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M-OSRP 2011 Annual Report:
INTRODUCTION AND SUMMARY:

Arthur B. Weglein

May 25, 2012

In this Introduction to the 2011 M-OSRP Annual Report (covering the Summer 2011, Fall 2011-
Spring 2012 time period), we provide: (1) the yearly highlights of progress over the past year, and
(2) a discussion of how that progress serves our overall goals, and determines our strategy and plans.

The Mission-Oriented Seismic Research Program (M-OSRP) is an academic, educational, and re-
search enterprise that addresses pressing seismic exploration challenges. While the projects within
the program focus on certain prioritized processing objectives, M-OSRP takes ownership of, and
responsibility for, the entire seismic processing chain. It assures that any needed advances in pre-
processing steps are provided often by providing the steps’ own intrinsic value, and/or satisfying
prerequisites of processing steps that are further along our specific processing chain and methods.
No earlier preprocessing step that can affect the efficacy of subsequent processing steps is ever “not
our business.” The entire processing chain is guided by our efforts to be a consistent and supportive
linked activity, in which the success of any step will always improve the success of the next and
subsequent steps, and every step is derived under the same exact and consistent set of assumptions
and aligned purposes. The latter approach allows the processing methods, for example, for removing
multiples, depth imaging, and inverting primaries, to reach their full efficacy and potential and to
deliver their added value and impact.

M-OSRP has several research initiatives, which are catalogued into four projects within the program.
Each of these four broad projects introduces new concepts and develops and tests algorithms for
more effectiveness and efficiency. These new concepts and algorithms allow: (1) achievement of
preprocessing goals, for example, for source-signature and radiation-pattern estimation and source
and receiver de-ghosting and data reconstruction; (2) removal of free-surface and internal multiples,
directly and without subsurface information, for marine and on-shore plays; and (3) provision
of added value within conventional concepts and mainstream thinking, for the purpose of high-
grading and improving (a) seismic modeling (e.g., P-wave amplitude and phase modeling in an
elastic heterogeneous medium), (b) velocity-dependent depth imaging (e.g., Green’s theorem RTM,
without PML), and (c) non-linear direct inversion capability and inverse scattering series (ISS)
delivery.

Project (4) is driven by evidence of serious and persistent outstanding issues and hurdles in leading-
edge velocity analysis and imaging capability within current mainstream concepts and algorithms.
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Those issues and hurdles are especially evident under complex, daunting, and costly high-risk condi-
tions. Under those circumstances, the cause and magnitude of those imaging challenges can suggest
that further investments along the lines of traditional thinking and approaches can, are, and will
face diminishing returns. And that motivates and galvanizes the search and call for fundamentally
new depth-imaging concepts that, for example, can totally avoid the traditional and mainstream
imaging need for an accurate velocity model.

Is there really a need for fundamentally new depth-imaging approaches and capabilities? That need
is not generally spoken about or ever evident at the self-congratulatory SEG or EAGE conferences
and workshops, or in papers published in our technical journals. However, the fact that, for example,
the exploration-drilling success rate (of one in ten) in the deep-water Gulf of Mexico has not notice-
ably improved over the last few decades, gives credence to a deep and serious outstanding problem
and need, and to the demand for fundamentally new and more effective imaging approaches. Also
the high cost of drilling in deep-water plays exerts pressure to drill fewer development wells.

In response to the undisputed reality of industry’s low exploration-drilling success rate, combined
with the ever-higher drilling costs in deep water, M-OSRP pursues and develops fundamentally
new seismic-imaging concepts and inversion capabilities. The idea is to provide the same uplift and
stand-alone capability we have provided (and still are providing) in the area of multiple removal to
other processing challenges. Specifically, we expect to now extend that thinking and capability to
primaries and, starting with the same exact unchanged set of equations as was used to derive the
multiple-removal algorithms, to mine the capability of those equations for the direct prediction of
depth and the delineation of targets, without requiring a velocity model or any other subsurface
information. Our multiple-removal methods precisely demonstrate their mettle and stand-alone
added value in the most complex and challenging offshore and on-shore exploration plays. And it’s
in precisely those complex and challenging circumstances that our current, mainstream concepts and
methods for the processing of primaries are lagging. Indeed, our methods for processing primaries
need to catch up with and match the current effectiveness of our multiple-removal techniques. That’s
not simple or easy — but that’s the plan, and after our first field-data test now we know it’s possible.

Each of these four project categories requires new theory, concepts, testing, and development. We
just last year demonstrated, with a very early off-shore Norway Kristin field-data test, that category
(4), that is, direct depth imaging without a velocity model is possible. Further, we published a
paper that explains in step-by-step detail and logic the argument and evidence that underpin that
important claim and conclusion. When nearly everyone believes that determining depth directly
without a velocity model is fundamentally and innately impossible, and in fact believes that velocity
and direct determination of depth are intrinsically related, then the very first (and admittedly
simple) off-shore Norway Kristin field-data example that unambiguously speaks another truth is
important and newsworthy. With that truth established, we now move ahead to the real goal: To
show that it is not only possible but is also useful by showing that it is able to directly predict a
more accurate depth image, without using a velocity model, than we can achieve with state-of-the-
art imaging methods that require a velocity. We explained in our Dec. 9th 2011 video conference,
and in the Annual Report, and will again present at an upcoming meeting, a strategy to take us
from “it’s possible” to “it’s useful.” Steps along the way are producing spinoffs, such as P-wave-only
elastic-wave-theory modeling, with clear potential advantages for SEAM modeling objectives and
RTM. We will basically be “paying the rent” with the first three projects, giving category (4) the
time to reach its place in the seismic tool box.
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The 2011 Annual Report takes the reader through the projects in the M-OSRP program, in an
order that follows the steps that the data themselves take as they move from link to link in the
processing chain. The report describes the progress within each link and project, and details how
the upgrade in that specific link both provides its own value and also serves later links further along
the processing chain.

Mission-oriented seismic research is fundamental, directed research, which begins with the problem
that needs to be solved whether or not we know how to solve the problem (more often “not”)
in contrast to “methods” looking for a problem or solving convenient, cosmetic-tweaking, current-
mainstream techniques and initiatives. The latter are definitely useful and worthwhile, but that
massaging will never provide a response to a major challenge and high hurdle, nor will it provide a
fundamental new capability. We seek direct methods for solving processing problems and providing
prerequisites. Direct methods offer many benefits over indirect methods. With a direct method you
know that you are solving the problem that you are interested in solving.

Among the great examples of solving convenient rather than priority problems is the long term and
significant focus and resource allocation to ever more parameter defining anisotropic homogeneous
media, for imaging and inversion, where the real priority and challenge is rapid laterally and ver-
tically varying heterogeneous isotropic media. The former can be important, but the latter is the
much more significant and the actual and tougher first priority problem. But trying to stay positive,
I guess it’s better to solve a lower priority problem than no problem — as long as we recognize and
acknowledge it.

A direct method provides a framework for precise data needs and establishes a straight-ahead
formula that takes in your data and actually solves and explicitly and directly outputs the solution
that you seek.

Direct methods represent “hope,” clarity, definition, and determinism, whereas “indirect methods”

represent relinquishment of hope, hopelessness, randomness, reliance on statistics, and then a search
and computation with a clue or attribute in mind of what a solution might satisfy and might look
like. There is a note in the report, titled "Antidote to P-wave “FWI”,” that (along with references
cited therein) speaks to the general direct and indirect distinction and the conceptual and practical
consequences, and addresses the proper, important, and essential role for indirect methods. However,
overall progress is measured when the boundary between direct and indirect shifts and more territory
sits within the direct realm, where you know what you are doing and what you are pursuing. The
unfortunate truth is that the boundary has moved in the opposite direction, and there is little
indication that that trend will slow or will cease.

The projects and papers in the Annual Report (and the presentations at the Annual Meeting) follow
the steps that the data take in the processing chain.

We cite a few project highlights here, and the titles and authors are easy to locate in the Annual
Report Table of Contents and the Meeting Agenda.

1 PREPROCESSING

Source and receiver de-ghosting, wavelet estimation methods, and reference wave-field development
based on Green’s theorem, all have had successful tests using analytic, synthetic, SEAM data, and



Introduction M-OSRP11

field data, with added value demonstrated for boosting the low frequency and removing source
and receiver notches. The positive impact on multiple-removal methods was convincingly demon-
strated, as well. These Green’s theorem methods do not require a flat horizontal measurement
surface, and, for example, can be applied directly to an undulating, dipping, and corrugated water
bottom. For towed-streamer data with either over/under or dual measurements, a collection of
single-source experiments can effectively remove receiver and source ghosts. With deeper source
and receiver ocean-bottom measurements, there could be certain stability advantages to having
over/under sources, as well.

2 MULTIPLE REMOVAL

Free-surface and internal-multiple algorithms have been modified to incorporate source and receiver
array information. These modifications benefit from the Green’s theorem preprocessing step of
identifying the reference wave-field and its radiation pattern. Those source and receiver array
modifications, along with de-ghosting and inclusion of obliquity factors, provide amplitude and
phase uplift and reduce the burden on adaptive subtraction.

The recent August 2011 TLE paper published by the Saudi Aramco multiple-removal group led
by Yi Luo concluded that “...the Inverse Scattering Series internal-multiple method demonstrated
effectiveness on complex synthetic and field data, and that effectiveness was unmatched by other
methods...” Never-the-less, in our “Multiple Attenuation: Recent Advances and Road Ahead
(2011)” article in that same TLE issue, we pointed out certain shortcomings in that leading-order ISS
internal-multiple attenuator. Those shortcomings have subsequently been addressed by including
higher-order terms in the multiple-removal series, and two reports and SEG Abstracts speak to
that new inclusiveness and heightened capability. Another major impediment to further progress
in removing multiples, which we also pointed out in our “Recent Advances” paper, was the use
of energy-minimization adaptive subtraction. There is a note in this Report with a candidate
replacement for energy-minimization adaptive subtraction for use with free-surface-multiple removal.
In contrast to energy-minimization adaptive subtraction, our replacement candidate is always in
line with the method it’s meant to serve: the prediction and subtraction of free-surface multiples.
Also, (effective) primaries generated from sub-resolution internal multiples have demonstrated ISS
effectiveness for removing internal multiples generated by primaries and effective primaries (please
see below the two papers submitted to Geophysics from collaboration with Yi Luo and the Saudi
Aramco Group). Another paper within the Report provides an aperture- and dip-limitation user
option for the free-surface and internal-multiple codes to produce significant run-time cost savings.
Finally, we have Andre Ferreira’s thesis, with spectacular Petrobras offshore Brazil ISS internal-
multiple results, where a suite of methods, including vendor methods, were previously tried and
were unable to produce satisfactory results in the subsalt target area of interest.

3 IMAGING

A paper was published with the first field-data tests of ISS imaging, and it concluded that the method
is viable. The next step is to show that ISS imaging can provide relevant and differential added
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value. A strategy to arrange that outcome and delivery involves several components, one of which is
a P-wave-only amplitude and phase wave-modeling method for heterogeneous elastic media. A Note
in the Report describes the approach. A paper in the Report describes regularization methods for
multi-parameter ISS depth imaging with band-limited data. Another report compares the results
from applying the Weiner filter, spectral division, and Green’s theorem for the wavelet estimation
needed for ISS depth imaging, both on synthetic data and in the Kristin-field-data test. The Green’s
theorem RTM without PML generated interest in finite difference methods, and papers within the
Report discuss finite-difference modeling, boundary conditions, and PML. Progress in providing
modeling codes for the displacement wave-field for 1D elastic media is presented in a paper in the
Report.

Several theoretical advances are needed within the strategy to move ISS imaging from the “is possi-
ble” to the “is stand-alone capable and is step-change added-value useful” category. Such advances
comprise further inclusion of ISS imaging terms and capability, imaging events that have only P
episodes in their history, and recasting the ISS imaging series in terms of spikes moving rather than
boxes.

4 SUMMARY

Research within M-OSRP consists of a portfolio of projects that serve the same goal. These projects
manage potential benefit, investment, and risk.

Our research portfolio of projects involves every link in the seismic processing chain, with Green’s-
theorem-based methods for preprocessing (source signature and radiation pattern; reference wave
and reflection data separation at all offsets; and de-ghosting) and with the inverse scattering series
(ISS) for removing multiples and depth imaging and inverting primaries. All of these preprocessing
and processing methods are direct, wave-theory methods that do not assume any subsurface infor-
mation. We also have projects that high-grade the effectiveness and efficiency of seismic modeling
methods and mainstream velocity-dependent (RTM) imaging methods, often with spin-offs from
strategic steps in the Green’s theorem preprocessing and ISS processing initiatives.

The M-OSRP has developed and delivered algorithms that are based on the inverse-scattering-series
methods for the attenuation of free-surface and internal multiples. Those techniques have received
much positive attention, regarding their effectiveness both in absolute terms and also in comparison
with all other methods from other consortia and vendors, as reported in, e.g., several articles in the
August 2011 issue of TLE. While that is positive and welcome news, we point out in our “Recent
Advances and Road Ahead (2011)” August TLE article that a careful examination of the synthetic-
and field-data examples from the TLE 2011 papers makes it clear that, aside from certain obvious
and practical issues resolvable by advances in acquisition and computing power, more than a few
significant and fundamental theoretical challenges remain.

The objective of predicting the amplitude and phase of all orders of free-surface and internal mul-
tiples, without damaging primaries, is not a closed subject from a conceptual, theoretical, and
practical point of view. Several of the open issues pointed out in the August 2011 TLE overview pa-
per have subsequently been addressed or improved upon (and that progress is represented within the
submitted SEG Abstracts, submitted papers, and in Annual Reports), but other serious challenges
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remain, and the removal of multiples is far from a closed subject. Much as-yet-untapped power
for addressing those outstanding issues resides within the ISS, and replacing the minimum-energy
adaptive-subtraction concept would also be a big step forward.

5 ISS DEPTH IMAGING

We recognize that pursuing a direct depth-imaging method without a velocity model has been
and remains “a bridge too far” for most within the geophysical community, including many of our
sponsors. Some might feel that it isn’t needed and that keeping on the current mainstream path of
improving the velocity, with tomography and CIG and “FWI,” and then depth imaging, will provide
sufficient progress to make a major dent in the unacceptable and essentially unchanging one-in-
ten drilling-success rate in the deep-water Gulf of Mexico. Others might not believe that current
mainstream research efforts and initiatives will have that much impact, but they cannot imagine as
a realistic alternative a possibility that would totally avoid the need for a velocity model, a velocity
model that so many have spent their entire careers believing is necessary and seeking to directly or
indirectly determine. All of those attitudes are reasonable, understandable, and anticipated.

However, we come from a different place and from a history in which, when we started out with
multiple-removal research, we were told by our academic and industry colleagues that: (1) multiple
removal was not an open issue and was essentially a closed and solved problem by high-resolution
Radon methods, (2) internal multiples were never a significant or priority problem on field data,
and (3) removing all multiples directly and without subsurface information was in violation of basic
mathematical physics and fundamentally impossible.

Well, things didn’t turn out that way regarding any of those three admonitions. In research, if most
of your colleagues understand and agree with your approach, then what you are proposing really
isn’t new and instead fits comfortably within conventional thinking and concepts and is limited by
where that thinking can bring us. Fundamental, directed research begins with a view that the scale
of the challenge is beyond where current concepts and thinking can reach. Such research, in fact,
springs from awareness that the outstanding and pressing challenge is the actual “bridge too far,”
in terms of where conventional thinking and perspectives can take us.

When the ISS internal-multiple-removal method was tested and compared using complex and daunt-
ing off-shore and on-shore field data, and when it demonstrated stand-alone added-value, then
support and understanding were universal and took no vision or courage. In our past, when first
proposed it was considered absolutely and completely absurd, and now it’s mainstream and “pays
our rent”.

This perspective is presented here to express our gratitude and appreciation for allowing us to
pursue a portfolio of projects with a balance of risk, investment, and potential benefit.

If all of our projects and proposals within M-OSRP were clear to us and to our sponsors and
understandable and reasonable and made everyone comfortable, M-OSRP would be failing, failing
absolutely, failing ourselves, failing our students, failing our college and university, and failing our
petroleum sponsors. We would not be doing research and would not be “solving the right problem”.
In research, we have to welcome and be comfortable with being uncomfortable and steady when
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the path forward is unclear and we are facing skepticism or worse. But today’s uncomfortable
and unbelievable thought and concept will invariably be tomorrow’s mainstream and conventional
thinking and methodology, and that process assures a pipeline that will address current major league
and daunting challenges and will pay tomorrow’s rent.

