(kλ, zg|ks, zs;−qλ + qs)].

(48)

Factoring the common terms and using equation 40, leads to

b2(kg, zg|ks, zs, qg + qs) =
1
2

∫ ∞

−∞
dkλ

× [eiqλ(zs−zg)b1(kg, zg|kλ, zs, qg − qλ) b1(kλ, zg|ks, zs; qλ + qs)

+ eiqλ(zg−zs)b1(kg, zg|kλ, zs, qg + qλ) b1(kλ, zg|ks, zs;−qλ + qs)]. (49)

In clear analogy with the 1D case, we take a closer look at the third variable dependence of b1. The
subtraction of vertical wavenumbers resembles transmission effects while the addition is related to
reflection. The imaging part of equation 49, will then be the combination of transmission-like data
imaged at a shallower pseudodepth than the reflection-like data. Note that both parts of the data
(reflection-like and transmission-like parts) are going to be written in terms of surface reflection
data. However, to find the task specific term that only cares about locating the reflectors at their
correct depth, we need to remember the history of that part of the data in the wavenumber domain.

Hence, to find the velocity independent imaging second order term, we write the previous result
using a simple constant velocity Stolt migration for the effective data,

b2(kg, zg|ks, zs, qg + qs) =
1
2

∫ ∞

−∞
dkλ

× [eiqλ(zs−zg)

∫ ∞

−∞
dz1e

−i(qg−qλ)z1b1(kg, zg|kλ, zs, z1)
∫ ∞

−∞
dz2e

−i(qλ+qs)z2b1(kλ, zg|ks, zs; z2)
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+ eiqλ(zg−zs)

∫ ∞

−∞
dz1e

−i(qg+qλ)z1b1(kg, zg|kλ, zs, z1)
∫ ∞

−∞
dz2e

−i(−qλ+qs)z2b1(kλ, zg|ks, zs; z2)],

where the underlined terms are the ones coming from transmission-like diagrams.

Finally, we split this result into its task specific components, b2 = b21 + b22 + b23, where

b21(kg, zg|ks, zs, qg + qs) =
1
2

∫ ∞

−∞
dkλ

∫ ∞

−∞
dz1

∫ ∞

−∞
dz2e

−iqgz1e−iqsz2

(
eiqλ(zs−zg)eiqλ(z1−z2) + eiqλ(zg−zs)eiqλ(z2−z1)

)
× b1(kg, zg|kλ, zs, z1) b1(kλ, zg|ks, zs; z2)δ(z1 − z2),

=
1
2

∫ ∞

−∞
dkλ

∫ ∞

−∞
dz1e

−i(qg+qs)z1

(
eiqλ(zs−zg) + eiqλ(zg−zs)

)
× b1(kg, zg|kλ, zs, z1) b1(kλ, zg|ks, zs; z1)

is the self interacting term, an amplitude corrector (yet to be tested) according to the lessons
provided by the analysis of the imaging subseries of inverse series (Shaw et al., 2002; Weglein et al.,
2003; Liu et al., 2006), the inverse scattering internal multiple leading and higher order terms
(Weglein et al., 1997; Ramı́rez and Weglein, 2005), as well as the diagrams from the forward series
(Innanen and Weglein, 2003; Nita et al., 2004; Ramı́rez and Otnes, 2006).

The remaining part can be further separated into

b22(kg, zg|ks, zs, qg + qs) =
1
2

∫ ∞

−∞
dkλ

× [eiqλ(zs−zg)

∫ ∞

−∞
dz1e

−i(qg−qλ)z1b1(kg, zg|kλ, zs, z1)
∫ ∞

z1+ε
dz2e

−i(qλ+qs)z2b1(kλ, zg|ks, zs; z2)

+ eiqλ(zg−zs)

∫ ∞

−∞
dz1e

−i(qg+qλ)z1b1(kg, zg|kλ, zs, z1)
∫ ∞

z1+ε
dz2e

−i(−qλ+qs)z2b1(kλ, zg|ks, zs; z2)],

and,

b23(kg, zg|ks, zs, qg + qs) =
1
2

∫ ∞

−∞
dkλ

× [eiqλ(zs−zg)

∫ ∞

−∞
dz1e

−i(qg−qλ)z1b1(kg, zg|kλ, zs, z1)
∫ z1−ε

−∞
dz2e

−i(qλ+qs)z2b1(kλ, zg|ks, zs; z2)

+ eiqλ(zg−zs)

∫ ∞

−∞
dz1e

−i(qg+qλ)z1b1(kg, zg|kλ, zs, z1)
∫ z1−ε

−∞
dz2e

−i(−qλ+qs)z2b1(kλ, zg|ks, zs; z2)].

Following the analysis made in the 1D numerical example in this report, intuition yields that an
imaging-only part of b22 and b23 would be the part that contains reflection-like data at a shallower
pseudodepth. This is in agreement to the analysis and experience gained from the higher order
imaging work by Liu et al. (2006), in which only the shallower events give nonlinear contributions
towards correcting the depth of the deeper once. Hence,

bV Ii
2 (kg, zg|ks, zs, qg + qs) =

1
2

∫ ∞

−∞
dkλ
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× [eiqλ(zs−zg)

∫ ∞

−∞
dz1e

−i(qg−qλ)z1b1(kg, zg|kλ, zs, z1)
∫ ∞

z1+ε
dz2e

−i(qλ+qs)z2b1(kλ, zg|ks, zs; z2)

+ eiqλ(zg−zs)

∫ ∞

−∞
dz1e

−i(qg+qλ)z1b1(kg, zg|kλ, zs, z1)
∫ z1−ε

−∞
dz2e

−i(−qλ+qs)z2b1(kλ, zg|ks, zs; z2)].

would be the velocity independent imaging (V Ii) term (second order in the measured data). This
term needs to be introduced into the wavefield at depth for the imaging formalism by Nita et al.
(2007).

Conclusions

Current imaging technology makes assumptions about the nature of the earth that are often violated
in practice, leading to algorithm failures. There are two ways in which we can address the violation
of an assumption: attempt to better satisfy the assumption, or derive a different method that does
not make that assumption. Shaw et al. (2002); Shaw and Weglein (2003) as well as Shaw (2005)
presented 1D pre-stack and post-stack theory and synthetic examples of the 1-parameter leading
order acoustic inverse scattering imaging algorithm and, the theory was extended to its 2D version
and further developed by Liu et al. (2005, 2006) and tested on 2D acoustic finite difference data,
giving encouraging results.

We showed the steps involved in the calculation of the second term in the inverse series employing
only the part of a general perturbation operator which does not depend on a medium’s model
type. This part of the second term was further separated into terms containing self interactions
and terms containing transmission-like diagrams. A part of the second term was identified as a
candidate for a velocity independent imaging term, second order in the data. Our efforts aim to
provide to the processing of primaries, the same capability that was earlier brought to the removal
of multiples. Multiple removal can occur today without subsurface information, whereas, primaries
remain captured by the need to provide subsurface information for the goals of depth imaging
and inversion. The purpose is to put them on an equal footing. To this end, Nita et al. (2007)
generalize the method described by Weglein et al. (2000) for extending the inverse-scattering series
to predict the total wavefield at depth without knowing the propagation medium. The theory
is being extended by identifying and using only velocity independent imaging terms in terms of
a generalized perturbation operator. Our goal is to be able to locate reflectors at their correct
location in space, in a model type independent fashion, analogous to what was earlier achieved for
removing multiples with the inverse series formalism. However, the amplitudes of the reflectors are
not going to be actual reflection coefficients, since only imaging terms would be used.
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Calculation and imaging of the non-linear 2D wavefield at depth in terms of
the data and without any assumptions about the medium

B. G. Nita, A. C. Ramirez, A. B. Weglein, E. Otnes

Abstract

We show the steps involved in the calculation and imaging of the second order wavefield at
depth using the inverse scattering series. In the calculations we employ only the part of the
perturbation operator which does not depend on a medium’s model type. The calculations and
result only require the recorded data and the Green’s function of the homogeneous background
without any a priori assumptions on the medium that’s being investigated.

1 Introduction

Inverse scattering series provides the opportunity to determine a multidimensional unknown medium
directly from the measured data without making any intermediate determinations of, or assump-
tions on, the medium under investigation. The inversion process can be thought of as a sequence
of independent tasks (1) free surface multiple removal (2) internal multiple removal (3) imaging
the reflectors at depth and (4) identifying the medium properties changing across the reflectors.
Each task can be associated with a subseries of the full inverse scattering series which only provides
the respective capability without affecting the other tasks. For a description of the logic and the
history of the subseries method see Weglein et al. (2003).

For the first two tasks, free surface and internal multiple elimination, model type independent
subseries and algorithms have been found and applied extensively in the oil industry (see e.g.
Weglein et al. (1997) and Weglein et al. (2003) and references therein). For the third task of imaging
the reflectors at depth, algorithms have been found and tested for 1D and multi-D acoustic media
(Shaw, 2001; Weglein et al., 2001; Shaw, 2002; Shaw and Weglein, 2003; Shaw et al., 2003; Shaw,
2003; Weglein et al., 2003; Shaw et al., 2004; Shaw, 2005; Liu et al., 2005, 2006, 2007).

This research investigates a possible model type independent methodology to calculate and image
the wavefield at depth from the inverse scattering series using only recorded data. Roughly speaking,
the method uses the calculated and task specific separated perturbation operator V , in the forward
scattering series, to calculate different orders of the scattered field at any depth. The subsequent
imaging of this wavefield at depth is performed similarly to the imaging step in f−k depth migration
algorithms. For an acoustic medium, the method was first described in Weglein et al. (2000) where
the first order wavefield at depth was calculated. In this paper we investigate the possibility of
performing these calculations in a model type independent environment for the first and the second
orders wavefield at depth.

One important conclusions that comes out of this calculations is that, when the actual medium
is unknown, calculating the wavefield at depth for one frequency requires all frequencies in the
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wavefield on the measurement surface (data). This is fundamentally different from migration algo-
rithms, which assume the medium is known, and which can extrapolate, at depth, each frequency
individually (by performing a phase-shift for example). This was originally noted in Weglein et al.
(2000) for the first order of the acoustic wavefield at depth calculated using the inverse scattering
series. Here we discover the same characteristic for the wavefield at depth without a specified model
type for both first and second order.

The paper starts with the necessary background, definitions and description of the method, in
Section 2, and then proceeds with the calculation of the first and second orders of the wavefield at
depth in Sections 3 and 4 respectively. Section 5 shows how this part of the field can be imaged. We
end the paper with conclusions and discussion of future research directions. Throughout the paper
we use the following conventions for Fourier transforming over the space and time coordinates. For
the Fourier transform over the horizontal variable x, we are going to use the different sign convention
for the transformation over the source and receiver coordinates. Accordingly, the forward Fourier
transform of a real function f over the horizontal source coordinate xs is going to be

f(kxs) =
∫ ∞

−∞
f(xs)eikxsxsdxs, (1)

where kxs is the associated horizontal wavenumber. The forward Fourier transform of f over the
horizontal receiver coordinate xg is going to be

f(kxg) =
∫ ∞

−∞
f(xg)e−ikxgxgdxg, (2)

where kxg is, same as before, the associated horizontal wavenumber. The corresponding inverse
Fourier transforms are

f(xs) =
1
2π

∫ ∞

−∞
f(kxs)e−ikxsxsdkxs (3)

and
f(xg) =

1
2π

∫ ∞

−∞
f(kxg)eikxgxgdkxg (4)

respectively. There will be no such distinction for the vertical coordinates/wavenumbers. The
Fourier transform of, say, f(z) will be

f(q) =
∫ ∞

−∞
f(z)eiqzdz (5)

and the inverse Fourier transform of f(q) will be

f(z) =
1
2π

∫ ∞

−∞
f(q)e−iqzdq (6)

The forward Fourier transform over the time coordinate t is

f(ω) =
∫ ∞

−∞
f(t)eiωtdt, (7)

where ω is the temporal frequency. Its corresponding inverse Fourier transform will be given by

f(t) =
1
2π

∫ ∞

−∞
f(ω)e−iωtdω. (8)
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2 Background

In operator form, the differential equations describing wave propagation in an actual and a reference
medium can be written as

LG = −I (9)

and
L0G0 = −I, (10)

where L, L0 and G, G0 are the actual and reference differential and Green’s operators, respectively,
for a single temporal frequency and I is the identity operator. The above equations (9) and (10)
assume that the source and receiver signatures have been deconvolved. The perturbation, V, and
the scattered field operator, ψs, are defined as

V = L− L0, (11)
ψs = G−G0. (12)

The fundamental equation of scattering theory, the Lippmann–Schwinger equation, relates ψs, G0,
V, and G (see, e.g., Taylor (1972)):

ψs = G−G0 = G0VG. (13)

The Lippmann-Schwinger equation (13) is valid everywhere, inside or outside the support of V.
Expressions for L, L0 and V, in the case of a pressure wavefield propagating in inhomogeneous
acoustic and elastic media, have been given in Clayton and Stolt (1981) and Stolt and Weglein
(1985). Equation (13) can be expanded in an infinite series by substituting G = G0 −G0VG into
the right-hand side repeatedly to obtain

ψs = G0VG0 + G0VG0VG (14)
ψs = G0VG0 + G0VG0VG0 + G0VG0VG0VG

...

and so on. By repeating this process an infinite number of times we imagine that we can drop the
last term containing the Green’s function of the actual medium, G, in favor of an infinite series,
and write the scattered field as

ψs ≡ G−G0 = G0VG0 + G0VG0VG0 + · · · . (15)

When convergent (see e.g. Matson (1996) and Nita et al. (2004)), this series, the forward scattering
series, constructs the scattered field operator ψs, everywhere inside or outside the medium, as
a sum of terms representing propagations in the reference medium (G0) and interactions with
the inhomogeneity represented by the perturbation operator V. For example, one could use this
expression to calculate the reflected or transmitted response of the medium everywhere. The data
recorded in a seismic experiment is usually considered to be the scattered field on the measurement
surface

(ψs)MS = D (16)
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Next we consider the expansion of the perturbation V and the scattered field ψs as a series in orders
of the data D and write

V = V1 + V2 + V3 + . . . (17)

and
ψs = ψ1

s + ψ2
s + ψ3

s + . . . (18)

respectively, where Vi and ψi
s are terms of order i in the data D. Notice, for example, that, on the

measurement surface, we have

(ψ1
s)MS = D (19)

(ψi
s)MS = 0, i ≥ 2.

Plugging the series in (17) and (18) into the forward scattering series (15) we find

ψ1
s + ψ2

s + ψ3
s + . . . = G0V1G0 + G0V2G0 + G0V3G0 . . . (20)

+ G0V1G0V1G0 + G0V1G0V2G0 + G0V2G0V1G0 + . . .

+ G0V1G0V1G0V1G0 + . . .

+ . . . .

Equating like orders in the data in the equation above we find

ψ1
s = G0V1G0 (21)

ψ2
s = G0V2G0 + G0V1G0V1G0 (22)

ψ3
s = G0V3G0 + G0V2G0V1G0 + G0V1G0V2G0 + G0V1G0V1G0V1G0 (23)

... .

On the measurements surface, and because of (19), equations (21)-(23) provide an algorithm for
computing Vi, i ≥ 1

D = (G0V1G0)ms (24)
0 = (G0V2G0 + G0V1G0V1G0)ms (25)
0 = (G0V3G0 + G0V2G0V1G0 + G0V1G0V2G0 + G0V1G0V1G0V1G0)ms (26)

... .

One can then calculate V as a series V = V1 + V2 + V3 + .... This approach and task specific
subseries associated with the series for V were studied (see e.g. Weglein et al. (2003) and references
therein) and continue to be studied. Most importantly, the subseries method provided model type
independent algorithms for free surface and internal multiple elimination. Subseries for moving
reflectors at the correct depth have been found for the acoustic case (Shaw (2005), Liu et al.
(2006)) and research efforts are under way to generalize the subseries to a model type independent
algorithm (Ramı́rez et al. (2007)).

However equations (21)-(23) also provide a different method for computing the wavefield at depth
in two steps (see also Weglein et al. (2000) and Weglein et al. (2006)). In the first step we restrict
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these equations to the measurement surface to obtain (24)-(26). From these equations we can
calculate Vi, i ≥ 1. In a second step we use the fully unrestricted equations (21)-(23), now with
known Vi’s, to calculate ψi

s, i ≥ 1, at any depth. The connection between the two steps is realized
through the perturbation operator V, a quantity which only depends on the actual medium (for a
fixed reference medium) and does not change from one equation to another. We emphasize that this
calculation of the wavefield at depth is performed starting with the data and a reference medium
and does not require any features of the actual medium. There are several important features of
this calculation that will be evident in the following section. First, in the calculation of Vi, only
the model type independent part (as described in Weglein et al. (2003), Ramı́rez et al. (2007)) is
retained and the part that depends on the medium properties is ignored. Second, since what we are
trying to achieve is the extrapolation of the wavefield at depth without any change in amplitude,
we only use the terms in the series that correct for the reflectors mislocation, as found in Shaw
(2005).

In the following sections we calculate the first and second orders of the wavefield at depth in terms
of the data and the reference medium only.

3 The calculation of the first order wavefield at depth ψ1
s

We start with equation (21)
ψ1

s = G0V1G0 (27)

or, in a coordinate system,

ψ1
s(x1, z1, x2, z2;ω1) =

∫
dx′dx′′dz′dz′′G0(x1, z1, x

′, z′;ω1)V1(x′, z′, x′′, z′′, ω1)G0(x′′, z′′, x2, z2;ω1)

(28)
where (see Appendix 6)

G0(x1, z1, x
′, z′, ω1) =

(
1
2π

)2
∞∫

−∞

dkg

∞∫
−∞

dq1
eikg(x1−x′)eiq1(z′−z1)

k2
g + q21 −

ω2
1

c20
− iε

(29)

and

G0(x′′, z′′, x2, z2, ω1) =
(

1
2π

)2
∞∫

−∞

dks

∞∫
−∞

dq2
eiks(x′′−x2)eiq2(z′′−z2)

k2
s + q22 −

ω2
1

c20
− iε

(30)

and where x1, z1, x2 and z2 are arbitrary coordinates. Notice that in the equations for the Green’s
functions given above we have associated the space variables x1, z1, x2 and z2 with the wavenumbers
kg, q1, ks, q2 satisfying the dispersion relations

k2
g + q21 =

ω2
1

c20
, k2

s + q22 =
ω2

1

c20
. (31)
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Fourier transforming equation (28) over all space variables (i.e. applying on both sides the integral

operators
∞∫

−∞
dx1e

−ik′gx1 ,
∞∫

−∞
dx2e

ik′sx2 ,
∞∫

−∞
dz1e

iq′1z1 and
∞∫

−∞
dz2e

iq′2z2) we find

ψ1
s(k

′
g, q

′
1, k

′
s, q

′
2;ω1) =

(
1
2π

)4 ∫
dx′dx′′dz′dz′′

∞∫
−∞

dkg

∞∫
−∞

dx1e
ix1(kg−k′g)

∞∫
−∞

dks

∞∫
−∞

dx1e
−ix2(ks−k′s)

×
∞∫

−∞

dq1

∞∫
−∞

dz1e
iz1(q′1−q1)

∞∫
−∞

dq2

∞∫
−∞

dz2e
iz2(q′2−q2)

× e−ix′kgeix
′′ks

k2
g + q21 −

ω2
1

c20
− iε

V1(x′, z′, x′′, z′′, ω1)
eiz

′q1eiz
′′q2

k2
s + q22 −

ω2
1

c20
− iε

(32)

which becomes

ψ1
s(k

′
g, q

′
1, k

′
s, q

′
2;ω1) =

(
1
2π

)4 ∫
dx′dx′′dz′dz′′

∞∫
−∞

dkgδ(kg − k′g)

∞∫
−∞

dksδ(ks − k′s)

×
∞∫

−∞

dq1δ(q′1 − q1)

∞∫
−∞

dq2δ(q′2 − q2)

× e−ix′kgeix
′′ks

k2
g + q21 −

ω2
1

c20
− iε

V1(x′, z′, x′′, z′′, ω1)
eiz

′q1eiz
′′q2

k2
s + q22 −

ω2
1

c20
− iε

(33)

or, after simplifying the delta functions and eliminating the primed notation from the wavenumbers,

ψ1
s(kg, q1, ks, q2;ω1) =

∫
dx′dx′′dz′dz′′

e−ix′kgeix
′′ks

k2
g + q21 −

ω2
1

c20
− iε

V1(x′, z′, x′′, z′′, ω1)
eiz

′q1eiz
′′q2

k2
s + q22 −

ω2
1

c20
− iε

.

(34)
The last four integrals can also be regarded as Fourier transforms over x′, x′′, z′ and z′′ so that the
last expression can be written as

ψ1
s(kg, q1, ks, q2;ω1) =

1

k2
g + q21 −

ω2
1

c20
− iε

V1(kg,−q1, ks,−q2, ω1)
1

k2
s + q22 −

ω2
1

c20
− iε

. (35)

From Appendix 6 equation (146) we have that

V1(kg,−qg,−ks,−qs, ω) = −4qgqseiqgzgeiqszsD(kg, ks, ω) (36)

where we emphasize that while the horizontal wavenumbers are the same in the two equations,
the vertical wavenumbers are different and are related to the horizontal ones through different
frequencies ω and ω1. To avoid confusions (see also Appendix 6) we rewrite the last equation as

V1(kg,−qg,−ks,−qs, ω) = −4qgqseiqgzgeiqszsD(kg, ks, qg + qs). (37)
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It is important to notice that the V1 on the left is the 3-dimensional projection of the fully 5-
dimensional V1 operator (so chosen by ignoring the P.V. part of the Green’s function, see Appendix
6). The independent variables on the left are kg, ks and qg + qs. With this in mind we write

V1(kg,−q1,−ks,−q2, ω1) =
1
2π

∞∫
−∞

d(−qg − qs)δ(qg + qs − q1 − q2)V1(kg,−qg,−ks,−qs, ω) (38)

or

V1(kg,−q1,−ks,−q2, ω1) = − 1
2π

∞∫
−∞

d(−qg− qs)δ(qg + qs− q1− q2)qgqseiqgzgeiqszsD(kg, ks, ω). (39)

Equation (39) leads to a relationship between the sums of the vertical wavenumbers,

qg + qs = q1 + q2, (40)

which, in turn, allows us to calculate ω1 in terms of ω as (see Appendix 6 equation (152)) as

ω2
1

c20
=

[
(qg + qs)2 + k2

g + k2
s

]2 − 4k2
gk

2
s

4(qg + qs)2
. (41)

With this particular ω1, equation (39) for V1 becomes

V1(kg,−q1, ks,−q2, ω1) = −4qgqseiqgzgeiqszsD(kg, ks, ω) (42)

so the final expression for ψ1
s

ψ1
s(kg, q1, ks, q2;ω1) =

−4qgqseiqgzgeiqszsD(kg, ks, ω)(
k2

g + q21 −
ω2

1

c20
− iε

)(
k2

s + q22 −
ω2

1

c20
− iε

) (43)

in which the variables are related by the dispersion relationships

k2
g + q21 =

ω2
1

c20
, k2

s + q22 =
ω2

1

c20
(44)

k2
g + q2g =

ω2

c20
, k2

s + q2s =
ω2

c20
(45)

and
ω2

1

c20
=

[
(qg + qs)2 + k2

g + k2
s

]2 − 4k2
gk

2
s

4(qg + qs)2
. (46)

For the acoustic case, equation (43) was obtained in Weglein et al. (2000) and it was discussed in
Weglein et al. (2006). In the next section we calculate the second order wavefield at depth, ψ2

s .
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4 The calculation of the second order wavefield at depth ψ2
s

We start with equation (22)

ψ2
s = G0V2G0 + G0V1G0V1G0. (47)

For convenience, we will denote

ψ21
s = G0V1G0V1G0 (48)

ψ22
s = G0V2G0. (49)

4.1 The calculation of ψ21
s

We start with
ψ21

s = G0V1G0V1G0 (50)

or, with coordinates,

ψ21
s (x1, z1, x2, z2;ω1) =

∫
dx′dx′′dz′dz′′G0(x1, z1, x

′, z′;ω1)V1(x′, z′, x′′, z′′, ω1)

×
∫
dx′′′dxivdz′′′dzivG0(x′′, z′′, x′′′, z′′′;ω1)V1(x′′′, z′′′, xiv, ziv, ω1)G0(xiv, ziv, xs, zs;ω1) (51)

where x1, z1, x2 and z2 are arbitrary coordinates and, as before, the Green’s functions have the
expressions (see Appendix 6)

G0(x1, z1, x
′, z′, ω1) =

(
1
2π

)2
∞∫

−∞

dkg

∞∫
−∞

dq1
eikg(x1−x′)eiq1(z′−z1)

k2
g + q21 −

ω2
1

c20
− iε

, (52)

G0(xiv, ziv, x2, z2, ω1) =
(

1
2π

)2
∞∫

−∞

dks

∞∫
−∞

dq2
eiks(xiv−x2)eiq2(ziv−z2)

k2
s + q22 −

ω2
1

c20
− iε

. (53)

and

G0(x′′, z′′, x′′′, z′′′, ω1) =
1
2π

∞∫
−∞

dkλ1

eikλ1
(x′′−x′′′)eiqλ1

|z′′−z′′′|

2iqλ1

. (54)

where qλ1 =
√

ω2
1

c20
− k2

λ1
. In the expressions of the Green’s functions above we have associated

the spatial variables x1, z1, x2 and z2 with the wavenumbers kg, q1, ks and q2 respectively. The
wavenumbers satisfy the dispersion relations

k2
g + q21 =

ω2
1

c20
, k2

s + q22 =
ω2

1

c20
, k2

λ1
+ q2λ1

=
ω2

1

c20
. (55)
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Fourier transforming equation (51) over all spatial arguments of ψ21
s (i.e. applying on both sides

the integral operators
∞∫

−∞
dx1e

−ik′gx1 ,
∞∫

−∞
dx2e

ik′sx2 ,
∞∫

−∞
dz1e

iq′1z1 and
∞∫

−∞
dz2e

iq′2z2) we find

ψ21
s (k′g, q

′
1, k

′
s, q

′
2;ω1) =

(
1
2π

)5 ∫
dkλ1

1
2iqλ1

∫
dx′dx′′dz′dz′′dx′′′dxivdz′′′dziv∫

dkg

∫
dx1e

ix1(kg−k′g)

∫
dks

∫
dx1e

−ix2(ks−k′s)

∫
dq1

∫
dz1e

iz1(q′1−q1)

∫
dq2

∫
dz2e

iz2(q′2−q2)

× e−ix′kgeix
′′kλ1

k2
g + q21 −

ω2
1

c20
− iε

V1(x′, z′, x′′, z′′, ω1)
e−ix′′′kλ1eix

ivks

k2
s + q22 −

ω2
1

c20
− iε

V1(x′′′, z′′′, xiv, ziv, ω1)eiz
′q1eiqλ1

|z′′−z′′′|eiz
ivq2

(56)

which becomes

ψ21
s (k′g, q

′
1, k

′
s, q

′
2;ω1) =

(
1
2π

)5 ∫
dkλ1

1
2iqλ1

∫
dx′dx′′dz′dz′′dx′′′dxivdz′′′dziv

∫
dkgδ(kg − k′g)

×
∫
dksδ(ks − k′s)

∫
dq1δ(q′1 − q1)

∫
dq2δ(q′2 − q2)V1(x′, z′, x′′, z′′, ω1)

× e−ix′kgeix
′′kλ1

k2
g + q21 −

ω2
1

c20
− iε

e−ix′′′kλ1eix
ivks

k2
s + q22 −

ω2
1

c20
− iε

V1(x′′′, z′′′, xiv, ziv, ω1)eiz
′q1eiqλ1

|z′′−z′′′|eiz
ivq2 (57)

or, after simplifying the delta functions and eliminating the primed notation on the wavenumbers,

ψ21
s (kg, q1, ks, q2;ω1) =

1
2π

∞∫
−∞

dkλ1

1
2iqλ1

∫
dx′dx′′dz′dz′′dx′′′dxivdz′′′dziveiz

′q1eiqλ1
|z′′−z′′′|eiz

ivq2

× e−ix′kgeix
′′kλ1

k2
g + q21 −

ω2
1

c20
− iε

e−ix′′′kλ1eix
ivks

k2
s + q22 −

ω2
1

c20
− iε

V1(x′, z′, x′′, z′′, ω1)V1(x′′′, z′′′, xiv, ziv, ω1). (58)

The integrals over x′, x′′, x′′′, xiv, z′ and ziv are Fourier transform so we can further simplify into

ψ21
s (kg, q1, ks, q2;ω1) =

1
4πi

1

k2
g + q21 −

ω2
1

c20
− iε

1

k2
s + q22 −

ω2
1

c20
− iε

∫
dkλ1

1
qλ1

∫
dz′′

× V1(kg,−q1,−kλ1 , z
′′, ω1)

∫
dz′′′eiqλ1

|z′′−z′′′|V1(kλ1 , z
′′′,−ks,−q2, ω1). (59)

Next we use the Heaviside step function H to express the absolute values and write

eiqλ1
|z′′−z′| = eiqλ1

(z′−z′′)H(z′ − z′′) + eiqλ1
(z′′−z′)H(z′′ − z′). (60)

Moreover we use the integral representation of H (reference)

H(z) = lim
ε→0

1
2π

∞∫
−∞

dp
1

i(p− iε)
e−ipz. (61)
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With this, the expression of ψ21
s becomes

ψ21
s (kg, q1, ks, q2;ω1) =

1
4πi

1

k2
g + q21 −

ω2
1

c20
− iε

1

k2
s + q22 −

ω2
1

c20
− iε

∫
dkλ1

1
qλ1

∫
dz′′V1(kg,−q1,−kλ1 , z

′′, ω1)

×

∫ dz′′′eiqλ1
(z′′−z′′′) lim

ε→0

1
2π

∞∫
−∞

dp
1

i(p− iε)
e−ip(z′′−z′′′)V1(kλ1 , z

′′′,−ks,−q2, ω1)

+
∫
dz′′′eiqλ1

(z′′′−z′′) lim
ε→0

1
2π

∞∫
−∞

dp
1

i(p− iε)
e−ip(z′′′−z′′)V1(kλ1 , z

′′′,−ks,−q2, ω1)

 (62)

Rearranging the order of integration and solving the Fourier transforms over dz′′ and dz′′′ we find

ψ21
s (kg, q1, ks, q2;ω1) =

1
8π2i

1

k2
g + q21 −

ω2
1

c20
− iε

1

k2
s + q22 −

ω2
1

c20
− iε

∞∫
−∞

dkλ1

1
qλ1

×

lim
ε→0

∞∫
−∞

dp
V1(kg,−q1,−kλ1 ,−qλ1 + p, ω1)V1(kλ1 , qλ1 − p,−ks,−q2, ω1)

i(p− iε)

+ lim
ε→0

∞∫
−∞

dp
V1(kg,−q1,−kλ1 , qλ1 − p, ω1)V1(kλ1 ,−qλ1 + p,−ks,−q2, ω1)

i(p− iε)

 (63)

The two dp integrals can be separated into a principal value and a contribution from contour
integrals around the pole p = iε. The portion of V2 which depends on the principal value part
of that integral, is not computable in terms of the data without specifying a model type. In
conclusion we will exclude that part from the computation. The contribution from integrating
around the contour integrals around the pole leads to

ψ21
s (kg, q1, ks, q2;ω1) =

1
8π2i

1

k2
g + q21 −

ω2
1

c20
− iε

1

k2
s + q22 −

ω2
1

c20
− iε

∞∫
−∞

dkλ1

1
qλ1

×

lim
ε→0

∞∫
−∞

dp iπδ(p− iε)V1(kg,−q1,−kλ1 ,−qλ1 + p, ω1)V1(kλ1 , qλ1 − p,−ks,−q2, ω1)

+ lim
ε→0

∞∫
−∞

dp iπδ(p− iε)V1(kg,−q1,−kλ1 , qλ1 − p, ω1)V1(kλ1 ,−qλ1 + p,−ks,−q2, ω1)

 (64)

or

ψ21
s (kg, q1, ks, q2;ω1) =

1
8π

1

k2
g + q21 −

ω2
1

c20
− iε

1

k2
s + q22 −

ω2
1

c20
− iε

∞∫
−∞

dkλ1

1
qλ1
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× [V1(kg,−q1,−kλ1 ,−qλ1 , ω1)V1(kλ1 , qλ1 ,−ks,−q2, ω1)
+V1(kg,−q1,−kλ1 , qλ1 , ω1)V1(kλ1 ,−qλ1 ,−ks,−q2, ω1)] . (65)

Next we relate V1 in vertical numbers q1, q2 and V1 in vertical numbers qg, qs. As noted before,
this leads to two sets of relationships between the sums of the vertical wavenumbers,

qg + qλ = q1 + qλ1 (66)
qλ − qs = qλ1 − q2 (67)

and

qg − qλ = q1 − qλ1 (68)
qλ + qs = qλ1 + q2. (69)

where

qλ1 =

√
ω2

1

c20
− k2

λ, qλ =

√
ω2

c20
− k2

λ. (70)

Each of the two sets of equations for the vertical wavenumbers has to be satisfied simultaneously.
Notice that these equations provide a unique and consistent formula for ω1, in terms of ω, which
can be discovered by, for example, subtracting equations (66) and (67) and adding equations (68)
and (69). The relationship is (see also equation (40))

qg + qs = q1 + q2, (71)

which leads to (see Appendix 6 equation (152) and also Section 3)

ω2
1

c20
=

[
(qg + qs)2 + k2

g + k2
s

]2 − 4k2
gk

2
s

4(qg + qs)2
. (72)

With this particular ω1, equation (65) for ψ21
s becomes

ψ21
s (kg, q1, ks, q2;ω1) =

1
8π

1

k2
g + q21 −

ω2
1

c20
− iε

1

k2
s + q22 −

ω2
1

c20
− iε

∫
dkλ

1
qλ1

× [V1(kg,−qg,−kλ,−qλ, ω)V1(kλ, qλ,−ks,−qs, ω) + V1(kg,−qg,−kλ, qλ, ω)V1(kλ,−qλ,−ks,−q2, ω)] .
(73)

Next we plug in the expressions for V1’s in terms of the measured data. From equations (172),
(173), (174) and (175) in Appendix 6 we have

V1(kg,−qg,−kλ,−qλ, ω) = −4qgqλeiqgzgeiqλzsD(kg, kλ, qg + qλ), (74)

V1(kλ, qλ,−ks,−qs, ω) = 4qλqse−iqλzgeiqszsD(kλ, ks,−qλ + qs) (75)