We are enormously fortunate to have your confidence and support to pursue and progress a portfolio
of projects, some of which “pay today’s rent” and some that will “pay tomorrow’s rent”.

6 Abstracts/Papers submitted or that appeared in the Summer
2011, Fall 2011- Spring 2012

Please see the References (below) for M-OSRP papers that appeared or were submitted in the
Spring 2011-Fall 2012 time period. Copies of these papers are included in this Annual Report as
Attachments.

This was another successful and productive year, and we look forward to another good year ahead.
We are grateful for your encouragement and support.

Best regards,
Art
Arthur B. Weglein
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Abstract

We report Green’s theorem-derived preprocessing of marine seismic data, i.e., deghosting and
wavefield separation, including the first use of Green’s theorem-derived source and receiver
deghosting on deep water Gulf of Mexico synthetic (SEG Advanced Modeling Corp., or SEAM)
and field data. Green’s theorem-derived preprocessing is put into context in the complete
M-OSRP processing chain, Green’s theorem-derived theory is presented, and an algorithm im-
plementing the theory is discussed. The algorithm has been tested on field data and several
kinds of synthetic data with positive and encouraging results. This algorithm is the first of a set
of deliverables based on Green’s theorem in 3D. Release 1 (deghosting) has been delivered to the
sponsors (via the sponsors-only section at mosrp.uh.edu). Green’s theorem-derived deghosting
has several qualities that separate it from previous deghosting methods: it works in a multi-
dimensional earth, it doesn’t require a Fourier transform over space coordinates, it works in
every depth of water, it allows for any shape of measurement surface (e.g., a corrugated water
bottom), and it is consistent with wave theory methods. We also discuss Green’s theorem based
reverse time migration (RTM).

1 Introduction

Because it allows the freedom of choosing a convenient reference medium, Green’s theorem offers a
flexible framework for defining a number of useful algorithms — ghost removal, wavefield separation
(into reference Py and scattered Ps), source-wavelet estimation, and two-way wavefield continuation
(RTM) (Weglein and Secrest, 1990; Weglein et al., 2002; Zhang and Weglein, 2005, 2006; Zhang,
2007; Ramirez and Weglein, 2009). Green’s theorem methods are multidimensional, work in the
(r,w) data space (and hence are simple to extend to irregularly spaced data), work in every depth
of water, exact (fully consistent with the wave equation), and make no assumptions about the
earth. Therefore, Green’s theorem-derived preprocessing methods are fully consistent with inverse
scattering series isolated-task subseries. For a discussion of the inverse scattering series (ISS), see
Weglein et al. (2003).

Deghosting is important for two reasons. (1) It is a prerequisite for many processing algorithms, in-
cluding (a) data-driven-multiple elimination (inverse scattering series free-surface-multiple elimina-
tion and internal-multiple removal and conventional surface-related-multiple elimination (SRME)),
and (b) imaging (wavefield continuation often assumes one-way waves). (2) Removing the downward
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component of the field enhances seismic resolution and boosts low frequencies. Hence, deghosting
benefits traditional seismic processing and also fulfills an important role in all inverse scattering
series-based isolated-task processing.

Deghosting is a prerequisite for the inverse scattering series. The inverse scattering series can
perform certain tasks (e.g., elimination of free-surface multiples) without a priori estimates of the
spatial distribution of velocity. To accomplish certain seismic data-processing goals, the Mission-
Oriented Seismic Research Program (M-OSRP) has generated algorithms that are based on the
inverse scattering series (free-surface-multiple elimination, internal-multiple removal, depth imaging,
nonlinear direct amplitude variation with offset (AVO), and Q compensation) and Green’s theorem
(deghosting, source signature estimation, and data reconstruction). While the inverse scattering
series is independent of subsurface velocity (and in fact of all subsurface properties), it is data
dependent and makes certain assumptions about its input data. Weglein et al. (2003) describe
how every inverse scattering series isolated-task subseries requires (1) the removal of the reference
wavefield, (2) an estimate of the source signature and radiation pattern, and (3) source and receiver
deghosting. Weglein et al. (2003) also describe how the inverse scattering series has a nonlinear,
cascaded dependence on these preprocessing steps. Therefore, the Green’s theorem deghosting
methods are critically important to the success of the inverse series methods since they may be used
to bring seismic data in line with the assumptions of inverse scattering. The fact that the inverse
scattering series is nonlinear places a higher bar on preprocessing. An error in the input to a linear
process creates a linear error in its output, but the same error in inverse scattering series input
creates linear, quadratic, cubic, and higher-order errors in its output.

The industry uses adaptive methods, which keep changing a model until some measure of the
difference between the model and actual data is small. However, there are times when adaptive
methods are injurious to data, and adaptive methods can fail when we have interfering or nearby
events. Wang et al. (2012) and Mayhan et al. (2011, 2012b) provide something that doesn’t injure
multiple removal, thereby reducing the burden on adaptive methods.

1.1 Terminology

A brief aside on our terminology. (1) The total wavefield P measured by the hydrophones consists
of the reference wavefield Py (which doesn’t experience the earth) and the scattered wavefield Ps
(which does experience the earth). (2) Ghosts begin their propagation moving upward from the
source (source ghosts), end their propagation moving downward to the receiver (receiver ghosts),
or both (source/receiver ghosts) and have at least one upward reflection from the earth. (3) Free-
surface multiples have at least one downward reflection from the free surface (air-water interface) and
at least one upward reflection from the earth. (An nth order free-surface multiple has n downward
reflections from the free surface.) (4) Internal multiples have no downward reflections from the free
surface, more than one upward reflection from the earth, and at least one downward reflection from
inside the earth. (An nth order internal multiple has n downward reflections from inside the earth.)
(5) Primaries have only one upward reflection from the earth. These marine events are summarized
in Figure 1.

10
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Figure 1: Classification of marine events and how they are processed.

2 Receiver deghosting

2.1 Tutorial

Several processing algorithms for eliminating multiples (including the inverse scattering series) as-
sume that deghosting has been performed on the data and that an accurate estimate of the source
wavelet is available. (The latter can be computed from Py.) Green’s theorem derived preprocessing,
like the inverse scattering series, is based on perturbation theory. A reference medium (and its as-
sociated Green’s function) is chosen to facilitate solving the problem at hand, and the perturbation
is the difference between the real world medium and the selected reference medium. Within that
framework, Green’s theorem derived preprocessing is remarkably wide ranging. For example, Fig-
ure 2 shows the configuration chosen for Green’s theorem derived deghosting. Choosing a reference
medium that consists of a whole space of water, a hemispherical surface of integration bounded
below by the measurement surface, and the prediction/observation point inside the surface of inte-
gration, gives deghosted data P’. A different choice of a reference medium (a half space of air and
a half space of water, separated by a free surface), with the prediction/observation point outside

11
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or inside the surface of integration, gives wavefield separation, in which the total wavefield P is
separated into the reference wavefield Py (outside) and the scattered wavefield P; (inside).

Teasurement surface
VY Y VYOV VIVIVYYY

-~ S~
- -
1' \\\
/. 'y N
!___FEree surface 1
1 . ]
' W r, -
] V :
! ;
1 of 1
: :

Figure 2: Configuration for Green’s theorem derived deghosting (Zhang, 2007, Fig. 2.10). aq4ir and
Qearth, are perturbations, the differences between the actual medium (half space of air, water, half
space of earth) and the reference medium (whole space of water). The closed surface S of integration
is the measurement surface plus the dashed line.

Green’s theorem-derived deghosting (both receiver and source) is based on Weglein et al. (2002),
Zhang and Weglein (2005), Zhang and Weglein (2006), and Zhang (2007). The theory assumes
measurement of the pressure wavefield P and its normal derivative 0P/0n = VP(r,rs,w) - i where
r is the receiver location, r; is the source location, and 7 is the unit normal to the measurement
surface (pointing away from the enclosed volume V). The reference medium is chosen to be a
whole space of water (where a causal, analytic solution exists for the acoustic wave equation). The
whole-space Green’s function is

—(1/4m)exp (tkR+)/Ry  in 3D
Golr.ryw) =i =]
o(r,xgw) = Gg { —(i/4)HD (kR.) in 2D

/
g
medium, and Ry = [r — rg]. Hél) is the zeroth-order Hankel function of the first kind (Morse and
Feshbach, 1953, § 7.2). The observation/prediction point is chosen between the free surface and
the measurement surface, i.e., inside the volume V bounded by the closed surface of integration
consisting of the measurement surface and the dashed line in Figure 2.

where r/ is the observation/prediction location, k = w/cp, co is the wave speed in the reference

The configuration in Figure 2, Green’s theorem, and the acoustic wave equations for P and Gg
combine to give the key equation,

Pp(ry,rs,w) = j{ asn - [P(r,rs,w)VGg(r,rfq,w) — Gg(r,r;,w)VP(r,rs,w)], (2.1)
S

12
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where S is the closed surface consisting of the measurement surface and the dashed line in Figure 2,
and 7 is the unit normal to S (pointing away from the enclosed volume V'). Extending the radius of
the hemisphere to infinity, invoking the Sommerfeld radiation condition, and assuming a horizontal
measurement surface, the integral over the closed surface becomes an integral over the measurement
surface (Weglein et al., 2002, equation 5),

0 0
Pp(rg,rs,w) = /m.s. ds [P(r,rs,w)&Gg(r, Iy, w) — Gg(r,r’g,w)ap(r,rs,w)]. (2.2)
The algorithm in equation 2.2 lends itself to application in a marine single-shot experiment. More

details on the above derivation are given in Appendix B. Portions of the material in this section
were published in Mayhan et al. (2011).

2.2 Code

The implementation of the above theory is done in a straightforward manner. The Green’s theo-
rem algorithm computes the surface integral in equation 2.2. The method requires as input two
wavefields, the pressure measurements P and their normal derivatives 9P/9z'. Measuring the latter
requires a dual-sensor cable or over/under cables.

This code is the first of a set of deliverables that are based on Green’s theorem in 3D. The new
programs use data in the Seismic Unix (SU) format and integrate with all native SU programs.
Release 1 consists of the following components: (1) Code (sujim.c), which calculates the surface
integral in equation 2.2 (deghosting), reduced to the contribution from the measurement surface, as
explained previously; (2) Code (sugreen.c), which computes the Green’s function for a homogeneous
half space or whole space, and optionally convolves with a Ricker wavelet. The input and output
are in the r,¢ domain, while calculations are performed in the r,w domain; (3) Synthetic data
created from flat-layer model I and used to create Figure 3; (4) Files required to compile sujim.c
and sugreen.c; a PBS script that can be used to submit the two programs, and code documentation,
are also included. These items are in directory Jim Greens.tar in the sponsors-only section of
mosrp.uh.edu.

A brief history of the code is given in Appendix H.

2.3 Example: Flat-layer model I

The left panel of Figure 3 shows synthetic data (produced using reflectivity code and flat-layer
model I) that are designed so that deghosting is easy to demonstrate. (More detail about input
data is given in Appendix A.) The depth of the receivers is chosen such that primaries and ghosts
appear as distinct seismic events. The right panel of Figure 3 shows Green’s theorem output using
equation 2.2; note that the primary’s receiver ghost at 0.45s and the free-surface multiple’s receiver
ghost at 0.85s are attenuated. Figure 4 shows the spectra of the input data (blue) and receiver
deghosted output (red). As expected, the receiver deghosted data fill in notches related to receiver
ghosts (at intervals of 5.4 Hz).

13
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Figure 3: Flat-layer model I (source at 30m, cable at 140m, water bottom at 300m): input data at
110m (left), receiver deghosted input data at 100m (right). The primary’s receiver ghost at 0.45s
and the free-surface multiple’s receiver ghost at 0.85s are attenuated.

Figure 4: Flat-layer model I: muted input data (blue), receiver deghosted input data (red). The
receiver notches (at intervals of 5.4Hz) have been filled in; the notch at 25Hz is a source notch.

2.4 Example: SEAM application

Green’s theorem was applied to the SEAM data set generated on the basis of a deepwater Gulf of
Mexico earth model (Figure 5) (SEG Advanced Modeling Corporation (SEAM), 2011). We used the
special SEAM classic data set modeled to simulate dual-sensor acquisition by recording the pressure
wavefield at two different depths, 15m and 17m respectively. These dual-sensor data consisted of
nine sail lines for an equivalent wide-azimuth towed-streamer survey. The source interval is 150m
by 150m, while the receiver interval is 30m in both inline and crossline directions. Figure 6 displays
a typical shot gather from the SEAM model. Given the low frequency of the data (lower than 30Hz)

14
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and the source and receiver depths of 15m and 17m, the ghost reflections are not as separable as in
the previous flat-layer model. In this situation, successful deghosting would correspond to a change
in the wavelet shape. Figure 7 shows SEAM input (a window of Figure 6) and receiver deghosted
output computed by the Green’s theorem approach. In the right panel of Figure 7, note the collapsed
wavelet. In Figure 8, note the increased amplitude in lower frequencies and the decreased amplitude
in higher frequencies, i.e., the shift of the amplitude spectrum towards low frequencies.

SEAM Phase | Model: Indicator Volume

Basement
Mother Salt

1C

Cretaceous

Oligocene-Paleo

Lower Miocene

Middle Miocene

Upper Miocene

Pliocene

Ol | N[fo|j|a|D]|W[IN|F

Pleistocene

=
o

Water

Figure 5: SEAM deepwater Gulf of Mezxico model: inline section from the middle of the model.
Figure courtesy of SEAM.
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Figure 6: SEAM data, shot 130305 (located at sx=16,975m, sy=20,000m, sz=15m, i.e., near the
center of the shot grid).
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Figure 7: SEAM data, shot 130305: recorded data at 17m (left), receiver deghosted input data at
free surface (right). Note the collapsed wavelet in the right panel.
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Figure 8: SEAM data, shot 130305: recorded data at 17m (blue), receiver deghosted input data at
the free surface (red). Note the shift of the spectrum towards lower frequencies. The first source
notch (50Hz) and first receiver notch (44Hz) are to the right of the highest source energy (30Hz).

2.5 Example: Field data

We also applied the deghosting approach to a field survey from the deepwater Gulf of Mexico. The
data were acquired using dual-sensor streamers comprised of hydrophones and vertical geophones.
The left panel in Figure 9 shows a close-up of an input shot record while the right panel displays the
same traces after receiver deghosting. Note the collapsed wavelet in the output image. This is also
demonstrated in Figure 10 which shows the amplitude spectra before and after receiver deghosting.
The receiver depth is about 25m which corresponds to notches in the input spectra around 30Hz,
60Hz, and 90Hz. In the bandwidth from 20Hz to 100Hz, note the removal of the receiver notches
by receiver deghosting.
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Figure 9: Field data: hydrophones at 22-25m (left), receiver deghosted input data at the free surface
(right). Note the collapsed wavelet in the right panel. Input data courtesy of PGS.
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Figure 10: Field data: hydrophones (blue), receiver deghosted input data (red). The receiver notches
around 30Hz, 60Hz, and 90Hz have been filled in. Input data courtesy of PGS.
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3 Source deghosting

3.1 Tutorial

The last section has shown how Green’s theorem can be applied to select the portion of the seismic
wavefield that is up-going at the receiver. The algorithm uses data from a single shot gather and the
receiver coordinate as the integration variable. This section shows how the theory can be similarly
applied for source deghosting, where the portion of the wavefield that is down-going at the source
is sought. It will be assumed here that the derivative of the wavefield on the source side is available
(e.g., through repeating the seismic experiment with sources at two or more depths, or by using the
notion that the wavefield is zero at the free surface). The procedure of receiver deghosting produces
the up-going wavefield at r. If r is chosen shallower than the source (r;), applying the source-receiver
reciprocity principle (i.e., swapping the source and receiver x,y, z coordinates) brings the problem
back to the same setup as in receiver deghosting, where the total wavefield and its derivative are
known on the receiver side and the up-going portion is sought. The analogous integral is

gr—s? g’ )8

Pip(rh vl w) = / dS - [Pp(rl,r,w)VGY (r, 1), w) — G§ (r, 1}, w)VPg(r), r,w)]. (3.1)

In practice the algorithm in equation 2.2 is reused via the steps summarized in Figures 11 and
12. (1) Interpolate shots so that the distance between shots equals the distance between receivers,
(2) sort data from CSGs to CRGs, (3) swap shot and receiver coordinates, (4) source deghost the
sail line one receiver gather at a time, (5) resort the data from CRGs to CSGs, and (6) unswap
the shot and receiver coordinates. Step (1) is required because the distance between shots (which
becomes the distance between receivers in the CRGs) may be too large, thus creating artifacts.
For example, SEAM data have 30m between receivers but 150m between shots. Source deghosting
without interpolation introduced artifacts that were removed by interpolating four shots between
each pair of input shots so that the distance between shots equals the distance between receivers
(i.e., equals 30m). Steps (2), (3), (5), and (6) are required to allow source deghosting one CRG at
a time.
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Figure 11: Receiver deghosting is performed in the CSG domain. In the left panel, the primary is
the solid line, the receiver ghost and source-receiver ghost are the dashed lines, and the source ghost
is the dotted line. In the right panel, the Green’s theorem algorithm removes down-going waves at
the receivers, i.e., receiver ghosts and source-receiver ghosts. (Zhang, 2007, Fig. 2.14)
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Figure 12: Source deghosting is performed in the CRG domain. In the left panel, the right panel
from Figure 11 has been sorted from CSGs to CRGs. The primary is the solid line and the source
ghost is the dotted line. In the right panel, the coordinates of the sources and receivers in the left
panel have been swapped , and the Green’s theorem algorithm again removes down-going waves at
the receivers, but now they are source ghosts. (Zhang, 2007, Figs. 2.15 and 2.16)

Additional discussion is given in Appendices E and D. 1D analytic examples and numeric tests are
shown in Wang et al. (2012). Portions of the material in this section were submitted in Mayhan
et al. (2012a).
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3.2 Example: Flat-layer model II

This example, suggested by Zhigiang Wang, uses over/under sources. This does not imply a need
for two sources, because (following Zhang, 2007) the second source can be predicted using Green’s
theorem. (More detail about input data is given in Appendix A.) In Figure 13, the left panel shows
the input data, the center panel is receiver deghosted input data, and the right panel is source and
receiver deghosted input data. The first author used the following procedure to create Figure 13:
(1) For each source, use the over/under cables to compute dP/dz.