V1(kg,−qg,−kλ, qλ, ω) = 4qgqλeiqgzge−iqλzsD(kg, kλ, qg − qλ) (76)
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and
V1(kλ,−qλ,−ks,−q2, ω) = −4qλqseiqλzgeiqszsD(kλ, ks, qλ + qs) (77)

and so equation (73) becomes

ψ21
s (kg, q1, ks, q2;ω1) = −2qgqs

π

eiqgzg

k2
g + q21 −

ω2
1

c20
− iε

eiqszs

k2
s + q22 −

ω2
1

c20
− iε

×
∞∫

−∞

dkλ
q2λ
qλ1

[
eiqλ(zs−zg)D(kg, kλ, qg + qλ)D(kλ, ks,−qλ + qs)

+ eiqλ(zg−zs)D(kg, kλ, qg − qλ)D(kλ, ks, qλ + qs)
]
. (78)

Similar to what is described in Appendix 6 we are going to separate the expression of ψ21
s into an

imaging part and an inversion part and use the former and discard the latter for our calculation of
the second order wavefield at depth. To separate, we write the data terms as Fourier integrals over
vertical wavenumbers as

D(kg, kλ, qg + qλ) =

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1), (79)

D(kλ, ks,−qλ + qs) =

∞∫
−∞

dz2e
iz2(−qλ+qs)D(kλ, ks, z2) (80)

D(kg, kλ, qg − qλ) =

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3) (81)

D(kλ, ks, qλ + qs) =

∞∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4), (82)

and rewrite equation (78) as

ψ21
s (kg, q1, ks, q2;ω1) = −2qgqs

π

eiqgzg

k2
g + q21 −

ω2
1

c20
− iε

eiqszs

k2
s + q22 −

ω2
1

c20
− iε

∞∫
−∞

dkλ
q2λ
qλ1eiqλ(zs−zg)

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
−∞

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+ eiqλ(zg−zs)

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

∞∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 . (83)
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Depending on the relative position of the two pseudo-depths z1, z2, z3 and z4 we can further
separate the last expression into

ψ21
s (kg, q1, ks, q2;ω1) = −2qgqs

π

eiqgzg

k2
g + q21 −

ω2
1

c20
− iε

eiqszs

k2
s + q22 −

ω2
1

c20
− iε

∞∫
−∞

dkλ
q2λ
qλ1

eiqλ(zs−zg)

 ∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
−∞

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)δ(z2 − z1)

+

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
z1+ε

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

z1−ε∫
−∞

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)


− 2qgqs

π

eiqgzg

k2
g + q21 −

ω2
1

c20
− iε

eiqszs

k2
s + q22 −

ω2
1

c20
− iε

∞∫
−∞

dkλ
q2λ
qλ1

eiqλ(zg−zs)

 ∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

∞∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)δ(z3 − z4)

+

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

∞∫
z3+ε

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

+

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

z3−ε∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 (84)

or, after solving the integral containing the delta function,

ψ21
s (kg, q1, ks, q2;ω1) = −2qgqs

π

eiqgzg

k2
g + q21 −

ω2
1

c20
− iε

eiqszs

k2
s + q22 −

ω2
1

c20
− iε

∞∫
−∞

dkλ
q2λ
qλ1

eiqλ(zs−zg)

2π

∞∫
−∞

dz1e
iz1(qg+qs)D(kg, kλ, z1)D(kλ, ks, z1)

+

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
z1+ε

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

z1−ε∫
−∞

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)


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− 2qgqs
π

eiqgzg

k2
g + q21 −

ω2
1

c20
− iε

eiqszs

k2
s + q22 −

ω2
1

c20
− iε

∞∫
−∞

dkλ
q2λ
qλ1

eiqλ(zg−zs)

2π

∞∫
−∞

dz3e
iz3(qg+qs)D(kg, kλ, z3)D(kλ, ks, z3)

+

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

∞∫
z3+ε

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

+

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

z3−ε∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 . (85)

As also noted in Appendix 6, the first term in each square bracket in equation (85) is similar to
an amplitude corrector and it will be ignored in the following calculations. The second term in the
first square bracket and the third in the second square bracket are similar to depth correctors (see
e.g. Shaw (2005), Liu et al. (2006) Ramirez and Otnes (2007)). For the purpose of this paper we
will only keep these (imaging) terms and arrive to our final expression

ψ21IM
s (kg, q1, ks, q2;ω1) = −2qgqs

π

eiqgzg

k2
g + q21 −

ω2
1

c20
− iε

eiqszs

k2
s + q22 −

ω2
1

c20
− iε

∞∫
−∞

dkλ
q2λ
qλ1eiqλ(zs−zg)

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
z1+ε

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+ eiqλ(zg−zs)

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

z3−ε∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 , (86)

in which the variables are related by the dispersion relationships

k2
g + q21 =

ω2
1

c20
k2

s + q22 =
ω2

1

c20
(87)

k2
g + q2g =

ω2

c20
k2

s + q2s =
ω2

c20
(88)

and
ω2

1

c20
=

[
(qg + qs)2 + k2

g + k2
s

]2 − 4k2
gk

2
s

4(qg + qs)2
. (89)
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4.2 The calculation of ψ22
s

For ψ22
s the calculations are similar to the ones in Section 3 and we can find

ψ22
s (kg, q1, ks, q2;ω1) =

1

k2
g + q21 −

ω2
1

c20
− iε

V2(kg,−q1,−ks,−q2, ω1)
1

k2
s + q22 −

ω2
1

c20
− iε

. (90)

It is again important to notice that the V2 on the right is the 3-dimensional projection of the fully
5-dimensional V2 operator. The independent variables on the right are kg, ks and q1 + q2. With
this in mind we write (see also Appendix 6)

V2(kg,−q1,−ks,−q2, ω1) =
1
2π

∞∫
−∞

d(−qg − qs)δ(qg + qs − q1 − q2)V2(kg,−qg,−ks,−qs, ω). (91)

This last equation leads to the same relationship between the sums of the vertical wavenumbers,

qg + qs = q1 + q2, (92)

which, in turn, allows us to calculate ω1 in terms of ω as (see Appendix 6 equation (152))

ω2
1

c20
=

[
(qg + qs)2 + k2

g + k2
s

]2 − 4k2
gk

2
s

4(qg + qs)2
. (93)

Note that this value of ω1 is consistent with the previous values obtained in the calculation of V1

and ψ1
s . With this particular ω1, the equation for V2 becomes

V2(kg,−q1,−ks,−q2, ω1) = V2(kg,−qg,−ks,−qs, ω). (94)

In this expression, consistent with our previous remarks, we will only use the imaging part of V2 as
calculated in equation (185) in Appendix 6

V IM
2 (kg,−q1,−ks,−q2, ω1) = V IM

2 (kg,−qg,−ks,−qs, ω) =
2qgqsei(qgzg+qszs)

π

∞∫
−∞

dkλqλ

×

eiqλ(zs−zg)

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
z1+ε

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+eiqλ(zg−zs)

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

z3−ε∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 . (95)

The final expression for ψ22IM
s is then

ψ22IM
s (kg, q1, ks, q2;ω1) =

2
π

qgqs

k2
g + q21 −

ω2
1

c20
− iε

ei(qgzg+qszs)

k2
s + q22 −

ω2
1

c20
− iε

∞∫
−∞

dkλqλ
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×

eiqλ(zs−zg)

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
z1+ε

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+eiqλ(zg−zs)

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

z3−ε∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 . (96)

in which the variables are related by the dispersion relationships

k2
g + q21 =

ω2
1

c20
, k2

s + q22 =
ω2

1

c20
, (97)

k2
g + q2g =

ω2

c20
, k2

s + q2s =
ω2

c20
, k2

λ + q2λ =
ω2

c20
(98)

and
ω2

1

c20
=

[
(qg + qs)2 + k2

g + k2
s

]2 − 4k2
gk

2
s

4(qg + qs)2
. (99)

4.3 Solution for ψ2IM
s

Combining equations (86) and (96) we find

ψ2IM
s (kg, q1, ks, q2;ω1) =

2qgqs
π

eiqgzg

k2
g + q21 −

ω2
1

c20
− iε

eiqszs

k2
s + q22 −

ω2
1

c20
− iε

∞∫
−∞

dkλ
qλ
qλ1

(qλ1 − qλ)

×

eiqλ(zs−zg)

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
z1+ε

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+eiqλ(zg−zs)

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

z3−ε∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 (100)

in which, again, the variables are related by the dispersion relationships

k2
g + q21 =

ω2
1

c20
, k2

s + q22 =
ω2

1

c20
, k2

λ + q2λ1
=
ω2

1

c20
(101)

k2
g + q2g =

ω2

c20
, k2

s + q2s =
ω2

c20
, k2

λ + q2λ =
ω2

c20
(102)

and
ω2

1

c20
=

[
(qg + qs)2 + k2

g + k2
s

]2 − 4k2
gk

2
s

4(qg + qs)2
. (103)
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5 Imaging the wavefield at depth

Equation (18) provides a formula for the scattered wavefield everywhere inside or outside the actual
medium

ψs = ψ1
s + ψ2

s + ψ3
s + . . . . (104)

Plugging in the expressions we found for the first and second orders, ψ1
s and ψ2

s , in equations (43)
and (100) respectively, we find

ψ2nd
s (kg, q1, ks, q2;ω1) =

−4qgqseiqgzgeiqszs(
k2

g + q21 −
ω2

1

c20
− iε

)(
k2

s + q22 −
ω2

1

c20
− iε

)
D(kg, zg, ks, zs, ω) +

1
2π

∞∫
−∞

dkλ
qλ
qλ1

(qλ − qλ1)

×

eiqλ(zs−zg)

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
z1+ε

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+eiqλ(zg−zs)

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

z3−ε∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 . (105)

To image this wavefield we first transform it into the depth domain by inverse Fourier transforming
over the vertical wavenumbers to obtain

ψ2nd
s (kg, ks, z;ω1) =

∞∫
−∞

dkz e
ikzzψ2nd

s (kg, q1, ks, q2;ω1) (106)

where kz = q1 + q2. Then we integrate over all temporal frequencies, which amounts in applying
the imaging condition, to obtain

I(kg, ks, z) =

∞∫
−∞

dω1ψ
2nd
s (kg, ks, z;ω1), (107)

and finally we transform over the horizontal wavenumbers to obtain the image in the space domain

I(x, z) =
1
2π

∞∫
−∞

d(kg − ks)e−i(kg−ks)xI(kg, ks, z). (108)

6 Conclusions

In this report we describe an approach to calculating and imaging the wavefield at depth using
the inverse scattering series. The method does not make any assumptions on the medium under

237



Calculation and imaging of the non-linear 2D wavefield at depth in terms of the data MOSRP06

investigations and only inputs the recorded data on the measurement surface and a background
acoustic Green’s function. Roughly speaking, the method uses the calculated and task specific
separated perturbation operator V, in the forward scattering series, to calculate different orders of
the scattered field at any depth. For an acoustic medium, the method was presented in Weglein
et al. (2000) where the first order wavefield was calculated. Here we proceed without specifying
an actual model type. The main results of this paper are the calculated first and second orders
wavefield at depth, equations (43) and (100) respectively.

It is important to notice that the calculation of the second order wavefield at depth uses the formula
(see equation (22))

ψ2
s = G0V2G0 + G0V1G0V1G0 (109)

and hence V1 and V2 are required for the calculation (see theri calculated expressions in the
Appendices). There are two important related choices that we made in this calculation and that
are worth mentioning. First, instead of putting through the equation the full expression of V2, we
separated it and determined just the piece which corrects for the wrong depth and used that part
only. Second, consistently with the first choice, instead of using the full second term on the right
side of the above equation for ψ2

s we, again, separated the term, determined the part which corrects
for the wrong depth and used that part only. The motivation behind these choices is simple: the
full expression of V will construct the full wavefield at depth, including primaries and multiples
(as shown for example in Matson (1996)). Since what we are trying to construct is the image at
depth of data containing primaries only, it was reasonable to assume that this will be achieved by
the part in V which only corrects for depth. Further analytical and numerical examples will verify
this hypothesis.

We emphasize one important conclusion that comes out of the two expressions of the first and second
orders wavefield at depth. When using inverse scattering methods, the actual medium is assumed
to be unknown and no a priori assumptions are made about its properties. As a consequence,
calculating the wavefield at depth for one frequency requires all frequencies in the data. This is
fundamentally different from well known migration algorithms, which assume the velocity profile
of the medium can be a priori found, and which, hence, can extrapolate, at depth, each frequency
individually (by performing a phase-shift in the wavenumber-frequency domain for example). This
was originally noted in Weglein et al. (2000) for the first order of the acoustic wavefield at depth
calculated using the inverse scattering series. Here we discovered the same characteristic for the
wavefield at depth without a specified model type for both first and second order.
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Appendices

A. Green’s function in an infinite homogeneous space

Consider the homogeneous acoustic wave equation (see also equation (10))

∇2φ(x, t)− 1
c20

∂2φ(x, t)
∂t2

= −δ(x)δ(t) (110)

where x = (xg − xs, zg − zs) is the vector connecting the source of the wave to the point where the
wave is measured (the receiver) and where we assume that the source goes off at time t = 0. In the
frequency domain, the solution to equation (110) in an infinite homogeneous space is (see e.g. Aki
and Richards (2002))

φ(x, ω) =
1
R
e
iω

“
R
c0

”
(111)

where R = |x| =
√

(xg − xs)2 + (zg − zs)2. This is the Green’s function of the acoustic wave
equation in an infinite homogeneous space and it is usually denoted by

G0(xg, zg, xs, zs, ω) =
1
R
e
iω

“
R
c0

”
(112)

In the following we will use φ and G0 interchangeably.

In terms of its Fourier transform over all space coordinates, we can also write φ as

φ(x, t) =
1

(2π)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dqφ(k, t)eik·x (113)

where k = (k, q) is the wavenumber vector, with horizontal and vertical components, associated
with x. Notice that we also have

∇2φ(x, t) =
1

(2π)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dqφ(k, t)(−k2

x − q2)eik·x, (114)

− 1
c20

∂2φ(x, t)
∂t2

=
1

(2π)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dqφ(k, t)

ω2

c20
eik·x (115)

and
−δ(x) = − 1

(2π)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dqeik·x. (116)

Putting these last three expressions back into equation (110) and transforming to frequency domain
we find

1
(2π)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dqφ(k, ω)

(
ω2

c2
− k2 − q2

)
eik·x = − 1

(2π)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dqeik·x. (117)
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By equating the integrands we find

G0(k, q, ω) = φ(k, q, ω) =
1

k2 + q2 − ω2

c20

. (118)

Then from (112) and the double inverse Fourier transform of (118)

G0(xg, zg, xs, zs, ω) =
1
R
e
iω

“
R
c0

”
=

1
(2π)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dq

eik·x

k2 + q2 − ω2

c20

. (119)

The first expression is a cylindrical wave propagating from the source to the receiver with speed
c0. The right side represents a superposition of planewaves over the entire range of wavenumbers
k and q. These planewaves have the arbitrary velocity ω

|k| which varies from 0 to ∞. In order to
write the expression on the right as a superposition of planewaves traveling at the same speed c0,
we have to perform one of the integrations with respect to one of the two wavenumbers. We will do
this over the vertical wavenumber q, then comment on this calculation to obtain equivalent forms
for the Green’s function.

The Weyl Integral form of the Green’s function

To integrate the right side of equation (119) with respect to q we apply residue theorem. We
complexify q and notice that the poles of the integrand are at

q = ±

√
ω2

c20
− k2 (120)

with some of them lying on the real q axis, i.e. along the integration path. To make the integrand
analytic along the real q axis, a small attenuation is introduced through an imaginary part in the
velocity c0 (see Aki and Richards (2002)) so that the new velocity cnew

0 is

1
cnew
0

=
1
c0

+ iε (121)

with ε being a small parameter such that ε > 0 for ω > 0. This attenuation effects in a shift of the
poles away from the real q axis and into the first and the third quadrant in the complex q plane.
We define the poles in the first quadrant as

q = +

√
ω2

c20
− k2 (122)

and the poles in the third quadrant as

q = −

√
ω2

c20
− k2. (123)
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Notice that in the first quadrant both the imaginary and the real part of q are positive, while in
the third quadrant both the imaginary and the real part of q are negative. We now apply Cauchy’s
theorem to calculate the integral.

For positive zg − zs a factor of eiq(zg−zs) will cancel the integrand if taken around a sufficiently
large semicircle in the upper half complex q-plane. This implies that adding this semicircle to the
integration path will not change the value of the integral and hence it can be used to close the
integration path. Cauchy’s theorem implies

φ = P.V.+ iπδ

(
q −

√
ω2

c20
− k2

)
= P.V.+

e−iωt

2π

∫ ∞

−∞
dkx

ei[k(xg−xs)+iq(zg−zs)]

2iq
, (124)

where k and q now satisfy the dispersion relation

k2 + q2 =
ω2

c20
. (125)

For negative zg−zs the same factor eiq(zg−zs) will cancel the integrand if taken around a sufficiently
large semicircle in the lower half complex q-plane. We add the semicircle to close the integration
path and obtain, from Cauchy’s theorem,

φ = P.V + iπδ

(
q +

√
ω2

c20
− k2

)
= P.V.+

e−iωt

2π

∫ ∞

−∞
dkx

ei[k(xg−xs)+iq(zs−zg)]

2iq
. (126)

where, again, k and q satisfy the dispersion relation

k2 + q2 =
ω2

c20
. (127)

The results in equations (124) and (126) can be summarized in the Weyl integral

G(xg, zg, xs, zs;ω) = P.V.+
1
2π

∫ ∞

−∞
dkx

ei[k(xg−xs)+iq|zg−zs|]

2iq
(128)

where

q =

√
ω2

c20
− k2 (129)

and the sign of q is chosen such that the Im q > 0.

In the history of the development of a model type independent internal multiple algorithm it was
determined that the portion of V2 which depends on the principal value part of the contribution
from G0 is not computable from surface data without assuming a model type. For this reason we
will also ignore the principal value part of the Green’s function and investigate the usefulness of
a wavefield at depth formula derived by considering the model type independent part of V2 only.
The Green’s function that we are going to use hence is

G(xg, zg, xs, zs;ω) =
1
2π

∫ ∞

−∞
dkx

ei[k(xg−xs)+iq|zg−zs|]

2iq
. (130)
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An alternative formula for the Green’s function

It is also useful to have an alternative expression for the Green’s function, e.g. in the wavenumber
/ frequency domain. Recall from equation (118) that such a form is close to

G0(k, q, ω) =
1

k2 + q2 − ω2

c20

. (131)

However, because of the dispersion relations, which we now have to impose, and the poles located
on the real q axis we have to rewrite it as

G0(k, q, ω) =
1

k2 + q2 − ω2

c20
− iε

(132)

where the selection of ±ε leads to a causal/anticausal Green’s function (here chosen as causal) and
where, as before,

q =

√
ω2

c20
− k2 (133)

and the sign of q is chosen such that the Im q > 0. If we wanted to work with this form in the
space domain we would have to double inverse Fourier transform over the horizontal and vertical
wavenumbers and obtain

G(xg, zg, xs, zs;ω) =
(

1
2π

)2
∞∫

−∞

dk

∞∫
−∞

dq
e−ik(xg−xs)e−iq(zg−zs)

k2 + q2 − ω2

c20
− iε

. (134)

It is worth mentioning, even though this does not appear explicitly, that this Green’s function
represents only the part equivalent to the iπδ contribution described by formula (130) and with
the principal value discarded.

B. The calculation of V1

Start with equation (24)
D = (G0V1G0)ms (135)

where D is the data, G0 is the Greens function of the reference medium and V1(x′, z′, x′′, z′′, ω) is
the first order component of the perturbation V . In coordinates, this equation can be written as

D(xg, xs, ω) =
∫
dx′dx′′dz′dz′′G0(xg, zg, x

′, z′, ω)V1(x′, z′, x′′, z′′, ω)G0(x′′, z′′, xs, zs, ω) (136)

where xg, zg, xs and zs are the spatial coordinates of the source of the wave and the receiver used
to record the data and where we have omitted the vertical coordinates arguments in the data since
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they are fixed given numbers (not actual variables). In this equation we will use the following
expressions for the Green’s functions

G0(xg, zg, x
′, z′, ω) =

1
2π

∞∫
−∞

dkg
eikg(xg−x′)eiqg |z′−zg |

2iqg
(137)

and

G0(x′′, z′′, xs, zs, ω) =
1
2π

∞∫
−∞

dks
eiks(x′′−xs)eiqs|z′′−zs|

2iqs
(138)

where kg, qg, ks and qs are the wavenumbers associated with xg, zg, xs and zs respectively and
which satisfy the dispersion relations

k2
g + q2g =

ω2

c20
, k2

s + q2s =
ω2

c20
. (139)

Plugging these expressions of the Green’s functions into equation (136) we find

D(xg, xs, ω) =
∫
dx′dx′′dz′dz′′

1
2π

∞∫
−∞

dkg
eikg(xg−x′)eiqg |z′−zg |

2iqg
V1(x′, z′, x′′, z′′, ω)

1
2π

∞∫
−∞

dks
eiks(x′′−xs)eiqs|z′′−zs|

2iqs
.

(140)
Next we apply Fourier transforms on xg and xs, i.e. we apply, on both sides, the integral operators
∞∫

−∞
dxge

−ik′gxg and
∞∫

−∞
dxse

ik′sxs and obtain

D(k′g, k
′
s, ω) =

1
2π

∞∫
−∞

dkg

∞∫
−∞

dxge
−ixg(k′g−kg) 1

2π

∞∫
−∞

dks

∞∫
−∞

dxse
ixs(k′s−ks) (141)

×
∫
dx′dx′′dz′dz′′

e−ikgx′eiqg |z′−zg |

2iqg
V1(x′, z′, x′′, z′′, ω)

eiksx′′eiqs|z′′−zs|

2iqs

or

D(k′g, k
′
s, ω) =

1
2π

∞∫
−∞

dkgδ(k′g − kg)
1
2π

∞∫
−∞

dksδ(k′s − ks) (142)

×
∫
dx′dx′′dz′dz′′

e−ikgx′eiqg |z′−zg |

2iqg
V1(x′, z′, x′′, z′′, ω)

eiksx′′eiqs|z′′−zs|

2iqs

After solving the first two integrals and changing the notation for the wavenumbers from prime to
non primed quantities (for simplicity) we obtain

D(kg, ks, ω) =
∫
dx′dx′′dz′dz′′

e−ikgx′eiqg |z′−zg |

2iqg
V1(x′, z′, x′′, z′′, ω)

eiksx′′eiqs|z′′−zs|

2iqs
(143)
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and, after factoring and additional assumption that z′ > zg and z′ > zs (which is reasonable since
the depth of the scatterer is always larger than the depth of the sources and receivers in a surface
seismic experiment and when the positive z-axis points downward), we find

D(kg, ks, ω) =
e−iqgzge−iqszs

−4qgqs

∫
dx′dx′′dz′dz′′eiz

′qgeiqsz′′e−ix′kgeiksx′′V1(x′, z′, x′′, z′′, ω), (144)

and finally

D(kg, ks, ω) =
e−iqgzge−iqszs

−4qgqs
V1(kg,−qg,−ks,−qs, ω). (145)

From here we can calculate V1 in the wavenumbers domain to be

V1(kg,−qg,−ks,−qs, ω) = −4qgqseiqgzgeiqszsD(kg, ks, ω). (146)

C. Relation between ω1 and ω

Here we show how we can calculate ω1 in terms of ω such that equation (40)

qg + qs = q1 + q2, (147)

is satisfied. Squaring both sides of

qg + qs =

√
ω2

1

c20
− k2

g +

√
ω2

1

c20
− k2

s (148)

we find, after rearranging terms,

(qg + qs)2 + k2
g + k2

s − 2
ω2

1

c20
= 2

√(
ω2

1

c20
− k2

g

)(
ω2

1

c20
− k2

s

)
. (149)

After squaring one more time we find[
(qg + qs)2 + k2

g + k2
s − 2

ω2
1

c20

]2

= 4
(
ω2

1

c20
− k2

g

)(
ω2

1

c20
− k2

s

)
(150)

or, after some cancellations,

[
(qg + qs)2 + k2

g + k2
s

]2 − 4
ω2

1

c20
(qg + qs)2 = 4k2

gk
2
s . (151)

From here we obtain
ω2

1

c20
=

[
(qg + qs)2 + k2

g + k2
s

]2 − 4k2
gk

2
s

4(qg + qs)2
(152)

which is the desired formula.
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D. The calculation and separation of V2

Start with equation (25)
0 = (G0V2G0 + G0V1G0V1G0)ms (153)

or
(−G0V1G0V1G0)ms = (G0V2G0)ms. (154)

For the right hand-side of equation (154) we find similarly to the calculation of V1 (see equation
(145))

RHS = G0V2G0 =
e−i(qgzg+qszs)

−4qgqs
V2(kg,−qg,−ks,−qs, ω), (155)

where, as before, kg, qg, ks and qs are the wavenumbers associated with xg, zg, xs and zs (source
and receiver coordinates) respectively and which satisfy the dispersion relations

k2
g + q2g =

ω2

c20
, k2

s + q2s =
ω2

c20
. (156)

The left hand-side of equation (154) is

LHS = −(G0V1G0V1G0) = −
∫
dx′dx′′dz′dz′′G0(xg, zg, x

′, z′, ω)V1(x′, x′′, z′, dz′′, ω)

×
∫
dx′′′dxivdz′′′dzivG0(x′′, z′′, x′′′, z′′′, ω)V1(x′′′, xiv, z′′′, dziv, ω)G0(xiv, ziv, xs, zs, ω) (157)

where the Green’s functions are (see Appendix 6)

G0(xg, zg, x
′, z′, ω) =

1
2π

∞∫
−∞

dkg
eikg(xg−x′)eiqg |z′−zg |

2iqg
, (158)

G0(x′′, z′′, x′′′, z′′′, ω) =
1
2π

∞∫
−∞

dkλ
eikλ(x′′−x′′′)eiqλ|z′′′−z′′|

2iqλ
(159)

and

G0(xiv, ziv, xs, zs, ω) =
1
2π

∞∫
−∞

dks
eiks(xiv−xs)eiqs|ziv−zs|

2iqs
. (160)

Plugging these expressions into equation (157) and then Fourier transforming it over xg and xs (i.e.

applying on both sides the integral operators
∞∫

−∞
dxge

−ikgxg and
∞∫

−∞
dxse

iksxs) we find

LHS =
e−i(qgzg+qszs)

16πiqgqs

∫
dkλ

1
qλ

∫
dz′′dz′′′eiqλ|z′′−z′′′|V1(kg,−qg,−kλ, z

′′, ω)V1(kλ, z
′′′,−ks,−qs, ω).

(161)
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Next we use the Heaviside step function H to express the absolute values and write

eiqλ|z′′−z′′′| = eiqλ(z′′−z′′′)H(z′′ − z′′′) + eiqλ(z′′′−z′′)H(z′′′ − z′′). (162)

Moreover we use the integral representation of H (reference)

H(z) = lim
ε→0

1
2π

∞∫
−∞

dp
1

i(p− iε)
e−ipz. (163)

With these considerations, the LHS term becomes

LHS =
1
2π

e−iqgzge−iqszs

8iqgqs

∫
dkλ

1
qλ

∫
dz′′dz′′′V1(kg,−qg,−kλ, z

′′, ω)V1(kλ, z
′′′,−ks,−qs, ω)

×

eiqλ(z′′−z′′′) lim
ε→0

1
2π

∞∫
−∞

dp
1

i(p− iε)
e−ip(z′′−z′′′) + eiqλ(z′′′−z′′) lim

ε→0

1
2π

∞∫
−∞

dp
1

i(p− iε)
e−ip(z′′′−z′′)


(164)

or

LHS =
(

1
2π

)2 e−iqgzge−iqszs

8iqgqs

[∫
dkλ

1
qλ

lim
ε→0

∫
dp

1
i(p− iε)

∫
dz′′dz′′′

× eiqλ(z′′−z′′′)e−ip(z′′−z′′′)V1(kg,−qg,−kλ, z
′′, ω)V1(kλ, z

′′′,−ks,−qs, ω)

+
∫
dkλ

1
qλ

lim
ε→0

∫
dp

1
i(p− iε)

∫
dz′′dz′′′

× eiqλ(z′′′−z′′)e−ip(z′′′−z′′)V1(kg,−qg,−kλ, z
′′, ω)V1(kλ, z

′′′,−ks,−qs, ω)
]
. (165)

Next we treat the dz′ and dz′′ integrals as Fourier transforms and obtain

LHS =
(

1
2π

)2 e−iqgzge−iqszs

8iqgqs

×

 ∞∫
−∞

dkλ
1
qλ

lim
ε→0

∞∫
−∞

dp
V1(kg,−qg,−kλ,−qλ + p, ω)V1(kλ, qλ − p,−ks,−qs, ω)

i(p− iε)

+

∞∫
−∞

dkλ
1
qλ

lim
ε→0

∞∫
−∞

dp
V1(kg,−qg,−kλ, qλ − p, ω)V1(kλ,−qλ + p,−ks,−qs, ω)

i(p− iε)

 (166)

The two dp integrals can be separated into a principal value and a contribution from contour
integrals around the pole p = iε. The portion of V2 which depends on the principal value part
of that integral, is not computable in terms of the data without specifying a model type. In
conclusion we will exclude that part from the computation. The contribution from integrating
around the contour integrals around the pole leads to

LHS =
(

1
2π

)2 e−iqgzge−iqszs

8iqgqs
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×
[∫

dkλ
1
qλ

lim
ε→0

∫
dp iπδ(p− iε)V1(kg,−qg,−kλ,−qλ + p, ω)V1(kλ, qλ − p,−ks,−qs, ω)

+
∫
dkλ

1
qλ

lim
ε→0

∫
dp iπδ(p− iε)V1(kg,−qg,−kλ, qλ − p, ω)V1(kλ,−qλ + p,−ks,−qs, ω)

]
(167)

or

LHS =
1
4π

e−iqgzge−iqszs

8qgqs

∫
dkλ

1
qλ

[V1(kg,−qg,−kλ,−qλ, ω)V1(kλ, qλ,−ks,−qs, ω)

+ V1(kg,−qg,−kλ, qλ, ω)V1(kλ,−qλ,−ks,−qs, ω)] . (168)

Next, we relate V1 to the data. From equation (146) obtained in Appendix 6 we have

V1(kg,−qg,−ks,−qs, ω) = −4qgqseiqgzgeiqszsD(kg, ks, ω). (169)

To avoid confusion we will relate the temporal frequency ω with the sum of the vertical wavenumbers
and write

V1(kg,−qg,−ks,−qs, ω) = −4qgqseiqgzgeiqszsD(kg, ks, qg + qs). (170)

To calculate the first V1 in the equation (168) we write

V1(kg,−qg, x, z, ω) =
1
2π

∫
d(−ks)e−i(−ks)x 1

2π

∫
d(−qs)ei(−qs)zV1(kg,−qg,−ks,−qs, ω), (171)

and then

V1(kg,−qg,−kλ,−qλ, ω) =
∫
dxei(−kλ)x

∫
dze−i(−qλ)zV1(kg,−qg, x, z, ω)

=
∫
dxei(−kλ)x

∫
dze−i(−qλ)z 1

2π

∫
d(−ks)e−i(−ks)x 1

2π

∫
d(−qs)ei(−qs)zV1(kg,−qg,−ks,−qs, ω)

=
1
2π

∫
d(−ks)δ(ks − kλ)

1
2π

∫
d(−qs)δ(qs − qλ)

[
−4qgqseiqgzgeiqszsD(kg, ks, qg + qs)

]
= −4qgqλeiqgzgeiqλzsD(kg, kλ, qg + qλ). (172)

Similarly we find

V1(kλ, qλ,−ks,−qs, ω) = 4qλqse−iqλzgeiqszsD(kλ, ks,−qλ + qs), (173)

V1(kg,−qg,−kλ, qλ, ω) = 4qgqλeiqgzge−iqλzsD(kg, kλ, qg − qλ) (174)

and
V1(kλ,−qλ,−ks,−qs, ω) = −4qλqseiqλzgeiqszsD(kλ, ks, qλ + qs). (175)

With these expressions, equation (168) becomes

LHS = − 1
2π

∫
dkλqλ

[
eiqλ(zs−zg)D(kg, kλ, qg + qλ)D(kλ, ks,−qλ + qs)

+ eiqλ(zg−zs)D(kg, kλ, qg − qλ)D(kλ, ks, qλ + qs)
]
. (176)
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To separate this expression into imaging-only and inversion-only parts we write all data terms as
Fourier integrals over vertical wavenumbers as

D(kg, kλ, qg + qλ) =
∫
dz1e

iz1(qg+qλ)D(kg, kλ, z1), (177)

D(kλ, ks,−qλ + qs) =
∫
dz2e

iz2(−qλ+qs)D(kλ, ks, z2) (178)

D(kg, kλ, qg − qλ) =
∫
dz3e

iz3(qg−qλ)D(kg, kλ, z3) (179)

D(kλ, ks, qλ + qs) =
∫
dz4e

iz4(qλ+qs)D(kλ, ks, z4), (180)

then we rewrite equation (176) as

LHS = − 1
2π

∫
dkλqλ

[
eiqλ(zs−zg)

∫
dz1e

iz1(qg+qλ)D(kg, kλ, z1)
∫
dz2e

iz2(−qλ+qs)D(kλ, ks, z2)

+ eiqλ(zg−zs)

∫
dz3e

iz3(qg−qλ)D(kg, kλ, z3)
∫
dz4e

iz4(qλ+qs)D(kλ, ks, z4)
]
. (181)

Depending on the relative position of the two pseudo-depths z1, z2, z3 and z4 we can further
separate the last expression into

LHS = − 1
2π

∫
dkλqλe

iqλ(zs−zg) ∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
−∞

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)δ(z2 − z1)

+

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
z1+ε

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

z1−ε∫
−∞

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)


− 1

4π

∞∫
−∞

dkλqλe
iqλ(zg−zs)

 ∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

∞∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)δ(z3 − z4)

+

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

∞∫
z3+ε

dz4e
iz4(qλ+qs)D(kλ, ks, z4)
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+

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

z3−ε∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 (182)

or, after solving the integrals containing the delta function,

LHS = − 1
2π

∞∫
−∞

dkλqλe
iqλ(zs−zg)

2π

∞∫
−∞

dz1e
iz1(qg+qs)D(kg, kλ, z1)D(kλ, ks, z1)

+

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
z1+ε

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

z1−ε∫
−∞

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)


− 1

4π

∞∫
−∞

dkλqλe
iqλ(zg−zs)

2π

∞∫
−∞

dz3e
iz3(qg+qs)D(kg, kλ, z3)D(kλ, ks, z3)

+

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

∞∫
z3+ε

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

+

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

z3−ε∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 . (183)

The first term in each square bracket in equation (183) is similar to an amplitude corrector (see
e.g. Shaw (2005)) and it will be ignored for the purpose of this paper. The second term in the first
square bracket and the third in the second square bracket are similar to depth correctors (see e.g.
Shaw (2005), Liu et al. (2006) Ramirez and Otnes (2007)). For the purpose of this paper we will
only keep these (imaging) terms and arrive to our final expression

LHS = − 1
2π

∫
dkλqλ

eiqλ(zs−zg)

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
z1+ε

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+eiqλ(zg−zs)

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

z3−ε∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 . (184)

Combining equations (155) and (184) we find the imaging part of V2 to be

V IM
2 (kg,−qg,−ks,−qs, ω) =

2qgqsei(qgzg+qszs)

π

∞∫
−∞

dkλqλ
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×

eiqλ(zs−zg)

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
z1+ε

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+eiqλ(zg−zs)

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

z3−ε∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 . (185)
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Progressing 1D elastic media imaging using inverse scattering series: analytical
PP-data preparation and constant velocity migration

S. Jiang, F. Liu, J. Zhang, and A. B. Weglein

Abstract

In this report, considering a 1D two-interface elastic media with three parameters, we present an
analytic expression for PP-data and the migration result by constant velocity of reference media,
which is a preliminary step for the eventual evaluation of 1D elastic media imaging independent
of velocity by utilizing the inverse scattering series. The reflection and transmission coefficients
of the PP-data are calculated using Zoeppritz’ equations and only considering reflected primaries
of compressional waves. We present the PP-data in the frequency domain, Fourier transform
it to the time domain, and migrate it to the pseudo-depth domain with a constant velocity of
the reference media. In all of the three domains, the reflection and transmission coefficients all
depend on the angles of the incident wave. The numerical evaluation of the migrated PP-data
in the pseudo-depth domain shows that the pseudo-depth of the second reflector in the PP-data
changes with variation of the incident angle. The transformation of the data by a constant
velocity migration to the pseudo-depth domain is in anticipation of the process performed on
the measured data in the 1st equation of the inverse scattering series. The analytic expressions of
PP-data reported in this paper provide a valuable perspective and basis for further development
of both velocity-independent imaging and non-linear AVO for 1D elastic multi-parameter media,
and further value for synthetic generation of the other three data components: PS-data, SP-data
and SS-data.