(2) For each source, use the under cable and dP/dz to receiver deghost at 20m.

(3) For each receiver deghosted pseudo-cable, swap the shot and receiver z coordinates. Because
the flat-layer model is 1D, it isn’t necessary to swap the x and y coordinates.

(4) Use the two pseudo cables to compute receiver deghosted dP/dz.

(5) Use the under pseudo cable and receiver deghosted dP/dz to source deghost at 10m.

(6) Unswap the shot and receiver z coordinates.

Figure 14 shows the spectra of the input data (blue), receiver deghosted input data (red), and
source/receiver-deghosted input data (green).

mmmmmmmmmmmmm

Time (5)

Zhigiang_50_151.5u

Figure 13: Flat-layer model II (sources at 50m and 52m, cables at 150m and 151m, water bottom
at 300m): input data at 151m (left), receiver deghosted input data at 20m (center), source/receiver
deghosted input data at 10m (right).
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Figure 14: Flat-layer model II: input data (blue), receiver deghosted input data (red), source and
receiver deghosted input data (green). The receiver notches (at intervals of 5Hz) and source notches
(at intervals of 15Hz) have been filled in.

Using the times computed in section C, we see that:

(1) The events in the left panel of Figure 13 are (from the top) the direct wave G& and its F'S reflection
GOF S the WB primary and its source ghost, the WB primary’s receiver ghost and source/receiver
ghost, the first FSM and its source ghost, and the first FSM’s receiver ghost and source/receiver
ghost.

(2) In the center panel of Figure 13, all events are attenuated except the WB primary and its source
ghost and the first FSM and its source ghost.

(3) In the right panel of Figure 13, all events are attenuated except the WB primary and the first
FSM.

More work is needed here. In Figure 13, why is the right panel biased? (The figure uses the quick-fix
sugain bias=12.)

3.3 Example: SEAM application

Recalling that SEAM has sources at 15m and receivers at 15m and 17m, the first author used
the following procedure to source deghost a sail line consisting of 133 shots: (1) Use P(15m) and
P(17m) to compute dP/dz(16m). (2) Use P(17m) and dP/dz(16m) to receiver deghost at 8m and
10m. (3) Use receiver deghosted P(8m) and P(10m) to compute receiver deghosted dP/dz(9m).
(4) Sort receiver deghosted P(10m) and dP/dz(9m) from CSGs to CRGs, swap source and receiver
coordinates, and use them to source deghost at 2m. (5) Sort source/receiver deghosted P(2m) from
CRGs to CSGs and unswap source and receiver coordinates. (6) Again swap the shot and receiver
z coordinates.

The result is shown in Figure 15. With regard to receiver deghosting, successful deghosting would
correspond to a change in the wavelet shape. In Figure 16 (a window of Figure 15) we see there is
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no source notch to fill; the first source notch is at 44Hz which lies above the source frequency range
(1-30Hz).
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Figure 15: SEAM data, shot 131373: recorded data at 17m (left panel), receiver deghosted at 10m
(middle panel), source and receiver deghosted input data at 10m (right panel). Note the collapsed

wavelets in the middle and right panels.

Figure 16: SEAM data, shot 181373, frequency spectra: red=P at 17m, blue=receiver deghosted
input data at 10m, green=source and receiver deghosted input data at 10m. The first source notch
is at 44Hz, which lies above the source frequency range (1-30Hz). Note the shift of the spectrum

towards lower frequencies (which may be of interest to FWI).

23



Preprocessing M-OSRP11

3.4 Example: Field data

Recalling that the field data have sources at 9m and hydrophones and geophones at 23-25m, the
first author used the following procedure to source deghost a sail line consisting of 374 shots: (1)
Compute dP/dz = iwpV, where p is the density of the reference medium (seawater). (2) Use P and
dP/dz to receiver deghost at 8m and 10.5m. (3) Use receiver deghosted P(8m) and P(10.5m) to
compute receiver deghosted dP/dz(9.25m). (4) Sort receiver deghosted P(8m) and dP/dz(9.25m)
from CSGs to CRGs, swap source and receiver coordinates, and use them to source deghost at 2m.
(5) Sort source/receiver P(2m) from CRGs to CSGs and unswap source and receiver coordinates.

The result is shown in Figure 17. In Figure 18 (a window of Figure 17), the source notch at 83Hz
has been filled in.

In the SEAM data, we have only 17m to work with (the depth of the under cable). Testing showed
best results were obtained by “splitting the difference”, i.e., by receiver deghosting at 8m and 10m
and source deghosting at 2m. Similarly, in the field data, we have only 23-25m to work with so the
first author receiver deghosted at 8m and 10.5m and source deghosted at 2m.
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Figure 17: Field data: hydrophones at 22-25m (left panel), receiver deghosted input data at 10.5m

(middle panel), source and receiver deghosted input data at 8m (right panel). Note the collapsed
wavelets in the middle and right panels. Input data courtesy of PGS.
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Figure 18: Field data, zoomed in on trace 5 in each of the panels in Figure 17: Note the gradual
recovery of the shape of the wavelet: by receiver deghosting (middle trace) and then by both source
and receiver deghosting (right trace). Input data courtesy of PGS.

4 Wavefield separation and source wavelet estimation

4.1 Tutorial

Green’s theorem wavefield separation and source wavelet estimation are based on Weglein and
Secrest (1990), who use the geometry shown in Figure 19. The reference medium is chosen to be
a half space of water plus a half space of air, separated by a free surface. Recall that wavefield
separation is P = Py + P, , where P is the total wavefield measured by the hydrophones, Py is the
reference wavefield (which doesn’t experience the earth), and P is the scattered wavefield (which
does experience the earth).
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Figure 19: Configuration for estimating the source wavelet A(w) (Zhang, 2007, Fig. 2.1). The closed
surface S of integration consists of the measurement surface and the dashed line.
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The key equation is the same as that used for deghosting (equation 2.2) except that a different
Green’s function is used,

/ dSn-[P(r, rs,w)V’GoD(r,r'g,w) — Gg)(r,r’g,w)VP(r, rs,w)],

p— / ]
_ { Po(ry, s, w) if z below cable (4.1)

Py(ry, s, w) if z above cable

where G is a Dirichlet Green’s function constructed (using the method of images) to vanish on
the free surface.

GOD(I', r;,w) = Gg + Ggs
] —(1/4x)(exp (ikRy) /Ry —exp (ikR-)/R-) in 3D
O\ —G/HEY Ry — HSD (kR-)) in 2D

where Ry = |r —ry|, R- = [r — /[, and r; is the mirror image of r above the free surface (Morse
and Feshbach, 1953, § 7.2).

The source wavelet A(w) can be estimated by averaging the reference wavefield divided by a Green’s
function:

N iy Lo, W
Alw) = % 3o Lolrirew) (4.2)

Inside/outside the integration volume is an important concept. The surface of integration S divides
all space into two regions — one inside and one outside the integration volume V. The integral over
S of (PVGEY — GPVP) - 7 gives the field inside (outside) the integration volume due to sources
outside (inside) the integration volume, a result called the extinction theorem (Born and Wolf, 1964,
pp. 101-102). Selecting the integration volume V between the free surface and the measurement
surface (Figure 19) gives the reference wavefield Py (if the observation/prediction point is outside
V /below the cable) or the scattered wavefield Ps (if the observation point is inside V'/above the
cable). An electromagnetic analogy is shown in Figure 20. Sources outside (inside) the integration
volume induce sources on the measurement surface that then create the field inside (outside) the
integration volume (Orfanidis, 2008, pp. 679-681,|pp. 36-37]jackson:1999).
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g outside §
q inside 5

Figure 20: Gauss’s law (Jackson, 1999). The normal component of the electric field E-n is integrated
over the closed surface S. If the charge is inside (outside) S, the total solid angle subtended at the
charge is 4w (zero).

4.2 Example: Synthetic data'

The first author tested his Green’s theorem code using synthetic data provided by ExxonMobil.
(More detail about input data is given in Appendix A.) The input data are shown in Figure 21 and
the output data are shown in Figure 22. Note that the estimated wavelet (blue) is slightly rotated
clockwise relative to the analytic wavelet (red). This rotation can be analytically reproduced as
shown in Figure 23. What causes rotation in the frequency domain (shift in the time domain)? For
a single isotropic source, equation 4.1 says —Py = —A(w)Gy = [ or Aw) = — [ _/G{. If
the prediction point falls on a ghost notch, 1/G{ is truncated by € (in equation 4.2). Truncation
at specific frequencies in the frequency domain becomes a phase shift across all times in the time
domain.

LCourtesy of ExxonMobil.
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Receivers Receivers
0 1200

1000 1000

time (3} time (s)
P_300_700,5u {elip=0,000001) l Y_300_700.5u (clip=0.000000000001)

Figure 21: Pressure wavefield (left), vertical component of particle velocity (right). Data courtesy
of ExxonMobil.
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Analytic in red, estimated from data in blue

Frequency (Hz)

1004

110

50 100 150 200 250

120

130

140

l File rod_2f_avg_13d_win_fFt, su

Figure 22: Analytic wavelet (red), wavelet estimated using Green’s theorem (blue), Fourier transform
of estimated wavelet. Input data courtesy of ExxonMobil.

Unrotated in red, rotated in blue (tau=0.25e-4) Unrotated in red, rotated in biue (tau=-0.5e-4)

Figure 23: The shape of the estimated wavelets can be analytically reproduced via rotation in the
frequency domain (blue = red x exp (—iwT) ).
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4.3 Example: One-sided data

The purpose of Figures 24-27 is to show that the Green’s theorem algorithm can work with one-
sided data (as well as with split-spread data). This was also shown earlier because deep water Gulf
of Mexico synthetic data (SEAM) are split spread, whereas deepwater Gulf of Mexico field data are
one sided. Figures 24 and 25 use a 2D Green’s function. Comparing the center and right panels of
Figure 25 shows that Py computed using Green’s theorem is close to Py computed using Cagniard
de Hoop code. For comparison Figures 26 and 27 use a 3D Green’s function; we can see no difference
relative to the 2D Green’s function.

The Green’s theorem algorithm (equations 2.2 and 4.1) works with either split-spread or one-sided
data because the integrand (PVGy — GoVP) - i is local, as shown in Figures 28 and 29. As we
approach the source, the integrand becomes more narrow.
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Figure 24: Flat-layer model 1V, 2D source, 2D Green’s function: Cagniard de Hoop P at 12m (top
left), Green’s theorem Py 10m below cable (top right) and Ps 10m above cable (bottom).
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Figure 25: Flat-layer model 1V, 2D source, 2D Green’s function: Cagniard de Hoop P at 12m (top
left) and Py 10m below cable (top right), Green’s theorem Py 10m below cable (bottom).
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Figure 26: Flat-layer model 1V, 2D source, 3D Green’s function: Cagniard de Hoop P at 12m (top
left), Green’s theorem Py 10m below cable (top right) and Ps 10m above cable (bottom).
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Figure 27: Flat-layer model 1V, 2D source, 3D Green’s function: Cagniard de Hoop P at 12m (top
left) and Py 10m below cable (top right), Green’s theorem Py 10m below cable (bottom).
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Trace number
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Figure 28: Flat-layer model IV (Cagniard de Hoop code), split-spread data (source above trace 2501),
Py 10m below cable: trace 2501 (top left), trace 3751 (top right), trace 5001 (bottom,).
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Trace number
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5000
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Figure 29: Flat-layer model 1V (Cagniard de Hoop code), one-sided data (source above trace 1), Py
20m below cable: trace 1 (top left), trace 1251 (top right), trace 2501 (bottom).

4.4 Example: Jinlong Yang’s data (nine point sources)

The purpose of Figure 30 is to show that the Green’s theorem algorithm can work with a distributed
source (as well as with a point source). This was also shown earlier because deep water Gulf of
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Mexico synthetic data (SEAM) uses a point source, whereas deep water Gulf of Mexico field data
uses a distributed source (air-gun array).

Figure 30: Flat-layer model, nine collinear 3D point sources, 2D Green’s function (clip=170): re-
flectivity P at 140m (left) and Py at 140m (center), Green’s theorem Py at 170m (right).

4.5 Fourier-Bessel integral

Per Zhigiang Wang (from Fang Liu), we can restate the integral from rectangular coordinates to
polar coordinates: [dy [dx f(z,y,2) = [pdp [dO f(p,0,2). If f(p,0,2) = f(p,z) (azimuthal
symmetry) then [ pdp [dO f(p,0,2z) =2x [ pdp f(p,z) (= 27 [ xdzx f(x,z)). The first author tried
using this form for wavefield separation (Figures 31 and 32) but more work is needed to understand
this integral.

Figure 31: Flat-layer model I, 3D source, 3D Green’s function (clip=300): reflectivity P at 140m
(left), Green’s theorem Py 30m below cable (center) and Py 30m above cable (right).
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100

150

2001

Figure 32: Flat-layer model I, 3D source, 2D Green’s function (clip=18000): reflectivity P at 140m
(left), Green’s theorem Py 30m below cable (center) and Ps 30m above cable (right).
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5 Near-offset extrapolation

5.1 Example: Synthetic data®

Near-offset extrapolation using Green’s theorem is discussed in chapter 4 of Ramirez (2007) and
chapter 2 of Zhang (2007). The first author tested his Green’s theorem code using synthetic data
provided by ExxonMobil. (More detail about input data is given in Appendix A.) The input data
are shown in Figure 21 and the output data in Figure 33. Next, the data were presented with a
near-offset gap, and the first author tried to interpolate Ps across the gap (Figure 34). How do we
explain the lack of interpolation across the gap? Equation 2.1 says there’s no support for near-offset
extrapolation from measured data; the support in the gap is only from the Green’s function. In
other words, Green’s theorem assumes P and VP are known on the measurement surface, but the
gap consists of P = 0 and VP = 0. This was the clue that led to the finding that the integrand
in the Green’s theorem surface integral (equations 4.1 and 2.2) is local (as shown in Figures 28 and
29).

tine ine (s
L File ro3_2_t_93c.su (no gap, z=-2 m, clip=0.000001) | file ro3_2F_t_2Be.su (no gap. z=-6 m, £1ip=0,000001)

Figure 33: Reconstructed cables 4m above (left) and at towed cable (right). Input data courtesy of
ExxonMobil.