1 Introduction

In seismic exploration, the objective is to determine subsurface earth properties from the recorded
wavefield generated from a man-made source of energy on or near the surface of the earth, that
goes through and is reflected back from the subsurface. The quality of the recorded data, i.e. the
wave field, plays a very important role in the location and delineation of subsurface targets, and in
estimating the type and extent of rock and fluid properties for their hydrocarbon potential. But
current depth imaging algorithms, one of the standard steps in seismic exploration, have limited
ability in capturing the exact depth of subsurface structure of the earth in geologically complex
areas where exact or well approximated velocity models are hard to access.

The inverse scattering theory and hence the inverse scattering series is a comprehensive theory and
a multi-dimensional direct inversion procedure to directly achieve seismic processing objectives step
by step without a priori knowledge of the subsurface of the earth (Weglein et al., 2000, 2003). As
a result, it has the potential of avoiding the demand of an adequate velocity model to achieve the
objectives of seismic exploration. The inverse scattering series is used as a framework from which to
seek and identify uncoupled task-specific subseries.These are classified as: (1) free-surface related
multiple removal subseries; (2) internal multiple removal subseries; (3) depth-imaging subseries;
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and (4) property inversion subseries. The achievement of each task is expressed as a nonlinear
series in terms of only the output data of the previous task and a chosen reference Green’s function.

As one of important tasks in the inverse scattering series, the depth imaging subseries has been
developing and progressing toward a more practical and comprehensive state. As a starting point,
a 1D laterally invariant acoustic medium was considered (Shaw et al., 2002; Shaw and Weglein,
2003; Shaw et al., 2003, 2004; Shaw, 2005). In these papers, a leading order imaging subseries
(LOIS ) is separated from the whole series and written as a closed form. The application of LOIS
and its closed form on the 1.5D acoustic medium achieves an accurate depth delineation of the
subsurface reflectors with no absolutely a priori knowledge of the subsurface velocity. The test
shows the powerful capability of the inverse scattering series. How about 2D medium with lateral
variation,too? Liu et al. (2004, 2005) derived the higher order imaging subseries (HOIS ) and its
closed form for a 2D acoustic medium with both lateral and vertical variation. The implementation
of the HOIS and its closed form on 2D acoustic media (Liu, 2006) shows very encouraging results,
especially the success of accurate depth imaging of a 2D salt model as a typical example of complex
geological area with big velocity contrast. And the extension of 2D acoustic imaging closed form to a
3D acoustic medium is direct. Innanen and Weglein (2003), Innanen (2005) captured a simultaneous
imaging and inversion subseries (SII ) at leading order and higher order for 1.5D acoustic case and
obtained a closed form of this coupled tasks. All of this pioneering work encourages us to push the
imaging theory a further step and stimulate us in the future research to seek a better whole closed
form of the acoustic media which can cast a wider net for more terms in the series and extend these
closed forms to more complicated media. In particular, we here consider 1D or even multi-D elastic
medium with multi-parameters.

In this report, we take a step towards exploring a depth-imaging subseries for an elastic medium.
The research plan is: First, to generate synthetic data for a 1D multi-layer elastic medium with
multi-parameters. Second, to determine the physical meaning of the imaging-only integrals (Zhang
and Weglein, 2005, 2006) by using the synthetic data, and further seek an extension of the imaging
closed form to elastic media.

This paper consists of the following sections: Section 2 is a short introduction to the inverse
scattering series. Section 3 will present the analytic expression of PP-data in three different domains
for a 1D three-layer elastic medium with three parameters, and the formulae to calculate reflected
and transmitted coefficients will also be listed. To get a clearer understanding of the PP-data in
pseudo-depth domain by a constant veloctiy migration, Section 4 shows the results of numerical
evaluation for several chosen models. A research plan and imaging strategy for 1D multi-parameter
elastic media will be discussed in the last section.

2 Inverse scattering theory and series

Scattering theory is a form of perturbation analysis. Generally speaking, it describes how a per-
turbation in the properties of a medium relates a perturbation to a wavefield that experiences that
perturbed medium. Consider the two differential equations governing wave propagation in these
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media (Weglein et al., 2003):

LG = δ(r− rs), (1)
L0G0 = δ(r− rs). (2)

where L, L0 and G, G0 are the actual and reference differential operators and Green functions,
respectively, for a single temporal frequency, ω, and δ(r − rs) is the Dirac delta function.r and rs

are the field point and source location, respectively.
We define the perturbation operator V = L0−L, and scattered field operator Ψs = G−G0 (Weglein
et al., 2002). The Lippmann-Schwinger equation is the fundamental equation of scattering theory
which is an operator identity that relates Ψs, G0, V and G (Taylor, 1972):

Ψs = G−G0 = G0V G. (3)

The so-called Born series can be obtained by iterating this equation back into itself,

Ψs = G0V G0 +G0V G0V G0 + · · · = (Ψs)1 + (Ψs)2 + · · · , (4)

where (Ψs)n is the portion of Ψs that is the nth order in V . The measured value of Ψs is the data,
D, where D = (Ψs)ms = (Ψs)on the measurement surface.

Expanding V as a series in orders of D (Weglein et al., 1997),

V = V1 + V2 + V3 + · · · , (5)

then substituting equation (5) into equation (4) and evaluating equation (4) on the measurement
surface yields,

D = [G0(V1 + V2 + · · · )G0]ms + [G0(V1 + V2 + · · · )G0(V1 + V2 + · · · )G0]ms + · · · (6)

Setting terms of equal order in the data equal, leads to the equations that determine V1, V2,
. . . directly from D and G0.

D = [G0V1G0]ms, (7)
0 = [G0V2G0]ms + [G0V1G0V1G0]ms, (8)
0 = [G0V3G0]ms + [G0V1G0V2G0]ms + [G0V2G0V1G0]ms + [G0V1G0V1G0V1G0]ms, (9)
...

3 Data preparation for 1D elastic media with two interfaces

In this section, we will consider a 1D elastic medium model with three parameters (i.e. bulk
modulus, shear modulus and density) for the three layer case. First, we will show the model
we have used to generate the data we need; second, a calculation of reflection and transmission
coefficients will be presented by employing Zoeppritz’ equation; finally, we will give three different
analytic expressions in three domains: the frequency domain, the time domain, and the pseudo-
depth domain.
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3.1 The 1D two-interface elastic media model

In a 1D two-interface elastic medium model with three parameters, we consider an incident com-
pressional wave with incident angle θ0, the angle between the incident wave and the normal to the
planar elastic layer. The response of this incident compressional wave will consist of a converted
shear wave (or S-wave) and a compressional wave (or P-wave). We will consider only primaries of
compressional waves (see Figure 1).

Figure 1: Response of incident compressional wave on a 1D two-interface elastic media with three param-
eters. αi, βi and ρi (i = 0, 1, 2) are the compressional wave velocity, shear wave velocity and
density of the three layers, respectively. Rpp

i , Rss
i , Rps

i and Rsp
i denote the reflection coefficients

of P-wave to P-wave, S-wave to S-wave, S-wave converted from P-wave and P-wave converted
from S-wave, respectively, on the ith interface; and similarly for T pp

ij , T ss
ij , T ps

ij and T sp
ij denoting

the transmission coefficients from the ith layer to the jth layer in the media.

3.2 Calculation of reflection and transmission coefficients

The calculation of the reflection and transmission coefficients in the above model can be found in
many references, textbooks and papers, e.g., Ewing et al. (1957) which uses Knott’s equations,
and Achenbach (1973), Aki and Richards (2002), Foster et al. (1997), all of which use Zoeppritz’
equations. Sheriff and Geldart (1994) use both methods. Here we will use the results listed in
Chapter 5 of Aki and Richards (2002).

Let i1 and j1 denote the incident angle of the downgoing P-wave and downgoing S-wave, respec-
tively; i2 and j2 denote the incident angle of the upgoing P-wave and upgoing S-wave, as shown as
the four cases in Figure 2.
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Figure 2: The four possible cases with different incident angles in the layers

In the next section, we will only consider the PP-data, which will require the following four kinds
of reflection and transmission coefficients:

Rpp
0 = (P̀ Ṕ )0

=
1
D

[(
b
cos i1
α0

− c
cos i2
α1

)
F −

(
a+ d

cos i1
α0

cos j2
β1

)
Hp2

]
, (10)

Rpp
1 = (P̀ Ṕ )1

=
1
D

[(
b
cos i1
α1

− c
cos i2
α2

)
F −

(
a+ d

cos i1
α1

cos j2
β2

)
Hp2

]
, (11)

T pp
01 = (P̀ P̀ )0

= 2ρ0
cos i1
α0

Fα0/(α1D), (12)

T pp
10 = (Ṕ Ṕ )1

= 2ρ1
cos i2
α1

Fα1/(α0D), (13)

where p is the horizontal component of slowness of each wave, and where

a = ρ2(1− 2β2
2p

2)− ρ1(1− 2β2
1p

2), b = ρ2(1− 2β2
2p

2) + 2ρ1β
2
1p

2; (14)
c = ρ1(1− 2β2

1p
2) + 2ρ2β

2
2p

2, d = 2(ρ2β
2
2 − ρ1β

2
1); (15)
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E = b
cos i1
α1

+ c
cos i2
α2

, F = b
cos j1
β1

+ c
cos j2
β2

; (16)

G = a− d
cos i1
α1

cos j2
β2

, H = a− d
cos i2
α2

cos j1
β1

; (17)

D = EF +GHp2. (18)

One point which should be kept in mind is that the real values of the above parameters should be
calculated by substituting the corresponding medium parameters in the layers into those formula.

The incident, reflected and transmitted angles of the p-wave and s-wave in two different layers must
comply with Snell’s law. For the 1st interface, it is

sin θ0
α0

=
sin i1
α0

=
sin i2
α1

=
sin j1
β0

=
sin j2
β1

= p, (19)

and hence,

cos i1 =
√

1− sin2i1 =
√

1− α2
0p

2 ≡ x0, (20)

cos i2 =
√

1− sin2i2 =
√

1− α2
1p

2 ≡ x1, (21)

cos j1 =
√

1− sin2j1 =
√

1− β2
0p

2 ≡ y0, (22)

cos j2 =
√

1− sin2j2 =
√

1− β2
1p

2 ≡ y1. (23)

However, for the 2nd interface, the formula changes to

sin θ0
α0

=
sin i1
α1

=
sin i2
α2

=
sin j1
β1

=
sin j2
β2

= p, (24)

and hence,

cos i1 =
√

1− sin2i1 =
√

1− α2
1p

2 ≡ x1, (25)

cos i2 =
√

1− sin2i2 =
√

1− α2
2p

2 ≡ x2, (26)

cos j1 =
√

1− sin2j1 =
√

1− β2
1p

2 ≡ y1, (27)

cos j2 =
√

1− sin2j2 =
√

1− β2
2p

2 ≡ y2. (28)

3.3 Data in different domains

In this section the analytic expressions of PP-data in three different domains will be shown. The
mathematical derivation is found in the Appendix of this report.
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3.3.1 In the frequency ω domain

Considering primaries only, the data in the frequency domain is

D̃pp(ω, θ0) = Rpp
0 (θ0)

e2iνga

4πiνg
+ T pp

01 (θ0)R
pp
1 (θ0)T

pp
10 (θ0)

e2iνga+2iqg(b−a)

4πiνg

= Rpp
0 (θ0)

e2iνga

4πiνg
+R

′pp
1 (θ0)

e2iνga+2iqg(b−a)

4πiνg
, (29)

where a, b are the real depths of the 1st and 2nd interfaces of the model,and R
′pp
1 ≡ T pp

01R
pp
1 T

pp
10 .

The quantities νg and qg are the vertical compressional wave number in the 1st and 2nd layer,
respectively, and defined as

νg = k0 cos i1 = k0 cos θ0 =
ω

α0
x0, (30)

qg = k1 cos i2 = k1

√
1− α2

1p
2 =

ω

α1
x1. (31)

The reflection and transmission coefficients are obtained through equation (10) −− (13). Notice
this analytic PP-data is a function of incident angle θ0.

3.3.2 In the time t domain

The same data in equation (29) expressed in the time domain will be

Dpp(t, θ0) = − α0

2 cos θ0
Rpp

0 (θ0)H
(
t− x0

2a
α0

)
− α0

2 cos θ0
R

′pp
1 (θ0)H

(
t− x0

2a
α0
− x1

2(b− a)
α1

)
, (32)

where x0, x1 defined in equation (20) are functions of incident angle θ0, which means the arrival
time for the two primaries corresponding to the two interfaces will change with the different incident
angles.

3.3.3 In the pseudo-depth z domain

When we migrate the data expressed by equation (29) with the constant velocity of the reference
velocity, it is transformed into the pseudo-depth z domain and takes the following form:

Dpp(z, θ0) = −Rpp
0 (θ0)H(z − a)−R

′pp
1 (θ0)H

(
z − b′(θ0)

)
, (33)

where b′ is the pseudo-depth of the 2nd interface of the 1D elastic model, and takes the following
form,

b′(θ0) = a+ (b− a)
α0

√
1− α2

1p
2

α1

√
1− α2

0p
2

= a+ (b− a)
α0x1

α1x0
, (34)
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x0 ≡ cos i1 =
√

1− sin2i1 =
√

1− α2
0p

2, (35)

x1 ≡ cos i2 =
√

1− sin2i2 =
√

1− α2
1p

2. (36)

Inspection of equation (33) reveals that in the pseudo-depth domain, the 1st interface is exactly
located at a, and this depth does not change with the incident angle θ0. This is understood by
taking a look at the mathematical derivation of the data from frequency domain to the pseudo-
depth domain: we are migrating the data with the reference velocity, the velocity of the 1st layer!
So, the 1st interface is exactly located in the data.

However, the location of the 2nd interface in the data is not well located, because b’ is a pseudo-
depth and is a function of the incident angle θ0. As mentioned, we are migrating the data with a
wrong velocity, the velocity of the 1st layer, as the velocity of the 2nd layer.

4 Constant velocity migration of PP-data in pseudo-depth z domain: numeri-
cal results

To obtain some “taste” of what the constant velocity migration on PP-data looks like in the pseudo-
depth domain, we will numerically evaluate equation (33) for the following five models (for all of
the five models, the real depths are: a = 160m, b = 365m):
Model 1:
ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3, ρ2 = 2.50g/cm3;α0 = 3251m/s, α1 = 3507m/s, α2 = 3380m/s;β0 =
2138m/s, β1 = 2116m/s, β2 = 2200m/s.

Model 2:
ρ0 = 2.27g/cm3, ρ1 = 2.80g/cm3, ρ2 = 2.50g/cm3;α0 = 3251m/s, α1 = 2467m/s, α2 = 3780m/s;β0 =
2138m/s, β1 = 2516m/s, β2 = 2000m/s.

Model 3:
ρ0 = 2.27g/cm3, ρ1 = 1.60g/cm3, ρ2 = 2.50g/cm3;α0 = 3251m/s, α1 = 2467m/s, α2 = 3780m/s;β0 =
2138m/s, β1 = 2516m/s, β2 = 2000m/s.

Model 4:
ρ0 = 2.27g/cm3, ρ1 = 1.80g/cm3, ρ2 = 2.00g/cm3;α0 = 3251m/s, α1 = 2807m/s, α2 = 3580m/s;β0 =
2138m/s, β1 = 2516m/s, β2 = 2000m/s.

Model 5:
ρ0 = 2.27g/cm3, ρ1 = 1.80g/cm3, ρ2 = 2.00g/cm3;α0 = 3251m/s, α1 = 2807m/s, α2 = 3580m/s;β0 =
2738m/s, β1 = 2200m/s, β2 = 1800m/s.

The reflection and transmission coefficients are calculated from equation (10)−−(13). The numeri-
cal results and comparison among them are shown in Figure 3, Figure 4 and Figure 5, respectively.

We have purposefully chosen our models. For example, we choose Model 2 with bigger velocity
contrast than Model 1 and the resulting numerical results show a larger “gap” between the pseudo-
depth and the real depth of the 2nd interface for Model 2 than Model 1 ; the difference between
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Figure 3: Numerical evaluation and comparison of PP-data for Model 1 and Model 2 in pseudo-depth
domain. In the figures, the two blue dash lines are the real depth of the 1st and 2nd interfaces,
respectively.

Model 3 and Model 2 is the density change of the 2nd layer and numerical comparison between
the two models shows that density change will not effect the location of the pseudo-depth of the
2nd interface; and the comparison between Model 4 and Model 5 shows that the change of shear
wave velocity only will also not change the location of the pseudo-depth of the 2nd interface in the
PP-data. But notice that any change of these parameters in these models will alter the value of
reflection and transmission coefficients.

5 1D elastic media imaging with PP-data only: Plan

The inverse scattering series is a direct, non-linear inverse procedure for the reconstruction of an un-
known spatial distribution of multidimensional medium parameters in terms of only measurements
of a reflected wave field (Liu et al., 2005). In the case of 1D variable velocity and density acoustic
media (Zhang and Weglein, 2005), the 2nd equation of the inverse scattering series is presented such
that inversion-only terms and imaging-only terms are separated. The imaging-only term includes
only integrals of the difference between the two medium parameters α1 and β1, rather than the α1 in
the integral of the imaging term in 1D acoustic case (Weglein et al., 2002; Shaw et al., 2004), where
a leading order imaging subseries was present as a depth shift of the integral of α1. The research
on the 1D elastic media with three variable parameters (Zhang and Weglein, 2006) shows that
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Figure 4: Numerical evaluation and comparison of PP-data for Model 2 and Model 3 in pseudo-depth
domain. In the figures, the two blue dash lines are the real depth of the 1st and 2nd interfaces,
respectively.

with PP-data only the imaging terms include integrals of the difference between a(1)
γ and a(1)

ρ , two
parameters of the three. All of these comparison indicate an extension of the leading order imaging
subseries in the 1D one parameter acoustic media to the other two cases by only substituting α1

inside the depth shift integral with the difference term (Weglein, 2006 Annual Report). Hence,
the medium parameters at 1st order must be obtained before starting the extension of the imaging
formula. In this section, we will discuss the case of 1D elastic media with three variable parameters
(Zhang and Weglein, 2006), to work toward an analytical expression of the three parameters from
the 1st ISS equation.

By using equation (7) and doing a Fourier transform on both sides of the equation, we get(Zhang
and Weglein, 2006),

D̃pp(ω, θ) = −1
4
(1− tan2 θ)ã(1)

ρ (2νg)−
1
4
(1 + tan2 θ)ã(1)

γ (2νg) +
2β2

0 sin2 θ

α2
0

ã
(1)
µ (2νg). (37)

After doing an inverse Fourier transform over 2νg, we write the above equation as,

−4Dpp(z, θ) = A(θ)a(1)
ρ (z) +B(θ)a(1)

γ (z) + C(θ)a(1)
µ (z), (38)
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Figure 5: Numerical evaluation and comparison of PP-data for Model 4 and Model 5 in pseudo-depth
domain. In the figures, the two blue dash lines are the real depth of the 1st and 2nd interfaces,
respectively.

where Dpp(z, θ) is the PP-data in pseudo-depth z domain and,

A(θ) = 1− tan2 θ, B(θ) = 1 + tan2 θ, C(θ) = −8
β2

0 sin2 θ

α2
0

. (39)

aρ ≡
ρ

ρ0
− 1, aγ ≡

γ

γ0
− 1, aµ ≡

µ

µ0
− 1. (40)

The quantity ρ denotes density, γ = ρα2 denotes bulk modulus, and µ = ρβ2 denotes shear modulus.

Next we solve equation (38) by using three different incident angles θ. The three different equations
written in matrix form are A(θ1) B(θ1) C(θ1)

A(θ2) B(θ2) C(θ2)
A(θ3) B(θ3) C(θ3)


 a

(1)
ρ (z)
a

(1)
γ (z)
a

(1)
µ (z)

 = −4

 Dpp(z, θ1)
Dpp(z, θ2)
Dpp(z, θ3)

 , (41)

or, simply,
MP = D, (42)

where M, P and D are the corresponding matrices in equation (41). To solve the matrix equation
(42) to get the parameters, we just need to get the inverse matrix of M, i.e., P = M−1D.
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After using the PP-data in pseudo-depth domain and substituting it into the above matrix equation,
we can provide analytical expressions of the parameters to first order. Therefore, we can take the
difference between them, and provide the required input to the extended imaging formula. But the
analytical result in this research reveals some new issues: more than two pseudo-depths pop up in
the three-layer model. This issue comes from the pseudo-depth dependence of incident angle in the
data when we try to solve the matrix equation (41) by employing three different incident angles.
Currently research into this issue is still in progress.

6 Conclusion

In this report, as a starting point to seek an imaging algorithm in 1D elastic media, an analytical
expression of Dpp for a 1D three-layer elastic medium is presented in the frequency domain, the
time domain and in the pseudo-depth domain, respectively. The Dpp migrated with the constant
velocity of the reference media in the pseudo-depth domain will be utilized in the imaging algorithm
for 1D elastic media in future research. The procedure to obtain the PP-data in this paper will
also supply further value as a framework for the preparation of the other three components of data
in elastic media, i.e., Dps, Dsp and Dss, and therefore be helpful for the accessability of a full
non-linear inversion algorithm.
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Appendix

Derivation of PP-data in time domain and pseudo-depth domain

First, let’s see how to get the PP-data from frequency domain to time domain. Let’s perform a
Fourier transform over ω for equation (29),

Dpp(t, θ0) =
∫ ∞

−∞
e−iωtD̃pp(ω, θ0)dω

=
1
2π
Rpp

0

∫ ∞

−∞
e−iωt e

2iνga

2iνg
dω +

1
2π
R

′pp
1

∫ ∞

−∞
e−iωt e

2iνga+2iqg(b−a)

2iνg
dω

=
1
2π
Rpp

0

∫ ∞

−∞
e−iωtα0e

iω 2a
α0

cos θ0

2iω cos θ0
dω +

1
2π
R

′pp
1

∫ ∞

−∞
e−iωtα0e

iω( 2a
α0

cos θ0+
2(b−a)

α1
cos ı2)

2iω cos θ0
dω

= − 1
2π
Rpp

0

∫ ∞

−∞
dω

∫ t

−∞
dt′

α0

2 cos θ0
e
−iω(t′− 2a

α0
cos θ0)

− 1
2π
R

′pp
1

∫ ∞

−∞
dω

∫ t

−∞
dt′

α0

2 cos θ0
e
−iω(t′− 2a

α0
cos θ0− 2(b−a)

α1
cos i2) (43)

Exchanging the integral order of dω and dt′,we get

Dpp(t, θ0) = −Rpp
0

∫ t

−∞
dt′

α0

2 cos θ0
δ(t′ − 2a

α0
cos θ0)

−R
′pp
1

∫ t

−∞
dt′

α0

2 cos θ0
δ

(
t′ − 2a

α0
cos θ0 −

2(b− a)
α1

cos i2

)
= − α0

2x0
Rpp

0 (θ0)H
(
t− x0

2a
α0

)
− α0

2x0
R

′pp
1 (θ0)H

(
t− x0

2a
α0
− x1

2(b− a)
α1

)
(44)

where x0 and x1 are defined in equation (20).

Now let’s see how to get the PP-data from frequency domain to pseudo-depth domain. Let’s
perform an inverse Fourier transform over 2νg for equation (29),

Dpp(z, θ0) =
∫ ∞

−∞
e−2iνgzD̃pp(ω, θ0)d(2νg)

=
1
2π
Rpp

0

∫ ∞

−∞

e−2iνgze2iνga

2iνg
d(2νg) +

1
2π
R

′pp
1

∫ ∞

−∞

e−2iνgze2iνga+2iqg(b−a)

2iνg
d(2νg)

= − 1
2π
Rpp

0

∫ ∞

−∞
d(2νg)

∫ z

−∞
dz′e−2iνg(z′−a)

+
1
2π
R

′pp
1

∫ ∞

−∞
d(2νg)

1
2iνg

e
2iνga+2iνg

α0x1
α1x0

(b−a)
e−2iνgz

= − 1
2π
Rpp

0

∫ z

−∞
dz′
∫ ∞

−∞
d(2νg)e−2iνg(z′−a)

− 1
2π
R

′pp
1

∫ z

−∞
dz′
∫ ∞

−∞
d(2νg)e

2iνga+2iνg
α0x1
α1x0

(b−a)
e−2iνgz
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= −Rpp
0

∫ z

−∞
dz′δ(z′ − a)−R

′pp
1

∫ z

−∞
dz′
∫ ∞

−∞
d(2νg)e−2iνg(z′−b′)

= −Rpp
0 (θ0)H(z − a)−R

′pp
1 (θ0)

∫ z

−∞
dz′δ(z′ − b′)

= −Rpp
0 (θ0)H(z − a)−R

′pp
1 (θ0)H(z − b′) (45)

In the above derivation, we used the following relation between qg and νg:

qg =
ω

α1
cos i2 =

ω

α1
x1

=
ω

α0
x0
α0x1

α1x0
= νg

α0x1

α1x0
(46)

where x0 and x1 are defined in equation (20).
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On the construction of a multidimensional absorptive-dispersive medium model
via direct linear inversion

K. A. Innanen, J. E. Lira and A. B. Weglein

Abstract

We describe the extension of previous scattering inverse methods for absorptive-dispersive me-
dia to include arbitrary multi-dimensional distributions of P-wave velocity and Q, which may
be determined to first order from reflected seismic primary data with an inverse scattering for-
mulation. This is relevant in two ways: as a standalone theory for Q estimation that amongst
other things tells us about the sufficiency of reflection data to distinguish between variations
in wavespeed vs. an attenuation parameter; and as the starting point for multi-parameter,
multi-dimensional extensions to the inverse scattering series non-linear Q compensation meth-
ods currently under study.

1 Introduction

The ability of direct linear inverse scattering methods to determine spatial distributions of absorptive-
dispersive (hereafter A-D) medium parameters from reflected seismic primaries is considered. The
availability in principle of a well-posed direct linear inverse problem of this kind is itself of inter-
est, because it tells us about the sufficiency of reflection data to distinguish between variations in
wavespeed vs. an attenuation parameter, or quality factor (Q). Practical reasons for posing and
studying this problem, meanwhile, are twofold. Consider as a first instance, that the reference
medium and the actual medium (i.e., the two media used within a scattering formalism) are close
to one another down to an interface of interest. The corresponding linear inversion provides a
fully wave-theoretic (although approximate) formalism for the estimation of the Q contrast at that
interface.

But, in addition to providing Q information, linear inverse theory for A-D media is directly relevant
to the construction of non-linear processing operators designed to act on seismic reflection data
with non-negligible Q. The inverse scattering series has served as a framework from which to derive
a set of direct processing algorithms for reflection seismic data (Weglein et al., 2003). The series
as a whole, and all derivative algorithms, operate only in terms of the measured data and a highly
simplified reference Green’s operator, trading the requirement for prior knowledge of medium vari-
ability for (1) highly non-linear algorithms and (2) an exacting requirement on data coverage and
fidelity. Algorithms for primary processing, e.g., for reflector location (Weglein et al., 2001; Shaw
et al., 2004; Shaw, 2005; Innanen, 2005; Liu et al., 2005, 2006), and for non-linear inversion (Zhang
and Weglein, 2006a,b), seek to directly locate reflectors and directly determine their amplitudes
by operating on the linear inversion result with the linear inversion result. Hence the linear in-
version output is at the heart of any given non-linear processing regimen, and therefor remains of
importance regardless of its proximity to the actual medium. Non-linear processing algorithms,
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based on the inverse scattering series, which would perform “Q-related” tasks (i.e., Q estimation
and compensation) have been considered theoretically, and indeed successful construction of such
operators has been shown numerically for a restricted set of 1D models (Innanen and Weglein,
2003, 2005). To begin extending such prototype algorithms to accommodate less restricted models
(applicable, for instance, to multi-dimensional, multi-parameter media) requires that the theory
for linear inversion be developed to at least that extended level of realism, which is not the current
state of affairs. Previous research has been within a depth-varying setting (Innanen, 2003; Innanen
and Weglein, 2004). The current paper provides that development and extension.

1.1 Linear inversion of reflected primaries

Linear inversion of reflected seismic primaries with inverse scattering methods (Cohen and Bleistein,
1977; Bleistein, 1979) can be considered as the formal underpinning for much of modern seismic
imaging and inverse theory. For instance, as cast for multiple parameters (Raz, 1981; Clayton and
Stolt, 1981) it forms a theoretical basis for linear AVO and migration-inversion (Stolt and Weglein,
1985; Weglein and Stolt, 1999), whereas formulated as a generalized Radon transform (Beylkin,
1985; Bleistein, 1987) it becomes a Kirchhoff-like migration operator that maintains the integrity
of the reflection coefficient (in the geometrical-optical limit). Furthermore, as we discuss below, the
non-linear inverse scattering series, and algorithms based upon it, use output of the linear inverse
as their main input (Weglein et al., 2003). Our parochial interest in (i) determining the sufficiency
of reflection data to distinguish between variations in P-wave velocity (referred to as wavespeed in
this paper) and Q, (ii) producing a multi-dimensional wave-theoretic inverse algorithm, and (iii)
using a homogeneous reference medium, lead us to follow Clayton and Stolt (1981) most closely.

1.2 Q estimation

The determination of an appropriately parametrized A-D medium from reflection data involves
a component that can be considered a form of Q-estimation. There exist a large number of Q-
estimation tools and techniques, including rise-time and spectral ratio methods (Tonn, 1991),
methods based on the behavior of attenuated events across scale (Kjartansson, 1979b; Innanen,
2003), modelling and inversion of data amplitude spectra, and their peaks or centroids (Zhang and
Ulrych, 2002; Rickett, 2006, 2007), and in tomographic frameworks (Quan and Harris, 1997; Br-
zostowski and McMechan, 1992). They have been applied in reflection and cross-well/tomographic
settings, e.g., (White, 1992). These methods have in common the fact that they make use of the
evolution of the amplitude spectra of events vs. propagation distance or time as their main input.
We make particular note of the difference between the formalism we describe, which makes use of
angle-dependent reflection information, and this standard style of Q-estimation.

1.3 The imprint of Q on the reflection coefficient

In seismic studies Q is predominantly discussed as a mechanism for loss of resolution, the spreading
out and decaying in time of the event as it propagates. Interrogation of this behavior is the most
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obvious, and robust, means for estimating Q. However, A-D reflection and transmission coefficients
apply additional amplitude and phase alterations to the measured events. It is these that drive the
inverse formalism we wish to describe. Born and Wolf (1999) discuss such alterations to the optical
response of an absorbing target, noting that a complex index of refraction leads to a frequency
independent phase change upon reflection. A similar consideration within the reflection seismic
framework led Kjartansson (1979a) to point out the consequences to the amplitude and phase of a
pulse reflecting from an A-D contrast; more recently, Lam et al. (2004) and de Hoop et al. (2005)
have presented time domain expressions for the acoustic response, from a planar absorptive and
dispersive boundary, to an incident spherical wave.

Driving an inversion procedure with such information is not common, no doubt in part due to the
nuanced changes A-D contrasts cause in the data. For instance, in a numerical study involving
picking in the space-time domain (Samec and Blangy, 1992), an inability to detect specific AVO be-
havior deriving from contrasts in an isotropic standard linear solid model is reported. Nevertheless,
the information is in principle there to be interpreted. A linear inverse procedure for depth-profiles
of Q(z) given the wavespeed profile c(z) as prior information has been posed (Carrion and VerWest,
1987), as has a non-linear indirect inversion procedure for layered anelastic media (Dahl and Ursin,
1992) , which cites specific use of AVO information (although a data misfit function will draw from
the propagation effects of Q as much as it does AVO information). In earlier incarnations of the
research in this paper (Innanen, 2003; Innanen and Weglein, 2004), the separability of the linear
components of arbitrarily varying wavespeed and Q perturbations in depth has been demonstrated,
provided data with offset. More recently, the use of offset data for the determination of the absorp-
tive and dispersive properties of a plane target has been advocated (de Hoop et al., 2005). The
methodology we present is an attempt to do precisely that, to multidimensional distributions of
wavespeed and Q.

2 Basic scattering expressions

We define wave propagation in the actual medium as satisfying a straightforward two parameter
A-D wave model, in which the Green’s function satisfies[

∇2 +K2
]
G(x|xs;K) = δ(x− xs), (1)

where

K ≡ ω

c(x)

[
1 +

F (ω)
Q(x)

]
, (2)

and, importantly, where we have specifically extracted the function

F (ω) =
i

2
− 1
π

ln
(
ω

ωr

)
. (3)

The reference frequency ωr is a component of the A-D model, which in our numerical studies we
assume is the highest frequency in a given experiment. The model embodied in equations (2) and
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(3) is consistent with those described by Aki and Richards (2002), and with that of Kjartansson
(1979b) over a reasonable seismic bandwidth. The function F (ω) has two terms, one imaginary and
one real and frequency-dependent; the former instills absorptive effects (i.e., attenuation proper)
in the expression for a propagating wavefield, while the latter instills dispersive effects. Notice that
the form of the A-D model has permitted us to separate out the space dependence of Q(x) from the
frequency-dependence produced by the dispersion, which we have placed in the function F (ω). The
former will be treated as an unknown in the inverse scattering problem, and the latter as known.

Continuing in operator form (e.g., Weglein et al. (2003)), the reference wave equation and the
actual wave equation, both based on equation (1) may be expressed as

L0G0 = I, LG = I, (4)

respectively. We then define perturbation and scattered field quantities as

V = L0 − L, ψ = G−G0, (5)

respectively, after which the Scattering equation and forward scattering series,

ψ = G0VG,

= G0VG0 + G0VG0VG0 + G0VG0VG0VG0 + ...,
(6)

are inverted by defining the inverse scattering series as an infinite series V = V1 + V2 + V3 + ...
in orders of measured values of the scattered field, and solving for Vn through

ψ = G0V1G0,

0 = G0V2G0 + G0V1G0V1G0,

0 = G0V3G0 + G0V1G0V2G0 + G0V2G0V1G0

+ G0V1G0V1G0V1G0,

(7)

etc. Solving the first equation in (7) for V1 corresponds to direct linear inversion, our current aim.
Specifically, we define the current problem as solving for V1 given the A-D model and reference
medium choices made above. The perturbation operator V is the difference between two wave
operators of the type in equation (1), a reference and an actual, namely:

V = L0 − L

=
[
∇2 +K2

0

]
−
[
∇2 +K2

]
=

ω2

c20(x)

[
1 +

F (ω)
Q0(x)

]2

− ω2

c2(x)

[
1 +

F (ω)
Q(x)

]2

≈
(

ω

c0(x)

)2

[α(x) + 2F (ω)β(x)] ,

(8)

where we have defined the two central perturbation quantities of the scattering expression to be

α(x) = 1− c20(x)
c2(x)

,

β(x) =
1

Q0(x)
− 1
Q(x)

.

(9)
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The final approximation in equation (8) assumes (1) that the product αβ is small, and (2) that
F (ω)β(x) << 1, which amounts to assuming the same thing about Q−1 ln(ω/ωr). This assump-
tion has already been made during the development of the Q model of equation (2), so we have
introduced no new restrictions.

In this paper, as we have said, we are interested in a special form of equation (9), in which the
reference medium is (1) homogeneous, such that c0(x) = c0, and (2) non-attenuating, such that
Q0(x) → ∞, in which case we re-define β as 1/Q(x). Making these changes in the form for the
full perturbation, the mathematical form for the part of this V that is linear in the measured data,
simplifies to V1, where

V1 =
(
ω

c0

)2

[α1(x)− 2F (ω)β1(x)] . (10)

The direct linear inverse problem is to determine the spatial distributions of α1(x) and β1(x) from
measured values of the scattered field. With homogeneous non-attenuating reference media, we
have the following Green’s functions:

G0(xg, zg|x, z;ω) =
1
2π

∫ ∞

−∞
dk′xe

ik′x(xg−x′) e
iq′|zg−z′|

i2q′

G0(x, z|xs, zs;ω) =
1
2π

∫ ∞

−∞
dk′xe

ik′x(x′−xs) e
iq′|z′−zs|

i2q′
,

(11)

where q′2 = ω2/c20 − k′2x . Finally, Fourier transforming over xg and xs within G0(xg, zg|x, z;ω) and
G0(x, z|xs, zs;ω) respectively produces the useful form:

G0(kg, zg|x, z;ω) = e−ikgx e
iqg |zg−z|

i2qg
,

G0(x, z|ks, zs;ω) = eiksx e
iqs|z−zs|

i2qs
.

(12)

3 Linear inversion over a vertically and laterally varying medium

We apply the general approach and parametrization of Clayton and Stolt (1981) to the absorptive-
dispersive scattering problem, finding that arbitrary 2D variation in the two A-D parameters may
be determined, in a linear approximation, from a data set involving reflected primaries measured
over multiple shot records. The extension of the 2D problem to the 3D problem is immediate. The
basic linear 2D data equations are

D′′(kg, ks, ω) = S(ω)
∫ ∞

−∞
dx′G0(kg, zg|x′;ω)V1(x′)G0(x′|ks, zs;ω), (13)

where x′ = (x′, z′), S(ω) is the source wavelet, and D′′ are the measured data, expressed in
Fourier coordinates conjugate to xg, xs, and t respectively. Upon substitution of the reference

273



Direct linear absorptive-dispersive inversion MOSRP06

Green’s functions and the A-D form of the linear perturbation, from equations (11)-(12) and (10)
respectively, we have

D′(kg, ks, ω) = − ω2

4c20qgqs
[α1(kg − ks,−qg − qs)

−2F (ω)β1(kg − ks,−qg − qs)] ,
(14)

where we have incurred the first of two slight changes to the data:

D′(kg, ks, ω) = ei(qgzg+qszs)D
′′(kg, ks, ω)
S(ω)

, (15)

that is, we have corrected for the depths of the source and receiver planes, and deconvolved the
source wavelet across the bandwidth of the experiment (which means we have assumed both that
it is known, and that it has not suppressed any intervals of the temporal frequency spectrum
of interest to us). We next change variables to the midpoint and offset conjugate wavenumbers
km = kg − ks and kh = kg + ks, and the depth wavenumber qz = −qg − qs, following Clayton and
Stolt (1981), who provide expressions for ω, qg and qs in terms of the new three variables:

qg(km, kh, qz) = −qz
2

(
1− kmkh

q2z

)
qs(km, kh, qz) = −qz

2

(
1 +

kmkh

q2z

)
ω(km, kh, qz) = −c0qz

2

√(
1 +

k2
m

q2z

)(
1 +

k2
h

q2z

)
,

(16)

such that equation (14) may be re-written entirely in their terms. Doing so in the A-D equations
and re-arranging, we have

α1(km, qz)− 2F (km, kh, qz)β1(km, qz) = D(km, kh, qz), (17)

where, combining equations (3) and (16),

F (km, kh, qz) =
i

2
− 1
π

ln
(
ω(km, kh, qz)

ωr

)
, (18)

and the second change to the data has now been invoked, such that the factor due to the change
of variables is absorbed into the new ‘data’:

D(km, kh, qz) = −4
q4z − k2

mk
2
h

(q2z + k2
m)(q2z + k2

h)
D′(km, kh, qz). (19)

Equation (17) contains the basic linear inversion equations. To carry out the inversion, the
wavenumber spectra of α1 and β1 must be filled in, i.e., we must solve a linear problem for each pair
(km, qz). That leaves kh, or the offset-conjugate wavenumber, free to vary. Assuming a measured
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datum exists for each of a set of N > 2 discrete kh values, we may express instances of equation
(17) at each of these values with the matrix equation

Wh(km, qz)
[
α1(km, qz)
β1(km, qz)

]
= d(km, qz), (20)

where

Wh(km, qz) =


1 −2F (km, kh1 , qz)
1 −2F (km, kh2 , qz)
...

...
1 −2F (km, khN

, qz)

 , (21)

and

d(km, qz) =


D(km, kh1 , qz)
D(km, kh2 , qz)

...
D(km, khN

, qz)

 . (22)

One sensible option is to attempt a least-squares solution to this problem:[
α1

β1

]
lsq

=
(
Wh

TWh

)−1
Wh

Td. (23)

The matrix Wh
TWh is invertible if the columns of Wh are linearly independent. Since the first

column is constant, the requirement, at each pair of wavenumbers km, qz for which we wish to
construct α1 and β1, is then simply that the second column – the function F (km, kh, qz) – must
not be; it must vary sufficiently over the available kh range. It does so by definition, hence the
linear A-D inversion problem is well-posed for an arbitrary distribution of c(x, z) and Q(x, z) given
multiple shot records of input data.
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Imaging diffractive targets within an unknown 1D overburden: progressing
theory towards collapsing diffractions without the velocity model

K. A. Innanen

Abstract

There are closed-form forward scattering series approximations for scalar (acoustic constant
density) primaries diffracting from a 2D target below a 1D overburden. By extending previous
methods designed for purely 1D media, these primary approximations may be inverted order-
by-order. The result is a set of direct non-linear formulas for the location and amplitude of a
diffractive target beneath an unknown overburden. Under the 1D overburden assumption the
forward mathematical forms are reminiscent of WKBJ- and eikonal approximations in a Born
framework. The inverse forms are entirely in terms of data and the homogeneous reference
medium properties. This work represents a partial capture of primary-processing capability of
the inverse scattering series; we anticipate using the insight gained here to continue to extract
further terms from the series, as a means to extend the types of imaging issues accommodated
by current velocity independent imaging capture.

1 Introduction

Standard, linear depth-imaging methods correctly collapse diffractions when the velocity model is
known. Non-linear direct imaging or imaging-inversion algorithms derived from the inverse scatter-
ing series bear a more difficult burden: to collapse diffractions in the absence of a velocity model,
through non-linear data activity. We are working to capture sets of terms from the 2D/3D inverse
scattering series accommodating of an increasingly complete set of wavefield/data phenomena, of
which diffractions are an example, in their imaging capability. Liu et al. (2005) present a 2D imag-
ing algorithm whose capture of imaging capability includes all aspects of the problem for which
there is a 1D analog. Here we present an early stage candidate set of closed-form formulas derived
directly from non-linear scattering theory for the location and amplitude of unknown diffractive
targets in a subsurface with an unknown vertically-varying overburden.

We suspect that these formulas may prove to be of some value within their range of applicability:
collapsing diffractions within unknown, extended overburdens that vary in depth. But as we fo-
cus on the details, the big picture should not be lost. The forward and inverse scattering series
frameworks that underlie what is discussed below are not hindered by any such restricted range
of medium variability. At any given time we may be, and are, attempting to extract computable
portions of the full processing capability of the inverse scattering series. But we will in the end re-
turn to the underlying multidimensional framework, having gleaned the lessons of the 1D analysis,
and launch into the more complex multidimensional world, extending and superseding the current
extracted capability. All limitations of the effectiveness of any inverse scattering series formula to
date (Carvalho, 1992; Araújo, 1994; Weglein et al., 1997, 2001, 2003; Shaw et al., 2004; Ramı́rez and
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Weglein, 2005; Liu et al., 2005; Innanen, 2005; Zhang and Weglein, 2005, e.g.), whether signified
by names like leading order, or attenuator, have been traced to partial, though powerful, capture of
the full inverse scattering series capability. We study and implement the current subset of inverse
scattering series terms, determine their strengths and limitations, and take what we have learned
back to the full theory, to extract more. To be specific, why a 1D overburden? Two reasons. First,
the best way to understand how the series works is to study it under the simplest conditions that
permit the phenomenon of interest to exist. For diffractions, the entire medium cannot be 1D,
because such media do not produce diffractions, but the overburden can—so long as the target
is not. Second, we are also attracted to a non-fundamental aspect of inverse series algorithms:
whether or not they are expressible in closed-form. If so, we achieve a very significant lessening of
computational burden. The assumption of a 1D overburden also permits this.

That said, we turn to the details of the current problem. The derivation of the formulas follows
a set of steps involving both the forward1 and the inverse scattering series treatment of primaries.
Let us begin with a survey of these steps. First, given a homogeneous acoustic reference medium
and an actual medium that varies only in the vertical direction, a subset of terms of the forward
scattering series can be extracted to approximate the primaries associated with this medium in a
1.5D reflected data set. This is reviewed in Appendix A. Second, this greatly reduced set of forward
scattering series terms may be used to produce an inverse series that determines the depth-varying
perturbation order-by-order in the reflected primary data. This is reviewed in Appendix B. These
series are not fully task-separated, in that they work to determine the location and amplitude of
the reflectors simultaneously, however they are straightforwardly derived, and reflect a particular
and striking symmetry in the forward and inverse series.

Taking these developments as read, the questions of moment are (1) to what extent do these
1.5D developments transfer to multidimensional perturbations, and (2) to what extent can the
computational efficiency of the 1.5D methods (which are expressible in closed-form) be maintained?

In the following section we first ask these questions of the forward scattering series, and answer by
reviewing the diffraction expressions discussed in MOSRP-05 (Innanen, 2006), in which closed-form
expressions for diffractions were shown to be derivable provided only the depth-varying component
of the perturbation is large and/or extended. In particular, Appendix C illustrates more fully the
two kinds of criteria for retention and rejection of forward series terms included in the diffracted
primary approximation, which extends the results of Appendix A to media that can produce 2D
wavefield phenomena.

The new research here is in Section 3, in which we apply the order-by-order inversion procedure of
Appendix B to the diffracted primary approximation, generating candidate order-by-order formulas

1The forward scattering series is a formalism for the determination of wavefields that places no restrictions on
the dimensionality of the medium or the rapidity of its variations. The inverse scattering series is a formalism which
accomplishes all tasks of inversion with a similar lack of restriction. In MOSRP-05 (Innanen, 2006, 2007) we described
a forward scattering series approximation of diffracted primaries that assumed the perturbation to be large/extended in
depth with small lateral variability. In doing so, a mathematical form with the hallmarks of a Born approximation with
eikonal-approximate Green’s functions (Clayton and Stolt, 1981) for vertically heterogeneous media was produced (in
a related matter, Amundsen et al. (2005) have derived data-driven imaging and inversion algorithms from a direct
appeal to WKBJ-like forms). It is important to emphasize that these trappings are the consequence of the above
medum assumptions, which may be jettisoned in favor of series forms.
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for the location and amplitude of unknown diffractive targets given an unknown overburden, under
the assumption that that overburden is vertically-varying.

2 Approximating primaries from a 2D target beneath/within a 1D overburden

We review the extension of the approximation of primaries that have reflected (and diffracted)
from a medium consisting of (1) a homogeneous wholespace perturbed by (2) a large, extended 1D
perturbation and a small, transient 2D perturbation underlying or embedded in the 1D structure.
Assuming this type of medium (see Figure 1), in which the 2D component of the perturbation is
adequately explicable as being linear in the wavefield, permits amongst other things closed form
expressions for the reflected primaries to be generated. We develop the 2D case for convenience,
but the 3D generalization is essentially immediate. The wave equations we begin with are[

∇2
g +

ω2

c2(xg, zg)

]
G(xg, zg, xs, zs, ω) = δ(xg − xs)δ(zg − zs)[

∇2
g + k2

]
G0(xg, zg, xs, zs, ω) = δ(xg − xs)δ(zg − zs)

(1)

where k = ω/c0. Setting α(x, z) = 1− c20/c2(x, z), and expressing the reference Green’s function in
three possible ways:

G0(kg, zg, xs, zs, ω) = e−ikgxs
eiqg |zg−zs|

i2qg
,

G0(xg, zg, ks, zs, ω) = eiksxg
eiqs|zs−zg |

i2qs
,

G0(x′, z′, x′′, z′′, ω) =
1
2π

∫
dk′eik

′(x′−x′′) e
iq′|z′−z′′|

i2q′
,

(2)

where, e.g.,

q′ =
ω

c0

√
1− c20k

′2

ω2
, (3)

by the usual means the resulting Born series is

Gs(kg, zg, ks, zs, ω) = G−G0

= G1 +G2 +G3 + ... .
(4)

We will evaluate and manipulate the low order terms of this series and identify patterns within.
The terms have the general form

G1(kg, zg, ks, zs, ω) =
∫
dz′
∫
dx′G0(kg, zg, x

′, z′, ω)k2α(x′, z′)G0(x′, z′, ks, zs, ω), (5)

then

G2(kg, zg, ks, zs, ω) =
∫
dz′
∫
dx′G0(kg, zg, x

′, z′, ω)k2α(x′, z′)

×
∫
dz′′

∫
dx′′G0(x′, z′, x′′, z′′, ω)k2α(x′′, z′′)G0(x′′, z′′, ks, zs, ω),

(6)

281



Formulas for imaging diffractive targets with an unknown 1D overburden MOSRP06

etc. Now let us assume that although α is 2D, it is large and/or extended only in depth. That is,
we may write it as

α(x, z) = A(z) +B(x, z), (7)

where A(z) is large and extended and B(x, z) is small and spatially transient, such that if it were
alone perturbing the reference medium we would not hesitate to approximate it as being linear in
the scattered field. Using this form for the perturbation, we will begin computing series terms.

sources
receivers z

x

Figure 1: Assume the perturbation has a 1D component that is large and extended, and a 2D component
that is small and transient, but capable of generating, e.g., diffractions.

At each order, we will retain or reject terms based on two criteria. First, scattering geometry
will determine whether or not the term is contributing to a reflected primary (meaning either the
primary due to specular reflection or the primary-like part of a diffraction) or, e.g., a multiple.
Only those terms contributing to primaries are retained. Second, terms that are of a certain kind
of non-linearity in α are to be retained: terms that are non-linear in A are kept, and terms that
are non-linear in B are rejected. Every retained term will therefore take non-linear account of the
(assumed) large and extended 1D overburden, and linear account of the 2D target as it constructs
the primaries of the wavefield. See MOSRP-05 and/or Appendix A for more discussion.

Placing sources and receivers everywhere on the surfaces z = zs and z = zg respectively, the result
is a series that forward models primary data:

RP (kg, zg, ks, zs, ω) = RP
1 +RP

2 +RP
3 + ... . (8)

The linear term is the result of evaluating equation (5) with no rejection of any scattering contri-
butions required:

RP
1 (kg, zg, ks, zs, ω) = −e

−iqgzg−iqszs

4
k2

qgqs

∫
dz′ei(qg+qs)z′α(kg − ks, z

′). (9)
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The second order term requires no manipulation to reject non-primary contributions, however, it
does require manipulation such that the retained terms are linear in B and non-linear in A. In
appendix A we show that this results in

RP
2 (kg, zg, ks, zs, ω)

= −e
−iqgzg−iqszs

4
k2

qgqs

∫
dz′ei(qg+qs)z′

(
−iqg

2 cos2 θg

∫ z′

zg

A(z′′)dz′′
)
α(kg − ks, z

′)

− e−iqgzg−iqszs

4
k2

qgqs

∫
dz′ei(qg+qs)z′α(kg − ks, z

′)

(
−iqs

2 cos2 θs

∫ z′

zs

A(z′′)dz′′
)
,

(10)

where cos θg = qg/k and cos θs = qs/k. The third order term, after rejection of contributions to
multiples and the same substitutions described in appendix C, is

RP
3 (kg, zg, ks, zs, ω)

=− e−iqgzg−iqszs

4
k2

qgqs

∫
dz′ei(qg+qs)z′ 1

2

(
−iqg

2 cos2 θg

∫ z′

zg

A(z′′)dz′′
)2

α(kg − ks, z
′)

− e−iqgzg−iqszs

4
k2

qgqs

∫
dz′ei(qg+qs)z′

(
−iqg

2 cos2 θg

∫ z′

zg

A(z′′)dz′′
)
α(kg − ks, z

′)

(
−iqs

2 cos2 θs

∫ z′

zg

A(z′′)dz′′
)

− e−iqgzg−iqszs

4
k2

qgqs

∫
dz′ei(qg+qs)z′α(kg − ks, z

′)
1
2

(
−iqs

2 cos2 θs

∫ z′

zg

A(z′′)dz′′
)2

.

(11)

The approximation is based on the sum of these types of retained terms over all orders, that is, the
diffracted primaries are given by:

RP (kg, zg, ks, zs, ω)

=RP
1 +RP

2 +RP
3 + ...

=− e−iqgzg−iqszs

4
k2

qgqs

∫
dz′ei(qg+qs)z′α(kg − ks, z

′)

×

[
1 +

(
−iqg

2 cos2 θg

∫ z′

zg

A(z′′)dz′′
)

+

(
−iqs

2 cos2 θs

∫ z′

zs

A(z′′)dz′′
)

+
1
2!

(
−iqg

2 cos2 θg

∫ z′

zg

A(z′′)dz′′
)2

+

(
−iqg

2 cos2 θg

∫ z′

zg

A(z′′)dz′′
)(

−iqs
2 cos2 θs

∫ z′

zs

A(z′′)dz′′
)

+
1
2!

(
−iqs

2 cos2 θs

∫ z′

zs

A(z′′)dz′′
)2

+ ...

 .

(12)
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The series in brackets is the product of two Taylor’s series for exponential functions:

RP (kg, zg, ks, zs, ω)

=
∫
dz′

e
iqg

»
z′−zg− 1

2 cos2 θg

R z′
zg

A(z′′)dz′′
–

i2qg
k2α(kg − ks, z

′)
e
iqg

h
z′−zs− 1

2 cos2 θs

R z′
zs

A(z′′)dz′′
i

i2qs
,

(13)

in which the non-linear influence of the 1D portion of the medium is seen to have been brought up
into the arguments of “renormalized” Green’s functions, whose form has many of the trappings of
an eikonal approximation. The lessons of the high/low order approximations discussed in purely
1D case furthermore suggest that a scaling of these arguments is appropriate for larger contrasts
in the 1D perturbation component:

RPM (kg, zg, ks, zs, ω)

=
∫
dz′

eiqg [z′−zg−ZM (zg ,z′,θg ,A)]

i2qg
k2α(kg − ks, z

′)
eiqg [z′−zs−ZM (zs,z′,θs,A)]

i2qs
,

(14)

and

RPL(kg, zg, ks, zs, ω)

=
∫
dz′

eiqg [z′−zg−ZL(zg ,z′,θg ,A)]

i2qg
k2α(kg − ks, z

′)
eiqg [z′−zs−ZL(zs,z′,θs,A)]

i2qs
,

(15)

where

ZM (z, z′, θ, A) =
1

2 cos2 θ

∫ z′

z
A(z′′)dz′′,

ZL(z, z′, θ, A) =
1

2 cos2 θ

∫ z′

z

A(z′′)
1− 0.25A(z′′)

dz′′,

(16)

contain the non-linear perturbation in a more compact form.

Let us illustrate the activity of this component of the forward scattering series with two numerical
examples. Figures 2–3 illustrate two scenarios, the former of which involves a relatively simple
boundary beneath a large extended overburden, and the latter of which involves a rugose boundary
beneath a similar overburden. Figures 4a and c illustrate two shot records of the primaries from the
scattering body in the absence of the perturbed overburden, i.e., assuming no overburden is present;
Figures 4b and d illustrate the result of the non-linear scattering model in which the overburden is
present in the perturbation. Similarly presented are the primaries from the second model in Figure
5. Notice in particular that although the linear and non-linear approximations responses have a
similar aspect, the phase patterns–arrival times and move-out—are different.

3 Order-by-order inversion of the diffraction approximation

Part of the motivation for developing the forward scattering series approximation of primary diffrac-
tions within a large, extended perturbation is that there exist methods (previously developed in
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Figure 2: Model with a simple dipping boundary, overlain by a fast overburden.
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Figure 3: Model with a rugose dipping boundary, overlain by a fast overburden.
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Figure 4: Scattering approximation results for the dipping boundary model: (a) shot record with centered
shot location, no overburden; (b) shot record with centered shot location, overburden present;
(c) shot record with offset shot location, no overburden; (d) shot record with offset shot location,
overburden present.
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Figure 5: Scattering approximation results for the rugose boundary model: (a) shot record with centered
shot location, no overburden; (b) shot record with centered shot location, overburden present;
(c) shot record with offset shot location, no overburden; (d) shot record with offset shot location,
overburden present.
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the purely 1D case) for directly inverting such expressions, immediately producing algorithms for
imaging/inversion directly and non-linearly in terms of measured data. In this section we extend
those 1D inversion methods to this partial 2D case.

We begin with the series form of the diffracted primary approximation in equation (12). Although
we loosely suggested that the primaries were evaluated on a fixed measurement surface in the
previous section, it was not necessary to fix them as such. It is now. We define the data to be
reflected primaries measured at a fixed depth zs, due to sources at a fixed depth zs:

D(kg, zg, ks, zs, ω)

≡− e−iqgzg−iqszs

4
k2

qgqs

∫
dz′ei(qg+qs)z′α(kg − ks, z

′)

×

[
1 +

(
−iqg

2 cos2 θg

∫ z′

zg

A(z′′)dz′′
)

+

(
−iqs

2 cos2 θs

∫ z′

zs

A(z′′)dz′′
)

+
1
2!

(
−iqg

2 cos2 θg

∫ z′

zg

A(z′′)dz′′
)2

+

(
−iqg

2 cos2 θg

∫ z′

zg

A(z′′)dz′′
)(

−iqs
2 cos2 θs

∫ z′

zs

A(z′′)dz′′
)

+
1
2!

(
−iqs

2 cos2 θs

∫ z′

zs

A(z′′)dz′′
)2

+ ...

 .

(17)

We require a further approximation before proceeding. We have developed the series in equation
(17) by assuming that the influence of B(x, z) on the non-linear components of the series is small
and can be neglected. Since the influence of B is by assumption small, we may now return it
essentially without penalty. Hence we write:

D(kg, zg, ks, zs, ω)

=− e−iqgzg−iqszs

4c20

ω2

qgqs

∫
dz′ei(qg+qs)z′α(kg − ks, z

′)

×

[
1 +

(
−iqg

2 cos2 θg

∫ z′

zg

α(kg − ks, z
′′)dz′′

)
+

(
−iqs

2 cos2 θs

∫ z′

zs

α(kg − ks, z
′′)dz′′

)

+
1
2!

(
−iqg

2 cos2 θg

∫ z′

zg

α(kg − ks, z
′′)dz′′

)2

+

(
−iqg

2 cos2 θg

∫ z′

zg

α(kg − ks, z
′′)dz′′

)

×

(
−iqs

2 cos2 θs

∫ z′

zg

α(kg − ks, z
′′)dz′′

)
+

1
2!

(
−iqs

2 cos2 θs

∫ z′

zg

α(kg − ks, z
′′)dz′′

)2

+ ...

 .

(18)

To invert this directly, we express

α(x, z) = α1(x, z) + α2(x, z) + α3(x, z) + ..., (19)

where αn is n’th order in the primary data D, substitute this series into equation (17), equate like
orders, and solve for each αn. The first-order inverse equation is, after carrying out the integral
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with respect to z′,

D(kg, zg, ks, zs, ω) = −e
−iqgzg−iqszs

4
k2

qgqs
α1(kg − ks,−qg − qs) (20)

We next change variables to the midpoint and offset conjugate wavenumbers km = kg − ks and
kh = kg + ks, and the depth wavenumber kz = −qg − qs, following Clayton and Stolt (1981), who
provide expressions for ω, qg and qs in terms of the new three variables:

qg(km, kh, kz) = −kz

2

(
1− kmkh

k2
z

)
qs(km, kh, kz) = −kz

2

(
1 +

kmkh

k2
z

)
ω(km, kh, kz) = −c0kz

2

√(
1 +

k2
m

k2
z

)(
1 +

k2
h

k2
z

)
.

(21)

Taking the dependence of the data on the source and receiver depths as read, we re-express equation
(20) as

D(km, kh, kz) = −e
−iqg(km,kh,kz)zg−iqs(km,kh,kz)zs

4c20

ω2(km, kh, kz)
qg(km, kh, kz)qs(km, kh, kz)

α1(km, kz). (22)

Since we are assuming the data are explainable through the variability of a single parameter, the
P-wave velocity or acoustic wavespeed c(x, z), each instance of the offset conjugate kh produces a
separate estimate of α1:

α1(km, kz|kh) = −4c20C(km, kh, kz)D(km, kh, kz), (23)

where

C(km, kh, kz) = eiqg(km,kh,kz)zg+iqs(km,kh,kz)zs
qg(km, kh, kz)qs(km, kh, kz)

ω2(km, kh, kz)
, (24)

and hence in the z domain we have

α1(km, z|kh) = −2c20
π

∫
dkze

ikzzC(km, kh, kz)D(km, kh, kz). (25)

Next we collect all second order terms that arise from substituting equation (19) into (18). After
cancellation of several pre-factors and a Fourier transform on the LHS, we have

α2(km, kz) =
∫
dz′ei(qg+qs)z′α1(km, z

′)

×

[(
iqg

2 cos2 θg

∫ z′

zg

α1(km, z
′′)dz′′

)
+

(
iqs

2 cos2 θs

∫ z′

zs

α1(km, z
′′)dz′′

)]
.

(26)
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But, from equation (25), we have an α1(km, z) for every kh value in the data, therefore we will
likewise be able to compute a suite of second order functions α2(km, z), one for each kh:

α2(km, kz|kh) =
∫
dz′ei(qg+qs)z′α1(km, z

′|kh)

×

[(
iqg

2 cos2 θg

∫ z′

zg

α1(km, z
′′|kh)dz′′

)
+

(
iqs

2 cos2 θs

∫ z′

zs

α1(km, z
′′|kh)dz′′

)]
,

(27)

in which the functional dependences of qg, qs, ω, θg, and θs, on km, kh, and kz are all provided in
equations (25).

As we continue this process at higher order, we produce a set of αn(km, kz|kh) (left-hand side of
each order), each of which is associated with (on the right-hand side) a sequence of operations on
α1 that closely mirrors the forward behavior, but without the alternating sign. The output we are
interested is the sum of the left-hand side terms over all orders. This produces
∞∑

n=0

αn+1(km, kz|kh) =
∫
dz′ei(qg+qs)z′α1(km, z

′|kh)

×

 ∞∑
l=0

1
l!

(
iqg

2 cos2 θg

∫ z′

zg

α1(km, z
′′|kh)dz′′

)l
[ ∞∑

m=0

1
m!

(
iqs

2 cos2 θs

∫ z′

zs

α1(km, z
′′|kh)dz′′

)m]
.

(28)

Defining αII =
∑

n αn+1, and recognizing again the product of Taylor’s series, we finally have the
moderate (which we derived) and large (which we presume based on experience) contrast algorithms

αM
II (km, kz|kh) =

∫
dz′eiqg [z′+ZM (zg ,z′,θg ,α1)]α1(km, z

′|kh)eiqs[z′+ZM (zs,z′,θs,α1)], (29)

and

αL
II(km, kz|kh) =

∫
dz′eiqg [z′+ZL(zg ,z′,θg ,α1)]α1(km, z

′|kh)eiqs[z′+ZL(zs,z′,θs,α1)], (30)

where

ZM (z, z′, θ, α1) =
1

2 cos2 θ

∫ z′

z
α1(km, z

′′|kh)dz′′,

ZL(z, z′, θ, α1) =
1

2 cos2 θ

∫ z′

z

α1(km, z
′′|kh)

1− 0.25α1(km, z′′|kh)
dz′′,

(31)

and where (again) the functional dependences of qg, qs, ω, θg, and θs, on km, kh, and kz are all
provided by the relations of Clayton and Stolt in equations (21).

The desired image in the spatial domain is then

αM
II (x, z|kh) =

(
1
2π

)2 ∫
dkz

∫
dkme

ikzzeikmxαM
II (km, kz|kh)

αL
II(x, z|kh) =

(
1
2π

)2 ∫
dkz

∫
dkme

ikzzeikmxαL
II(km, kz|kh).

(32)
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Provided the contrasts are within some reasonable range, the output αII in equations (32) should
be independent of kh, i.e., the “gather” should have been “flattened”.

The key equations here are (29) and (30). The resemblance to a linear form is misleading – notice
that in the arguments of the exponentials are instances of the data, making this a highly non-
linear activity. As with all task-separated inverse scattering series methods, the only inputs to this
procedure are the homogeneous reference wavespeed (usually waterspeed), and the data.

4 Summary

There are closed-form forward scattering series approximations for scalar (acoustic constant density)
primaries diffracting from a 2D target below a 1D overburden. By extending previous methods
designed for purely 1D media, these primary approximations may be inverted order-by-order. The
result is a set of direct non-linear formulas for the location and amplitude of a diffractive target
beneath an unknown overburden. Under the 1D overburden assumption the forward mathematical
forms are reminiscent of WKBJ- and eikonal approximations in a Born framework. The inverse
forms are entirely in terms of data and the homogeneous reference medium properties.
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Appendix A: scattering approximation of primaries in 1.5D

In this appendix we demonstrate the approximation of primary reflections from the forward scat-
tering series via a program of retention/rejection of certain relative scattering geometries in depth.
We begin with two wave equations Weglein et al. (2003), involving differential operators L, L0, and
Green’s operators G, and G0:

LG = I,

L0G0 = I,
(33)

whose elements are related through the Lippmann-Schwinger equation:

G−G0 = G0(L0 − L)G. (34)

Calling these differences Ψ = G−G0 and V = L0 − L, and eliminating G on the right-hand side
by an iterating substitution, we have

Ψ =
∞∑

n=1

G0(VG0)n. (35)

Equation (35) may be interpreted as an infinite series expansion of the “scattered” portion of the
wave field associated with G, namely Ψ, in orders of the other Green’s operator, G0, and V,
which is referred to as the perturbation operator. For the purposes of this paper, a 1.5D acoustic,
constant density medium (i.e., scalar waves) is assumed in which all perturbations, or deviations
from the reference medium, are in the wavespeed parameter. Under these circumstances, equation
(34) becomes

ψ(xg, zg|ks, zs; k) =
∫ ∞

−∞
dz′
∫ ∞

−∞
dx′G0(xg, zg|x′, z′, k)

× V (z′)G(x′, z′|ks, zs; k),
(36)

where k = ω/c0. Representing the forward scattering series in equation (35) as ψ = ψ1 + ψ2 + ...,
the linear term is

ψ1(xg, zg|ks, zs; k) =
∫ ∞

−∞
dz′
∫ ∞

−∞
dx′G0(xg, zg|x′, z′, k)

× V (z′)G0(x′, z′|ks, zs; k),
(37)

the quadratic term is

ψ2(xg, zg|ks, zs; k) =
∫ ∞

−∞
dz′
∫ ∞

−∞
dx′G0(xg, zg|x′, z′, k)V (z′)

×
∫ ∞

−∞
dz′′

∫ ∞

−∞
dx′′G0(x′, z′|x′′, z′′, k)V (z′′)

×G0(x′′, z′′|ks, zs; k),

(38)
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and so forth. In equations (37), (38) and beyond, the wave field is evaluated at a fixed receiver
point (xg, zg) and source depth zs, but is due to a suite of laterally-varying sources such that the
wave field may be expressed in the xs-conjugate domain ks (i.e., source plane wave components are
dealt with individually). Green’s functions for 2D homogeneous acoustic media are

G0(xg, zg|x′, z′, k) =
1
2π

∫ ∞

−∞
dkge

ikg(xg−x′) e
iqg |zg−z′|

i2qg
, (39)

and

G0(x′, z′|ks, zs, k) = eiksx′ e
iqs|z′−zs|

i2qs
, (40)

where q2g = k2 − k2
g and q2s = k2 − k2

s . These are used if the reference medium is chosen to be a
homogeneous acoustic wholespace, fully characterized by a reference wavespeed c0, in which case
the perturbation is a measure of the disturbance of the actual medium away from c0:

V (z) = k2

(
1− c20

c2(z)

)
≡ k2α(z), (41)

where the perturbation has been permitted to vary in depth (z) only. Assuming that V (z) 6= 0 for
z > 0 only, and parametrizing in terms of the source plane wave angle θ = cos−1(qs/k), the FSS
expression for ψ becomes, after the solution of a sequence of Fourier integrals,

ψ(xg|ks, qs, θ) = ψ1(xg|ks, qs, θ) + ψ2(xg|ks, qs, θ) + ..., (42)

where

ψ1(xg|ks, qs, θ) = − 1
4 cos2 θ

eiksxge−iqs(zg+zs)

∫ ∞

−∞
ei2qsz′α(z′)dz′, (43)

ψ2(xg|ks, qs, θ) =
i2qs

16 cos4 θ
eiksxge−iqs(zg+zs)

∫ ∞

−∞
eiqsz′α(z′)

×
∫ ∞

−∞
eiqs|z′−z′′|α(z′′)eiqsz′′dz′′dz′,

(44)

ψ3(xg|ks, qs, θ) = − (i2qs)2

64 cos6 θ
eiksxge−iqs(zg+zs)

∫ ∞

−∞
eiqsz′α(z′)

×
∫ ∞

−∞
eiqs|z′−z′′|α(z′′)

×
∫ ∞

−∞
eiqs|z′′−z′′′|α(z′′′)eiqsz′′′dz′′′dz′′dz′,

(45)

etc. The computation and summation of a large number of these terms (assuming convergence)
produces the full reflected wavefield associated with α(z).