2Courtesy of ExxonMobil.
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ine (s
[ N P_300_700_nutedd75_E28.5u (clip=0,000001) | File ro3_2f_t_20a.su (gap=250 m, z=-2 m, clip=0,000001)

Figure 34: Pressure wavefield with 250m gap (left); attempt to fill the gap 4m above the towed cable
(right). Input data courtesy of ExzonMobil.

6 FSM elimination with and without Green’s theorem preprocessing

M-OSRP’s theory of free-surface-multiple elimination (FSME) is derived in Carvalho (1992). This
derivation has been included in this Annual Report (in Appendix I) because the first author is in
the process of running M-OSRP’s 3D FSME code with and without the 3D Green’s theorem code
(using synthetic and field data) to test the hypothesis that deghosting and source wavelet estimation

by the 3D Green’s theorem code will enable more competent prediction of free-surface multiples by
the 3D FSME code.

6.1 Green’s theorem output — FSM removal input

Green’s theorem output is in the same configuration as its input (one or more towed streamers).
However, the free-surface-multiple prediction algorithm requires coincident sources and receivers as
input. Green’s theorem output is transformed into FSME input using several Seismic Unix scripts.
(1) Interpolate data so that the distance between shots equals the distance between receivers (the
second author’s scripts interp.sh and interp by channel.sh).

(2) Assign station numbers to sources and receivers (Andre Ferreira’s script stationAssign.sh).

(3) Use reciprocity between sources and receivers to compute the opposite side of shots, i.e., convert
one-sided data into split-spread data (Andre Ferreira’s script reciprocity.sh).

(4) Replace source and receiver = coordinates (sx and gx) by source and receiver stations (sstat
and gstat) and make sy = gy = 0 (Andre Ferreira’s script hdr.sh).

(5) Select blocks, i.e., if selected block < offset, we don’t need to pad, but if selected block > (longer)
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than offset, we need to pad traces (Figure 59) (Andre Ferreira’s script selectBlock.sh).

(6) Fill shots with all required offsets, i.e., each shot should be surrounded by zero padding (Andre
Ferreira’s script force_pad4.sh).

(7) To smooth the transition from the original data to the padded null traces, taper the amplitudes
of the last few traces of original data (Andre Ferreira’s script tapering.sh).

We wanted to show the results of free-surface-multiple removal with and without Green’s theorem
preprocessing but found that, in the absence of any preprocessing, free-surface-multiple removal gives
nonsensical results. Per Andre Ferreira, as a minimum the direct wave G must be removed from the
data. Thus, we will compare (a) free-surface-multiple removal with the direct wave removed (and
using a default estimate of the source wavelet, i.e., a spike) and (b) free-surface-multiple removal
with the reference wave G¢ + G removed and using the source wavelet A(t). The first author is
currently in the process of testing using reflectivity data, OASES data, and Kristin data. (More
detail about input data is given in Appendix A.)

6.2 Flat-layer model III without and with preprocessing

We use for input synthetic data created using reflectivity code® and flat-layer model III. The details
are shown in Appendices J.1 and J.2, and the results are shown in Figures 35, 36, and 37. In
Figure 37, more work is needed to interpret the right panel.

3Courtesy of BP.
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Figure 35: Flat-layer model 111, reflectivity code, P at 151m. The left panel shows the data, and the
right panel shows the same data after source and receiver deghosting. The events in the left panel are
(for increasing time) G4 and G (first pair), WB primary and WB primary source ghost (second
pair), WB primary receiver ghost and WB primary source/receiver ghost (third pair), 1st FSM and
1st FSM source ghost (fourth pair), and 1st FSM receiver ghost and 1st FSM source/receiver ghost

(fifth pair). The events in the right panel are (for increasing time) WB primary (just above 0.4s)
and 1st FSM (just above 0.8s). All other events have been attenuated.

42



Preprocessing M-OSRP11

Figure 36: Flat-layer model III, reflectivity code, P at 151m. The left panel shows the data before
configuration transformation (shot 1 of 301). The events are the same as those in the left panel of
Figure 35. The middle panel shows the data after configuration transformation (shot station 1 of
901). The right panel shows the output of the free-surface-multiple prediction code (shot station 1
of 901). The prediction code seems to think (without deghosting) that the second through fifth pairs
of events are FSMs.

Time ()

temp_sail_line_v3F_u2_iarhbft FSPRED.su

Figure 37: Flat-layer model III, reflectivity code, P at 151m. The left panel shows the data before
configuration transformation (shot 1 of 301). The events are the same as those in the right panel
of Figure 35. The middle panel shows the data after configuration transformation (shot station 1 of
901). The right panel shows the output of the free-surface-multiple prediction code (shot station 1
of 901).

6.3 Elastic model 1 with preprocessing

OASES data (see section A) were modified as follows: (1) traces were time padded to get finer
sampling in w, (2) data were converted from one sided to split spread to avoid truncation at zero
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offset, (3) data were receiver deghosted, and (4) data were source deghosted. Then a window (traces
501-801) was taken and replicated to form a sail line with 301 shots x 301 receivers. The result is
shown in Figure 38.

+ +/OASES_data_preprocess/tenp_sail_line_roS_0215e_unsuap_301x301.5u with ep from 1 to 301

Figure 38: Source and receiver deghosted P at 25m. Shots 1-301 by 50.

The processing steps are shown in Appendix J.3.

Running the internal-multiple attenuation code is a work in progress.

6.4 Elastic model 2 with preprocessing

OASES data (see section A) were modified as follows: (1) traces were time padded to get finer
sampling in w, (2) data were converted from one sided to split spread to avoid truncation at zero
offset, (3) data were receiver deghosted, and (4) data were source deghosted. Then a window (traces
501-801) was taken and replicated to form a sail line with 301 shots x 301 receivers. The result is
shown in Figure 39.
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+ /ORSES_data_preprocess /tenp_sail_line_roS_0215F_unsuap_301x301,5u with ep from 1 to 301

Figure 39: Source and receiver deghosted P at 25m. Shots 1-301 by 50.

The processing steps are shown in Appendix J.4.
Running the internal-multiple attenuation code is a work in progress.
6.5 Field data* without and with preprocessing

The details are shown in Appendices J.5 and J.6, and the results are shown in Figures 40-42. In
Figure 41, more work is needed to debug the left-hand side of the right panel.

4Courtesy of Statoil ASA, Petoro, ExxonMobil, Eni, Total, and Schlumberger/WesternGeco.

45



Preprocessing M-OSRP11

Trace number
150 200

25
20
15

10

-10
-15
-20

-25

Linel_cab4_DGF_processed_newcdp_straight_v4B2.su (fldr 1451)

Figure 40: Field data, P at 25m. Data courtesy of Statoil ASA, Petoro, ExxonMobil, Eni, Total,
and Schlumberger/WesternGeco.
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Figure 41: Field data, receiver deghosted at 15m (left), source and receiver deghosted at 15m (right).
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Work in progress Work in progress

Figure 42: Field data, input to FSM prediction code (left), output of FSM prediction code (right).
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7 RTM

7.1 Tutorial

Green’s theorem reverse time migration (RTM) is based on Weglein et al. (2011a) and Weglein
et al. (2011b). Green’s theorem assumes a closed surface S to define inside/outside a volume
V. For deghosting and wavefield separation, we assume V is a hemisphere with the flat surface
coinciding with the measurement surface (Figures 2 and 19). Taking the radius of the hemisphere
to infinity and invoking the Sommerfeld radiation condition means that contributions to the surface
integral in equation 2.1 go to zero except on the measurement surface (Zhang, 2007, chapter 2). For
2D RTM we assume that V is a rectangle in the z, z plane with the upper surface coinciding with
the measurement surface (Figure 43). We assume we can find a Green’s function such that it and
its normal derivative vanish on the other three sides of the rectangle.

(4,B) (L4, B)

(A; LZ) (Llr LZ)

Figure 43: Two-dimensional finite-volume model.

RTM modifies Figure 1 (see Figure 44) because RTM assumes we know the actual medium (green),
whereas the inverse scattering series does not make this assumption (yellow).
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Figure 44: Classification of marine events and how they are processed.

Wilberth Herrera and the first author try solutions of the form (note that in this section and in
section 7.2, the equation numbers refer to those in Weglein et al. (2011b)):

G(r',r,w) = A)X (2 Z(2) + Gp(r ,r,w), (42)
Gu(r,r,w) = A(r)X (2)Z(z"), (43)
with the boundary conditions that G and dG/On vanish at 2’ = A, 2/ = Ly, and 2’ = L, i.e.,
at 7' = AG=0and —9G/9z' =0, (44)
at 2/ = Ly G =0 and 0G/02 =0, and (45)
at 2’ = L1 G =0 and 0G /02’ = 0. (46)

We assume the wavefield is known (measured) at z’ = B. Substituting (43) into (V'2 + k?)Gy =0
gives:

0= & + ” + k) X(2)Z(¢)
“\os2 T 922 v)els

50



Preprocessing M-OSRP11

= X"(2Z(Z) + X (2" Z"(Z) + K* X (") Z(2)
_ X”(SL‘/) Z//( )

2
= Xw) 2 "

0=2"(2)+ \2Z(¢)
Z(2') = C1e™ 4 Coe™™ (47)
N v 2 _ )2 /
0=X"(z") + (k" = X)X (2")
=u?
X(a') = Cse™™ + Cue™™, (48)

where y? <= X(2') and \? <= Z(2'). We assume k? > A2, i.e., u? > 0, so as to get oscillating
solutions and hence equation 48.

The boundary conditions on the left are G(A,2') = 0 and G (2/,2")]|v=a = 0, on the right
G(L1,2") =0 and Gy (2',2")| =1, = 0, and on the bottom G(z’, L) = 0 and G,/ (2/,2)| .=, = 0.
Substituting these boundary conditions into equation 42 gives:

0=G(A,7,2,2) = Ax)X(A)Z () + Gp(A, 2, z,2), (49)
oG dX 0Gp

0= (@', 2 2, 2)|=a = A(r r) (@ &) w=aZ () + 5/ - (@22, 2)|w=a,  (50)
0=G(L1,7,2,2) = A(r)X(L1)Z(2") + Gp(L1, 7 x,2), (51)

oG dX oG
0= o ,(I 4 y L Z)|J1’ Ly _A( )dl‘/ (x/)’x’:L1Z(Z/) o f(xlvzlvxvzﬂx’ilzm (52)
0=G(, Lay,x,2) = A(x) X (") Z(L2) + Gp(2', Lo, z,2), (53)

0G dz oG
0= 000t 2 0, 2oy = AOIX @) D (Nlrm, + NP a2, (59

Equations 55-61 are no longer needed. We have six boundary conditions and seven unknowns: Cf,
Cy, C3, Cy4, A, pu, and A(r). The seventh boundary condition is to be determined (perhaps by
renormalization).

We substitute equations 47-48 into equations 49-54. We also need expressions for Gp, 0Gp /02,
and dGp/d7'. In 2D with no free surface, Gp(r ,r,w) = —(i/4)H, (kR+) where Ry = |r — /|
and H(()l) is the zeroth-order Hankel function of the first kind (Morse and Feshbach, 1953, § 7.2).
Check: For Ry #0

(V'2 4+ k) (Gy +Gp)

(V2 + k)G +(V'? + k*)Gp
N—_———
=0

0? 0? —i
_ (W + st k2> ZHg”(mm
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=1 L CHO kROE D ai,<—H§”<kR+>k e S
——
—(z—a')/ R+ —(2—%")/R+
=i (0 1) k(m’ —a —2') 2 7(1)
=7 (3 ; <H (kRy)——— > ( kR+ R, ) +k“H, (kR+)>
:—ZZ (;(H((]l)(kR+) ( )(kR+))( ) (k(mR_x>> H(l)(kR )k(R+(—1)—(SU —;i)(_(x_$)/R+))

-2)\? 1) —(z=2"(=(z—=7
+%<Hél>(kR+)—HS)(km))(—l) (’<7<2R+>> 4 HO (e, ) D = ( Ri)(( )/R.))

+ K2 H{ (kR,.))

. 2 / 2
—1 (1) 1 (klx—2)\" [(k(z—2) 9
= | H R (R+ )

—k2

HO (R~ (2R 4 (0 — ') + (= — 2)?)

R

ey ((52) ()

—k2

—1 1 k 1
T (R0 8+ Y ) g (12 - 1))

2
(ZHSI kR+)—RﬁH( J(kRy) +

K P HO(kR, )>

~ \

koo
=—— |-——=—H
4 R+ 1 (kR‘F)

k) (1)
+?(H2 (kRy)+ Hy ' (kR4))

~.

2/(kR1)H" (kRy)

S E 0GR+ 2 g0 gR,)
4 R, ! 2 kR,

where we used H}S' z) = Jy(2) + 1Y, (z) (Abramowitz and Stegun, 1965, equation 9.1.3), J)(z) =
—J1(z) and Y{j(2) = —Y1(2) (Abramowitz and Stegun, 1965, equation 9.1.28), and Jj(z) = (1/2)(Jo(z)—
Ja(2)) and Y{(z) = (1/2)(Yo(z) — ( )) (Spiegel, 1968, equation 24.18). Hence Hé(l)( )= H(1
and H{'Y(2) = (1/2)(H" (2) - H.

a ¢ function.

~

(2)
- ( )). For Ry — 0, Y1(kRy) — —o0; therefore, Gp behaves like
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Hence we can write

4
O0Gp _ k(x —2') (1)
ox! - R+ Hl (kR-F)
6Gp k(z — Z/) (1)
H
92! R+ 1 (kR+)

and equations 49-54 become

0 = A(r)(Cse™ + Cpe ) (Cre + Coe ) — %Hé”(km) (49)

where R4 = \/(g; — A2+ (2 — 22,
k(z - 4)

o H{ (kRy) (50
+

0= A(r)(CseMip + Cue™ 4 (—ip))(Cre™ + Che ™) +

where Ry = \/(;p — A)2 + (Z _ Z/)2’
0= A(x)(Coe™t + Cye™#1)(Cre + Coe™™) = ZHV (kR2) (1)

where Ry = \/(z — L1)2 + (2 — /)2,

0 = A(r)(Cye™1ip + Cae= ™ (—ip)) (Cre™ + Coe=™) + ]‘:(”J];L”Hf”(km) (52)
+

where Ry = \/(z — L1)2 + (2 — 2/)2,
0= A(x)(Coe™ + Cue™ ) (CreM + Coe™™2) — ZHV(kRy) - (53)

where Ry = /(z — 2/)2 4 (2 — Lp)?, and

., ., . 4 k(z — L
0 = A(r)(Cse™™ + Cue ') (Cre™2iN + Coe 2 (—i)N)) + ('ZRZ)H§1>(/<;R+), (54)
+

where Ry = \/(z — 2/)2 + (2 — Ly)2.

7.2 Code

Coding of equations 49'-54" is a work in progress by Wilberth Herrera and the first author.

7.3 Example: Flat-layer model

This section to be written when the code is ready for use.

8 Conclusions

We have implemented Green’s theorem-derived source and receiver deghosting for the first time
on deepwater Gulf of Mexico synthetic and field data. Testing to date has shown that the algo-
rithm works with positive and encouraging results. Green’s theorem-derived deghosting has several
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qualities that separate it from previous deghosting methods. For example, Green’s theorem pre-
processing for source and receiver deghosting, wavefield separation, etc., and ISS processing for
multiples, imaging, etc., comprise a consistent set of methods in which the preprocessing works in
cooperation with the methods it is meant to serve.
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Appendices

A Input data

A.1 Elastic model 1

This is the model in (Li, 2011, Fig. 3.13) modified here by Jinlong Yang so that the model can be
used with OASES code.