Notice in equations (43) that the “down-and-back” nature of the linear term leads to a Fourier
integral, with a depth of 2z in the kernel (one z from the “down”, one from the “back”). To be
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evaluated, each non-linear scattering term must be broken up into a set of sub-terms, or cases,
based on the relative geometry of its scattering interactions. For instance, ψ3 will be divided into
four calculable parts, for the cases (1) z′ > z′′, z′′ > z′′′, (2) z′ > z′′, z′′ < z′′′, (3) z′ < z′′, z′′ > z′′′,
and (4) z′ < z′′, z′′ < z′′′. To illustrate, consider further the third order term from equation (??)
for three different cases of relative scattering geometry. Writing the third order term as

ψ3(xg|ks, qs, θ) = − (i2qs)2

64 cos6 θ
eiksxge−iqs(zg+zs)I3, (46)

and dividing I3 into its four cases I31 + I32 + I33 + I34, we can instructively examine three of those
four.

Case 1: z′ > z′′ and z′′ > z′′′.

This portion of the integral in the expression for ψ3 becomes

I31 =
∫ ∞

−∞
ei2qsz′α(z′)

∫ z′

−∞
α(z′′)

∫ z′′

−∞
α(z′′′)dz′′′dz′′dz′. (47)

Notice that although this is third-order in α, i.e., it is no longer part of a single scattering ap-
proximation, the restrictions on relative scattering depths result in an integral with some strong
similarities to that of ψ1. The same Fourier kernel is generated, involving non-linear contributions
that yet maintain the down-and-back geometry totaling a distance of 2z′.

Case 2: z′ > z′′ and z′′ < z′′′.

This portion becomes

I32 =
∫ ∞

−∞
α(z′)

∫ z′

−∞
ei2qsz′′α(z′′)

∫ ∞

z′′
α(z′′′)dz′′′dz′′dz′

=
∫ ∞

−∞
ei2qsz′α(z′)

(∫ z′

−∞
α(z′′)dz′′

)2

dz′.

(48)

The second line is derivable from the first by a switching of integration variables. Again, although
the integrand has changed, the Fourier integral remains, as does the down-and-back geometry .

Case 3: z′ < z′′ and z′′ > z′′′.

This portion becomes

I33 =
∫ ∞

−∞
ei2qsz′α(z′)

∫ z′

−∞
e−i2qsz′′α(z′′)

∫ ∞

z′′
ei2qsz′′′α(z′′′)dz′′′dz′′dz′. (49)
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The situation has changed slightly here; no general association with a “down and back” propagation
distance of 2z′ is possible. The form insists on reference medium propagation from 0 down to z′′′,
from z′′′ up to z′′, from z′′ down to z′, and from z′ up to 0, a total distance usually in excess of 2z′.
However, the Fourier form occasionally recurs during integration: e.g., when z′′′ = z′′, z′′ = z′, and
z′′′ = z′′ = z′.

Since a certain subset of high order terms share the same Fourier integral form as the linear term,
and the linear term approximates primaries only, we begin with the assumption that these high
order terms also work to construct primaries, and primaries only. This seems to be supported by
the argument from geometry for why the linear term itself approximates primaries: the “down-and-
back” propagation path of wave energy mimics that of a primary. Here we peremptorily define a
primary to be the summation of all portions of the forward scattering series with the above Fourier
form. (This will include all instances similar to cases 1 and 2, and the special instances of case 3.)

Beyond deciding that a certain set of terms is worth computing, the key issue is collecting and
calculating them in a reasonably efficient way. Although similar in scattering geometry, the terms
to be summed are apparently different in their mathematical detail (compare cases 1 and 2 above).
This suggests that computation of a high-order approximation with such a subset of terms, even
if desirable, will be lengthy and involved. Fortunately, patterns exist that allow the reproduction
of large (although incomplete) subsets of these terms. For instance, setting zg = zs = 0, successive
application of integration by parts of each term shows that the expression

RM (ks, qs, θ) = − eiksxg

4 cos2 θ

∫ ∞

−∞
ei2qsz′

×


∞∑

n=0

C+
n

[
α(z′)

(∫ z′

0
α(z′′)dz′′

)n](n)
 dz′,

(50)

where superscript (n) denotes the n’th derivative with respect to z′ and C+
n = (1/2)n

n! cos2n θ
, captures

these terms exactly up to second order and closely but approximately thereafter, and

RL(ks, qs, θ) = − eiksxg

4 cos2 θ

∫ ∞

−∞
dz′ei2qsz′

×


∞∑

n=0

C+
n

[
α(z)

( ∞∑
k=1

1
4k−1

∫ z

0
dz′αk(z′)

)n](n)


(51)

captures them almost exactly up to third order and closely but approximately thereafter. Equation
(51) incorporates all the terms of equation (50) and more, and hence subsumes it.

Appendix B: Order-by-order inversion of the 1.5D primary approximation

The inverse scattering series, a multi-dimensional multi-parameter inverse formalism, is here con-
sidered for a medium that allows vertical variations in wavespeed only. Following Carvalho (1992);
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Weglein et al. (2003), consider the Born series:

Ψ =
∞∑

n=1

G0(VG0)n

= G0VG0 + G0VG0VG0 + G0VG0VG0VG0 + ...

(52)

The relationship is inverted by representing V as an infinite series in orders of the wave field Ψ
evaluated on a measurement surface: V = V1 + V2 + V3 + .... Substituting this into equation
(52), projecting the scattered field onto a given measurement surface, and equating like orders, a
prescription for the term-by-term solution for V is created:

Ψs =G0V1G0,

0 =G0V2G0 + G0V1G0V1G0,

0 =G0V3G0 + G0V2G0V1G0 + G0V1G0V2G0

+ G0V1G0V1G0V1G0,

...

(53)

etc. Specifying to the single-parameter problem, the perturbation α is represented as α = α1 +
α2 + α3 + ..., in which αn is n’th order in the data D(ks, θ); let us assume these data are due to
sources and receivers at depths zg = zs = 0. These choices produce a specific form of equations
(53), in which αn are solved for order by order in this measured data set. The linear relation

D(ks, θ) = − eiksxg

4 cos2 θ

∫ ∞

−∞
ei2qsz′α1(z′)dz′ (54)

is solved for α1, then this α1 is used in

0 =− eiksxg

4 cos2 θ

∫ ∞

−∞
ei2qsz′α2(z′)dz′

− i2qs
16 cos4 θ

eiksxg

∫ ∞

−∞
eiqsz′α1(z′)

∫ ∞

−∞
eiqs|z′−z′′|α1(z′′)eiqsz′′dz′′dz′,

(55)

to solve for α2, then

0 =− eiksxg

4 cos2 θ

∫ ∞

−∞
ei2qsz′α3(z′)dz′

− i2qs
16 cos4 θ

eiksxg

∫ ∞

−∞
eiqsz′α1(z′)

∫ ∞

−∞
eiqs|z′−z′′|α2(z′′)eiqsz′′dz′′dz′

− i2qs
16 cos4 θ

eiksxg

∫ ∞

−∞
eiqsz′α2(z′)

∫ ∞

−∞
eiqs|z′−z′′|α1(z′′)eiqsz′′dz′′dz′

− (i2qs)2

64 cos6 θ
eiksxg

∫ ∞

−∞
eiqsz′α1(z′)

∫ ∞

−∞
eiqs|z′−z′′|α1(z′′)

×
∫ ∞

−∞
eiqs|z′′−z′′′|α1(z′′′)eiqsz′′′dz′′′dz′′dz′,

(56)

297



Formulas for imaging diffractive targets with an unknown 1D overburden MOSRP06

for α3 and so on. We will treat this inverse problem in a slightly novel way in the next section;
first, it is worth making a few statements in regards to this formalism as it is usually studied, some
of which will carry over.

Consider equation (54). Taking the Fourier transform on the right hand side and re-arranging we
have

α1(−2qs) = −4 cos2 θ D(xg|ks; θ)e−iksxg . (57)

We can reconstruct α1(−2qs), supplying it with all its required wavenumber components (to the
extent that they are available from the wave field measurements) by, for instance, holding θ fixed
and varying ks:

α1(−2qs)|θ0 = −4 cos2 θ0 D(xg|ks; θ0)e−iksxg . (58)

When the reference medium is very close to the actual medium, and α1 is therefore a good ap-
proximation of α, the model constructed in equation (58) is very close to being independent of θ0,
so given more than one angle, an average or least-squares best estimate could be chosen (Clayton
and Stolt, 1981) to create a 1D model, or profile, from the 2D data. However, in the case of cur-
rent interest, in which the reference and actual media are significantly different, both the location
and amplitude of the discontinuities of α1 must be expected to be functions of the incident plane
wave angle. As a result, in its raw form, α1 retains the same dimensionality as the data, i.e.,
α1 = α1(qs, θ0).

After the determination of this data-like α1(qs, θ0), the task-specific ISS strategy (Weglein et al.,
2001, 2003; Shaw et al., 2004) departs into equations (55) and (56) and beyond. Supposing that
portions of the full ISS that are involved with the processing and inversion of primaries are of
interest, through integration-by-parts and various interchanges of integration variables, subseries
of the full inverse scattering series are identified, separated, and used to form primary processing
algorithms. In the following, we deviate from that approach, beginning instead with the FSS
primaries approximations of Appendix A.

We generate primary processing algorithms, deriving them by means that, while closely related to
the task-separated inverse scattering series, are distinct in a number of ways. Let us clarify this
with a brief description of each method.

1. Task-separated inverse scattering series.

The full forward scattering series generates the full scattered wavefield, including all primaries
and multiples. The full inverse scattering series is an order-by-order inversion of measurements of
this full scattered field. The task-separated inverse scattering series is a framework for deriving
algorithms from the extraction of portions of the full inverse series that are deemed to operate on
(for instance) primaries only.
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2. Direct inversion of non-linear primary approximations.

The full forward scattering series is altered such that only portions that construct primaries are
retained. A series in orders of the measured primaries (not the full measured wavefield) is substi-
tuted for the perturbation in this portion of the forward scattering series, and the perturbation
is solved for order-by-order. With no further intervention this produces algorithms for the direct
determination of the location and strength of reflectors.

Let us assume that the primary data is well-modeled byDP (ks, θ) = RM (ks, θ)|zg ,zs=0, the scattered
primary wavefield for moderate contrasts described in the previous section, here evaluated with fixed
source and measurement depths. If so, we may express the data using equation (50),

DP (ks, θ) = − eiksxg

4 cos2 θ

∫ ∞

−∞
ei2qsz′

×


∞∑

n=0

(1/2)n

n! cos2n θ

[
α(z′)

(∫ z′

0
α(z′′)dz′′

)n](n)
 dz′.

(59)

Expanding it as far as third order in the perturbation, we have

DP (ks, θ) =− eiksxg

4 cos2 θ

∫ ∞

−∞
ei2qsz′

[
α(z′) +

α′(z′)
2 cos2 θ

∫ z′

0
α(z′′)dz′′

+
α2(z′)
2 cos2 θ

+
α′′(z′)
8 cos4 θ

(∫ z′

0
α(z′′)dz′′

)2

+
α3(z′)
4 cos4 θ

+
3α′(z′)
4 cos4 θ

α(z′)
∫ z′

0
α(z′′)dz′′ + ...

]
dz′,

(60)

where primes indicate derivatives with respect to z′. We next invert this portion of the Born series
order-by-order. Substituting α = α1 +α2 +α3 + ... into equation (60) and equating like orders, we
have the prescription

DP (ks, θ) = − eiksxg

4 cos2 θ

∫ ∞

−∞
ei2qsz′α1(z′)dz′,

0 =
∫ ∞

−∞
ei2qsz′

[
α2(z′) +

α′1(z
′)

2 cos2 θ

∫ z′

0
α1(z′′)dz′′ +

α2
1(z

′)
2 cos2 θ

]
dz′,

0 =
∫ ∞

−∞
ei2qsz′

α3(z′) +
α′′1(z

′)
8 cos4 θ

(∫ z′

0
α1(z′′)dz′′

)2

+
α3

1(z
′)

4 cos4 θ

+
α′1(z

′)
2 cos2 θ

∫ z′

0
α2(z′′)dz′′ +

α′2(z
′)

2 cos2 θ

∫ z′

0
α1(z′′)dz′′

+
3

4 cos4 θ
α′1(z

′)α1(z′)
∫ z′

0
α1(z′′)dz′′

]
dz′,

(61)
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etc. The right-hand side of the linear term relating the measured part of the reflected primaries of
the wave field and α1 is mathematically identical to that of the full inverse scattering series discussed
previously. A spectrum α1(−2qs, θ) is estimated for each θ by fixing this angle and varying ks in
the primary data DP . Inverse Fourier transforming over −2qs then produces a profile α1(z, θ) for
each angle.

With these linear terms assumed to be in hand, we may move on to the higher orders. In the ex-
pressions equating second- and higher-order terms, cases of interest arise only when all [·]-bracketed
terms are equal to nil. Hence α2 may be solved for as

α2(z, θ) = −α
′
1(z

′, θ)
2 cos2 θ

∫ z′

0
α1(z′′, θ)dz′′ −

1
2 cos2 θ

α2
1(z

′, θ). (62)

Notice that since there is a profile α1(z, θ) for each angle, there is also a second-order profile α2(z, θ)
for each angle.

Given α1 and α2, the third equation may be used to compute α3:

α3(z, θ) =− α′′1(z, θ)
8 cos2 θ

(∫ z

0
α1(z′′, θ)dz′′

)2

− 3α′1(z, θ)
4 cos4 θ

α1(z′, θ)
∫ z

0
α1(z′′, θ)dz′′

− α3
1(z, θ)

4 cos4 θ
− α′1(z, θ)

2 cos2 θ

∫ z

0
α2(z′′, θ)dz′′

− α′2(z, θ)
2 cos2 θ

∫ z

0
α1(z′′, θ)dz′′ −

α1(z, θ)
cos2 θ

α2(z, θ).

(63)

By substituting equation (62) for α2 in equation (63), we may express α3 entirely in terms of α1:

α3(z, θ) =− 1
8 cos2 θ

α′′1(z, θ)
(∫ z

0
α1(z′′, θ)dz′′

)2

− 3
4 cos4 θ

α′1(z, θ)α1(z′, θ)
∫ z

0
α1(z′′, θ)dz′′

− 1
4 cos4 θ

α3
1(z, θ) +

1
4 cos2 θ

α′′1(z, θ)
(∫ z

0
α1(z′′, θ)dz′′

)2

+
3

2 cos4 θ
α′1(z, θ)α1(z′, θ)

∫ z

0
α1(z′′, θ)dz′′

+
1

2 cos4 θ
α3

1(z, θ).

(64)

Notice that the terms that were in both α1 and α2 (the last three) are twice the negative of the
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terms in α1 only (the first three), hence we finally have

α3(z, θ) =
1

8 cos2 θ
α′′1(z, θ)

(∫ z

0
α1(z′′, θ)dz′′

)2

+
3

4 cos4 θ
α′1(z, θ)α1(z′, θ)

∫ z

0
α1(z′′, θ)dz′′

+
1

4 cos4 θ
α3

1(z, θ).

(65)

With little further brute computation, the behavior of this direct inversion becomes clear: the sum
α1 +α2 +α3 + ... is a series essentially identical to that of the forward primary approximation, but
(i) in α1 rather than α, and (ii) with an alternating sign, an attribute that we have seen is provided
by terms of “mixed order”, e.g., in α1 and α2 in equation (63). Calling this series αM (z), we have

αM (z, θ) =
∞∑

n=0

C−
n

[
α1(z, θ)

(∫ z

0
α1(z′, θ)dz′

)n](n)

, (66)

where again superscript (n) denotes the n’th derivative with respect to z′ and C−
n = (−1/2)n

n! cos2n θ
. We

may further construct the reflector location/amplitude approximation αL:

αL(z, θ) =
∞∑

n=0

C−
n

[
α1(z, θ)

( ∞∑
k=1

1
4k−1

∫ z

0
dz′α1(z′, θ)

)n](n)

. (67)

Equations (66)–(67) constitute formulas for the location and amplitude of reflectors in scalar (acous-
tic constant density) 1.5D media. Numerical illustrations of their behavior are beyond the scope of
this appendix, but have been reported elsewhere (Innanen, 2005).

Appendix C: derivation of second-order diffractive primary

We show that applying the linear/non-linear criteria to the second order term. The raw second
order term is

G2(kg, zg, ks, zs, ω) =
∫
dz′
∫
dx′G0(kg, zg, x

′, z′, ω)k2α(x′, z′)

×
∫
dz′′

∫
dx′′G0(x′, z′, x′′, z′′, ω)k2α(x′′, z′′)G0(x′′, z′′, ks, zs, ω).

(68)
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Substituting the explicit form for the Green’s functions in equations (2) into equation (68), we have

G2(kg, zg, ks, zs, ω)

= −e
−iqgzg−iqszs

4
k4

qgqs

∫ ∫ ∫
dx′dx′′dk′

(
−i

4πq′

)
e−ikgx′eik

′(x′−x′′)eiksx′′

×
∫
dz′ei(qg+q′)z′α(x′, z′)

∫ z′

−∞
ei(qs−q′)z′′α(x′′, z′′)

+−e
−iqgzg−iqszs

4
k4

qgqs

∫ ∫ ∫
dx′dx′′dk′

(
−i

4πq′

)
e−ikgx′eik

′(x′−x′′)eiksx′′∫
dz′ei(qg−q′)z′α(x′, z′)

∫ ∞

z′
ei(q

′+qs)z′′α(x′′, z′′).

(69)

The criteria for linear/non-linear construction of the wavefield primaries calls for A to be considered
non-linearly and B to be considered linearly; at second order that means replacing one of the two
instances of α = A + B with α ≈ A. To properly do this requires us to make a further decision:
in which of the instances of α in each portion of equation (68) do we make this substitution? The
answer is: in any instance of α that contributes to transmission rather than reflection, i.e., where
the sense of propagation (in z) does not change after a scattering interaction. Mathematically this
corresponds to any instance of α × [exponentials in the difference of two depth wavenumbers]. In
equation (68) that situation occurs in the rightmost α in the first term and the leftmost α in the
second term. Making this substitution on these α’s gives us the basis for the approximation RP

2 :

RP
2 (kg, zg, ks, zs, ω)

=− e−iqgzg−iqszs

4
k4

qgqs

∫ ∫ ∫
dx′dx′′dk′

(
−i

4πq′

)
e−ikgx′eik

′(x′−x′′)eiksx′′

×
∫
dz′ei(qg+q′)z′α(x′, z′)

∫ z′

−∞
ei(qs−q′)z′′A(z′′)

− e−iqgzg−iqszs

4
k4

qgqs

∫ ∫ ∫
dx′dx′′dk′

(
−i

4πq′

)
e−ikgx′eik

′(x′−x′′)eiksx′′∫
dz′ei(qg−q′)z′A(z′)

∫ ∞

z′
ei(q

′+qs)z′′α(x′′, z′′).

(70)

Hereafter the derivation is entirely mechanical. Noting that∫
dx′′ei(ks−k′)x′′ = 2πδ(k′ − ks),∫
dx′ei(k

′−kg)x′ = 2πδ(kg − k′),
(71)
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the x′′ integral in the first term and the x′ integral in the second term generate delta functions that
then simplify the k′ integrals via sifting:

RP
2 (kg, zg, ks, zs, ω)

=− e−iqgzg−iqszs

4
k4

qgqs

∫
dx′
(

1
i2qs

)
e−i(kg−ks)x′

∫
dz′ei(qg+qs)z′α(x′, z′)

∫ z′

−∞
A(z′′)

− e−iqgzg−iqszs

4
k4

qgqs

∫
dx′′

(
1
i2qg

)
e−i(kg−ks)x′′

∫
dz′A(z′)

∫ ∞

z′
ei(qg+qs)z′′α(x′′, z′′).

(72)

The remaining x integrals, which are Fourier transforms, along with the replacement of the −∞
integration limits with the source and receiver depths, leaves us with the desired result:

RP
2 (kg, zg, ks, zs, ω)

=− e−iqgzg−iqszs

4
k2

qgqs

∫
dz′ei(qg+qs)z′

(
−iqg

2 cos2 θg

∫ z′

zg

dz′′a(z′′)

)
α(kg − ks, z

′)

− e−iqgzg−iqszs

4
k2

qgqs

∫
dz′ei(qg+qs)z′α(kg − ks, z

′)

(
−iqs

2 cos2 θs

∫ z′

zs

dz′′a(z′′)

)
,

(73)

where, e.g., cos θg = qg/k.
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A comprehensive strategy for removing multiples and depth imaging primaries without subsurface
information: Direct horizontal common image gathers without the velocity or “ironing”
Fang Liu∗, Arthur B. Weglein∗, Kristopher A. Innanen∗, Bogdan G. Nita∗†, Jingfeng Zhang∗, ∗ M-OSRP, Physics
Dept., University of Houston,† Montclair State University

SUMMARY

In AVO (Amplitude Variation with Offset) analysis, the amplitudes of
reflected waves with different incident angles are studied to deduce
lithology information beyond the structure map obtained by seismic
imaging algorithms. The quantitative analysis of the amplitude, re-
lies on common-image gathers being flat (or equivalently, at the same
depth). But the waves with different incident angles will have differ-
ent apparent velocities, resulting in different depths for the same image
point at different angles, or non-flat common image gathers. In many
scenarios, non-flat common-image gather was flattened by trim means
at the cost of compromising zero-crossing and polarity-reversal infor-
mation. This work presents a solution based on the seismic imaging
subseries of the inverse scattering series (ISS) that flattens the common
image gather without knowing or determining the subsurface velocity,
and without any harmful amplitude consequencies.

INTRODUCTION

Inverse scattering series (ISS) is a comprehensive theory for process-
ing primaries and multiples without the traditional need for a subsur-
face velocity. Several task-specific subseries of ISS (Weglein et al.,
2003) had been identified. These subseries correspond to classical ob-
jectives of seismic data processing: (1) eliminating free-surface multi-
ple (Carvalho et al., 1991; Carvalho, 1992), (2) eliminating the internal
multiples (Weglein et al., 1997; Araújo, 1994; Matson, 1997; Ramı́rez
and Weglein, 2005), (3) imaging reflectors at depth (Weglein et al.,
2000, 2002; Shaw et al., 2003; Innanen, 2003; Shaw, 2005; Liu, 2006),
(4) determining the parameter changes across the reflectors (Zhang,
2006). This article is specific to task (3): the image of the same reflec-
tor in the same lateral coordinate, flattened and migrated to the same
(actual) depth without knowing or determining the subsurface reflec-
tor.

Description of the problem

For simplicity, consider an exploration problem in 2D wherezs (the
elevation of the source) andzg (the elevation of the receiver) are fixed.
In this case, the seismic data is considered a function of three vari-
ables:xs (the horizontal coordinate of the source),xg (the horizaontal
coordinates of the receivers), andt (time).

Physical properties at points in the subsurface, including reflector lo-
cation in space, are not in any way dependent on the surface reflection
data, or any subset of the data, used to determine or estimate those
properties. That criteria is in used current leading-edge imaging as a
necessary condition that an imaging algorithm with a correct velocity
would satisfy. For example, images from different offset components
of the data ought to locate at the same point in space if the velocity is
correct. That concept is simple but in practice often not easy to real-
ize. Methods to force or “iron” the common-image gather data flat and
horizontal can have very serious and harmful consequences on subse-
quent analysis with lost polarity reversals and difficulty identifying
class I and class II AVO anomalies.

In this paper we demonstrate that the higher-order velocity-independent
imaging subseries automatically produces the flat common-image gather,
as you would expect from an imaging algorithm that produces the im-
age at the correct depth. Not only is there no velocity, but the flatness
is achieved without damaging the offset dependent amplitude informa-

tion in imaged the data.

This phenomena can be illustrated by the two experiments shown in
Figure 1.

Figure 1: In Experiment 1 (left panel), a normal incident plane wave is
used to study an earh without lateral variation. In Experiment 2 (right
panel), a plane wave with non-zero incident angleθ is used to study
the same earh as in Experiment 1.

Although Experiment 1 and Experiment 2 correspond to the same earh,
their incident wavefields are different, and consequently the input data
and seismic imaging result will be different, as illustrated in Figure 2.

Figure 2: The left panel is the input data with different angles. The
right panel is the corresponding common image gather (FK migration
with homogeneous water velocityc0 = 1500m/s) for different incident
angles. It is obvious that no event in the input data is flat. In the
common image gather, the first reflector (water bottom) is flattened,
but the reflectors below are still curved.

The phenomena described above will compromise the AVO analysis,
where the reflection event from the same reflection point should be flat.
Flattened events are very desirable for quantitative estimation of the
reflection strength. This phenomena had already been studied in Shaw
(2005) for earh even without lateral variation and dealt with using the
leading order imaging subseries.

THEORY

For a constant-density acoustic model, the mathematical description
of the 2D wave-propagation is,
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(
∂ 2

∂x2 +
∂ 2

∂z2 +
ω2

c2(x,z)

)
G(x,z,xs,zsω) = δ (x−xs)δ (z−zs), (1)

whereω is the temporary frequency (the Fourier conjugate of timet),
G(x,z,xs,zs,ω) is the wave-field, the functionc(x,z) is the velocity
field.

Equation (1) can be systematically solved by the inverse scattering
series (Weglein et al., 2003) with the help of a wave parapagation in a
much simpler reference velocityc0,

(
∂ 2

∂x2 +
∂ 2

∂z2 +
ω2

c2
0

)
G0(x,z,xs,zsω) = δ (x−xs)δ (z−zs), (2)

whereG0(x,z,xs,zsω) is the reference wave-field.

In the inverse series, equation (1) is computed in an order-by-order
fashion via the inverse scattering series (equation (11)∼(13) of We-
glein et al. (2003)) as,

G0k2
α1G0 = D = G−G0, (3)

G0k2
α2G0 = −G0k2

α1G0k2
α1G0, (4)

G0k2
α3G0 =−G0k2

α1G0k2
α2G0−G0k2

α2G0k2
α1G0

−G0k2
α1G0k2

α1G0k2
α1G0,

(5)

wherek = ω/c0; D in equation (3) is the input data for the inverse
scattering series and is the difference between the actual wavefieldG
and the reference wavefieldG0; α1, α2, · · · are iteratively computed
and can be used to constructα = α1 +α2 +α3 + · · · , which is related
to the subsurface geology viaα = 1− c2

0/c2(x,z). Equation (3) can
be solved via Fourier transform. Following the notation in Clayton
and Stolt (1981), we usekz, kg, ks, km, andkh to denote the Fourier
conjugate ofz, xg, xs, xm = 0.5(xg +xs), andxh = xg−xs respectively.
In the examples in this article, the reference velocity (the velocity ac-
tually used in migration)c0 is chosen as whole-space constant water
velocity. The detailed derivation of the equations in this article can be
found in Liu (2006) and the final solution is summarized below.

The solution of the first term α1

The data is chosen according to the following relation,

kh = kg +ks = 2 ω

c0
sin(θ) kg−ks = km . (6)

where the constantθ is the incident angle of synthesized plane wave by
Radon transform defined in the CMP (common-mid point) gather (see
equation (9)). With equation (6) as constraint, the temporary frequency
ω can be expressed as a function ofkm andkz,

ω =
c0kz

2

√
k2

z +k2
m

k2
z cos2(θ)−k2

msin2(θ)
. (7)

With ω defined in equation (7), our generalized migration formulism
can be expressed as,

˜̃α1 (km,kz) = −
4qgqs

ω2/c2
0

∞∫
−∞

dxme−ikmxm

∞∫
−∞

dτeiωτ Dτ p (xm,τ) . (8)

where the double tidle signs in the equation above are used to denote
the fact that the expression had been Fourier transformed twice from
its original form in the spatial domain(x,z) to frequency-wavenumer
domain(km,kz), andDτ p is computed via Radon transform,

Dτ p (xm,τ) =
∞∫

−∞

dxhD

(
xm+

xh

2
,xm− xh

2
,τ +xh

sin(θ)
c0

)
. (9)

Equation (6) of Liu et al. (2006) can be considered as a special case of
equation (8) where the angleθ is chosen as zero.

Higher order imaging subseries

The higher-order imaging subseries (HOIS) in equation (11) of Liu
et al. (2006) is generalized for non-zeroθ as,

αHOIS

x,z+
1
2

z∫
0

α1(x,z′)dz′

cos2 θ −0.25α1(x,z′)

 = α1 (x,z) (10)

Interested readers may refer to Liu (2006) for detailed derivation and
discussion for equation (10).

NUMERICAL EXAMPLES

The synthetic data set (see examples in Figure 4) used in this article
was generated upon a salt model shown in Figure 3.

Figure 3: A salt model designed by Peter Traynin from ExxonMobil.

The linear images (α1) of the inverse scattering series with different
angles are calculated via equation (8) and the imaging results for two
typical angles are shown in Figure 5 and Figure 6.

In order to consistently use the migration result in Figure 5 and Fig-
ure 6 in AVO analysis, it is very desirable that they share the same
depth. But only the images of the water-bottom share the same depth,
as indicated by the flat water-bottom in the common-image gather in
Figure 7. The images of the reflectors below the water-bottom are not
flat, as indicated by the bumpy refletors in Figure 7. Since the an-
gles we studied in this example are very small (between 0◦ and 9◦),
the curvature of the non-flat events is not easily visible. For display
purpose, we duplicate each imaging result for an angle 100 times. We
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Figure 4: Two typical shot gathers extracted from the data set gener-
ated from the salt model in Figure 3.

Figure 5: The linear imageα1 (see equation (8)) withθ = 0◦. In
this figure and Figure (6, 8, 9, 11), partial derivative overz operation
∂/∂z is taken before the display, and the red lines are bench-marks
indicating the actual location of various reflectors

Figure 6: The linear imageα1 (see equation (8)) withθ = 9◦. Due to
the truncation artifacts (below 2500m) caused by unavailability of the
data,θ = 9◦ is the maximal angle we studied in this article.

then introduce 100 copy of imaging result for another angleθ , etc,· · · .
Since the imaging result for a specific angle is duplicated 100 times,
this 100 identical traces will produce a smooth-looking background.
In this manner, even the small changes between the imaging results
of adjacent angles can be easily seen against the smooth background
produced by trace duplication.

Figure 7: In this common-image gather taken from the left side of the
linear image (α1), only the water-bottom is flat. Although the curva-
ture of the second reflect is still not very clear, the curvatures of the
second, third, fourth, and fifth reflector are clearly shown again the
smooth background produced by trace duplication.

Figure 8: The higher-order imaging subseries (see equation (10)) with
θ = 0◦.

Since all the reflection events are imaged to the same location after
applying the higher-order imaging subseries, it is reasonable to sum
all the higher-order images together to have an improved image with
better signal/noise ratio, as displayed in Figure 11.

CONCLUSIONS

In this paper, the efficacy of the higher order imaging subseries is fur-
ther demonstrated by automatically and accurately producing common-
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Figure 9: The higher-order imaging subseries (see equation (10)) with
θ = 9◦.

Figure 10: In this common-image gather taken from the left side of
the the higher order imaging subseries, all the reflectors are flat. This
demonstrates that the higher-order imaging subseries can be used to
flatten events in the common-image gather.

Figure 11: The sum of all the higher-order images. Since the reflec-
tion events are migrated to the same depth by the higher-order imag-
ing subseries, they sum to each other constructively. But the residual
diffractions are not migrated to the same depth, and hence they sum
to each other destructively and become much weaker compared to the
imaging result for any single fixed angleθ .

image gathers, without the velocity, and with amplitude intact and
ready for subsequent AVO analysis.
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The role of the direct wave and Green’s Theorem in seismic interferometry and spurious multiples.
Adriana C. Ramı́rez∗ and Arthur B. Weglein, M-OSRP University of Houston, Einar Otnes and Ketil Hokstad, Statoil
Research Center

SUMMARY

Techniques to estimate the Green’s function between two measured
points using wavefield correlations and/or crosscorrelations are classi-
fied as seismic interferometry. In this paper we provide a unifying
framework for understanding a broad class of interferometric tech-
niques using Green’s theorem. This framework and foundation allows
spurious multiples that occur in certain interferometric approaches to
be anticipated and fully explain as a consequence of approximations
and compromises made within Green’s theorem. We also develop a set
of more effective seismic interferometry methods, where fewer com-
promises effect in a better result.
Standard seismic interferometry is based on far-field and one-way ap-
proximations of the Green’s theorem relating two wavefield measure-
ments in the same volume. This method, when applied to surface seis-
mic data, reconstructs the wavefield with a squared source signature
and adds spurious multiples, whose amplitudes are comparable to the
reconstructed primaries. The artefacts introduced, reduce the method’s
value. The spurious multiples come from the approximations made
to avoid the need of the wavefield’s normal derivative. We propose
and examine various alternative approaches to seismic interferometry
which overcome the appearance of spurious multiples and provides
an improvement over traditional methods. One method uses Green’s
theorem relating a reference Green’s function with the measured wave-
field. The data are reconstructed without spurious multiples and with a
wavelet due to a single source. A synthesized wavefield ought to have
a single factor of the wavelet. Using an analytic reference Green’s
function, data can be extrapolated to positions where no receivers or
sources were located. In addition, we provide another form of Green’s
theorem by imposing a two-surface Dirichlet boundary condition to
the reference Green’s function; this method only requires the total
wavefield. The normal derivative of the field is not needed.

INTRODUCTION

Many approaches, papers and starting points for seismic interferom-
etry have been proposed with different assumptions, approximations,
pitfalls and benefits. Claerbout (1968) provided a formalism for wave-
field reconstruction in horizontally layered media, which is considered
the first formulation of seismic interferometry. Weglein et al. (2000)
proposed to use Green’s theorem to retrieve the total two-way wave-
field anywhere above a typical towed streamer using measurements of
only the pressure field along the cables and imposing Dirichlet bound-
ary conditions on the reference Green’s function. Lobkis and Weaver
(2001) extended Claerbout’s early theory to allow for a 3D hetero-
geneous media of nite extent (discrete frequency spectrum). Schuster
(2001) gave the name seismic interferometry to all the processing tools
that perform wave field reconstruction through correlation. Derode
et al. (2003) and Roux and Fink (2003) proposed an alternative formu-
lation for this technology using the principle of time reversal. Wape-
naar et al. (2002) overcame the need for nite media with the one-way
propagation representation theorem. Wapenaar (2004) and Weaver and
Lobkis (2004) gave an equivalent formulation for seismic interferom-
etry using high frequency approximations and the general representa-
tion theorem, which is a form of Green’s Theorem and reciprocity.

Most of the approaches to seismic interferometry crosscorrelate the
total wavefield recorded by two receivers and reconstruct the Green’s
function at one of the receivers as if the second receiver was a source
(refer to Draganov et al. (2006); Wapenaar and Fokkema (2006) and
references within). Using reciprocity, Otnes et al. (2006) crosscor-

related sources summing over all the receivers in a synthetic and a
real WVSP experiment and retrieved the Green’s function between the
sources to effectively make a surface seismic experiment and derived
a data-driven free surface demultiple algorithm for WVSP data. Vas-
concelos and Snieder (2006) proposed deconvolution interferometry in
which they derived a formalism that expands the wavefields into direct
and scattered field in order to analyze its causal and acausal contribu-
tions to the synthesized data. It also performs a deconvolution of the
reconstructed wavefield.

Green’s theorem, a mathematical identity, is the corner stone of wave
theory that incorporates boundary conditions to wavefield prediction.
It provides a very general and comprehensive framework for analyz-
ing interferometric methods. It allows us to place a very broad set
of current approaches to seismic interferometry within a single unify-
ing construct, and thereby better understand how each one represents
some compromise to the exact wavefield prediction and, to anticipate
artefacts and spurious multiples that are introduced by the approxi-
mations. The single encompassing framework facilitates comparisons
between different approaches and a guide to more effectiveness with
less assumptions.

GREEN’S THEOREM

Green’s second identity has been widely used in seismic exploration
for purposes as different as wavelet estimation (Weglein and Secrest,
1990; Osen et al., 1998; Tan, 1999), seismic interferometry (Weglein
et al., 2000; Weaver and Lobkis, 2004; Bakulin and Calvert, 2004;
Schuster and Zhou, 2006; Wapenaar and Fokkema, 2006; Ramı́rez
et al., 2007) and deghosting (Amundsen et al., 2005; Zhang and We-
glein, 2006), among several other topics. Green’s second identity is
a mathematical identity which originates from boundary value prob-
lems. It is an equation that relates a surface integral of two scalar func-
tions and their derivatives with a volume integral of the same functions
and their laplacian,∫

V
[u∇

2
ν −u∇

2
ν ]dx =

∫
S
[u∇ν −ν∇u] ·nds, (1)

where u and ν are arbitrary scalar functions, x is a three dimensional
vector (x1,x2,x3) characterizing the volume V enclosed by the surface
S, and n is the vector normal to this surface. In the following, we
proceed to use this identity to relate two wavefields in a surface seismic
experiment.

The acoustic wave equation for an inhomogeneous earth with constant
density is (

∇
2 +

ω2

c2(x)

)
P(x|xa;ω) = A(ω)δ (x−xa), (2)

where c(x) is the velocity distribution, A(ω) is the source wavelet and
the actual pressure field P(x|xa;ω) = A(ω)G(x|xa;ω), G(x|xa;ω) be-
ing the Green’s function at point x and frequency ω due to a source at
xa, excited at t = 0.

The solutions for equations 2 and 6 can be causal or anticausal with
outgoing and ingoing boundary conditions, respectively. We denote
the causal and anticausal waves by a + and a − superscript, respec-
tively. The anticausal pressure field is then defined by

P−(x|xb;ω) =
∫

∞

−∞

e−iωt P+(x|xb;−t)dt. (3)
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Let’s use the wavefield P(x|xa;ω) from equation 2 and a second field
P−(x|xb;ω) satisfying the same equation but with a different source
position, xb, and source wavelet B(ω) in equation 1 as u and ν ; and,
define an arbitrary volume, V , enclosed by a closed surface, S. to
obtain ∫

V
(P(x|xa;ω)[− ω2

c2(x)
P−(x|xb;ω)+B(ω)δ (x−xb)]

−P−(x|xb;ω)[− ω2

c2(x)
P(x|xa;ω)+A(ω)δ (x−xa)]) dx

=
∮

S
[P(x|xa;ω)∇P−(x|xb;ω)−P−(x|xb;ω)∇P(x|xa;ω)] ·n ds.

(4)

This is Green’s theorem applied to exploration seismology. It is a
mathematical identity that relates two different wavefields, measured
at the same surface, due to independent sources into a single equation.
The need for both measurements (wavefield and its normal derivative)
arises from the two-way nature of the wavefield.

Depending on the choice of volume and the surface surrounding it,
the evaluation of the integrals in equation 4 leads to powerful, and
sometimes rather simple, algorithms that aim to solve problems like
wavefield retrieval, wavelet estimation, deghosting and demultiple.

Choosing a closed surface of sources to generate two wavefields mea-
sured by two receiver positions inside the volume, V ; using them as
u and v in equation 4 and, approximating the normal derivatives with
a far-field and one-way wave approximations, we obtain the common
seismic interferometry equation (Wapenaar and Fokkema, 2006):

2iA(ω)ℑ [P(xb|xa; t)] ≈ −2iω
c(x)

∮
S

P(xa|x; t)P(xb|x;−t) dx, (5)

where xa and xb are two receiver positions inside the volume, the vari-
able x corresponds to source positions which form a closed surface,
S, and it is assumed that the source signatures are equal. Equation 5
is a compromised form of Green’s theorem and, hence, gives rise to
spurious multiples. The normal derivatives information required by
Green’s theorem, avoided by using far field approximations, would
have combined nonlinearly to cancel the so called spurious multiples
by using differences in sign that identify opposite directions of the
wavefield. The directionality information is part of the wavefield’s
normal derivative. Furthermore, using two measured wavefields to
construct new data instead of a measured wavefield and a Green’s
function, introduces an extra factor of the source wavelet multiply-
ing the reconstructed data. If we had used a Green’s function instead
of the anticausal wavefield, P−(x|xb;ω), we would not have an extra
source signature (Wapenaar, 2004; Wapenaar and Fokkema, 2006). In
equation 5, we are only able to reconstruct wavefield at the source and
receiver locations.

There are several ways to improve the output of equation 5: 1) Ignore
the fact that approximations were made, attempt an understanding of
this interferometric approach and find methods to fix its weaknesses;
this approach is taken by e.g. Vasconcelos and Snieder (2006), who
derived a theory for seismic interferometry that also deconvolves the
source wavelet, and Snieder et al. (2006), who studied the appear-
ance of spurious multiples in traditional seismic interferometry and
proposed types of sources and acquisition geometries that would help
diminish its appearance. 2) Understand that spurious multiples and
the extra source signature multiplying the synthesized wavefield are an
effect of the assumptions applied to satisfy Green’s theorem as well as
the functions used in its derivation. Anticipating the consequences due
to the compromises made, allow us to go back to our framework and
ask ourselves for better ways to meet its requirements. An example of
this approach is direct wave interferometry.

Direct wave interferometry
Using reciprocity and Green’s theorem, Ramı́rez et al. (2007) have de-
rived a more complete method based on the crosscorrelation of the

reference Green’s function and the total measured wave field that cir-
cumvents the appearance of spurious events and the squaring of the
source signature. It also allows to extrapolate wavefield to positions
where no sources or receivers exist. We now provide the formalism
behind direct wave seismic interferometry.

Select the reference medium to be a homogeneous whole space, with
constant reference velocity c0, satisfying the wave equation,(

∇
2 +

ω2

c2
0

)
G0(x|xb;ω) = δ (x−xb), (6)

where G0(x|xb;ω) is the free space or reference Green’s function for
a source at xb excited at t = 0. This Green’s function represents the
deconvolved direct wave from a seismic experiment.

Define an arbitrary volume, V , enclosed by a closed surface, S. Use

1
c(x)2 =

1
c2

0
(1−α(x)) (7)

in equation 2 (α is the relative difference between the reference and the
actual medium, Weglein and Secrest (1990)) and substitute the wave-
field P(x|xa;ω) and the anticausal direct wave G−

0 (x|xb;ω) into equa-
tion 1 as u and ν , to obtain,∫

V
(P(x|xa;ω)[−ω2

c2
0

G−
0 (x|xb;ω)+δ (x−xb)]

−G−
0 (x|xb;ω)[−ω2

c2
0

(1−α(x))P(x|xa;ω)+A(ω)δ (x−xa)]) dx

=
∮

S
[P(x|xa;ω)∇G−

0 (x|xb;ω)−G−
0 (x|xb;ω)∇P(x|xa;ω)] ·n ds.

(8)

To account for the free surface, use a background medium with a half
space of water and a half space of air and a volume V bounded by the
free surface and the measurement surface. The wave equation is ex-
pressed using a real source at xb = (x1b,x2b,x3b) and an image source
at −χb = (x1b,x2b,−x3b), where x3 is the vertical direction and xi is
zero at the free surface. The anticausal reference Green’s function
now includes the conjugate of the wave that propagates directly from
the real source to the receiver, G d−

0 , and the conjugate of the wave
that propagates directly from the image source to the receiver, G d′−

0 .
Consider G−

0 (x|xb;ω) = G d−
0 (x|xb;ω)+G d′−

0 (x|−χb;ω), and evalu-
ate both sources inside V (image source outside) in equation 8. Hence,

P(xa|xb;ω)−A(ω)G−
0 (xa|xb;ω) =∮

S
[P(x|xa;ω)∇G−

0 (x|xb;ω)−G−
0 (x|xb;ω)∇P(x|xa;ω)] ·n ds. (9)

Calculating G−
0 (x|xb;ω) and its normal derivative for the receiver po-

sitions in the data and for real sources at the desired output location,
we can regularize and extrapolate the scattered wavefield. This form
of Green’s theorem was first derived by Weglein and Secrest (1990). It
describes how to compute the scattered field between the measurement
surface and the free surface, given a cable (or in 3D, a surface) where
both the pressure and its normal derivative are measured.

To understand the output of the integral in equation 9, we use the defi-
nition

P(xa|xb;ω) = A(ω)G +
0 (xa|xb;ω)+Ps(xa|xb;ω), (10)

where Ps is the scattered field. Introducing this expansion into the left
hand side of equation 9, we obtain

Ps(xa|xb;ω)+A(ω)
[
G +

0 (xa|xb;ω)−G−
0 (xa|xb;ω)

]
= Ps(xa|xb;ω)+2 A(ω) ℑ

[
G +

0 (xa|xb;ω)
]
. (11)
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Thus, in equation 9 the total scattered field for a source at xb and a
receiver at xa is reconstructed as well as the imaginary part of the
direct wave.

The wave field and its normal derivative are required in the theory
presented here. In a standard towed streamer acquisition, the normal
derivative of the wave field is not recorded, and it is difficult to calcu-
late. Hence, we apply a far field approximation for the actual wave-
field’s normal derivative (Wapenaar and Fokkema, 2006),

∇P(x|xa;ω)] ·n ≈ ikP(x|xa;ω) (12)

where k = ω

c0
. With this approximation and simple mathematical ma-

nipulation, we can reduce the integrand of equation 9 to a single term

P(xa|xb;ω) ≈ 2
∮

S
[P(x|xa;ω)∇G−

0 (x|xb;ω)] ·n ds, (13)

and analytically calculate the normal derivative of the reference field
or, choose to compute the more complete form

P(xa|xb;ω) ≈
∮

S
[P(x|xa;ω)∇G−

0 (x|xb;ω)

− ikP(x|xa;ω)G−
0 (x|xb;ω)] ·n ds, (14)

and use an analytical reference Green’s function and its normal deriva-
tive. Note that the compromise introduced by approximating the nor-
mal derivative of the measured field is more forgiving than approxi-
mating twice, which was done to obtain equation 5. We anticipate a
small error due to the single far-field approximation and an effect on
the synthesized direct wave according to equation 11.

The characteristics of this method are: 1) the analytic reference Green’s
function is used; 2) the total scattered field is reconstructed (in contrast
to only reconstructing the imaginary or real part of the wavefield, and
calculating the complement via the Hilbert transform, Wapenaar and
Fokkema (2006)); 3) the output data don’t have spurious multiples nor
an extra wavelet; 4) a far-field approximation is used to calculate the
normal derivative of the actual field; 5) the normal derivative of the
reference field is calculated analytically; and, 6) the wavefield can be
reconstructed anywhere between the measurement surface and the free
surface, allowing for applications like interpolation, extrapolation and
regularization.

Thus, direct wave interferometry provides an improvement over tradi-
tional approaches to seismic interferometry. However, the method still
uses one far-field approximation which affects the accuracy of the ap-
proach. In order to move the current technology towards its promised
capability, we will examine another alternative method that formally
eliminates the need of the measured wavefield’s normal derivative us-
ing two-surface Dirichlet boundary conditions.

Direct wave interferometry with Dirichlet boundary conditions
In principle, it is not possible to compute the total two-way propa-
gating pressure field above a cable from measurements of only the
pressure field on a single typical towed streamer. In direct wave seis-
mic interferometry, we used an analytic reference Green’s function,
G−

0 , which is the anticausal impulse response for a half-space of water
bounded by a free surface at the air-water boundary and approximated
the vertical derivative of the actual pressure field.

Tan (1992) and Osen et al. (1998) were interested in eliminating the
data requirement of the normal derivative for source wavelet estima-
tion purposes. They achieved this by choosing a Green’s function (in
Green’s theorem) that vanishes on both the free and the measurement
surfaces. This boundary condition can be fulfilled by the source im-
age method. The two-surface Dirichlet Green’s function now includes
the conjugate of the wave that propagates directly from the real source
to the receiver and the conjugate of the wave that propagates directly

from each image source to the receiver. Let G D
0 (x|xb;ω) denote this

two-surface Dirichlet Green’s function and evaluate both real sources
inside the volume (all the image sources are outside) in equation 8. We
then obtain,

P(xa|xb;ω)−A(ω)G D
0 (xa|xb;ω) =∮

S
[P(x|xa;ω)∇G D

0 (x|xb;ω)−G D
0 (x|xb;ω)∇P(x|xa;ω)] ·nds, (15)

and,

P(xa|xb;ω)−A(ω)G D
0 (xa|xb;ω) =∮

S
P(x|xa;ω)∇G D

0 (x|xb;ω) ·n ds, (16)

since G D
0 = 0 at the measurement surface. This equation shows how

the wavefield above the measurement surface and below the free sur-
face can be determined from measured pressure on a typical surface
acquisition plus an estimate of the source wavelet. Tan (1992, 1999)
and Weglein et al. (2000) proposed to assume that the contribution of
A(ω)G D

0 (xa|xb;ω) could be small and hence ignored to avoid the re-
quirement of a source wavelet and compute the pressure field directly
in terms of the measured wavefield,

P(xa|xb;ω) ≈
∮

S
P(x|xa;ω)∇G D

0 (x|xb;ω) ·n ds. (17)

If an estimate of the wavelet is available, or obtainable, we encourage
to use direct wave interferometry with Dirichlet boundary conditions
as stated in equation 16, since this is an exact equation and its out-
put is the exact wavefield at a point between the measurement and
the air-water surface. The same Green’s theorem framework, with all
its flavors, has been successfully used to estimate the source wavelet
(Weglein and Secrest, 1990; Osen et al., 1998; Tan, 1999; Guo et al.,
2005). Any of these source signature estimation methods could help
fulfilling the requirements in equation 16.

When the wavelet is not available and it is possible to separate the di-
rect wave from the scattered field (e.g. in a deep water experiment)
we can find an exact equation for reconstructing scattered field that
does not need the source wavelet. Substitute Ps(xa|xb;ω), the scat-
tered field into Green’s theorem instead of the total wavefield and use
the two surface Dirichlet Green’s function as the second function, to
obtain

Ps(xa|xb;ω) =
∮

S
Ps(x|xa;ω)∇G D

0 (x|xb;ω) ·n ds. (18)

This is possible because the scattered field obeys the wave equation
without a source function,(

∇
2 +

ω2

c2(x)

)
Ps(x|xa;ω) = 0. (19)

This form of Green’s theorem has no approximations and do not re-
quire the normal derivative of the pressure field, nor the source sig-
nature. It only asks for the scattered field and an analytic Green’s
function that vanishes at the measurement and air-water surface. Tests
of this formulation will be shown at the SEG presentation.

NUMERICAL EXAMPLES

We used finite difference 3D surface seismic data in a model consisting
of 3 layers, a free surface, and a set of random point diffractors. The
modeled data consist of 10 source lines with 12 shots per line. The
source and receiver spacing in the numerical modeling was 25 m in
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Figure 1: Configuration.

both (inline and crossline) directions. The configuration is shown in
figure 1.

We applied direct wave seismic interferometry to 20 receiver lines with
121 receivers per line, 25 m inline separation and 100 m crossline sep-
aration. A simulated source line (12 sources) with 25 m source interval
overlay each receiver line, as illustrated in figure 1 (sources are marked
by red stars and receivers by green triangles). The minimum distance
to the receivers in both inline and crossline direction is 50 m in the
selected shot gathers. This data subset was put into equation 14 with
an analytic anticausal reference Green’s function. This Green’s func-
tion was calculated for 12 sources in a line with 25 m source interval
and located at 100 m crossline offset away from the source line in the
input data. Our goal is to reconstruct the receiver line 100 meter away
from the source line in the crossline direction marked by the dashed
line in figure 1. The retrieved Green’s function corresponds to a line
of 12 sources at zero crossline offset, sources from the input data, and
12 receivers in a line at 100 m crossline offset (dashed line in figure
1).

Figure 1 shows the extrapolated data using direct wave seismic inter-
ferometry on the right. The modeled data is shown on the left hand
side of figure 1 for comparison. We see that the output of direct wave
seismic interferometry has all the events correctly predicted and there
are no spurious multiples in the predicted data. The difference between
the modeled data and the direct wave seismic interferometry result is
due to the high frequency approximation and a bandlimited reference
Green’s function used in the calculations. Also remember that this al-
gorithm has an effect on the output of the direct wave, as discussed in
the previous sections.

Figure 2: Modeled data and direct wave interferometry prediction.

We also show a 2D example. The data were modeled with finite dif-
ferences for a receiver line with 200 receivers separated 12.5 m from
each other and 20 sources with a 25m separation. In figure3 the output
of seismic interferometry and direct wave interferometry as well as the
modeled data are shown.

Figure 3: 2D data example. The figure on the left is data reconstructed
with standard seismic interferometry. The innermost figure shows data
reconstructed with direct wave interferometry. The figure on the right
shows modeled data for comparison.

CONCLUSIONS

The foundations of seismic interferometry are in Green’s theorem.
While this theorem gives exact equations for wavefield retrieval within
a volume, the far-field approximations made by some interferometry
methods compromise its effectiveness. Within Green’s theorem frame-
work, spurious multiples are anticipated and fully explain as a conse-
quence of the approximations. Hence, there is no need to attempt a
physical understanding of these artefacts. Instead, we can provide an
improvement and move the current technology towards its promised
capability by: 1) trying to better provide the ingredients needed by the
theorem, or 2) examining alternative approaches to eliminate the need
of the normal derivatives of the measured field. An example of the
first idea is direct wave interferometry (Ramı́rez et al., 2007), an ap-
proach based on using an analytical reference Green’s function and the
total measured wavefield in Green’s theorem. The reference Green’s
function and its normal derivative can be analytically calculated for
arbitrary source and receiver positions in the reference medium; and
a far-field approximation is used only once to overcome the need of
the measured wavefield’s normal derivative. It is an improvement
(no spurious multiples, no extra wavelet and the posibility to recon-
struct wavefield in new positions) over other methods since the rest of
Green’s theorem requirements (reference Green’s function, its normal
derivative, and the measured pressure field) are fulfilled. An example
of the second idea is to impose Dirichlet boundary conditions at the
measurement and air-water surfaces to the reference Green’s function
(Weglein et al., 2000). The retrieval is then made by correlating the
analytic normal derivative of this Green’s function with the measured
wavefield. This is an exact approach that does not require the vertical
derivative of the measured field.
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Abstract 
We present a method to extrapolate and regularize data. The procedure is based on  
crosscorrelation of the measured field with the direct wave, and it is independent of earth 
properties. The method is derived from Green’s theorem and, in principle, requires the total field 
and its normal derivative at the receiver locations. In order to apply the method to towed streamer 
data, certain approximations are introduced to compensate for the missing normal derivative of 
the field. 
 



Introduction

Seismic interferometry refers to reconstruction through correlation (Schuster, 2001). Traditional
seismic interferometry crosscorrelates wave fields recorded by two receivers and reconstructs
the Green’s function at one of the receivers as if the second receiver was a source (Wapenaar
and Fokkema, 2006). Those methods assume that these receivers are surrounded by sources
forming a closed surface. Using reciprocity, we can crosscorrelate two sources surrounded by
a closed surface of receivers and retrieve the Green’s function between the sources (Otnes et
al., 2006). In practice, data are never acquired on a closed surface. Hence, only the kinematic
part of the reconstructed Green’s functions is predicted correctly. Snieder. et al. (2006) showed
that the method also predicts spurious events with magnitudes comparable to the reconstructed
primaries.

We have derived a new method based on the crosscorrelation of the direct wave (or reference
Green’s function) and the total wave field that circumvents the appearance of spurious events.
If we crosscorrelate a source ignited in the reference medium with another ignited in the actual
medium and sum over coincident receivers, we can retrieve the actual Green’s function between
the two source locations. The reference source position can be analytically calculated for any
position in the reference medium; and, hence the data can be extrapolated to new locations. This
theory accurately retrieves the total wave field in the new locations.

Theory

Green’s second identity has been widely used in seismic exploration, e.g. Weglein and Secrest
(1990). It relates a surface integral with a volume integral,

∫

V
[u∇2ν − u∇2ν]dx =

∫

S
[u∇ν − ν∇u] · nds, (1)

where u and ν are scalar functions, x is a three dimensional vector characterizing the volume
V enclosed by the surface S, and n is the vector normal to the surface S. The acoustic wave
equation for an inhomogeneous earth with a velocity distribution c(x) and constant density is

(
∇2 +

ω2

c2(x)

)
P (x|xa; ω) = A(ω)δ(x− xa), (2)

where A(ω) is the source wavelet and P (x|xa; ω) is the actual pressure field at point x and
frequency ω due to a source at xa excited at t = 0.

Choose the reference medium to be a homogeneous whole space satisfying the wave equation,

∇2G0(x|xb; ω) = −ω2

c2
0

G0(x|xb; ω) + δ(x− xb), (3)

where G0(x|xb;ω) is free space or reference Green’s function for a source at xb excited at
t = 0, and it represents the deconvolved direct wave from a seismic experiment. It can be
causal (G+

0 ) or anticausal (G−
0 ) with outgoing and ingoing boundary conditions, respectively.

We choose the anticausal Green’s function defined by

G−
0 (x|xb;ω) =

∫ ∞

−∞
e−iωtG+

0 (x|xb;−t)dt. (4)

Consider a volume V within the reference medium, with boundary S and enclosing the source
at xb. Introduce 1

c(x)2
= 1

c20
(1− α(x)) , α(x) = 0 ∀x ∈ V into equation 2, where α is the

relative difference between reference and actual medium (Weglein and Secrest, 1990). Hence,

∇2P (x|xa; ω) = −ω2

c2
0

P (x|xa; ω) +
ω2

c2
0

α(x)P (x|xa;ω) + A(ω)δ(x− xa). (5)
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Substituting the wavefield P (x|xa; ω) and the anticausal direct wave G−
0 (x|xb; ω) into equa-

tion 1 as u and ν, and using equations 3 and 5 in the volume integral, we obtain,
∫

V
(P (x|xa; ω)[−ω2

c2
0

G−
0 (x|xb; ω) + δ(x− xb)]

−G−
0 (x|xb; ω)[−ω2

c2
0

P (x|xa; ω) +
ω2

c2
0

α(x)P (x|xa; ω) + A(ω)δ(x− xa)])dx

=
∮

S
[P (x|xa; ω)∇G−

0 (x|xb; ω)−G−
0 (x|xb; ω)∇P (x|xa;ω)] · n ds. (6)

Let x be within the volume and xa outside the volume to obtain

P (xa|xb;ω) =
∮

S
[P (x|xa; ω)∇G−

0 (x|xb; ω)−G−
0 (x|xb; ω)∇P (x|xa;ω)] · n ds. (7)

Thus, if we measure the wavefield and its normal derivative at S for a source at xa outside V ,
and measure/calculate the anticausal direct wave and its normal derivative at S for a source at
xb within V , equation 7 retrieves the wavefield produced by a source at xb and measured at xa.
Note that the anticausal direct wave is simply the complex conjugate of the causal one.

To account for the free surface, we use a background medium with a half space of water and
a half space of air and a volume V bound by the free surface and the measurement surface.
The wave equation is expressed using a real source at xb = (x1b,x2b,x3b) and an image
source at −χb = (x1b,x2b,−x3b), where x3 is the vertical direction and x is zero at the free
surface. The anticausal reference Green’s function now includes the conjugate of the wave that
propagates directly from the real source to the receiver, Gd−

0 , and the conjugate of the wave
that propagates directly from the image source to the receiver, Gd′−

0 . Consider G−0 (x|xb;ω) =
Gd−

0 (x|xb; ω) + Gd′−
0 (x|−χb; ω), and evaluate both sources inside V (image source outside)

in equation 6. Hence,

P (xa|xb; ω)−A(ω)G−0 (xa|xb; ω) =∮

S
[P (x|xa; ω)∇G−0 (x|xb; ω)− G−0 (x|xb;ω)∇P (x|xa;ω)] · n ds. (8)

Introduce P (xa|xb; ω) = A(ω)G+
0 (xa|xb;ω)+P s(xa|xb; ω), where P s is the scattered field,

and use it on the left hand side of equation 8,

P s(xa|xb; ω) + A(ω)
[G+

0 (xa|xb;ω)− G−0 (xa|xb; ω)
]

= P s(xa|xb;ω) + 2 = [
A(ω)G+

0 (xa|xb; ω)
]
. (9)

In equation 8, the total scattered field for a source at xb and a receiver at xa is reconstructed as
well as the imaginary part of the direct wave. Calculating G−0 (x|xb;ω) for the receiver positions
in the data and for real sources at the desired output location, we can regularize and extrapolate
the scattered wavefield.

Towed Streamer Data

The wave field and its normal derivative are required in the theory presented here. There are new
acquisition methods that measure the field at two parallel surfaces, so the gradient of the field
is known and the normal derivative can be obtained. In a standard towed streamer acquisition,
the normal derivative of the wave field is not recorded, and is difficult to calculate. Hence, we
apply a high frequency approximation (Wapenaar and Fokkema, 2006) to reduce the integrand
of equations 7 and 8 to a single term by assuming that the medium at the surface is homogeneous
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and the local angle between the ray approximation of the wavefield and the vector normal to the
surface is zero.

With these assumptions, we obtain

P (xa|xb;ω) ≈ 2
∮

S
[P (x|xa;ω)∇G−

0 (x|xb; ω)] · n ds. (10)

For an acoustic background medium without a free surface, the result is

P (xa|xb;ω) ≈ 2
∮

S
P (x|xa; ω)

(
iω(x3 − x3b)
c0|x− xb| − (x3 − x3b)

c0(x− xb)2

)
G−

0 (x|xb;ω) ds, (11)

or, with a free surface,

P (xa|xb; ω) ≈ 2
∮

S
P (x|xa; ω) [

(
iω(x3 − x3b)
c0|x− xb| − (x3 − x3b)

c0(x− xb)2

)
Gd−

0 (x|xb; ω)

+
(

iω(x3 + χ3b)
c0(x + χb)

− (x3 + χ3b)
c0(x + χb)2

)
Gd′−

0 (x|χb; ω) ] ds. (12)

This method is different from the one in Wapenaar and Fokkema (2006) in three ways: 1) the
direct wave is used instead of a second wave field, 2) the total wavefield or scattered field is
reconstructed (in contrast to only reconstructing the imaginary or real part of the wavefield,
and calculating the complement via the Hilbert transform), and 3) the output data don’t have
spurious events nor an extra wavelet, it is the crosscorrelation of a bandlimited delta function
(direct wave) and a medium’s response with a wavelet (actual field).

We used finite difference 3D surface

Figure 1: Modeled and reconstructed data.

seismic data in a model consisting
of 3 layers, a free surface, and a set
of random point diffractors. The mod-
eled data consist of 10 source lines
with 12 shots per line. The source
and receiver spacing in the numeri-
cal modeling was 25 m in both (in-
line and crossline) directions. We
applied direct wave seismic interfer-
ometry to 20 receiver lines with 121
receivers per line, 25 m inline sepa-
ration and 100 m crossline separa-
tion. A simulated source line (12
sources) with 25 m source interval
overlay each receiver line, as illus-
trated in figure 1 (sources are marked
by red stars and receivers by green
triangles). The minimum distance to
the receivers in both inline and crossline direction is 50 m in the selected shot gathers. This data
subset was put into equation 12, with an analytic anticausal direct wave calculated for 12 sources
in a line with 25 m source interval and located at 100 m crossline offset away from the source
line in the input data. Our goal is to reconstruct the receiver line 100 meter away from the
source line in the crossline direction marked by the dashed line in figure 1. The retrieved Greens
function corresponds to a line of 12 sources at zero crossline offset, sources from the input data,
and 12 receivers in a line at 100 m crossline offset (dashed line in figure 1). Figure 1 shows
the extrapolated data on the right and the modeled data on the left, for comparison. We see that

3



all events are correctly predicted and there are no spurious events in the predicted data. The
difference between the modeled data and the direct wave seismic interferometry result are due
to the high frequency approximation and a bandlimited reference Green’s function used in the
calculations.

Conclusions

We have shown that using the direct wave in seismic interferometry

Figure 2: Configuration.

where we don’t have acquired data on a closed surface, improves
standard seismic interferometry where only the real or imaginary
field is obtained at source and receiver locations defined by the
physical experiment. In addition, standard seismic interferometry
introduces spurious events in the predicted data since the prerequi-
sites of the method are not fulfilled.

We showed the mathematical derivation of a new method for seis-
mic interferometry using the direct wave. This is an exact method
that retrieves the total scattered field in new locations when its re-
quirements are satisfied. One of the assumptions of the method is

that the normal derivative of the wavefield is measured, which does not comply with current
standard acquisition. Hence a high frequency approximation is applied to avoid the need of
this derivative and the result depends only on the measured wave field and the derivative of the
anticausal deconvolved direct wave, which can be obtained analytically.

This new theory has given encouraging results in 1D as well as multidimensional surface seis-
mic synthetic data, where the total wavefield has been retrieved. The theory without the high
frequency approximation is well suited for OBS data. Further analysis is necessary to implement
the method on VSP data.
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Inverse scattering internal multiple attenuation algorithm: an analysis of the pseudo-depth and time
monotonicity requirements
Bogdan G. Nita ∗, Montclair State University and Arthur B. Weglein, University of Houston

SUMMARY

Pseudo-depth monotonicity condition is an important assump-
tion of the inverse scattering internal multiple attenuation al-
gorithm. Analysis reveals that this condition is equivalent to
a vertical-time monotonicity condition which is different than
the total traveltime monotonicity suggested in recent litera-
ture/discussions. For certain complex media, the monotonicity
condition can be too restrictive and, as a result, some multiples
will not be predicted by the algorithm. Those cases have to be
analyzed in the forward scattering series to determine how the
multiples are modeled and to establish if an analogy between
the forward and the inverse process would be useful to expand
the algorithm to address these kind of events.

INTRODUCTION

The inverse scattering series provides a complete framework
for processing primaries and multiples directly in terms of an
inadequate velocity model, without updating or in any other
way determining the accurate velocity configuration. Algo-
rithms for eliminating free surface and attenuating internal
multiples, identified as subseries in the full scattering series,
have long been known and applied by the petroleum industry.
Here we discuss the multi-dimensional inverse scattering in-
ternal multiple attenuation algorithm focusing our attention on
the prediction mechanisms. Roughly speaking, the algorithm
combines amplitude and phase information of three different
arrivals (sub-events) in the data set to exactly predict the time
and well approximate the amplitude of interbed multiples.

The inverse scattering internal multiple attenuation algorithm
was found through a combination of simple one-dimensional
models testing/evaluation and certain similarities between the
way the data is constructed by the forward scattering series
and the way arrivals in the data are processed by the inverse
scattering series. This connection between the forward and the
inverse series was analyzed and described in Matson (1996),
Matson (1997), Weglein et al. (1997), and Weglein et al.
(2003). Specifically, they showed that an internal multiple in
the forward scattering series is constructed by summing cer-
tain types of scattering interactions which appear starting with
the third order in the series. The piece of this term representing
the first order approximation to an internal multiple is exactly
the one for which the point scatterers satisfy a certain lower-
higher-lower relationship in actual depth. Summing over all
interactions of this type in the actual medium results in con-
structing the first order approximation to an internal multiple.
By analogy, it was inferred that the first term in the subseries
for eliminating the internal multiples would be one constructed
from events satisfying the same lower-higher-lower relation-
ship in pseudo-depth. The assumption that the ordering of the
actual and the pseudo depths of two sub-events is preserved,

i.e.
zactual
1 < zactual

2 ⇐⇒ zpseudo
1 < zpseudo

2 , (1)

has been subsequently called “the pseudo-depth monotonicity
condition”.

In this paper we further analyze this relation and show that it
is equivalent to a vertical or intercept time (here denoted byτ)
monotonicity condition

zactual
1 < zactual

2 ⇐⇒ τ1 < τ2, (2)

for any two sub-events. We also look at the differences be-
tween the time monotonicity condition in vertical or intercept
time and total travel time. The latter was pointed out by a
different algorithm derived from the inverse scattering series
in ten Kroode (2002) and further described in Malcolm and
de Hoop (2005). We show a 2D example which satisfies the
former (and hence is predicted by the original algorithm) but
not the latter. Finally we discuss one case in which the mono-
tonicity condition is not satisfied by the sub-events of an in-
ternal multiple in either vertical or total travel time and conse-
quently the multiple will not be predicted by either one of the
two algorithms. For these cases, the monotonicity condition
turns out to be too restrictive and we discuss ways of lowering
these restrictions and hence expanding the algorithm to address
these types of multiples.