Parameter Value
Number of shots 1
Number of channels per shot 801
Number of samples per trace 1024
Time sampling oms
Record length 5.12s
Shot interval n.a.
Group interval 10m
Shortest offset Om
Gun depth 30m
Streamer depth 140m and 150m

1 towed over/under streamer

dP/dz ~ (P(150m) — P(140m))/10m

A.2 Elastic model 2

This is the model in (Li, 2011, Fig. 3.16) modified here by Jinlong Yang so that the model can be
used with OASES code.
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Parameter Value
Number of shots 1
Number of channels per shot 801
Number of samples per trace 1024
Time sampling 5ms
Record length 5.12s
Shot interval n.a.
Group interval 10m
Shortest offset Om
Gun depth 30m
Streamer depth 140m and 150m

1 towed over/under streamer

dP/dz ~ (P(150m) — P(140m))/10m

A.3 Field data: Deep water Gulf of Mexico®

Parameter Value
Number of shots 374
Number of channels per shot 960
Number of samples per trace 3585
Time sampling 4ms
Record length 14.34s
Shot interval 32m
Group interval 12.5m
Shortest offset 112m
Gun depth 9m
Streamer depth 23-25m

1 dual-sensor towed streamer

dP/dz = iwpV,, , where p is the density of the reference medium (seawater)

5Courtesy of PGS.
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A.4 Field data: North Sea®

Parameter Value
Number of shots 694
Number of channels per shot | shallow cable 478
middle cable 542
deep cable 606

Number of samples per trace 2301
Time sampling 4ms
Record length 9.204s

Shot interval ~18.76m
Group interval ~12.55m
Shortest offset 59m

Gun depth Tm
Streamer depth shallow cable 9m

middle cable 18m
deep cable 25m

1 towed over/under /under streamer
dP/dz ~ (P(25m) — P(18m))/7m etc.

A.5 Synthetic data’

Parameter Value
Number of shots 1
Number of channels per shot 1201
Number of samples per trace | 11340
Time sampling 0.46ms
Record length 5.2164s
Shot interval n.a.
Group interval 5m
Shortest offset Om
Gun depth 2m
Streamer depth 6m

1 dual-sensor towed streamer

dP/dz = iwpV, , where p is the density of the reference medium (seawater)

SCourtesy of Statoil ASA, Petoro, ExxonMobil, Eni, Total, and Schlumberger /WesternGeco.
"Courtesy of ExxonMobil.
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A.6 Synthetic data: Flat-layer model IV and Cagniard de Hoop code®

Parameter Value
Number of shots 1
Number of channels per shot 5001
Number of samples per trace 4601
Time sampling 1ms
Record length 4.6s
Shot interval n.a.
Group interval 1m
Shortest offset Om
Gun depth 2m
Streamer depth shallow cable 6m
deep cable 12m

Free surface, water bottom at 300m, 1D constant-density acoustic earth (p = 1.667g/cm?, ¢ =
2250m/s)

2D source, Ricker wavelet with peak amplitude at 25Hz

1 over/under towed streamer

dP/dz ~ (P(12m) — P(6m))/6m

A.7 Synthetic data: Flat-layer model I and reflectivity code’

Parameter Value
Number of shots 1
Number of channels per shot 801
Number of samples per trace 1500
Time sampling 4ms
Record length 6s
Shot interval n.a.
Group interval 6.25m
Shortest offset Om
Gun depth 30m
Streamer depth shallow cable 140m
deep cable 145m

Free surface, water bottom at 300m, 1D constant-density acoustic earth (p = 1.667g/cm?, ¢ =
2250m/s)

3D source with source wavelet trapezoid 1, 20, 25, 60Hz

1 over/under towed streamer

dP/dz ~ (P(145m) — P(140m))/5m

$Written by Jingfeng Zhang.
9Courtesy of BP.
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A.8 Synthetic data: Flat-layer model II and reflectivity code®

Parameter Value
Number of shots 1
Number of channels per shot 1601
Number of samples per trace 1500
Time sampling 4ms
Record length 6s
Shot interval n.a.
Group interval 6m
Shortest offset Om
Gun depth shallow 50m
deep 52m
Streamer depth shallow cable 150m
deep cable 151m

Free surface, water bottom at 300m, 1D constant-density acoustic earth (p = 1.667g/cm?, ¢
2250m/s)

3D source with source wavelet trapezoid 1, 20, 25, 60Hz
1 over/under towed streamer
dP/dz ~ P(151m) — P(150m)

A.9 Synthetic data: Flat-layer model III and reflectivity code®

Parameter Value
Number of shots 301
Number of channels per shot | 301
Number of samples per trace | 1500
Time sampling 4ms
Record length 6s
Shot interval 18m
Group interval 6m
Shortest offset Om
Gun depth 30m
Streamer depth 150m

Free surface, water bottom at 300m, 1D constant-density acoustic earth (p = 1.667g/cm?, ¢ =
2250m/s)

3D source with source wavelet trapezoid 1, 20, 25, 60Hz
1 over/under towed streamer
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A.10 Synthetic data: SEAM deepwater Gulf of Mexico model

Parameter Value

Number of shots 133
Number of channels per shot 661
Number of samples per trace 2001
Time sampling 8ms
Record length 16s

Shot interval 150m

Group interval 30m
Shortest offset Om

Gun depth 15m

Streamer depth shallow cable 15m
deep cable 17m

Free surface, variable water depth, 3D variable density acoustic earth
3D source, frequency of source: 1-30 Hz

661 over/under towed streamers each with 661 receivers

Distance between towed streamers: 30m

dP/dz ~ (P(17m) — P(15m))/2m

B Receiver deghosting: Supplemental tutorial

Following chapter 2 of Zhang (2007), to separate upward-moving and downward-moving waves, we
define the following (see Figure 2):

(1) a reference medium consisting of a whole space of water,

(2) a perturbation oy, (r) that is the difference between the reference medium (water) and the upper
part (air) of the actual medium,

(3) a perturbation quearen(r) that is the difference between the reference medium (water) and the
lower part (earth) of the actual medium,

(4) an integration volume V' consisting of a hemisphere bounded from below by the measurement
surface,

(5) a free surface (air-water interface) above the measurement surface (i.e., inside V),

6) a source at ry on or above the measurement surface (again inside V'),

(

7) a causal Green’s function G (r,r’,w) in the reference medium,
( 0
(
(

Y g?
8) ko = w / Co,
9) the prediction/observation point I‘fq € V lying on or below the free surface, and
(10) S as the hemisphere’s surface.

Substituting the above and the partial differential equations for the pressure wavefield P and causal
Green’s function GSr into Green’s theorem gives

’ g0 7 go

% nds - [P(r,rs,w)VG (r,1),w) — GF (r, 1), w)VP(r,ry,w)]
S
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_ /Vdr[lg(r,rs,w)V’2G(T(r,r’g,w) G (1), w) V2P (r, vy, ) | (B.1)
\_V_/ — v
7]{?(2)G3>+6(I'71‘g) _k3P+A(W)5(r_rs)+k(2)(aair+aearth)P

_ / dr[P(r, 4 w)0(r — 1) = P(r, 1, )k2G (1,1 @) + G (1,1, w) k2B (r, 14, )
1%

rTgo ’T g

P(r/g Tow) cancel

_kg(aaiT(r) + aearth(r))ﬁ(r, I‘S,(,u)G(')|r (r, r;,w)
—_———

0

— A(w)d(r — 1) G (r,1},w)]

K(W)G(J)r (1'5 ,I‘; 70.))

= P(r;,rs,w)—/ dr k3 vair (r) P(r, 15, w) G (1, 1), w) — A(w) G (rs, 1), w)
1%

N—_———
Gar(r;,rs,w)
= P(r),r,w) - / dr G (v, 1)), w) kg i (v) P(r, 15, w) — A(w)Gy (), 15, w). (B.2)
\%

The physical meaning of equation B.2 is that the total wavefield at r’g can be separated into three
parts:

(1) the direct wave that travels from the source at rs to the prediction/observation point ry (third
term on the right-hand side),

(2) the pressure field whose last motion is downward from the free surface (second term on the
right-hand side), and

(3) the pressure field whose last motion is upward from the earth (the entire right-hand side).
Hence, equation B.2 is the receiver-deghosting algorithm.

Letting the radius of the hemisphere go to oo, the Sommerfeld radiation condition gives
/ ndS - [ﬁ(r,rs,w)VGa’(r,r;,w) -Gy (r, r’g,w)Vﬁ(r,rs,w)]
m.s.

= ﬁ);%(rgar87w)7 (B.3)

where P (r,rs,w) and Vﬁ(r, rs,w) are respectively the hydrophone measurements and their spatial
derivatives (in the frequency domain).

B.1 Green’s theorem vs. a single receiver

To be written.

B.2 Additional considerations
What if we have an extended (vs. a point) source? We modify equation B.1, in which we assume

(as for a point source) the distributed source p(r,rs,w) is in V' (above the measurement surface and
below the free surface).
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?é nds - [P(r,r,,w)VGE (r,r),w) — G (r, v/, w)VP(r,ry,w)]
S

’rT g ’rT g
_ /V dr[P(r, 1y w) V3G (1,1 w) —Gi (v, 1), w) V2 B(r, 14, ) ]
— —
7]?(2)G3_+6(I‘71‘iq) _k%P+p~(rvrS1w)+k(2)(aair+aearth)P
= /V dr[P(r,rs,w)8(r — ry) —P(r, rs, w)kEGY (r, Ty, w) + G (r, r;,w)k‘%ﬁ(r, rs,w)
ﬁ(r/gm&w) cancel
— k3 (air (T) + tearen (1)) P(r, 15, w) Gy (1,10, w) (B.4)
0
—p(r, v, w)G{ (r, 1), w)]

= ﬁ(r;,rs,w)—/drk%aair(r)ﬁ(r,rs,w)Gg(r,r’g,w)—/ drﬁ(r,rs,w)Gar(rs,rfq,w).(Bﬁ)
%4 \%4

The interpretation of equation B.5 is the same as that for equation B.2.

We note the following about equations B.3 and B.5.

(i) P(r,rs,w) and VP(r,ry,w) in the integrand are data. The derivation makes no assump-
tions about earth properties (elastic or inelastic, absorptive, dispersive, etc.). G(J)r (r,r’g,w) and
VG (r, r’g, w) are analytic because we choose a homogeneous reference medium.

(ii) In equation B.4, ceqrtn(r), the perturbation containing earth properties, does not contribute
because the integral is over V' (by construction the earth is below V).

(iii) We have shown that, for a source in V', the integral is valid for both a point source and an
extended source.

(iv) Testing on deepwater Gulf of Mexico data (SEAM and field) demonstrates that the integral

works for acoustic and actual earth, and for point and extended sources.
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B.3 January 6, 2012 letter from SEG

Society of Exploration Geophysicists

The international society of applied geophysics Ppresident

BOB HARDAGE

c/o Bureau of Economic Geology
University Station, Box X

Austin, TX 78713

United States
bob.hardage@beg.utexas.edu

6 January 2012

James Davis Mayhan Jr.
15622 Four Leaf Dr.
Houston, TX 77084-3665

Dear James Davis Mayhan Jr.:

Congratulations on your excellent technical presentation titled, Green's theorem derived methods for
preprocessing seismic data when the pressure P and its normal derivative are measured, presented at the 2011
SEG Annual Meeting in San Antonio, Texas. Your research and preparation were also noticed by your fellow
SEG members, who judged your paper, ranking it in the top 31 papers presented at the San Antonio meeting.

It is technical presentations such as yours the SEG Executive Committee would like to offer to its international
Sections and Associated Societies. Throughout the coming year, you might find you have the opportunity to
visit an area where one of these Sections or Associated Societies is located. If so, the SEG Executive Committee
strongly encourages you to contact the Section or Associated Society in the local area you are visiting and
extend to them an offer to present your paper. Enclosed is a list of Sections and Associated Societies affiliated
with the SEG.

As you might surmise, there is no financial assistance being offered to the speakers from either the SEG or the
affiliated Section/Associated Society for these technical presentations.

For your information, we have also enclosed a copy of the letter that was sent to SEG Sections and Associated
Societies.

Once again, thank you for your excellent contribution to the 2011 Technical Program and for considering
participating in the exchange of geophysical technology, in the manner described above. | appreciate the time
and consideration you are giving this initiative, and if you have any questions or suggestions, please do not
hesitate to contact me.

W'4, %r& 4 .
Bob Hardage

SEG President 2011-2012

Sincerely,

SEG BUSINESS OFFICE / P.O. BOX 702740 / TULSA, OK USA 74170-2740 / PHONE: +1-918-497-5500
STREET ADDRESS: 8801 S. YALE / TULSA, OK USA 74137-3575 / FAX: +1-918-497-5557
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C Computing travel times in Figure 13

Computing the event times for the data in the left panel of Figure 13 (source at 50m, cable at 151m,
water bottom at 300m) gives the following:

Event Distance (m) Time (s) | Event
Gé 151-50 067 1 over
GEs 50+151 134 1 under
WB primary (300-50)+(300-151) .266 2 over
Source ghost 50+300+(300-151) 333 2 under
Receiver ghost (300-50)+300+151 467 3 over
Source/receiver ghost | 50-+300+300+151 534 3 under
Ist FSM (300-50)+300%2+ (300-151) | .666 1 over
Source ghost 50+300*3+(300-151) 733 4 under
Receiver ghost (300-50)+300*3+151 867 5 over
Source /receiver ghost | 504+300*4+151 934 5 under

Computing the event times for the data in the middle panel of Figure 13 (source at 50m, cable at
20m, water bottom at 300m) gives the following:

Event Distance Time | Event
Gé 50-20 020 | 1 over
GF3 5020 047 | 1 under
WB primary (300-50)+(300-20) 353 | 2 over
Receiver ghost (300-50)-+300+-20 380 | 2 under
Source ghost 50-+300+(300-20) 420 | 3 over
Source/receiver ghost | 50+300-+300+20 447 | 3 under
1st FSM (300-50)+300*2+(300-20) | .753 | 4 over
Receiver ghost (300-50)+300*3+20 780 | 4 under
Source ghost 50-+300*3+(300-20) .820 | 5 over
Source/receiver ghost | 50+300*4+-20 .847 | 5 under

Computing the event times for the data in the right panel of Figure 13 (source at 20m, cable at
10m, water bottom at 300m) gives the following:

Event Distance Time | Event
Gé 20-10 007 | 1 over
GEs 20410 .020 | 1 under
WB primary (300-20)-+(300-10) 380 | 2 over
Receiver ghost (300-20)+300+10 393 | 2 under
Source ghost 20-+300+(300-10) 407 | 3 over
Source/receiver ghost | 20-+300-+300+10 420 | 3 under
Ist FSM (300-20) 1 30072 1 (300-10) | .780 | 4 over
Receiver ghost (300-20)+300*3+10 793 | 4 under
Source ghost 20-+300*3+(300-10) 807 | 5 over
Source /receiver ghost | 204+300*4+10 .820 | 5 under
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D Using reciprocity in source deghosting

D.1 Problem statement

Can we show that, if we have over/under towed streamers, reciprocity requires shots at two different
depths (Figure 45)7?

3

Figure 45: The problem statement per Dan Whitmore (July 8, 2011).

D.2 Background

For simplicity assume all upward reflections occur at the water bottom. Then we have the following
ghosts in Figure 45:

Ghost Path

Receiver 2+ WDB — FS — 2/

zs = WB = FS — 2 + A7

2+ Az > WDB—= FS = 72

2+ Az - WDB — FS — 2 + A2
Source-receiver | z, -+ FS - WB — FS — 2/

z2e = FS —-WB = FS — 2 + A7
2+ Az —FS—-WB—=FS — 2
2+ Az - FS > WDB = FS = 2 + A
Source 2s —+ FS —WB — 2/

zs = FS - WB — 2 + A7

2+ Az —FS - WB =72

2s+ Az — FS - WDB — 2 + A%

Receiver deghosting removes waves down-going at the receivers and so removes receiver ghosts and
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source-receiver ghosts. Now use the following trick. Sorting from CSGs to CRGs and swapping
source and receiver coordinates puts the “sources” above the ‘“receivers”, thereby making the source
ghosts look like receiver ghosts. Running the Green’s theorem code a second time removes these
“receiver” ghosts.

D.3 First pass

For simplicity, use SEAM depths on the first pass, i.e., sources at 15m and receivers at 15m and
17m.

Step 1 Use the over/under receivers to compute

P P(17m) — P(15m)

— (16 ~
7 (16m) 17m — 16m

Step 2 Use P(17m) and dP/dz(16m) to compute receiver deghosted “pseudo cables” at 8m and
10m. The Green’s theorem code checks that dP/dz has the same number of traces as P has,
and then uses source and receiver coordinates in the P trace headers to compute the Green’s
functions in the integrand. We have only 17m (depth of the deeper towed streamer) to work
with. Testing has shown we get best results when we “split the difference”, i.e., when we
receiver deghost at about halfway between the deeper towed streamer and the free surface
(with the caveat that we’re above the sources), and then we source deghost at or near the free
surface.