THE INVERSE SCATTERING INTERNAL MULTIPLE
ATTENUATION ALGORITHM

The first term in the inverse scattering subseries for internal
multiple elimination is (see e.g. Weglein et al. (2003))

b3 =
1

(2π)2

∞
Z

−∞

∞
Z

−∞

dk1e−iq1(εg−εs)dk2eiq2(εg−εs)

×

∞
Z

−∞

dz1ei(qg+q1)z1b1(kg,k1,z1)

×

z1
Z

−∞

dz2ei(−q1−q2)z2b1(k1,k2,z2)

×

∞
Z

z2

dz3ei(q2+qs)z3b1(k2,ks,z3) (3)

wherez1 > z2 and z2 < z3 andb1 is defined in terms of the
original pre-stack data with free surface multiples eliminated,
D′, to be

D′(kg,ks,ω) = (−2iqs)
−1B(ω)b1(kg,ks,qg +qs) (4)

with B(ω) being the source signature. Hereks andkg are hor-
izontal wavenumbers, for source and receiver coordinatesxs



Inverse scattering internal multiple attenuation algorithm

andxg, andqg andqs are the vertical wavenumbers associated
with them. Theb3 on the left hand side represents the first or-
der prediction of the internal multiples. An internal multiple
in b3 is constructed through the following procedure.

The deconvolved data without free-surface multiples in the
space-time domain,D(xs,xg, t) can be described as a sum of
Dirac delta functions

D(xs,xg, t) =
X

a

Raδ (t − ta) (5)

representing different arrivals (primaries and internal multi-
ples). HereRa represents the amplitude of each arrival and
it is a function of source and receiver positionxs andxg and
frequencyω. When transformed to the frequency domain the
transformed functionD(xs,xg,ω) is a sum

D̃(xs,xg,ω) =
X

a

R̃ae−iωta . (6)

Here ta is the total traveltime for each arrival and it can be
thought of as a sum of horizontal and vertical timesta =
τa + txa (see e.g. Diebold and Stoffa (1981)), wheretxa is a
function ofxg andxs. After Fourier transforming overxs and
xg, the data isD̃(ks,kg,ω). The transforms act on the am-
plitude as well as on the phase of the data and transform the
part of the phase which is described by the horizontal timetxa.
HenceD(ks,kg,ω) can now be thought of as a sum of terms
containingeiωτa with τa being the vertical or intercept time of
each arrival

D̃(ks,kg,ω) =
X

a

R̃′
ae−iωτa (7)

and whereR̃′
a is the double Fourier transform overxg andxs

of R̃ae−iωtxa . The multiplication by the obliquity factor, 2iqs,
changes the amplitude of the plane wave components without
affecting the phase; henceb1(ks,kg,ω) represents an effective
plane wave decomposed data and is given by

b1(ks,kg,ω) =
X

a

R̃′′
ae−iωτa (8)

whereR̃′′
a = 2iqsR̃′

a and whose phase,eiωτa , contains infor-
mation only about the recordedactual vertical or intercept
time.

Notice that for each planewave component of fixedks, kg and
ω we have

ωτa = kactual
z zactual

a (9)

wherekactual
z is the actual, velocity dependent, vertical wave-

number andzactual
a is the actual depth of the turning point of

the planewave. Since the velocity of the actual medium is as-
sumed to be unkown, this relationship is written in terms of the
reference velocity as

ωτa = kzza (10)

where kz is the vertical wavenumber of the planewave in

the reference medium,kz =
q

ω
c0
− ks +

q

ω
c0
− kg, andza is

the pseudo-depth of the turning point. This implicit opera-
tion in the algorithm is performed by denotingb1(ks,kg,ω) =
b1(ks,kg,kz) with the latter having the expression

b1(ks,kg,kz) =
X

a

R̃′′
ae−ikzza . (11)

c0

c1

c2

321

 

Figure 1: The sub-events of an internal multiple: the green,
blue and red are arrivals in the data which satisfy the lower-
higher-lower relationship in pseudo-depths z. The algorithm
will construct the phase of the internal multiple shown in black
by adding the phases of the green and the blue primaries and
subtract the one of the red primary.

The next step is to Inverse Fourier Transform over the refer-
encekz hence obtaining

b1(ks,kg,z) =

∞
Z

−∞

eikzzb1(ks,kg,kz)dkz. (12)

Putting together equations (11) and (12)) we find

b1(ks,kg,z) =
X

a

∞
Z

−∞

R̃′′
aeikz(z−za)dkz (13)

which represents a sum of delta-like events placed at pseudo-
depthsza and hence theb1 from the last equation is actu-
ally b1(ks,kg,za). This last step can also be interpreted as
a downward continuation on both source and receiver sides,
with the reference velocityc0, and an imaging withτ = 0, or,
in other words, an un-collapsed F-K migration (see e.g. Stolt
(1978)). A discussion of differences in imaging withτ and
with t was given in Nita and Weglein (2004). Each internal
multiple is constructed by considering three effective data sets
b1 and searching, in the horizontal-wavenumber–pseudo-depth
domain, for three arrivals which satisfy the lower-higher-lower
relationship in their pseudo-depths, i.e.z1 > z2 < z3, (see Fig-
ure 1 for an example of three such primary events). Having
found such three arrivals in the data, the algorithm combines
their amplitudes and phases to construct a multiple by adding
the phases of the two pseudo-deeper events and subtracting the
one of the pseudo-shallower one and by multiplying their am-
plitudes. One can then see (see e.g. Weglein et al. (2003)) that
the time of arrival of an internal multiple is exactly predicted
and its amplitude is well approximated by this procedure.

As pointed out in the first section, the lower-higher-lower re-
striction was inferred from the analogy with the forward scat-
tering series description of internal multiples: the first or-
der approximation to an internal multiple (which occurs in
the third term of the series) is built up by summing over all
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scattering interactions which satisfy a lower-higher-lower re-
lationship in actual depth. The assumption that this relation-
ship is preserved in going from actual depth to pseudo-depth
is called “the pseudo-depth monotonicity condition”. (Recall
that a monotonic functionf (x) satisfiesf (x1) < f (x2) ⇐⇒

x1 < x2; here, we regard the pseudo-depth as a function of
actual depth). Notice that the lower-higher-lower relation-
ship in pseudo-depth can be translated, from equation (10),
in a similar longer-shorter-longer relationship in the vertical or
intercept time of the three events. Accordingly, the pseudo-
depth monotonicity is also translated in a vertical time mono-
tonicity condition. Notice that this is different from the total
time monotonicity assumed by the algorithm introduced in ten
Kroode (2002). The latter is employing asymptotic evalua-
tions of certain Fourier integrals which result in an algorithm
in the space domain, having a ray theory assumption and the
less inclusive total time monotonicity requirement. The justifi-
cation for this approach was the attempt to attenuate a first or-
der approximation to an internal multiple built by the forward
scattering series. In contrast, the original algorithm is aimed
at predicting and attenuating the actual multiples in the data
and hence it takes into consideration the full wavefield, with
no asymptotic compromises, and results in a more inclusive
vertical time monotonicity condition.

In the following section we discuss a 2D example in which the
geometry of the subsurface leads to the existence of a multiple
which satisfies the pseudo-depth/vertical-time but not the total
time monotonicity condition.

VERTICAL TIME AND TOTAL TRAVEL TIME
MONOTONICITY: A TWO DIMENSIONAL EXAMPLE

Consider the earth model shown in Figure 2. For simplicity
we assume that only the densityρ varies at the interface and
it has the valueρ0 in the reference medium andρ1 in the ac-
tual medium. The velocity is constantc0. The actual internal
multiple is shown in black and the sub-events composing the
multiple are shown in green, blue and red. First, notice that
the total traveltime of the shallower reflection (the red event)
is bigger than both deeper reflection (green and blue) due to the
large offsets needed to record such an event. This implies that
the longer-shorter-longer relationship is not satisfied by these
particular sub-events in the total traveltime.

Next we calculate the vertical times for individual sub-events.
The vertical time for the red event along the left leg is (see
Figure 2)

τ1
red = z1

cosθin

c0
(14)

and along the right leg is

τ2
red = z1

cosθout

c0
. (15)

Summing the two legs we find the total vertical time along the
red event to be

τred =
z1

c0
(cosθin +cosθout) . (16)

Similarly, for the green event we have

τgreen =
z2

c0
(cosφin +cosφout) . (17)

Since the velocity is constant,θout = φout ; we also have that
φin < θin, and hence cosφin > cosθin, andz2 > z1 which results
in

τgreen > τred . (18)

It is not difficult to see that similarly, for this example, we have

τblue > τred (19)

whereτblue is the vertical time of the blue primary in Figure
2. The conclusion is that for this model and particular internal
multiple, the longer-shorter-longer relationship is satisfied by
the vertical or intercept times of the three sub-events but not by
their total traveltimes. According to equation (10), this relation
translates into the lower-higher-lower relationship between the
pseudo-depths of the sub-events and hence the internal multi-
ple depicted in Figure 2 will be predicted by the inverse scat-
tering internal multiple attenuation algorithm in Equation (3).

In the next section we discuss an earth model and a particular
internal multiple in which the longer-shorter-longer relation-
ship in vertical and total travel time is not satisfied.

φ
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θoutθ in
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Figure 2:A two dimensional earth model with an internal mul-
tiple satisfying the time monotonicity in vertical time but not in
total travel time

BREAKING THE TIME MONOTONICITY: A TWO DI-
MENSIONAL EXAMPLE

Consider the earth model shown in Figure 3 wherec0 < c1
(a similar example was discussed in ten Kroode (2002)). A
high velocity zone, in which the propagation speed isc3 much
higher thanc0, intersects one leg of the internal multiple and
hence one leg of one of its sub-events (the blue primary in
Figure 3). Due to this high velocity zone and the fact that
c0 < c1, one can easily imagine a situation in which both the
total and the vertical time of the blue primary are shorter than
the total and vertical times respectively of the red primary (for
example when the measurement surface is sufficiently far from
the interface) . In this case the lower-higher-lower relationship
between the pseudo-depths of the sub-events is not satisfied
and hence the internal multiple shown in the picture will not be
predicted. The monotonicity is in consequence broken, since
even though the actual depths still satisfy a lower-higher-lower
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c0

c1

c2

c3

 

Figure 3:A two dimensional earth model with an internal mul-
tiple containing sub-events which do not satisfy the time mono-
tonicity in either total traveltime or vertical time.

relationship, the pseudo-depths, vertical times or total times of
the sub-events do not.

To better understand the multiples which do not satisfy the
pseudo-depth / vertical-time monotonicity condition and to ex-
pand the algorithm to address them, one has to study their cre-
ation in the forward scattering series. As indicated in Matson
(1996), Matson (1997) and Weglein et al. (2003) the lower-
higher-lower relationship in pseudo-depthz was pointed to by
the forward scattering series: the first order approximation to
an internal multiple is constructed in the forward scattering se-
ries from interactions with point scatterers which satisfy the
lower-higher-lower relationship in actual depth. It would be
interesting to analyze how a multiple that breaks the mono-
tonicity assumption is constructed by the forward series and to
determine if an analogy between the forward and the inverse
process would be useful to expand the algorithm to address
these kind of events. This particular issue and others will be
the subject of future research.

CONCLUSIONS

In this paper we presented an analytic analysis of the inverse
scattering internal multiple attenuation algorithm for multi di-
mensional media. We particularly focused on the mechanism
of predicting amplitude and phase properties of interbed mul-
tiples. We have discussed in detail the pseudo-depth/vertical-
time monotonicity condition and compared it with a similar
total traveltime relation. Furthermore, we showed that this re-
striction on the sub-events can be too strong and could prevent
the prediction of some complex internal multiples.

This research is an important step forward in better under-
standing the inverse scattering series and the internal multiple
attenuation algorithm derived from it. The analytic analysis
presented, targets internal multiples which occur in complex
multi-dimensional media. Having a better understanding of
the structure and definition of such internal multiples opens
up new possibilities of identifying, predicting and subtracting
them from the collected data. The inverse scattering series is
presently the only tool that can achieve these objectives with-

out any knowledge about the actual medium.
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Comprehending and analyzing the leading order and higher order imaging closed forms derived from
inverse scattering series
Jingfeng Zhang∗, Fang Liu, Kristopher Innanen and Arthur B. Weglein, M-OSRP, University of Houston

SUMMARY

All current leading-edge migration/imaging locates the depth of the
subsurface reflectors using the phase in the reflected data and the ve-
locity above the reflector. The subseries for imaging without the veloc-
ity (Weglein et al., 2003) is part of the whole inverse scattering series
(ISS) has the capability of directly producing the image of the Earth
using the data only. The imaging subseries is a cascaded series in the
sense that the coefficient of each term is again an infinite series (Shaw,
2005). Part of this cascaded series was captured and called leading-
order imaging series (LOIS) (Shaw et al., 2003). Then, more imaging
terms were identified and added to the LOIS. This more capable series
is called higher order imaging series (HOIS) (Liu, 2006). It is worth
mentioning that the HOIS has not capture all of the terms for imaging.
Both LOIS and HOIS have closed forms.
The closed form HOIS was developed by Liu (2006) using an intuitive
leap and the conviction that only shallower events in the linear approx-
imate image (α1) should help, through nonlinear multiplications, any
particular event to determine its correct location. The HOIS is an im-
plicit function that does not immediately lend itself to understanding
in terms of a translated interface as a shift from the incorrect to the
correct depth. The central purpose of this paper is to provide precisely
that insight, understanding and comprehension of what resides behind
the implicit function nature of the HOIS.

INTRODUCTION

Migration/Imaging is the process of locating reflectors at depth using
reflected seismic data. It is of no surprise that this process needs the
arrival time of the signal and the wave velocity of the medium through
which the signal traveled. This is exactly the case for most of the
current imaging algorithm which utilize the arrival time information
of the data and the velocity information obtained from another proce-
dure, velocity analysis. So the idea of performing imaging without the
velocity sounds so contradictory that most people would reasonably
ask: how could it be possible? We would like to answer this question
by first, asking a question: where does the velocity information come
from? It comes from nowhere but the data. So essentially all infor-
mation come from the data. Then, second, we would argue that it is
possible there is such an algorithm that could directly produce the im-
age of the subsurface, without a separate velocity analysis step. Third,
the imaging without the velocity algorithm derived from inverse scat-
tering series (ISS) is capable of using the amplitude information of the
data as well as the arrival time. The significance of this capability is
explained below. Figure 1 illustrates the two primaries for 1D nomal
incidence case. The arrival times of the two primaries are ta and tb
respectively. Assuming the wave speed in the medium between the
source and the first interface is c0 (which is called reference medium
velocity), the water bottom is easy to locate: za = ta ∗c0/2. The second
interface is not difficult either if the velocity of the medium between
the two interfaces is known. However, note that the first signal con-
tains more information than just the arrival time. Its amplitude directly
relates to the property contrast across the first interface: R = c1−c0

c1+c0
. So

the velocity below the first interface can be obtained as long as we
know the amplitude of the signal and the reference medium veloc-
ity. The question is whether or not we can find out an algorithm that
can directly extract all of the necessary information from the data to
perform imaing without finding the velocity through a separate step.
The imaging without the velocity algorithm derived from ISS is one of
those methods that have this kind of capability.

Figure 1: 1D normal incidence two primaries. Depth of the first and
second interfaces are za and zb respectively.

The framework and logic about the inverse scattering series are dis-
cussed in (Weglein et al., 2003). It mentioned that the whole inverse
scattering series has very limited applications due to convergence is-
sues (Carvalho et al., 1991; Carvalho, 1992). So, certain terms are
identified and grouped together to perform one task only (multiple
removal, imaging or inversion) and act like no other task exists at
all. These subseries might have better convergence properties than
the whole series. This is the idea of isolated task-specific subseries.
In other words, it is the human intervene that makes the inverse series
much more useful.

The first step of performing imaging without the velocity is to obtain
α1(z) which is very close to the Stolt migration result using reference
medium velocity. Secondly, more terms of the inverse scattering series
are identified to improve the locations of the reflectors in α1, without
changing their amplitude/properties. To date, two closed forms of the
imaging sub-series have been identified and are known in the litera-
ture as the leading order imaging series (LOIS) and the higher order
imaging series (HOIS) Shaw et al. (2003); Liu et al. (2006). In this
note, through analysis of those closed forms and the work of Innanen
(2005), we analyze their performance and show our understandings of
these closed forms.

THEORY

The leading-order closed-form (LOIS) imaging series is

αLOIS(z) = α1
(

z− 1
2

∫ z

0
α1(z′)dz′

)

; (1)

and the high-order closed-form imaging series (HOIS) is and

αHOIS
(

z+
1
2

∫ z

0

α1(z′)
1− 1

4 α1(z′)
dz′

)

= α1(z). (2)

The functions αLOIS(z) and αHOIS(z) provide better reflector locations
compared to α1. One may notice that in Equation.1, the argument of
αLOIS is very simple and that of α1 is relatively complicated, while



in Equation.2, it is αHOIS that has the relative complicated argument.
Why this transfer of complexity? What kind of difference will it make?
What is the performance of these closed forms? We will try to answer
these questions, without becoming too involved in the math or dia-
grams of the inverse scattering series.

Interpretation the closed forms

There are several ways to interpret Equation 1:

1. The value of αLOIS at z equals to the value of α1 at z− 1
2

∫ z
0 α1(z′)dz′ =

z′b; or,

2. The value of αLOIS at z = z′b + 1
2

∫ z
0 α1(z′)dz′ equals to the

value of α1 at z′b; or reversely,

3. The value of α1 at z′b equals to the value of αLOIS at z = z′b +
1
2

∫ z
0 α1(z′)dz′.

Imagine that there is an interface at z′b in α1. Then based on the third
interpretation, this interface will be moved to another depth z, and the
distance to be moved is determined by: 1

2
∫ z

0 α1(z′)dz′, which is an
integration to depth z, not z′b. So, if z is bigger than z′b, then α1 val-
ues from greater depths contribute to the moving of this shallower in-
terface. This conclusion is actually a little strange since the diagram
analysis only permit shallower events helping the locations of deeper
events. Even from physical instincts, it seems strange that the moving
of shallower events care about deeper events. What is going on here?

Actually, the higher order form for reflector location was first incor-
porated as part of a coupled imaging-inversion algorithm (Innanen,
2005). Through a “natural” isolation operation, the imaging part of
this algorithm would seem to be

αHOIS(z) = α1
(

z− 1
2

∫ z

0

α1(z′)
1− 1

4 α1(z′)
dz′

)

, (3)

which is very similar to Equation 2 except where the complicated ar-
gument stays.

Equation 3 was tested and found that the results were poor. Then from
physical intuition, Liu intuitively moved the argument to the left hand
side and obtained Equation 2 which provided very good results (Liu
et al., 2004). To understand this move, let’s apply the same operation
to Equation 1:

αSLOIS
(

z+
1
2

∫ z

0
α1(z′)dz′

)

= α1(z), (4)

where SLOIS denotes “Shifted LOIS”. Let’s analyze its meaning in a
similar way:

1. The value of αSLOIS at z + 1
2

∫ z
0 α1(z′)dz′ equals to the value

of α1 at z; or, reversely,

2. The value of α1 at z equals to the value of αSLOIS at z +
1
2

∫ z
0 α1(z′)dz′; so,

3. The value of α1 at z′b equals to the value of αSLOIS at z′b +

1
2

∫ z′b
0 α1(z′)dz′.

Clearly, if it happens that there is an interface at z′b in α1 then it will
be moved to depth z and the distance to move is determined by an in-
tegration to depth z′b. No deeper events will possibly contribute to the
movement of shallower ones. So it seems that Equation 4 might be
more reasonable compared to Equation 1, just like Equation 2 com-
pared to Equation 3.

(a) model

(b) LOIS and HOIS

Figure 2: Small constrast model

Performance of the closed forms

Although neither of the two closed forms has the full imaging capa-
bility of the imaging subseries, for many cases they can provide very
promising results. For example, in Figure 2, for a relatively small
contrast model, both LOIS and HOIS result is very satisfactory (Liu,
2006). While in Figure 3, for a large contrast model, HOIS gives much
better result compared to LOIS (Liu, 2006).

One might still want to know how well can HOIS locate the interface?
In the following, through a simple analytic example, we would demon-
strate analytically that the HOIS can correctly locate the first interface
below water bottom.

In Figure 4, we assume the depth of the water bottom is za and the
interface below the water bottom is at zb. The velocities are c0 and c1
for medium at z < za and za < z < zb respectively. Using the reference
medium velocity c0, the interface za will be located correctly in α1
since the reference medium is the correct velocity. But the interface at
zb will be located at z′b = za + c0

c1
(zb−za) which will be shallower than

the correct depth. The objective of the imaging subseries is to shift the
interface at z′b to its correct location zb. Let’s evaluate the performance
of the HOIS. From Equation 2, we know that the interface at z′b in α1
will be shifted to a deeper depth (in this case) by the amount of

δ z =
1
2

∫ z′

0

α1(z′′)
1− 1

4 α1(z′′)
dz′′

= (z′b − za)
2R

1−R
= zb − z′b, (5)

where we have used α1 = 4RH(z− za) and R = c1−c0
c1+c0

(Shaw et al.,
2003). So the correct amount of shifting has been performed by the
HOIS for the first interface below water bottom. Deeper interfaces in
general will not be shifted accurately to the correct place by the HOIS.



(a) model

(b) LOIS and HOIS

Figure 3: Big constrast model

Figure 4: 1D normal incidence α and α1.

DISCUSSIONS

The original LOIS has a readily explainable understanding in terms of
shifting. The HOIS did not lend itself to that simple understanding
of its action and purposefulness. Through a detailed analysis of the
action of the LOIS and HOIS on an analytic two interface problem, a
rational and reasonableness to the nature of the HOIS algorithm has
been provided to go along with its effectiveness and speed.
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Estimating plane-wave transmission loss with the inverse scattering internal multiple attenuation al-
gorithm: concept and an application to Q estimation
J. E. Lira, K. A. Innanen, A. B. Weglein and A. C. Ramirez, Univ. Houston, M-OSRP

SUMMARY
The inverse scattering series internal multiple attenuation algorithm
suppresses internal multiples to within an amplitude error that is de-
termined by plane wave transmission losses down to, and across, the
reflector acting as the multiple generator (the reflector at which the
shallowest downward reflection of the multiple takes place). In this
paper we propose that this be exploited to address the problem of es-
timating and removing overburden effects on reflected primaries, to
the benefit of current leading edge imaging and inversion algorithms.
For instance, if an overburden is absorptive, the difference between the
predicted and actual multiple spectra may be related to the integral of
its Q profile. Furthermore, within a specific Q model, this estimation
can be made insensitive to any scalar error in the multiple prediction
arising from, e.g., numerical implementation. Early-stage synthetic
examples provide evidence that extraction and calculation of the pre-
dicted and actual multiples’ spectra, using straightforward FFT meth-
ods, stably provides estimates of the integrated Q profile. Research
is ongoing on fundamental/analytic and practical/numerical aspects of
this potential algorithm.

INTRODUCTION

A primary is a recorded seismic event with one upward reflection.
These events are considered the source of subsurface information for
structural mapping, parameter estimation, and, ultimately, petroleum
delineation at the target. In all current leading-edge processing of pri-
maries the ability to infer useful information at depth critically de-
pends upon the ability to estimate and to remove the impact of the
overburden on the character of the wave, during propagation from the
source down to the reflector and from the reflector up to the receiver.
The ability to effectively estimate (and remove) the effects of the down
and up propagation legs determines the level of realistic ambition in
subsequent processing of primaries. In this paper we propose a new
method to estimate overburden effects, turning a deficiency of the in-
ternal multiple attenuation into an asset—an indirect source of this
important overburden information.

The inverse scattering series has provided a set of algorithms for the
removal of all orders of free-surface and internal multiples (Weglein
et al., 1997, 2003). Within the overall class of events referred to as
internal multiples, events are further catalogued by order, meaning
the number of downward reflections experienced. The algorithm of
Araújo (1994) and Weglein et al. (1997) is a series for the attenuation
of all orders of internal multiples, the first term of which attenuates
the first-order event. It is to this first term that we direct our current
attention. In practice, this component of the full algorithm has often
been fully adequate; however, there are occasions when an elimina-
tion rather than attenuation algorithm would provide distinct added
value. Ramı́rez and Weglein (2005a) have provided a closed-form
elimination algorithm for the first-order internal multiple to fill this re-
quirement. The key here is that the two above algorithms, attenuation
and elimination, and the understood properties of the former (Weglein
et al., 1997; Weglein and Matson, 1998; Ramı́rez and Weglein, 2005b),
may be exploited to provide seismic information at depth. The value
of this information and the applicability of this idea is of moment as
the algorithm is refined (Nita and Weglein, 2004) and implemented in
multiple dimensions for large data sets (Kaplan et al., 2005).

The amplitude discrepancy between the actual first-order internal mul-
tiple and the attenuator described above is a direct expression of plane
wave amplitude loss down to a particular reflector. We propose that

this be exploited to address the problem of estimating and removing
overburden effects on reflected primaries, to the benefit of current lead-
ing edge imaging and inversion algorithms. The ambitious goal of sep-
aration and extraction of a well-located and accurate angle dependent
reflection coefficient at depth is typically hindered by the experience of
the primary wavefield as it propagates through an unknown overbur-
den, which cloaks the event with spurious amplitude changes. Con-
temporary methodologies to counter these effects are generally incon-
sistent with wave theoretic processing, and rarely go forward without a
well-tie. The information provided by the internal multiple algorithm
is a direct, immediate correcting factor for the cloaked primary.

Practical motivation for use of this amplitude information is several-
fold. First, the information is a by-product of an existing part of the
wave-theoretic processing flow–the demultiple phase–and comes at no
additional cost. Second, this occurs at a convenient point during pro-
cessing, just prior to its likely use in primary processing/inversion.
Third, it is consistent with wave-theoretic processing. Fourth, it is not
restricted to a production setting, but is also applicable in reconnais-
sance and exploration settings. Fifth, in addition to its potential value
for current high-bar imaging and inversion/AVO processing, it would
act to make the non-linear inverse scattering target identification series
(Zhang and Weglein, 2005) an exploration as well as production tool,
again by eliminating the requirement for a well-tie.

In this paper we present a simple, early stage study and example of
such information extraction. By our previous statements, if a medium
or target overburden is characterized by non-negligible Q, which will
tend to dominate transmission effects, the difference between the pre-
dicted and actual spectra of the multiple event will bear interpretable
information about the Q values in the overburden. We present basic
theory and examples illustrating the use of internal multiple prediction
as a means for Q estimation. In the first section we review the math-
ematical form of the internal multiple attenuation algorithm in 1D, its
behavior in terms of the data sub-events, and the provenance of the
amplitude error in the prediction. In the second section we review the
influence of a well-known model for absorptive-dispersive wave prop-
agation on the effective transmission coefficients present in reflection
seismic data. In the third section, by generalizing the predicted inter-
nal multiple error to accommodate the above Q-type transmission co-
efficients, we demonstrate that the spectral ratio of the predicted and
actual interbed multiples may be used to invert for the cumulative (in-
tegral) Q value down to and across the multiple generator. In the fourth
section we carry this out on a layered medium model. We comment
on the potential for extension of such methods to multiple dimensions
and other avenues of research.

Determination of general attenuation vs. elimination properties

As a brief aside, let us comment on how the properties of the at-
tenuation vs. elimination algorithms may be understood and there-
after exploited. It is known in principle (via the downward continua-
tion/interface removal idea) that given complete medium information
down to and across an interface acting as the downward reflector for a
first-order internal multiple, that multiple may be precisely eliminated.
This corresponds, then, to the information that would be required for
brute transformation of the attenuated multiple into an eliminated mul-
tiple. Although the elimination series (Ramı́rez and Weglein, 2005a)
does this task in the absence of such information, we then note that the
brute division of the attenuated multiple by the actual multiple must
correspond to the accumulation of the aforementioned overburden in-
formation.
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IMA AND PREDICTED VS. ACTUAL AMPLITUDES

The full multiple attenuation algorithm is a series of terms that at-
tenuate sequentially higher orders of multiples in fully 3D pre-stack
reflection data (Weglein et al., 2003). For the purposes of this paper,
reducing the algorithm to its 1D form for normal incidence data with
a plane wave source, and considering the first term only, we have the
predicted multiple algorithm (Weglein and Matson, 1998):

b3IM(kz) =
∫

∞

−∞

dz′1b1(z′1)e
ikzz′1

×
∫ z′1−ε

−∞

dz′2b1(z′2)e
−ikzz′2

∫
∞

z′2+ε

dz′3b1(z′3)e
ikzz′3 ,

(1)

where ε is a small constant determined by the approximate length
of the wavelet. In implementing the algorithm, our first job is to
transform the data into the input term b1(z). This required form can
be obtained (Weglein et al., 1997) by (i) taking the surface recorded
data D(t), Fourier transforming over time to produce D(ω); (ii) per-
forming a change of variables to the pseudo-depth conjugate variable
kz = 2(ω/c0), where c0 is waterspeed, and calling the data expressed
in this variable b1(kz); and (iii) performing an inverse Fourier trans-
form over kz to generate the pseudo-depth quantity b1(z). Each of
these steps occurs entirely in terms of the measured data and a homo-
geneous background medium with wavespeed c0.

The algorithm itself may then be applied. Using b1(z) as input, equa-
tion (1) searches for sub-events that obey the geometry dictated by the
limits of the three integrals. Roughly speaking, the search proceeds
as follows: via the outermost integral an event anywhere in b1(z), i.e.,
on z = (−∞,∞), is sought. When an event is located, others are then
sought at shallower pseudo-depths via the middle integral. Finally,
if one or more shallower events are found a multiple is predicted by
the final integral for any deeper event (including but not exclusive to
the first). With the search over, eqn (1) essentially convolves the two
deeper events, and then cross-correlates the result with the shallower
event. This sums the travel-times of the deeper events and subtracts the
travel-time of the shallower event, the correct time of the multiple is
predicted (Figure 1). This second step, and hence the entire algorithm,
also occurs entirely in terms of the data (via b1) and the wavespeed c0
(in the integral kernels).

Importantly for our current purposes, the predicted amplitudes are
scaled by a factor that is related to the transmission coefficients of
the interfaces above the generator, the reflector at which the down-
ward reflection of the multiple takes place. See again Figure 1 and
the Introduction. The discrepancy is a direct expression of any cu-
mulative transmission losses above the generator. Hence, a correction
of these losses could proceed with no assumptions made about their
cause. Alternatively, if we are comfortable assuming a certain mech-
anism dominates the transmission loss, this information can also be
used to derive specific estimates of overburden medium parameters,
as well as thereafter providing corrections. Let us pursue this second
route by assuming an absorptive/dispersive overburden.

TRANSMISSION COEFFICIENTS IN ABSORBING MEDIA

To do this, we must select an appropriate (quantitative) description of
the influence of absorption on transmission above a multiple gener-
ator. Intrinsic attenuation describes amplitude and phase alterations
in a wave due to friction. These alterations are modeled by a gener-
alization of the (nominally real) wavefield phase velocity to a com-
plex, frequency-dependent quantity, often parametrized in terms of Q,
a measure of wave amplitude or energy lost per cycle. A reasonably
well-accepted Q model (Aki and Richards, 2002; Kjartansson, 1979)
alters the wavenumber describing propagation in a scalar medium,

Figure 1: Sub-events and amplitudes in the IMA algorithm.

k = ω/c(z), to

K =
ω

c(z)

[
1+

F(ω)
Q(z)

]
, (2)

where F(ω) = i
2 −

1
π

log(ω/ω0). The reference frequency ω0, at
which the wave propagates with speed c, may be considered a param-
eter to be estimated, or assumed to be the largest frequency available
to a given experiment. Notice that the model divides propagation up
into three parts: a propagation component, an attenuation component,
and a dispersion component.

Consider a plane wave of unit amplitude, normally-incident on a single
layer (with interface depths z1 and z2) embedded in a homogeneous
whole-space of wavespeed c0, having departed from a source/receiver
plane at depth z = 0 at t = 0. If the layer is acoustic with wavespeed
c1, amongst other components of the reflected field, the primary from
the deeper interface (at z2) may be written:

PR(ω) = ei ω
c0

z1 T10ei ω
c1

(z2−z1)R2ei ω
c1

(z2−z1)T01ei ω
c0

z1 , (3)

where T10 = 2c0/(c0 + c1) and T01 = 2c1/(c0 + c1), and R2 is the re-
flection coefficient of the z2 interface. If the layer is instead absorptive
such that it obeys eqn (2), with parameters c1 and Q1, the primary may
instead be written as

PRQ(ω) = ei ω
c0

z1 T10ei ω
c1

(z2−z1)R2ei ω
c1

(z2−z1)
T01ei ω

c0
z1 , (4)

where the transmission coefficients are generalized:

T01 =
2c1[1+F(ω)/Q1]−1

c0 + c1[1+F(ω)/Q1]−1 exp
[

i
ω

c1

F(ω)
Q1

(z2 − z1)
]
, (5)

and

T10 =
2c0

c0 + c1[1+F(ω)/Q1]−1 exp
[

i
ω

c1

F(ω)
Q1

(z2 − z1)
]
. (6)

The transmission has been altered in two ways. First, the wave ampli-
tude/phase is altered as it crosses the boundary at z1 going down and
coming up; this small but potentially informative filtering operation
on the field also has an impact on reflection coefficients (Lam et al.,
2004), in our case R2. Much more important, however, are the new ex-
ponential terms, sensitive to the properties and extent of the absorbing
medium above the reflection point; this operator decays the amplitudes
in accordance with the attenuation law. Separating out the components
of eqns (5)–(6) that do not contribute to this (dominant) exponential
amplitude attenuation into a multiplicative factor W , the combined ef-
fective transmission coefficients due to the absorbing overburden may
be expressed as

T01T10(z2) = W exp
[
−ω

1
c1Q1

(z2 − z1)
]
. (7)
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Generalizing to an arbitrary c(z), Q(z) profile above a reflector at depth
z, and considering only the amplitude, we have

|T01T10(z)| ≈ exp
[
−ω

∫ z

0

dz′

c(z′)Q(z′)

]
. (8)

ESTIMATING THE INTEGRATED Q-PROFILE

The internal multiple attenuation algorithm requires no knowledge of
nor assumptions about the medium giving rise to the data (Weglein
et al., 1997). What we are proposing is the use of the error in the algo-
rithm in an ad hoc estimation scheme whose assumptions and require-
ments are independent of those of the algorithm. With that in mind,
let us consider that a number of circumstances are in place. First, we
have measured data above a reflector of interest; second, this reflector
acts as the generator of an internal multiple; third, that the multiple is
sufficiently separable within the data set (and the prediction) that its
local spectrum may be estimated.

Weglein and Matson (1998) show analytically in a single layer acous-
tic case that the predicted internal multiple amplitude PRED and the
actual internal multiple amplitude MULT are related by

PRED = T01T10 MULT, (9)

where the transmission coefficients are as defined in the previous sec-
tion. To determine the transmission loss down to and across the gen-
erator requires the ratio of the predicted and actual multiples to be
calculated, viz.