Step 3 Use the receiver deghosted pseudo cables to compute receiver deghosted dPr/dz:

dPr _ Pr(10m) — Pg(8m)

dz (9m) =~ 10m — 8m '

Step 4 Sort the receiver deghosted Pr(10m) and dPg/dz(9m) from CSGs to CRGs and swap
source and receiver coordinates; this gives “sources” at 10m, “receivers” at 15m, and dPr/dz
at 15m.

Step 5 Use Pr(15m), dPr/dz(15m), and reciprocity to source deghost at 2m.

Step 6 Sort the source and receiver deghosted Psgr(2m) from CRGs to CSGs and again swap source
and receiver coordinates; this gives sources at 2m and receivers at 10m.

Whitmore’s argument is that point sources and point receivers satisfy reciprocity, but wavefield
derivatives don’t, i.e.,

dPr Pr(10m) — Pr(8m)
dz (9m) = 10m — 8m

is not the same as
as S(15m) — S(13m)
—(14 ~
7 14m) 15m —13m

assuming that SEAM had sources at 13m as well as at 15m.
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D.4 Second pass

Now try a more general notation. Suppose we have sources at depths z; and zs + Az and receivers
at depths 1 and ro (where r1 < r2) (Figure 45).

Step 1 Use the over/under towed streamers to compute

AP (ri+r2\ P(rq) — P(r1)
dz 2 - ro—1r1

Step 2 Use P(r2) and dP/dz((r1 + r2)/2) to compute receiver deghosted pseudo cables at depths
2 and 2/ + Az’. We have ry to work with (depth of the deeper towed streamer). Testing has
shown that we get best results when we “split the difference”, i.e., when we receiver deghost at
about halfway between ro and the free surface (with the caveat that we're above the sources),
then we source deghost at or near the free surface. Hence we choose FIS < 2/ < 2/ + Az < z,.

Step 3 Use the receiver deghosted pseudo cables to compute receiver deghosted dPr/dz:

/ AN /
dPR <Z/+ ;AZ’) - PR(Z +AZ) PR(Z)

dz N Az '

Step 4 Sort the receiver deghosted Pr(z'+Az") and dPgr/dz(2'+1/2 AZ') from CSGs to CRGs and
swap source and receiver coordinates; this gives “sources” at 2’ + Az, “receivers”’ at z; + Az,

and dPg/dz at zs + Az.

Step 5 Use Pr(zs + Az), dPr/dz(zs + Az), and reciprocity to source deghost at z” where 2" is at
or near the free surface, i.e., F'S < 2" < 2.

Step 6 Sort the source and receiver deghosted Psgr(z”) from CRGs to CSGs and again swap source
and receiver coordinates; this gives sources at z” and receivers at z + Az.

Whitmore’s point is that taking derivatives at A in the receiver coordinates is not the same as taking
derivatives at B in the source coordinates (Figure 45).

D.5 Discussion

The integral used in Green’s theorem deghosting (equation 2.2) assumes an infinitely long cable with
an infinite number of receivers separated by infinitesimal distances. The code approximates this
integral with a sum over a finite-length cable with a finite number of receivers separated by finite
distances. Consider Figure 45. The integral in equation 2.2 cares about vertical (not horizontal)
derivatives so the question is whether the difference in depth between A and B is significant. The
difference in taking derivatives at A vs. taking them at B is therefore the vertical path difference
2s + 1202z — (2 +1/2A%) = 2z, — 2/ + 1/2 (Az — AZ'), which is O(2m) (using field data depths
and assuming Az = 5m). This difference is small in deep water but may become non-negligible in
shallow water.
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T
2~ 7
Figure 46: Reflection of source ghosts at dipping water bottom.

Can dipping reflectors affect this vertical path difference? The shortest path followed by source
ghosts is the second Source Ghost in the above table, and the longest path is the third Source
Ghost in the above table. These two paths impinging on a reflector with dip 6 will see a relative
change of tan (7/2 — ¢ +60) = Apath/Az or Apath = Aztan(7/2 — ¢ + ) where ¢ is the dip
of the path leaving the source (Figure 46). (Check: For vertical reflection (¢ = 7/2) from a
flat water bottom (6 = 0), we have Apath = Aztan(7/2 —7/2+40) = 0 as expected.) For
0<7/2—¢+6 < /4, this is Om < Apath < 16m (using Kristin depths). For a water-bottom
primary, tan (/2 — ¢) = 1/2x,/(W B — z5) where xy, is the offset. This allows us to substitute
w/2 — ¢ = arctan (z,/2(WB — z5)). Thus, the difference between the shortest and longest path
lengths is the sum of the above factors: Apath = z5 — 2/ + 1/2 (Az — AZ') + Aztan (7/2 — ¢ + 0)
where 7/2 — ¢ = arctan (x/2(W B — z5)). Using field data we have z; = 9m, 2/ = 8m, Az = 5m
(assumed), Az’ = 2.5m, WB = O(1 mile) and WB-z; ~ WB, and 9x12.5m < zj, < (960—1) x12.5m
or 0.1km < xj, < 12.0km. Hence 88degrees 2 ¢ 2 15degrees and (assuming 6 = 0) 2.1m = Apath 2>
—16.5m, which is small compared with the water depth (in deep water). More work is needed here
to interpret the minus sign.

D.5.1 Numerical test
On July 8, 2011, Whitmore suggested the following experiment. Given the configurations in Fig-

ures 47 and 48, is there any difference in deghosting? Figure 49 suggests no, which is consistent
with the above discussion.
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Figure 47: Source at 10m, cable at 20m (left) and 25m (right).
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Figure 48: Source at 15m, cable at 20m (left) and 25m (right).
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Figure 49: Receiver deghosted input data using source at 10m (left) and 15m (right).

E Source deghosting: Some mechanics

Here are the steps used by the first author to source and receiver deghost SEAM data. SEAM has
sources at 15m and receivers at 15m and 17m.

(1) Use P(15m) and P(17m) to compute dP/dz. The Seismic Unix command is sudiff P(17m) file
name P(15m) file name | sugain > dP/dz file name norm=2.

(2) Use P(17m) and dP/dz to receiver deghost at 8m and 10m. Because these are large files, Seis-
mic Unix script suwind _seam v2.sh is used to break up each file into six smaller files. Six Green’s
theorem jobs are run in parallel, and the cat command is used to combine the six outputs into one
output file for each depth.

(3) Interpolate four shots between each pair of input shots in receiver deghosted P(8m) and P(10m).
This was done by Mikhail Orlovich (PGS) using inhouse software. He corrected for spherical diver-
gence (multiplied by '), did interpolation in common-depth-point (CDP) domain, and then undid
spherical divergence (multiplied by t~1). This can also be done using the second author’s Seismic
Unix scripts interp.sh and interp by channel.sh.

(4) Use receiver deghosted (and interpolated) P(8m) and P(10m) to compute receiver deghosted
(and interpolated) dPr/dz. The Seismic Unix command is sudiff P(10m) file name P(8m) file name
| sugain > dP/dz file name norm=2.

(5) Sort receiver deghosted (and interpolated) P(10m) and dPgr/dz from CSGs to CRGs, swap
source and receiver coordinates, and use them to source deghost at 2m. Sort and swap uses Seismic
Unix script swap _seam_v3.sh, the resulting files are broken up into six smaller files, and six Green’s
theorem jobs are run in parallel. The six outputs are combined into one output file.

(6) Sort the source and receiver deghosted P(2m) from CRGs to CSGs and unswap source and
receiver coordinates.
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F  Second author’s deghosting suggestion of 9.13.11
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Figure 50: Second author’s deghosting suggestion of 9.13.11.

F.1 Compute event times

Reflectivity code and flat-layer model I, source at 30m, cable at 140m, water bottom at 300m
(25 < 2'):
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Event Distance Time | Event
Gé 140-30 073 | 1 over
GF3 304140 113 | 1 under
WB primary (300-30)-+(300-140) 287 | 2 over
Source ghost 30-+300+(300-140) 327 | 2 under
Receiver ghost (300-30)+300+140 A73 | 3 over
Source /receiver ghost | 30+300+300+140 .52 3 under
1st FSM (300-30)+300*2+(300-140) | .687 | 4 over
Source ghost 30+300*3+(300-140) 727 | 4 under
Receiver ghost (300-30)+300*3+-140 873 | 5 over
Source/receiver ghost | 30+300*4+140 913 | 5 under

Receiver deghosted 20m above cable (z5 < 2/, 2z < 2/):

Event Distance Time | Event
Gé 120-30 .06 | 1 over
GE3 304120 1 1 under
WB primary (300-30)+(300-120) 3 2 over
Source ghost 30-+300-(300-120) 34 2 under
Receiver ghost (300-30)+300+120 46 3 over
Source/receiver ghost | 30+300-+300+120 507 | 3 under
1st FSM (300-30)+300*2+(300-120) | .7 4 over
Source ghost 30+300*3+(300-120) 74 4 under
Receiver ghost (300-30)+300*3+120 .86 5 over
Source/receiver ghost | 30+300%4-+120 9 5 under
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Receiver deghosted 20m below cable (z, < 2,z > 2/):

Event Distance Time | Event
Ga 160-30 .086 | 1 over
GL° 30+160 126 | 1 under
WB primary (300-30)-+(300-160) 274 | 2 over
Source ghost 30-+300+(300-160) 314 | 2 under
Receiver ghost (300-30)+300+160 486 | 3 over
Source/receiver ghost | 30+300-+300+160 533 | 3 under
1st FSM (300-30)+300*2+(300-160) | .674 | 4 over
Source ghost 30+300*3-+(300-160) 714 | 4 under
Receiver ghost (300-30)+300*3+160 886 | 5 over
Source/receiver ghost | 30+300%4+4160 926 | 5 under
Reflectivity code and flat layer model, source at 140m, cable at 30m, water bottom at 300m (z5 > 2/):
Event Distance Time | Event
Gé 140-30 073 | 1 over
GL® 30+140 113 | 1 under
WB primary (300-30)-+(300-140) 287 | 2 over
Receiver ghost (300-140)-+300+30 327 | 2 under
Source ghost 140+300+(300-30) A73 | 3 over
Source/receiver ghost | 30-+300-+300+140 513 | 3 under
1st FSM (300-30)+300*2+(300-140) | .687 | 4 over
Receiver ghost (300-140)+300*3+30 727 | 4 under
Source ghost 140+300*3+-(300-30) 873 | 5 over
Source/receiver ghost | 30+300%4+140 913 | 5 under
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Receiver deghosted 20m above cable (z; > 2/, 2z < 2/):

Event Distance Time | Event
Ga 140-10 087 | 1 over
GL® 10-+140 1 1 under
WB primary (300-10)-+(300-140) 3 2 over
Receiver ghost (300-140)+300+10 313 | 2 under
Source ghost 140+-300+(300-10) A87 | 3 over
Source/receiver ghost | 10+300-+300+140 b 3 under
1st FSM (300-10)+300*2+-(300-140) | .7 4 over
Receiver ghost (300-140)+300*3+-10 713 | 4 under
Source ghost 140+-300*3+-(300-10) .887 | 5 over
Source/receiver ghost | 10+300%4+4140 9 5 under
Receiver deghosted 20m below cable (z; > 2/, 2z > 2/):
Event Distance Time | Event
Gé 140-50 .06 | 1 over
Gi® 504140 127 | 1 under
WB primary (300-50)-+(300-140) 273 | 2 over
Receiver ghost (300-140)+300+50 .34 2 under
Source ghost 140+4-300+(300-50) .46 3 over
Source/receiver ghost | 50-+300-+300+140 527 | 3 under
1st FSM (300-50) 1+ 300%2 1 (300-140) | .673 | 4 over
Receiver ghost (300-140)+300*3+-50 74 4 under
Source ghost 140+-300*3+(300-50) .86 5 over
Source/receiver ghost | 50+300%4+140 927 | 5 under

Figure 51: Reflectivity data, source at 30m, cable at 140m, water bottom at 300m: input data at
140m (left), receiver deghosted input data 20m above cable (center), receiver deghosted input data
20m below cable (right).
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jim_0915_30.5u

Figure 52: Reflectivity data, source at 140m, cable at 30m, water bottom at 300m: input data at
30m (left), receiver deghosted input data 20m above cable (center), receiver deghosted input data
20m below cable (right).

Using the times computed in the above tables, we see that:

(1) The events in the left panel of Figure 51 (25 < 2’) are (from the top) the direct wave G& and
its F'S reflection G{; S the WB primary and its source ghost, the WB primary’s receiver ghost and
source/receiver ghost, the first FSM and its source ghost, and the first FSM’s receiver ghost and
source/receiver ghost.

(2) In the center panel of Figure 51 (z5 < 2/,z < 2’), all events are attenuated except the WB
primary and its source ghost and the first FSM and its source ghost.

(3) In the right panel of Figure 51 (z5 < 2,z > 2’), the following events are attenuated: the WB
primary and its source ghost and the first FSM and its source ghost. Thus, (3) is the “mirror image”
of (2).

(4) The events in the left panel of Figure 52 (25 > 2/) are (from the top) the direct wave G¢ and
its F'S reflection GOF S, the WB primary and its receiver ghost, the WB primary’s source ghost and
source/receiver ghost, the first FSM and its receiver ghost, and the first FSM’s source ghost and
source/receiver ghost.

(5) In the center panel of Figure 52 (z5 > 2/,2z < 2’), all events are attenuated except the direct
wave Gg and its F'S reflection GOFS.

(6) In the right panel of Figure 52 (z5 > 2/, 2 > 2’), the following events are attenuated: the direct
wave Gg, the WB primary and its source ghost, and the first FSM and its source ghost.

F.2 Compare with theory
Are the above results consistent with theory? Starting with Green’s theorem, assuming a whole

space reference medium (with three sources), and substituting the acoustic wave equations for the
pressure wavefield P and associated causal Green’s function Ga’ , we get

P(r,rs,w) — A(w)Gy (r,15,w) — / G§ (' v, w) ki P(r), rs, w)dr’
1%
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:%[P(r',rs,w)V’Gg(r’, r,w) — Gy (r',r,w)V'P(r', rs,w)] - dS’ (F.1)
S

(Zhang, 2007, equation 2.22), where ry is the location of the air gun array, r’ is a measurement
point, and r is the observation/prediction point. The left-hand side consists of the total wavefield
P less the downgoing waves (the direct wave AGSr and the FS reflection fv), leaving us with the
upgoing wavefield Pdeghosted at the prediction/observation point. Equation (F.1) is consistent with
the extinction theorem (Born and Wolf, 1964): ¢, with the observation/prediction point inside
(outside) V' extinguishes the contribution of sources inside (outside) V. The wavefields due to the
air guns and FS are down-going at the cable, whereas the wavefield due to the earth is up-going
at the cable. We are inside the volume V' bounded by the FS and MS, and fS will attenuate
the wavefields due to the sources in V' (air guns and FS). This is the configuration for the case
zs < 2,z < 2/, and our computed results (attenuated receiver ghosts and source/receiver ghosts)
are consistent with theory.

Now consider the case z; < 2/,2 > 2/. We are on the opposite side of the cable (relative to the
above case) and expect the surface integral in equation (F.1) to extinguish the upgoing wavefield
(from the earth) at the prediction/observation point. In fact, fs has attenuated the WB primary,
first FSM, and their source ghosts.

Next, consider the case z; > 2/, 2 < z/. The configuration is the same as the first case except the
source has moved to the opposite side of the cable. We are inside the volume V', and the extinction
theorem predicts that the surface integral will extinguish the field from sources inside V' (the FS).
Our computed results are only partially consistent with prediction because 395 attenuated source
ghosts and source/receiver ghosts but not receiver ghosts (which are also reflected at the FS). Note:
This source deghosting configuration says I should sort from CSGs to CRGs but not swap source
and receiver coordinates.

Finally, consider the case z; > 2/, 2z > 2’ (the reciprocal configuration of the case z5 < 2/, 2z < 2/).
We are outside the volume V', and the extinction theorem predicts that the surface integral will
extinguish the field from sources outside V' (the air guns and the earth), leaving only waves reflected
from the FS. Our computed results (attenuated direct wave G, WB primary, WB primary receiver
ghost, first FSM, and first FSM’s receiver ghost) are only partially consistent with prediction because
the last three are reflected from the FS.

G Theory of source-signature estimation

M-OSRP’s theory of source-signature estimation comes from Weglein and Secrest (1990) who derive
two equations containing the source signature: the Lippmann-Schwinger equation and a second
equation derived from Green’s theorem. Comparing the two equations gives an equation for the
source signature, which is a function of measured 3D data and a reference-medium Green’s function.
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G.1 Lippmann-Schwinger approach

The constant-density acoustic wave equation for the pressure field P at r created by a source A(t)
at ryg is

2
(w _ CQEr) 6?152) Pr,rs,t) = A(DS(x —1s). (G.1)

Fourier transforming from the time domain to the frequency domain gives

2 W2 ~I'I' w) = N(JJ r—r
(74 s ) Plm) = )i -2, (G2)

Restating wave speed ¢(r) as a function of reference-medium speed ¢y and a perturbation a(r) gives

1 1
2 %(1 — a(r)). (G.3)

Substituting equation G.3 into equation G.2 gives

w?\ = ~ w? ~
<V2 + 2) P(r,rs,w) = A(w)d(r —ry) + —a(r)P(r,rs, w). (G.4)

€o €o

Converting equation G.4 from a partial-differential equation into an integral equation (the Lippmann-
Schwinger equation) gives

~ ~ ~ ~ 2 ~
P(r,rs,w) = A(w)Go(r, rs,w) +/ dr'Go(r,r’,w)w—za(r')P(r',rs,w). (G.5)
0 €

Because the Lippmann-Schwinger equation covers all space, there is no boundary condition to
impose a causal solution; therefore choose a causal Green’s function Gar to get a causal solution
P(r,rs,w):

2

~ ~ ~ w ~

P(r,rs,w) = A(w)G (r,rs,w) +/ dr' G (v, v, w) sa(r)P(r' ry,w). (G.6)
0 i)

G.2 Green’s theorem approach

To isolate the source signature, Weglein and Secrest (1990) define the following:

(1) a reference medium consisting of a half space of air above a half space of water,

(2) a perturbation a(r) that is the difference between the earth and the lower part of the half space
of water,

(3) an integration volume V' consisting of a hemisphere bounded from above by the measurement
surface (the plane z = 0),

(4) a free surface (air-water interface) above the measurement surface (i.e., outside V'), and

(5) a source ry on or above the measurement surface (again outside V).

76



Preprocessing M-OSRP11

Substituting P and Gy into Green’s theorem gives
/ dr'[P(r' vy, w)V 2Go(r', r,w) — Go(r',r,w) V' 2P(r', ry, w)]
1%
:7{ dS'a - [P(r',rs,w)V'Go(r',1,w) — Go(r',r,w)V'P(r',rs,w)], (G.7)
S

where V' is the hemispheric volume defined above, and S is the hemisphere’s surface. Substituting
equation G.4 and its corresponding reference-medium Green’s function differential equation into
equation G.7 gives

7{ dS' i - [P(r',rs,w)V'Go(r',r,w) — Go(r',r,w)V'P(r/,rs,w)]
S

:/ dr'[P(r', vy, w) V2Go(r,r,w)
14 —_—
(7w2/cg)éo(r/,r,w)+5(r’71')
— Go(r',r,w) V2P 1y, w) ] (G.8)
—_———

(—w2/cg)ﬁ(r’,rs,w)+(w2/c(2))a(r’)ﬁ(r’,rs,w)—f—g(w)é(r’—rs)

2 _ -
:/ dr'[—w—ZGg(r',r,w)P(r’,rs,w) +5(r' — 1) P(r', r5,w)
1%

0]
cancels
WQ D! ~ / w2 N D ~ ’
+ CTP(I' ,I‘S,W)G()(I' ,I',CL)) —07204(1' )P(I’ ,I'S,(.U)Go(r ,I‘,(JJ)
0 0
cancels

— AW)s(r' —ry)Co(r',r,w)]

:/ dr'[P(r',rs,w)0(r' — 1) — < a(r')P(r',rs,w)Go(r', r,w)
v B 150
— A(w)d(r" — r5)Go(r,r,w)]. (G.9)

Choosing r in V gives

7{ dS' i - [P(r',rs,w)V'Go(r',1,w) — Go(r',r,w) V' P(r/, 14, w)]
S

w2 ~

:/ dr'[P(r' 15, w)d(r' — 1) ——a(r)P(r, re,w)Go(r',r,w)
v &

P(r,rs,w)
- Z(W) 5(1‘/ - rS) éO(r/7 r, Lc))]
——

0
2

—ﬁ(r,rs,w)—/ dr’%a(r')]s(r/,rs,w)éo(r’,r,w). (G.10)
v o 4

If the support for « is in V, rearranging equation G.10 gives

P(r,rs,w)
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2 ~

:/ dr’éo(r’,r,w)%a(r’)P(r’,rs,w)
V—oo CO

de' h- [P (r rs,w )V'éo(r',r,w)—éo(r’,r,w)V’ﬁ(r’,rs,w)]
S

~ 2 ~
:/ dr’Gg(r',r,w)%a(r’)P(r’,rs,w)
00 €0
fds'* [P(r',rs,w)V'Go(r',1,w) — Go(r',r,w)V'P(r/,r,w)]. (G.11)
S

In equation G.11 the surface integral involves actual pressure measurements and their vertical deriva-
tives. Hence, the surface integral will choose a causal solution. For consistency with equation G.6,
choose a causal Green’s function, which gives

2 ~

P(r,rs,w) —/ dr'éé‘(r',r,w)%a(r’)P(r’,rs,w)
0o 0

j{ds’ (P rs, ) V'GE (v, w) — G (1, w) V' P(r Ty, w)]. (G.12)
S

G.3 Comparing approaches

Comparing equations G.6 and G.12 gives an equation for the source signature:

- 1 ~
Aw ZNY{ ds’' i v rg,w) VG, r,w
(w) G rrn) I [P(rs, ) VG ( )
— GE (1, w) V' P(r 1, w)]
PD(I', I'S,(U)
=TT G.13
Gar(r,rs,w)’ ( )

where r is below the measurement surface (inside V).

A few comments about equation G.13: B

(1) Equation G.13 is one form of the “triangle relation” that relates the pressure wavefield P (r',rs,w),
its vertical derivative V'P(r',rs,w), and the source signature A(w). In this instance the first two
variables are used to calculate the third.

(2) The numerator and denominator in equation G.13 can be evaluated at any r in V.

(3) The source-signature estimation code uses the 3D form éar(r,rs,w) = exp (ikR)/R, where
k=w/co and R = |r — ry| (Morse and Feshbach, 1953, p. 810).

(4) We can get a better estimate of the source by averaging the computed points as follows:

N

1 PO r,rs,w
N; I‘Z,I‘S,CU)
N N
1 Az( I‘Z,I'S,UJ) 1
— = — A; G.14
N; G (rurs,w) N; (W) ( )

Equation G.14 can be unstable near rs because 1/G{ can “blow up”, so the algorithm uses 1/(Gg +e).
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G.4 Additional considerations

What if we have an extended (vs. a point) source? Modify equation G.1 and assume (as for a point
source) that the distributed source p(r,rs,t) is in Vs (above the measurement surface and below the
free surface):

1 0
2 _
(V =T 8t2> P(r,rs,t) = p(r,rs, t). (G.15)
Equation G.6 then becomes
~ ~ ~ 2 ~
P(r,rs,w) = / dr” p(r" rs,w)GE (¥ v, w) +/ dr'G (r, r’,w)%a(r')P(r',rS,w). (G.16)
s 00 0

Equation G.10 is unchanged because we’re integrating over V but the source is assumed to be
outside V. Comparing equations G.16 and G.12 gives:

/ dr"ﬁ(r",rs,w)ég(r”, rs,w)
:fgdslﬁ [P(F s, ) VG (r 1, w) — GF (v, 1, w) V' P(r, vy, w)]
=Py(r,rs,w) (G.17)

(r being below the measurement surface). Dividing by the Green’s function gives the desired result:

dr’p(r" s, w)Ge (¥, 1s, w P ~
Ju, drp(x" v, )G (17, x5, 0) _ B, rs,w) = A(r,rs,w).

Ga_(r7r87w) a GE;(I‘,I‘S’CU)

H A brief history of the Green’s theorem code

The Green’s theorem code was written by the first author at UH during the summer of 2009 with
technical assistance provided by Fang Liu. A C front end was used to read input data in Seismic
Unix format. Fortran was used to write the engine that evaluated equations 2.2 and 4.1. In brief,
the user specified the input data files (P and dP/dz), whether to use a 2D or 3D Green’s function,
and whether to perform deghosting, wavefield separation, source-wavelet estimation, or near-offset
extrapolation. The code was tested during the first author’s internship at ExxonMobil (September-
December ’09) using synthetic data furnished by the first author’s mentor (Mamadou Diallo). Key
results are summarized in sections 4.2 and 5.1 of this Annual Report. A historical note: Fang Liu’s
advice was to write the code in C, but the first author had a window of about three months in
which to write the code, no prior experience with C, and prior experience with Fortran.

In August 2010 the second author suggested the code be rewritten in C (to enable integration with
Seismic Unix) before its planned release to the M-OSRP sponsors. The first author did that with
technical assistance provided by the second author, and the Release 1 code was released to the
sponsors in April 2011. Release 1 was tested during the first author’s internship at PGS (February-
July "11) using SEAM synthetic data and field data furnished by the fourth author (the first author’s
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supervisor). Key results are summarized in sections 2.4, 2.5, 3.3, and 3.4 of Mayhan et al. (2012b).
Release 1 was also tested by an employee at BP and a M-OSRP intern at Total.

In April 2011 the second author suggested the code be rewritten to make it more like M-OSRP’s
demultiple code (which should also decrease run time and correct a bug uncovered in testing at
PGS). The second author furnished his new demultiple shell and the first author added the Green’s
theorem engine (fall ’11). Testing with a flat-layer model shows that the new code runs > 6x faster
than Release 1 did (by precomputing the Green’s functions). The first author has continued to test
the new code (some key results are summarized in section 6), and this new code will be released to
the sponsors (as Release 2).

I Free-surface-multiple removal: Tutorial

We follow the logic in Carvalho (1992). If a given term in the forward scattering series creates
a certain type of data, that term in the inverse scattering series removes that type of data. For
example, if there is no free surface, there are no ghosts and free-surface multiples in the data. Hence,
G creates and removes ghosts and free-surface multiples (free-surface multiples in deghosted data).
(1) Choose the reference medium to be a half space of air and a half space of water separated by a
free surface: Go = G + GE'S.

(2) Remove the reference wave: D = P — Pj.

(3) Deghost (source and receivers): D = GoViGo. Multiply from the left and right by Gy', and
then by Gg, to get D' = GngGd, where the prime indicates deghosted data. (Note: In practice
this method is unstable so we use Green’s theorem to deghost.)

Carvalho shows that

D/(kgvksaw) = ZD;L(k'g,k‘S,OJ), (Il)
n=1
1 o
where D (kg, ks,w) = B /_OO dk qexp (iq(eq + €5))
x D (kg, k,w)Dl,_1(k, ks,w) (1.2)
for n = 2,3,4,.... Now the prime indicates deghosted and free-surface-demultipled data. Equa-

tions 1.1 and 1.2 are used in M-OSRP’s 2D free-surface-multiple elimination code. The terms kg,
ks, kg, and k. are the Fourier conjugates of x4, x,, , and z, respectively, p, is the density of the
reference medium (water), B(w) is the source signature, k = w/cq, ¢g is the speed of sound in the
reference medium (water), ¢ = sgn(w)\/k? — k2, (24, €4) is the receiver location, and (zs, €5) is the
(2D) source location.

I.1 Derivation of equation 1.2

Carvalho arrives at equation 1.2 by substituting equation 1.3 into equation 1.4.

. dk
Vn(kg,ks,w):—fm/ (kg ey 0) Vi1 (K, kg, ) (13)

—00
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_Bw) p;

D' (ky, ks, w) =
(kg ) R

exp (—iqqeq) exp (—igses) Vi (kg, ks, w) (L.4)

forn=2,3,4,....

I[.2 Derivation of equation 1.4

The derivation of equation I.4 was outlined in the third author’s November 3, 2011 lecture. The
linear equation in the inverse scattering series can be written

D(xg,€q, x5, €5,w) = /dr1 /er Go(rg,r1,w)Vi(r1,ro,w)Go(ra, s, w) (L5)
where V; is a nonlocal perturbation. Use the bilinear form of Gy and Fourier transform to find

-Tga €g,Ls, €5, W

exp (ik’ - (ry —r
/drl/drg/dkl p( k’2+k2 1) Vi(ry,ro,w)Go(ra, rs,w), (1.6)
exp (k! (z, — x1)) exp (ikl (e, — 2
/drl/drz/dk'/dk’ p( _k,21)>k,2p+(k2(g D) Vi (01, 12, 0) Gol, 14, ).

Fourier transform over x4

/dxg exp (—ikgry)D (24, €9, s, €5, W)

exp (ikl,(zy — x1)) exp (ikl,(eg — 2
/da:gexp —ikgxg /daz1/d21/dfc2/d22/dk' /dk’ P /~c’21))k’2p+(k22( 9~ %))

X ‘/1(:17172173?27227 )GO(r27r37 )
LHS =D(kg,€g, s, €5,w)

exp (—iklxq) exp (ikl(eg — 21))
RHS —/dxl/dzl/dazg/dZQ/dk:’ /dk' /dar:gexp i(kg —k:')ang) e —k?—l—/@g

278 (kg—K.,)

X ‘/1 $17217$27Z27 GO I‘Q,I's,

ex ikl xq) exp (ikl (e, — 2
_27r/dx1/dzl/da:2/d22/dk’ /dk’ Ll %12) zgﬂij 1))

X ‘/1 .’Bl,Zl,.’BQ,ZQ, GO I‘Q,I's,

ik k.,
—27T/d$1/d21/d.’132/d22/dk/ exp —! gxl)e};j;: ]5269 A1 ))‘/1(331,Zl,ﬂfg,ZQ,(U)GO(I'Q,I'S7LL))

(ik!(eg —
—QW/d.ﬁUl/le/diUQ/dZ / k/ exp . keng +23) exXp (_ikgxl)‘/l(xbZl7x27227w)G0(r27r87w)

1D Green’s function

:27r/dx1/dzl/da:2/dZQeXp (qu’,eg_zl‘) exp (—ikgx1)Vi(x1, 21, 22, 22, w)Go(re, Ty, w)

2iqy
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—27T/div1/dz1/d$2/dz =P lquzl <)) exp (—ikgx1)Vi(21, 21, T2, 22,w)Go(r2, rs, W)
g

where gy = /(w/c0)? — k2 and |e; — 21| became 21 — ¢, because 21 > ¢, (the perturbation is below

the geophones). Recognizing the Fourier transforms over z; and z; gives

RHS = / dxs / dz EXPQ 45¢) / dzy exp (—ikga1)2m / dz1 exp (igy21) Vi (1, 21, @, 2, 0) Go(r2, T, )
qu

Vi (kqu;]:m2:22aw)

Vi(k
:/de/szexp(—iqgeg) i g’q;;;%z%w)(}'o(rg,rs,w).
9

On the right we do exactly the same thing, which produces

Vl(k;ga 4g, ksv anw)

D(kg,€q, ks, €5,w) = exp (—iggeq) 4 exp (—igs€s). (L.7)
—2(4g4s
which is the same form as equation I.4.
1.3 Derivation of equation 1.3
Equation 1.3 comes from substituting equation 1.8 into equation I.9.
exp (tk(x
Golar, i zmio) = 5 [ ak PR Z 2D e iy — ) exp gl + 2. (18)

Vo(kg, ks,w) = / / dwldzl/ / dxodzs exp (—ikgx1) exp (iggz1) Vi (21, 21, w)
x Go(w1, 215 T2, 22; W) V1 (72, 22, w) exp (iksx2) exp (igs22). (L9)

Equation 1.8 is the bilinear form of the Green’s function for the chosen reference medium, and
equation 1.9 is the quadratic equation in the inverse scattering series. The derivation of equation 1.3
was also outlined in the third author’s November 3, 2011 lecture. Fourier transform both sides to
get

Vo = —ViGoVi

Va(ky, ks,
2(5,qw) :/dr2/dI’3V1(kg71'2,W)Go(r2,r3,w)v1(r3,k57w)
q4s

Use the bilinear form of G
Vo (kga ks,w)
qq94s

/dl‘Q/dZQ/dl‘g/ng‘/l g Qg> T2, 22, W /dk:’ /dk"

exp (ik!.(xo — x3)) exp (ik. (22 + 23))
k’2 k’2 + k2

Vl(x3az37k57qsv )
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:/dk‘;/dzz/dxg/dz;:,/dxﬂ/l(kg,qg,a:z,zz,w) exp (zk;c:zg)

|41 (kg7Qg7klz7Z27w)

exp (ik.(z2 + 23))
/dk/ k/2 k’2+k2 €

1D Green’s function

= [, [z [[ang [ Vi ki) S22 o ik Vi, s 0)

:/dk;/d22/dxg/dzg‘/i(kg,qg,k'x,zg,w)e}(p (zqé@—kzg)) exp (—iklx3)Vi(x3, 23, ks, qs, w)
1q

Xp (_Zkl;:wii)vl (.22'3, 23, ksv qs, w)

:/dk‘;/dxg/dz;;/dszl(kg,qg,k;,zQ,w) exp (iqZQ)GXI;(ijg)exp(ik;xg)\/l(xg,z;:),ks,qs,w)
Vi(kg,a9.kh,q,w)

= [ [ s [ Vi a0 k.0 T e (i) Vi, 2, b 0)

where ¢ = /(w/cp)? — k2, and the absolute value gets lifted because zo + z3 is positive. Now
operate on the right-hand V}

RHS — / i, / dzsVi(kys dgs Ko 4,0 )W / divs exp (=il a3)Vi (3, 73, ks, Gos )

Vi (k‘é,z;;,k‘&qSWJ)
. /
/ ng exp (Zqzd)‘/l(kx7 Z3, ksv gs, w)
Vi (Kl a0,k 505 ,w)

1 1
= o7 [ VA B 1.0) VA ) (1.10)

1
— /dk;/g‘/l(kgv qg, k:/m Qaw)%

where ¢ is defined in terms of k!, and w. The data were originally

Vl(kga 4g, ksa gs; W)
494s

D(kg, ks, w) =
Now substitute Vi in terms of D in equation 1.10
1
RHS = [ K, Dy 10,y 0.6)000 DKy . b e}

The form data x g x data is the same form as that used by Carvalho (1992), where g is the obliquity
factor. This worked because we had a plus sign, which allowed the absolute value to lift and be
Fourier transformed.
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J FSM elimination with and without Green’s theorem preprocessing

J.1 Flat-layer model III without preprocessing

(1) Figure 53 shows the input to the process. These data consist of a subset of the left panel of
Figure 13 replicated here to make a sail line. The subset consists of receivers 801-1101 of 1601 and
samples 1-301 of 1500 replicated 300 times (to make a sail line with 301 shots).