T01T10 =
PRED
MULT

. (10)

In the case of an attenuating overburden, the transmission down to
and across a given reflector has been generalized and approximated in
equation (8). That is, upon estimating the spectra of the actual and
predicted multiple, we surmise their ratio is related to Q by∣∣∣∣ PRED(ω)

MULT(ω)

∣∣∣∣≈ exp
[
−ω

∫ z

0

dz′

c(z′)Q(z′)

]
. (11)

This allows us access to the integrated effect of Q down to the genera-
tor. Calling

QC ≡
∫ z

0

dz′

c(z′)Q(z′)
, (12)

we have

QC ≈− 1
ω

log
∣∣∣∣ PRED(ω)
MULT(ω)

∣∣∣∣ . (13)

Notice that QC is independent of ω and hence may be estimated at
any available frequency; or, all available frequencies may be used in
(say) a least-squares estimation procedure. This situation is of course
contingent on the particular Q model we have chosen.

Dealing with additional scalar error in the prediction

As a practical matter (that may occur when, e.g., using packaged FFT
algorithms) when computing the internal multiple prediction, we may
further wish to guard against the case in which the multiple prediction
is modified by an unknown scalar factor, that is, in which the relation

A
∣∣∣∣ PRED(ω)
MULT(ω)

∣∣∣∣≈ e−ωQC, (14)

with A unknown, holds. In the absence of attenuation there is no re-
course, but the frequency-dependence (spectral shape) arising in the
attenuation case provides an alternate route. Consider two frequencies
in the spectrum, ω1 and ω2; since each provides a valid estimate of
QC, we may calculate equation (14) with each, and divide, canceling
out the scalar error and leaving∣∣∣∣ PRED(ω1)MULT(ω2)

MULT(ω1)PRED(ω2)

∣∣∣∣≈ e−(ω1−ω2)QC, (15)

which leads to a further slightly altered estimation

QC(ω1,ω2)≈− 1
ω1 −ω2

log
∣∣∣∣ PRED(ω1)MULT(ω2)
MULT(ω1)PRED(ω2)

∣∣∣∣ . (16)

For further robustness, QC can be averaged thus over all available pairs
of frequencies in the experiment.

SYNTHETIC EXAMPLE

In this section we demonstrate early-stage numerical/synthetic testing
of the estimation procedure proposed in the previous section. A lay-
ered absorptive Earth model is chosen (see Table 1); and numerical
reflection data corresponding to the multiple and the necessary sub-
events only is computed with plane wave incident field (Figure 2a).

Layer depths (m) c (m/s) Q
000-300 1500 ∞

300-480 2200 300
480-855 2800 150
855-∞ 3300 75

Table 1. Two-layer Earth model.

The internal multiple algorithm of eqn (1) is applied to this data, pre-
dicting the polarity-reversed internal multiple (Figure 2b). The spec-
tra of the predicted and actual multiples are computed and compared
(Figure 3a). Per the developments of the previous section, within the
chosen Q model we may estimate QC (the integrated Q(z), c(z) pro-
file down to the internal multiple generator) either with the absolute
amplitudes of the spectra (Figure 3a), or with their relative shape (Fig-
ure 3b). The latter of these is here illustrated by shifting the actual
spectrum such that the lowest frequency matches that of the predicted
spectrum. Noting that the actual integral of the c/Q profile is approxi-
mately QC= 2.70×10−4, we find estimates from various pairs of fre-
quencies (using eqn 16) ranging from QC≈ 2.47×10−4−1.52×10−4.
We have chosen a particular Earth model for which attenuation has not
reduced the data amplitudes by a large amount, but for which therefore
the Q value is large; the impact of this is a reduced spectral variability
between predicted and actual. We are investigating this as a source of
the variability. A larger suite of models and more accurate approxi-
mations of the transmission coefficients are also being considered at
present.

CONCLUSIONS

We have proposed that a discrepancy between a certain version of the
inverse scattering series internal multiple attenuation algorithm be ex-
ploited to address the problem of estimating and removing overburden
effects on reflected primaries. This includes, for instance, characteriz-
ing a Q profile down to and across an isolated internal multiple gener-
ator.

We anticipate that the information garnered from this specific appli-
cation of the broad potential we are introducing, would be useful in
two ways. First, it can be brought into a Q compensation operator and
used to correct the primary in terms of resolution (as well as overall
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Figure 2: Synthetic data. The requisite events in a normal incidence
data set from a single absorptive layer are computed (a); the internal
multiple is then predicted (b) using equation (1).
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Figure 3: Predicted vs. actual multiple spectra. The multiples may
be compared in terms of (a) their absolute amplitudes, or (b) their
relative spectral shape.

amplitude/phase). Second, within a further set of assumptions, it can
be used to estimate the Q profile itself. As part of this ongoing study
we further anticipate examination of a number of extensions of the
methodology. First, to layered media with offset data, and beyond to
multidimensional subsurface structure. Second, to more complete de-
scriptions of the overburden in addition to acceptable Q models, e.g.,
elastic, for whom the transmission error has already been studied and
characterized (Weglein et al., 2003).

Finally, let us reiterate the broad beneficial aspects of the methodology
we are developing: first, the information to be derived comes at no
additional cost; second, it is derived at a convenient point during pro-
cessing; third, it is consistent with wave-theoretic processing; fourth,
it is applicable in reconnaissance and exploration as well as produc-
tion settings; and fifth, it has the potential to transform the non-linear
inverse scattering target identification series into an exploration tool,
by eliminating the requirement for a well-tie.
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1. Introduction 
 
Non-linear scattering theory permits direct inversion of reflected seismic data (Weglein et al., 
2003). Here we consider its modelling aptitude. In particular, a non-linear, 3D, analytic, 
wave-theoretic scattering model of specific wavefield events, such as primaries, is discussed 
and further approximated.  This is of some broad interest because full wave theory tends to 
resist such event-by-event separation, and of some detailed interest as a tool for analysis and, 
potentially, direct inverse procedures.   
 
When the perturbation is large and extended, contributions from all orders of scattering are 
required to construct any specific event. For example, a primary, which experiences (1) 
transmission to a reflection point, (2) transmission from a reflection point, and (3) interaction 
at the reflection point, is highly non-linear in the (large, extended) perturbation in each of 
(1)—(3).  Renormalization methods (de Wolf, 1971; Wu et al., 2006) based on a 
decomposition of the scatterer into forward- and backward-scattering elements have been 
studied as a way of approximating the non-linearity associated with (1) and (2).  A different 
non-linear scattering event model (Innanen, 2006), based on decomposition of the pre- and 
post-scattering Green’s function propagation, has been proposed to accommodate (1)—(3), 
i.e., to model non-linear (in the scattering sense) transmission and reflection phenomena 
within primaries and other events.  In addition to its potential for modelling waves in complex 
heterogeneous media, this latter model is favourable to the casting of certain non-linear 
inverse scattering methods (Innanen, 2005).  A suitable scattering description of scalar and 
visco-acoustic wavefields involves reference and actual wave equations: 

          ∇2 +
ω 2

c0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ G0(x,x s,ω) = δ(x − xs) ,    ∇2 +

ω 2

c 2(x)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ G(x,x s,ω) = δ(x − xs) ,   (1) 

respectively, where c0 is assumed to be real but c(x) = c′(x)[1+i/2Q(x)]-1 may be complex 
such that a simple non-dispersive Q model is incorporated. The Born series is a computation 
of the actual field as an infinite series in the reference field and the perturbation V=k2α(x), 
where k=ω/c0 and α(x)=1-c0

2/c2(x).  In operator form: 
 

G = G0 + G0VG0 + G0VG0VG0 + ... .     (2) 
This series constructs the full Green’s function, which includes all events, such as direct 
waves, primaries, multiples, etc.  This is detrimental to math/physics interpretation, and 
(therefore) to its use as both a modelling tool, and a means for analysis.  
 
2.  A non-linear scattering model of reflected and transmitted events 
 
Consider a Cartesian coordinate system with source/receiver planes normal to z (Figure 1). 
Constraints on scattering geometry in z (Figure 2), in the form of a retention/rejection of 
certain kinds of propagation occurring pre- and post-scatter (Innanen, 2006), permit the 
separate construction of reflected primaries, RP(kg,zg,ks,zs,ω) and/or transmitted direct waves, 
TDU(kg,zg,ks,zs,ω) and TDD(kg,zg,ks,zs,ω) as in Fig. 2.  These take the form of series, whose 
mathematical task is to approximate an event’s amplitude and phase with polynomials in the 
spectral domain.  For instance TDD(kg,zg,ks,zs,ω) is recursively expressible as 

        T DD (kg,zg ,ks,zs,ω) − G0(kg ,zg,ks,zs,ω) = −
eiqgzg − iqs zs

i2qg

˜ T n
DD

n=1

∞

∑ (kg ,zg,kn ,zs,ω) ,     (3) 

where 

˜ T n
DD (kg,zg ,kn ,zs,ω) =

ik 2

8π 2 dz' dk1

q1
∫

zs

zg

∫ ei(q1 −qg )z'α(kg − k1,z') ˜ T n−1
DD (k1,zg ,kn ,zs,ω) ,     (4) 

(kn in each term of eqn. (3), is interpreted as ks for the convenience of the recursion), 
qg=(ω2/c0

2 - kxg
2- kyg

2)1/2, with the stopping criterion 
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˜ T 0
DD (k',zg ,k',zs,ω) =

1
2π

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

−2

δ(k'-ks ) .                              (5) 

The upward transmitted field is expressible similarly, and the reflected primary approximation 
can be expressed as the sum of combinations of these: 

RP (kg,zg ,ks,zs,ω) = RN
P

N=1

∞

∑ (kg ,zg,kn ,zs,ω),     (6) 

where 

RN
P (kg,zg ,ks,zs,ω) = dx'∫

n= 0

N−1

∑ Tn
DU (kg ,zg,x',ω)k 2α(x')TN−n−1

DD (x',ks,zs,ω).       (7) 

                 

                              
Figure 1: Schematic illustration of scattering model of events.  Transmitted direct upward and 
downward through a large/extended perturbation, and reflected from same. 
 
  

                   
Figure 2: Event model in eqns. (3)—(7) is generated by retention/rejection of propagation 
pre-and post-scattering.  Reverberating elements are rejected, transmitted or single-
turnaround elements are retained (Innanen, 2006). 
 
3.  A hybrid linear target, non-linear overburden approximation  
 
The event model of eqns. (3)-(7) represents an intensive computational problem, as a 
consequence of its support of a laterally/vertically heterogeneous medium.  It has been shown 
that a much more efficient closed-form primary expression is available if the medium is 
depth-varying; however, we then lose the ability to model, e.g., diffractions. Considering the 
2D case for simplicity, this problem may be addressed with a hybrid approximation, by 
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dividing the perturbation into two components, α(x,z)=A(z)+B(x,z).  Since non-linear 
scattering operates in terms of increasing powers of V, or α (eqn. (2)), this division generates 
primary approximation terms that expand, schematically, as follows: 

    A+B 
          A2 + AB + B2

    A3 + A2B + AB2 + B3

           A4 + A3B + A2B2 + AB3 + B4, 
etc. Notice that to retain only terms from the leftmost column, A+A2+A3+…= 
A(1+A+A2+…), would be to reduce to the depth-varying problem (for which closed forms are 
available). The series in brackets (1+A+A2+…), c.f. the T terms in eqn. (7), operates non-
linearly upon the extracted A (c.f. the α term in eqn. (7)) to create the primary.  The proposed 
hybrid model instead extracts and computes the second-from-leftmost series: B(1+A+A2+…), 
and hence has a dual nature: linear in B, the 2D part of the perturbation, and non-linear in A, 
the 1D part.  Because the non-linearity is in the depth-varying component, closed-forms 
remain available and computation is straightforward, but because B is retained, wave 
phenomena such as diffractions may yet be modelled.  This approximation is appropriate for, 
e.g., an extended vertically-varying overburden perturbation and a small, 2D target body 
(Figure 3).  In particular, we have the hybrid primary expression: 
 

    Rh
P (kg ,ks,ω) = dz'Th

U (kg,ω∫ ,z')k 2B(kg − ks,z')Th
D (ks,ω,z') ,                          (8) 

where, for instance, the upward transmission leg is given by 

Th
U (kg ,ω,z) =
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⎥
⎥
,   (9) 

a series form that is non-linear in the perturbation, but that collapses in this case to 

       Th
U (kg ,ω,z) =

1
i2qg

exp iqg z −
iqg A(z')dz'0

z∫
2cos2 θg
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⎥ 
.     (10) 

In precisely the same manner we have for the downward transmission leg: 
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0

cos2
')'(

exp
2
1),,( ,               (11) 

where, e.g., cosθg = qg/k.  In this closed form eqn. (8) can be straightforwardly computed, or 
potentially treated in an inverse procedure. 

 
4.  Numerical examples 
 
The approximation accords us the flexibility to include or exclude a viscoacoustic perturbed 
overburden in the primary approximation.  We demonstrate with the model illustrated in 
Figure 3.  The left panel of Figure 4 shows the Born approximate primaries, and the right 
panel shows the non-linear approximation due to eqn. (8).  In particular we note the temporal 
shift, move-out, and attenuation of the events. 
 
5.  Conclusions 
 
The Born series permits direct analytic 3D modelling of scalar wavefield events, such as 
primaries.  A hybrid scalar/viscoacoustic scattering model is proposed, in which non-linear 
account of transmission is taken through a 1D overburden perturbation, and linear account is 
taken of a 2D scattering body.  This restricts the model, but produces straightforwardly-
computable closed form expressions, is currently under study as the basis for a set of specific 
direct non-linear inverse procedures.  
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Figure 3: Medium model.  A scattering body c = 1600m/s in a homogeneous reference 
medium c0 = 1500m/s, with a fast, 2-layer, attenuating overburden perturbation.         

                           

  
  
Figure 4: Two shot records with shot at location 0 m (in Figure 3).  Left panel is the linear 
primary approximation for the case with no overburden; right panel is the non-linear hybrid 
approximation for the fast attenuating overburden case. 
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SUMMARY
This paper provides: (1) a review of the logic and promise behind
the isolated task inverse-scattering sub-series concept for achieving all
processing objectives directly in terms of data only, without knowing
or determining or estimating the properties that govern wave propaga-
tion in the actual earth; (2) the recognition that an effective response
to pressing seismic challenges requires understanding that those chal-
lenges arise when assumptions, and prerequisites behind current lead-
ing edge seismic processing are not satisfied and that those failures
can be attributed to: (A) insufficient acquisition, and/or (B) compute
power and (C) bumping into algorithmic limitations and assumptions,
and (3) the status and plans of the inverse series campaign to address
the fundamental algorithmic limitations of processing methods, that
are not addressed by more complete acquisition and faster computers.

BACKGROUND

Scattering theory is a form of perturbation theory. It relates a perturba-
tion in the properties of a medium to the concomitant perturbation in
the wave field. L0G0 = δ and LG = δ represent the equations govern-
ing wave propagation in the unperturbed and perturbed media where
L0 and G0, and L and G are the unperturbed and perturbed differential
operators and Green’s functions, respectively. V = L0 −L is the per-
turbation operator and ψ = G−G0, is the scattered field, and is the
difference between the unperturbed and perturbed medium’s Green’s
functions. In our seismic application the unperturbed medium is called
the reference medium, and will be chosen (in this paper) for the ma-
rine case to be water. The perturbed medium in our marine context is
the actual earth and the domain of the perturbation, V , the difference
between earth properties and water, begins at the water bottom.

Scattering equation

The relationship between G, G0, and V is given by an operator iden-
tity called the scattering equation or the Lippmann-Schwinger (LS)
equation (Goldberger and Watson, 2004; Taylor, 1972; Joachain, 1975,
e.g.),

G = G0 +G0V G. (1)

In general, the forward problem predicts the wave field from the prop-
erties of the medium, and the forward problem in scattering theory
predicts the wave field from the medium in terms of L, not directly but
in a perturbative sense, from L in terms of L0 and V through G0 and V .

Forward series

From (1) a forward scattering series can be written formally as

G = (1/(1−G0V ))G0 = G0 +G0V G0 + ..., (2)

and using ψ = G−G0, equation (2) becomes:

ψ = G0V G0 +G0V G0V G0 + ... = ψ1 +ψ2 +ψ3 + ..., (3)

where ψn is the portion of ψ n’th order in V . In general, the inverse
problem is to determine actual medium properties, contained in L,
from measurements outside the support of the medium to be identi-
fied. The inverse problem in scattering theory assumes that the refer-
ence medium L0 and Green’s function G0 are chosen and known; and,

hence, the inverse problem is to determine L through determining V ,
the difference between L and L0, from measurements of ψ = G−G0
on a measurement surface outside the support of V . The measurements
of ψ = G−G0 constitute the data, D.

Inverse series

The inverse scattering series produces V in terms of D, through a series

V = V1 +V2 +V3 + ..., (4)

where Vn is the portion of V n’th order in the measured values of ψ =
D. The equations for V1, V2, V3, ... are derived in (Weglein et al., 1997,
2003,e.g., ):

G0V1G0 = D

G0V2G0 = −G0V1G0V1G0

G0V3G0 = −G0V1G0V1G0V1G0 −G0V1G0V2G0 −G0V2G0V1G0,

(5)

etc. It is worth noting that: (1) the inverse scattering series (equations
(5)) provide a general direct formalism to solve the inverse problem
explicitly in terms of data, D and the water speed Green’s function;
each Vn is explicitly and directly calculated from G0 and D, (2) there
is no updating of the reference nor claim that the reference is proximal
to the actual nor any attempt nor need nor interest in moving it towards
the actual, and hence the methodology is not e.g., in any way related to
nor shares the properties of iterative linear inverse, and (3) the inverse
series equations (5) do not in any sense represent the Born approxi-
mation, and e.g., the first equation in (5) is the exact equation for V1,
the second equation in (5) is the exact equation for V2, and V1 is never
assumed to be an approximate to V , but rather the linear estimate to
V , and the first equation in (5) is the exact relationship for the linear
estimate and the data. Hence, equations (5) do not depend upon or
launch from an assumption on the linear estimate, they in fact launch
from the exact equation for the linear estimate; and hence the inverse
series doesn’t begin with an approximation; (4) at every term in equa-
tions (5) there is only a single and repeated inverse step of inverting
G0, on the left hand member, and in every step in the series, which
for water speed and Fourier transforms becomes a simple multiplica-
tive algebraic and stable operation, essentially a single Stolt FK pre-
stack migration at water speed is the only inverse step; the complexity
comes from multiplying factors involving the data, D, and the water
speed Green’s function on the right hand side of equation (5), and
multiplying water speed Green’s functions and data, is not comparable
in terms of treacherous numerical and computational challenge, and
stability issues to inverting an updated variable background Green’s
function, and (5) there is no optimization, no searching algorithm, no
invariance such as flat common image gathers, no proxy or surrogate
for the actual velocity, nor any other subsurface property, no optimal
stacking nor searching for optimal weighted move-out patterns, but in-
stead an explicit set of equations for V . It is multi-dimensional, fully
non-linear and direct inversion. Equations (5) use the information in
the data, D, the amplitude and phase of events in specific distinct task
determined linear and non-linear combination, to achieve processing
objectives where traditional linear processing methods required sub-
surface information, to then allow those goals to be realized without
the traditional need for subsurface information.

In addition, the right hand sides of equation (5) provides a transparency
and a unique window to look into the inner workings of the inverse
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series and processing objectives, and the physical detail of inverse
activity and to identify tasks achieved within the series and associ-
ated with inversion. Among tasks are: removing free surface multi-
ples (Carvalho, 1992; Weglein et al., 1997), removing internal multi-
ples (Araújo, 1994; Weglein et al., 1997; Matson, 1997; Nita and We-
glein, 2004; Ramı́rez and Weglein, 2005b,a), depth imaging primaries
(Weglein et al., 2001, 2002; Shaw et al., 2004; Innanen, 2003; Shaw,
2005; Liu et al., 2005, 2006), non-linear direct estimation of material
property changes across those imaged reflectors (Zhang and Weglein,
2005), and Q-compensation (Innanen and Weglein, 2005). All of those
separate tasks are being accomplished within the inverse series, and
are performed directly in terms of water speed and the data. That is
the unambiguous and unequivocal message and promise that derives
from recognizing the properties of every term of the inverse scattering
series, and hence the property shared by the entire series and every
task specific sub-series. The way this is accomplished is clear from
equations (5). The inverse scattering series states that to accomplish
any inverse objective in terms of only water speed and measured data
you will need to multiply the data or water speed imaged data by itself
(V1 times V1) in various specific multiplicative combinations to ac-
complish different specific tasks. The free surface multiple algorithm
is the very simplest example that derives from this thinking. While
there are other methods that can derive the free surface multiple re-
moval algorithm (Weglein and Dragoset, 2005, e.g.), there is no other
methodology other than the inverse scattering series that derives the
entire inverse problem, precisely as it accomplished free surface mul-
tiple removal, in this direct water speed and data manner, and all tasks
associated with inversion including depth imaging and non-linear AVO
in exactly the same single framework as free surface multiple removal
and from the single set of equations (5). The evidence supporting the
latter claim is that while others readily accepted and had their own
derivations of the free surface multiple algorithm, there was vehement
and repeated objections to even the possibility of removing internal
multiples without subsurface information, from those with alternate
derivations of the free surface multiple removal algorithm, and proofs
were offered from those alternate perspectives to demonstrate that it
was impossible. That of course has now changed, and the inverse scat-
tering internal multiple methodology has now been widely accepted,
including many of those who initially were skeptical, and it is used
throughout the industry. Now that incredulity has largely shifted from
multiples and there is now a struggle to grasp the possibility of the
direct inverse scattering series depth imaging without the velocity al-
gorithms, currently being developed and tested within M-OSRP. The
inverse scattering series written in equations (5) has the same attitude
towards all objectives associated with inversion: all multiple removal,
depth imaging and non-linear AVO and Q compensation. The inverse
scattering series is the ultimate, comprehensive and unique data-driven
machine, for V , and hence for any task you associate with achieving
that goal. Only data is input for any and every one of the seismic
processing objectives associated with multiples or primaries.

The isolated task sub-series of multiple removal and depth imaging can
be cast in a model type independent form (Weglein et al., 2003), and
those isolated task sub-series each have less stringent bandwidth con-
ditions than iterative linear inversion. Model-type independent means
a single unchanged algorithm performs a task such as free surface
multiple removal not only independent of subsurface properties, but
independent of whether you assume the earth is acoustic, elastic, het-
erogeneous, anisotropic or inelastic: one single unchanged algorithm
accommodates all and requires absolutely no alteration when applied
and no information about model type or parameters within that model.
The distinct isolated task sub-series to-date provide: (1) free surface
multiple removal, (2) internal multiple attenuation, (3) internal multi-
ple removal, for a set of internal multiples of a given order; (4) depth
imaging, one dimensional -leading order; (5) direct non-linear target
parameter identification, and (6) depth imaging, two dimensional -
leading order, higher order, partial multi-D imaging capture. Refer-
ences are listed that provide background, detail and examples. ten
Kroode (2002) has provided a more formal mathematical description

and an insightful and useful analysis and discussion of the velocity in-
dependent inverse scattering internal multiple attenuator, and Amund-
sen et al. (2005) have contributed fundamental new understandings,
concepts and significant new perspective to the velocity independent
processing of primaries.

Many people have a hard time distinguishing what is needed for a
specific algorithm to achieve a goal, and assume that all algorithms
must assume the same conditions and prerequisies as the algorithm
they are familiar with and have experienced. As an example: the Mor-
ley/Claerbout/Wiggins (MCW) method (Morley and Claerbout, 1983;
Wiggins, 1999) for removing water column multiples requires mod-
eling the source, water bottom and free surface, whereas free surface
multiple removal methods do not require water bottom or any subsur-
face information to remove all free surface multiples including those
removed by the MCW method. The MCW method requires model-
ing the entire multiple history, and is linear in the data, whereas the
free surface multiple requires no subsurface information but requires
data multiplied by data, D times D through V1 times V1 as in equation
(5). Both algorithms are absolutely correct, and useful and different
and have different assumptions and need for subsurface information
and use data and the information about amplitude and phase of events
in a different way. Multiplicative combination of the amplitude and
phase information in different events, that is realized in the data times
data, D times D, starting in the second term of equation (5), allows all
processing objectives that require subsurface information, and require
providing the history of the multiple or primary, to be lifted in ex-
actly the same way that the conditions on the linear MCW were lifted
in free surface multiple removal methods. MCW relates to free sur-
face multiple removal in precisely the same way that all current lead-
ing edge imaging methods (e.g., finite difference, phase shift, phase
screen, plane wave, FK, Beam, Kirchhoff, and Reversed Time) re-
lates to inverse scattering depth imaging algorithms. We have become
familiar with that property of not needing or requiring subsurface in-
formation for free surface multiple removal, but it remains odd and
incredulous to many when we say that same message derives from the
same equations for imaging primaries. And from the inverse scatter-
ing series viewpoint they are not in any way different and both derive
from precisely the same thinking and the same set of equations (5) and
use data, and information in the same manner to achieve their goals.
If there is any mystery here, then there is only one mystery and that is
in understanding the simple but profound message the inverse scatter-
ing series, equation (5) is communicating. If you understand how the
free surface algorithm works, you have the key to understanding how
internal multiples are removable and primaries are able to be depth im-
aged without the velocity, since the inverse scattering series treats all
of these activities in an identical manner, and with a single framework
and footing. It is the only methodology today that treats all processing
objectives as it treats free surface multiple removal.

DIRECT FREE SURFACE MULTIPLE REMOVAL WITHOUT
THE VELOCITY

Let us begin with some discussion of how the free surface multiple
algorithms works. Consider Figures 1 and 2. R f (ω) is the single
frequency component of the data with a free surface and consists of
deghosted primaries, internal multiples and free surface multiples. R(ω)
is the single frequency of the data without a free surface, and consists
of primaries and internal multiples. The free surface multiple algo-
rithm inputs R f (ω) and outputs R(ω). A derivation is found in e.g.,
Weglein et al. (2003) although that formula has a long history (Ware
and Aki, 1969, e.g.)

R f (ω) =
R(ω)

1+R(ω)
(6)
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Figure 1: Data without (a) and with (b) a free-surface.
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Figure 2: Reflected primary events from a two reflector model.

R(ω) =
R f (ω)

1−R f (ω)
(7)

R(ω) = R f (ω)+R2
f (ω)+R3

f (ω)+ ... (8)

Let us consider the two reflector example in Figure (2). R1 and R′
2

are the amplitude of the two primaries, and R′
2 is T01R2T10. A single

multiple is exactly predicted with R1 and R′
2 and times t1 and t2 and

without the velocity, and with data with a single frequency predicting
precisely the free surface multiples at that single frequency. The data
with the free surface is:

R f (t) =R1δ (t − t1)+R′
2δ (t − t2)−R2

1δ (t −2t1)−R′2
2 δ (t −2t2)

−2R1R′
2δ (t − (t1 + t2))+ ...

(9)

and in the frequency domain becomes

R f (ω) =R1eiωt1 +R′
2eiωt2 −R2

1eiω2t1 −R′2
2 eiω2t2 −2R1R′

2eiω(t1+t2)...

(10)

Now evaluating the second term on the right hand side of equation (8)

R2
f (ω) = R2

1eiω2t1 +R′2
2 eiω2t2 +2R1R′

2eiω(t1+t2) + ...; (11)

the free surface multiples are precisely and uniquely predicted, in am-
plitude and phase, and when R f is added to R2

f squared they are ex-
actly removed from an input consisting of a single frequency in the
measured marine data, R f (ω). We now follow this same two reflector
problem for the imaging task.

DIRECT DEPTH IMAGING WITHOUT THE VELOCITY

Now consider the inverse scattering subseries for imaging without the
velocity. Consider the same one dimensional medium in Figure 2. The
free surface multiple removal algorithm and the first term in the depth
imaging use precisely the same information in the data in a non-linear
process to achieve different processing objectives, both derived from
equations (5). In 1D we have[

d2

dz2 +
ω2

c2
0

]
P0(z,ω) = 0,

[
d2

dz2 +
ω2

c2(z)

]
P(z,ω) = 0, (12)

hence V = ω2

c2
0
− ω2

c2(z) , and we introduce the perturbation parameter

alpha:
1

c2(z)
=

1
c2

0
[1−α(z)]. (13)

Therefore the inverse series in terms of alpha is

α(z) = α1(z)+α2(z)+α3(z)+ ..., (14)

and the linear term is derivable from the data in pseudo-depth by

α1(z) = 4
∫ z

0
R(z′)dz′. (15)

The second-order term may be written

α2(z) = −1
2

(
α

2
1 (z)+α

′
1(z)

∫ z

0
α1(z′)dz′

)
. (16)

The portion of α2 that addresses mislocated images is:

−1
2

α
′
1(z)

∫ z

0
α1(z′)dz′ = −8R1T01R2T10(b′−a)δ (z−b′); (17)

the right-hand side is the two-reflector case in Figure 2. Note that
b′−a = (c0/2)(t2 − t1). The free surface multiple removal algorithm
multiplies the amplitude of two events and adds the phases , equa-
tion(11) , third term on the right hand side, to predict the free surface
multiple and the first term in the imaging series starts the correction
process of erroneously imaged reflectors with the same multiplicative
communication, but now the amplitudes of the two primaries multiply
and the phases subtract, equation(18). The sum of the phases in the
former multiple case is the phase of the predicted multiple while the
difference in the phases in the imaging algorithm gives a sense of the
duration of the imaging mis-location problem it is addressing. Both
the multiple removal and imaging algorithm from the inverse scatter-
ing series multiplicatively combine events and their amplitudes and
phases, but they never use those amplitudes, in either case, to deter-
mine medium properties. R1 is input but not used to determine or
estimate c1. R1 could be used to estimate c1 and that would be the
iterative inverse route, R1 in the inverse scattering series de- multiple
and imaging algorithm is not used to linearly and non- linearly esti-
mate c1. What matters is not what R1 could be used for but what R1
is being used for in these demultiple and imaging algorithms. Each
task is entirely data-driven and doesn’t require, need or determine the
velocity model, or any other subsurface information. In the example
above illustrating the task of free surface multiple removal a single fre-
quency of the data precisely and uniquely predicts the amplitude and
phase of all free surface multiples at that frequency. That single fre-
quency of data cannot locate the water bottom let alone invert it for
anything sub-water bottom. Never-the- less that single frequency of
the data can exactly and uniquely predict all free surface multiples at
that frequency.

We sometimes hear “That’s all wonderful, and very interesting, but
please just don’t tell us it is possible to directly depth image without
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the velocity. OK?” One of the favorite and persistent offered argu-
ments goes as follows: Consider a one dimensional layered earth and a
normal incident wave. If the incident wave is band limited, and in par-
ticular has missing low frequency, then a linear inverse for parameter
estimation, and subsequent linear iterates, would all suffer a unique-
ness problem where an infinite number of different earth models with
different low frequency data could satisfy the data within your band-
width. Hence, with bandlimited data there are no uniquely inverted
earth models, and no unique velocities, and no unique reflector loca-
tions, and no unique multiples. Therefore, the entire set of tasks start-
ing with free surface multiple removal is as challenged and unattain-
able as the bandlimited linear inverse is in terms of a nonunique solu-
tion. This is a great argument and has tremendous appeal and traction
and we have heard this for at least the past 16 years. It is entirely self
consistent and entirely rigorous and also entirely irrelevant as regards
task specific subseries of the inverse scattering series, starting with the
free surface multiple case. The inverse scattering series and all of its
isolated task specific sub-series never seek to determine the earth prop-
erties on their path to accomplish their task. It no more needs nor cares
about determining the velocity in the case of free surface multiples, in-
ternal multiples or depth imaging. If that argument held, it would shut
down the free surface case. As we noted in the analytic example above
the free surface algorithm works at one temporal frequency at a time,
and with that single frequency of the data precisely and uniquely pre-
dicts amplitude and time of all free surface multiples. Not a set of
possible multiples. One unique and precise prediction. What would
linear or iterative linear inverse be able to determine about the earth
with one frequency of data, not even the location of the water bottom.
That argument is equally misplaced and irrelevant for every task spe-
cific inverse scattering sub-series that removes free surface or internal
multiples or depth images primaries. What the inverse scattering se-
ries applications require is a unique data within the bandwidth, and
cares not in the least what linear and iterative linear inverse could or
couldn’t predict uniquely about earth properties from that band- lim-
ited data. The latter is not a step or stage in the former and hence
the former doesn’t depend upon or have any interest in satisfying the
latter’s requirements. All tasks within the inverse scattering series act
according to the same template, whether the task is time to time, as
in multiple removal, or time to depth as in depth imaging. The central
flaw and fallacy is attributing to all methods the failings and limitations
of one method. Assumptions are algorithm dependent. Again, MCW
is to free surface multiple removal what all current velocity dependent
linear imaging methods are to inverse scattering task specific imaging
algorithms.

RECENT VELOCITY INDEPENDENT IMAGING RESULTS

In Figure 3 is the FK migration of the pre-stack data generated from
the salt model shown. In Figure 4 is the result of the inverse scattering
series imaging algorithm of Liu et al. (2006). No velocity is input
and the entire process is 1.3 times the compute cost of a single water
speed FK migration. This is a very encouraging result. This algorithm
captures part of the terms that address imaging challenges within the
multi- dimensional inverse series.

REMARKS

An effective response to pressing seismic E & P challenges starts by
recognizing that there are three distinct sources of obstacles and hur-
dles: (1) acquisition, (2) compute, and (3)algorithmic limitations with
perfect acquisition and compute resources. It is easy to show that
there are simple but important 2D acoustic models where you can avail
yourself of essentially perfect acquisition and fully adequate compute
power and you cannot find an adequate velocity and/or you can provide
a perfect velocity model and your imaging algorithm cannot image be-
neath it. A simple combination of variable dip and lateral velocity can

Figure 3: FK imaging with waterspeed.

Figure 4: Inverse scattering series based imaging (Liu et al., 2006)

provide imaging challenges. We often hear the response to pressing
seismic challenges defined as composed of only having a compute and
acquisition strategy. And there are circumstances when that approach
is indicated and adequate. There are also numerous and significant
examples where that two pronged approach alone (ignoring intrinsic
algorithmic limitations) will not represent an effective response, and
will not meet the challenge. A comprehensive response to the pressing
seismic challenges would recognize and simultaneously progress these
three components. The inverse scattering series is a direct response to
the algorithmic limitation component of pressing seismic challenges.
In the area of multiple removal it has already provided the most com-
prehensive and effective algorithms, which show their mettle in the
most complex and difficult to process and challenging conditions. Our
goal in these ongoing research efforts, for capturing imaging capability
within the inverse series, is to move from noise to signal and match the
level of effectiveness already realized for removing multiples and ex-
tend that to extraction of subsurface information from primaries. The
potential and promise are clear for these new imaging concepts and al-
gorithms derived from the inverse scattering series. Within M-OSRP,
we are progressing capturing further imaging capability, extending our
algorithms to model-type independence and pursuing plans and tests
for field data evaluation.
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