(2) Figure 54 shows the input data after interpolation. The distance between receivers is 6m and
the distance between shots is 18m, so two shots are interpolated between each pair of input shots
giving a total of 30142x300=901 shots.

(3) Figure 55 shows the input data after assignment of station numbers to sources and receivers.
We imagine a square fixed in space; the survey ship tows the cable inside the square, and we assign
station numbers relative to the fixed square.

(4) Figure 56 shows the input data after use of reciprocity between sources and receivers to compute
the opposite side of each shot, i.e., conversion of one-sided data into split-spread data. We could
have created split-spread synthetic data but, because many field surveys record one-sided data, we
choose to begin with one-sided synthetic data. Because we start with one-sided data, as we move
from left to right, we see an increasing number of traces to the left of each shot station, complete
hyperbolas, and then a decreasing number of traces to the right of each shot station.

(5) Figure 57 shows the input data after some data “housekeeping”; we replace source and receiver
x coordinates (sz and gx) by source and receiver stations (sstat and gstat) and make sy = gy =0,
which in effect aligns the data with a N-S/E-W coordinate system.

(6) Figure 58 shows the input data after block selection. Our block has 901 shots 6m apart; each
shot is centered in a cable with 601 receivers 6m apart. Our cables do not fill the block whose
diagonal is defined by the shots, so we pad traces to fill that block. See Figure 59 (Ferreira, 2011).
(7) Figure 60 shows the input data after shots have been filled with all required offsets, i.e., each
shot should be surrounded by zero padding.

(8) Figure 61 shows the input data after they have been tapered; these are also the input data to
the free-surface-multiple prediction algorithm.

(9) Figure 62 is the output of the free-surface-multiple prediction algorithm.
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+./Corrigan_datadtenp_sail_line_v3E_u.su vith ep from 1 to 10

Figure 53: Flat-layer model 111, reflectivity code, P at 151m: Shots 1-10 of 301.

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800

../Corrigan_data/tenp_sail_line_v3E_u2_i.su with fldr from 1 to 13

Figure 54: Flat-layer model III, reflectivity code, P at 151m: Interpolate two shots between each
pair of input shots. Shots 1-13 of 901.

85



Preprocessing M-OSRP11

1200 1400 1600 1800 2000 2400 2600 2800 3400 3600

. /Corrigan_datastenp_sail_line_v3E_u2_ia.su with Fldr from 1 to 13

Figure 55: Flat-layer model 11, reflectivity code, P at 151m: Assign station numbers to sources and
recetvers. Shots 1-13 of 901.

../Corrigan_datas/tenp_sail_line_u3E_u2_iar,eu uith setat from 0 to 1200

Figure 56: Flat-layer model III, reflectivity code, P at 151m: Use reciprocity between sources and
receivers to compute the opposite side of shots. Shot stations 0-1200 by 100.
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1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 30 300 4000 4200 4400 4E00 4800 GOOO G200 5400 5600

+./Corrigan_datastenp_sail_line_v3E_u2_iarh.su with sstat fron 0 ta 1200

Figure 57: Flat-layer model III, reflectivity code, P at 151m: Replace source and receiver locations
(sx and gz) with source and receiver stations (sstat and gstat) and make sy = gy = 0. Shot stations
0-1200 by 100.

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4500 4800

«/Corrigan_datadtenp_sail_line_vBE_u2_iarhb.su with sstat from 0 to 900

Figure 58: Flat-layer model II1, reflectivity code, P at 151m: Select blocks. Shot stations 0-900 by
100.
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Data selection

Figure 59: Shots are represented by stars and the original receiver points are indicated by the solid

lines. We need to pad new traces as indicated. (Ferreira, 2011, Figure 6.5)

-+Corrigan_data/tenp_sail_line_vEE_uZ_iarhbf ,su with sstat from 0 to 300

Figure 60: Flat-layer model III, reflectivity code, P at 151m: Fill shots with all required offsets.

Shot stations 0-900 by 100.
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1500 2000 2500 3000 3500 4000 4500 5000 6000 6500 7000 7500 8000

../Corrigan_data/tenp_sail_line_w3E_u@_iarhbft.su with sstat from 0 to 900

Figure 61: Flat-layer model III, reflectivity code, P at 151m: After tapering. Shot stations 0-900
by 100.

. o/MOSRP/IATA/ tenp_sail_line_v3E_u2_iarhbft,FSPRED, su with sstat from 0 to 900

Figure 62: Flat-layer model III, reflectivity code, P at 151m: Output of free-surface-multiple code.
Shot stations 0-900 by 100.

J.2 Flat-layer model III with preprocessing

(1) Figure 63 shows the input to the process. These data consist of a subset of the right panel of
Figure 13 replicated here to make a sail line. The subset and replication are the same as in Figure 53,
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i.e., the subset consists of receivers 801-1101 of 1601 and samples 1-301 of 1500, replicated 300 times
(to make a sail line with 301 shots).

(2) Figure 64 shows the input data after interpolation,

(3) Figure 65 shows the input data after assignment of station numbers to sources and receivers,
(4) Figure 66 shows the input data after use of reciprocity between sources and receivers to compute
the opposite side of each shot,

(5) Figure 67 shows the input data after performance of some data “housekeeping”,

(6) Figure 68 shows the input data after block selection,

(7) Figure 69 shows the input data after filling of shots with all required offsets,

(8) Figure 70 shows the input data after tapering, and

(9) Figure 71 is the output of the free-surface-multiple prediction algorithm.

««/Corrigan_data/tenp_sail_line_v3F_ul.su with fldr from 1 to 13

Figure 63: Flat-layer model 111, reflectivity code, deghosted P at 10m: Shots 1-13 of 301.
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1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600

../Corrigan_data/tenp_sail_line_wdF_uZ_i.su with fldr from 1 to 13

Figure 64: Flat-layer model 111, reflectivity code, deghosted P at 10m: Interpolate two shots between
each pair of input shots. Shots 1-13 of 901.

./Corrigan_datastenp_sail_line_uiF_u2_ia,su with Flde from 1 to 13

Figure 65: Flat-layer model III, reflectivity code, deghosted P at 10m: Assign station numbers to
sources and receivers. Shots 1-13 of 901.
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400 BOD 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 30 300 4000 4200 4400 4E00 4800 GOOO G200 5400 5600

+./Corrigan_data’tenp_sail_line_v3F_u2_iar.su vith sstat from 0 to 1200

Figure 66: Flat-layer model I1I, reflectivity code, deghosted P at 10m: Use reciprocity between
sources and recetvers to compute the opposite side of shots. Shot stations 0-1200 by 100.

.. /Corrigan_data/tenp_sail_line_u3F u2_iarh,su with sstat fron 0 to 1300

Figure 67: Flat-layer model 111, reflectivity code, deghosted P at 10m: Replace source and receiver
locations (sz and gx) with source and receiver stations (sstat and gstat) and make sy = gy = 0. Shot
stations 0-1200 by 100.
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200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4500 4800

+./Corrigan_datastenp_sail_line_v3F _u2_iarhb.su with sstat from 0 to 900

Figure 68: Flat-layer model III, reflectivity code, deghosted P at 10m: Select blocks. Shot stations
0-900 by 100.

../Corrigan_data/tenp_sail_line_vaF_ul_iarhbf cu with sstat from 0 to 900

Figure 69: Flat-layer model 111, reflectivity code, deghosted P at 10m: Fill shots with all required
offsets. Shot stations 0-900 by 100.
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1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

../Corrigan_data/temp_sail_line_u3F_ul_iarhbft.su with sstat from 0 to 900

Figure 70: Flat-layer model 111, reflectivity code, deghosted P at 10m: After tapering. Shot stations
0-900 by 100.

. /MOSRR/DATA tenp_sail_l ine_v3F ul_iarhbft FSPRED,su with estat from 0 to 900

Figure 71: Flat-layer model II1, reflectivity code, deghosted P at 10m: Output of free-surface-multiple
code. Shot stations 0-900 by 100.
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J.3 Elastic model 1 with preprocessing

900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100

.. /IASES_data_preprocess/tenp_sail_line_ro5_0215e_unsuap_301:301_a.su with ep from 1 to 301

Figure 72: FElastic model 1: Assign station numbers to source and receiver locations. Shots 1-301
by 50.

. /DASES_data_preprocese/tenp_sail_line_roS_0215e_unsuap_301c301_ar,su uith setat from =300 to 300

Figure 73: FElastic model 1: Use reciprocity between sources and receivers to compute the opposite
side of each shot, i.e., create split-spread data. Shots 1-301 by 50.
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. /ORSES_data_preprocess/tenp_sail_line_roS_0215e_unsuap_301x301_arh,su with sstat from -300 to 300

Figure 74: Elastic model 1: Replace source and receiver locations along inline direction with source
and receiver stations, set crossline coordinates=0. Shots 1-301 by 50.

+/DASES_data_preprocess/tenp_sail_Line_rof_0215_unsuap_301x301_arhb.su uith sstat fron 0 to 300

Figure 75: Elastic model 1: Select blocks (explained in Figure 59. Shots 1-301 by 50.
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. /ORSES_data_preprocess/tenp_sail_line_roS_0215e_unsusp_301c300_arhbf,cu with sstat from 0 to 300

Figure 76: Elastic model 1: Fill shots with all required offsets. Shots 1-301 by 50.

1100 1200 1300 1400 1600 1600 1700 1300 1900 2000

. /IASES_data_preprocess/tenp_sail_line_ro5_t215e_unsusp_301c301_arhbf FSPRED, su with sstat from 0 to 300

Figure 77: Elastic model 1: Predict free-surface multiples. Shots 1-301 by 50.
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J.4 Elastic model 2 with preprocessing

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100

.. /DASES_data_preprocess/tenp_sail_line_ro5_0215f unsuap_301:301_a.su with ep from 1 to 301

Figure 78: FElastic model 2: Assign station numbers to source and receiver locations. Shots 1-301
by 50.

. /DASES_data_preprocese/tenp_sail_line_roS_0215¢ unsuap_301c301_ar,su uith setat from =300 to 300

Figure 79: Flastic model 2: Use reciprocity between sources and receivers to compute the opposite
side of each shot, i.e., create split-spread data. Shots 1-301 by 50.
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. /ORSES_data_preprocess/tenp_sail_line_roS_0215f_unsuap_301x301_arh,su with sstat from -300 to 300

Figure 80: Elastic model 2: Replace source and receiver locations along inline direction with source
and receiver stations, set crossline coordinates=0. Shots 1-301 by 50.

++/DASES_data_preprocess/tenp_sail_Line_rof_0215F_unsuap_301x301_arhb.su uith sstat fron 0 to 300

Figure 81: Elastic model 2: Select blocks (explained in Figure 59). Shots 1-301 by 50.
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. /ORSES_data_preprocesss/tenp_sail_line_roS_0205f unsusp_301c301_arhbf,cu with sstat from 0 to 300

Figure 82: FElastic model 2: Fill shots with all required offsets. Shots 1-301 by 50.

1100 1200 1300 1400 1600 1600 1700 1300 1900 2000

. /IASES_data_preprocess/tenp_sail_line_ro5_215f _unsusp_301c301_arhbf FSPRED, su with sstat from 0 to 300

Figure 83: Elastic model 2: Predict free-surface multiples. Shots 1-301 by 50.
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J.5 Field data without preprocessing

1300 1400 1500 1600 1700 1800 1300 2000
0
1
7
18,5 2
o
3
-18.5
-5
4
5
5
../Statoil Kristin data/Linel cabd IGF_processed nevodp_straight v4B2.su with Fld- fron 1300 to 1600
o
1
3
1.5 2
o
3
-18,5
=
4
5
B
. tator]_ristin_data/L inel_cabd_IGF_processed_neuodp_straight_ulB2_isu with £ldr fron 1 to 450

Figure 85: Kristin P at 25m: Interpolate shots so that distance between shots = distance between
receivers. Shots 1-401 (by 50) of 450.
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../Statoil Kristin_datasLinel_cabd_IGF_processed_newcdp_straight wdB2_ia,su with sstat from 0 to dd3

Figure 86: Kristin P at 25m
(by 50) of 450.

: Assign station numbers to sources and receivers. Shot stations 0—400

.. /Statoil_kristin_datasLinel_cabd_DGF_processed_neucdp_straight_vdB2_iar,su with sstat fron 0 to 743

Figure 87: Kristin P at 25m

: Use reciprocity between sources and receivers to compute the opposite

side of shots, i.e., convert one-sided data to split-spread data. Shot stations 0-700 (by 100) of 749.
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,./Statoil_Kristin_data/Linel_cabd_DGF_processed_newcdp_straight_udB2_iark,su with sstat from 0 to 743

Figure 88: Kristin P at 25m: Replace source and receiver locations (sx and gx) with source and
recetver stations (sstat and gstat) and make sy = gy = 0. Shot stations 0-700 (by 100) of 749.

1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600

./Statoil Kristin_dsta/Linel_cabd_DGF_processed_newcdp_straight w4B2_iarhb,su uith sstat from 0 to d50

Figure 89: Kristin P at 25m: Select blocks. Shot stations 0-450 (by 50) of 451.
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.. /Statoil Kristin_data/Linel_cabd_IGF_processed_rewcdp_straight_vdBZ_iarhbf,su with sstat from 0 to 443

Figure 90: Kristin P at 25m: Fill shots with all required offsets. Shot stations 0-400 (by 50) of 450.

+./Statail_kristin_datarl inel_cabd_DGF_processed_reusdp_straight_u4B2_iarhbft.su uith sstat from 0 to 443

Figure 91: Kristin P at 25m: Taper to smooth the transition from the original data to the padded

null traces. Shot stations 0-400 (by 50) of 450.
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. /MOSRP /DATA /L ined_cabd_DGF_processed_neucdp_straight_wdk2_iarhbft FSPRED, su with sstat from 0 to 443

Figure 92: Kristin P at 25m: Output of the free-surface multiple code. Shot stations 0-400 (by 50)
of 450.
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J.6 Field data with preprocessing

1100 1200 1300 1400 1500 1800 1900 2000 2100

0,08

0,04

i)
2
0,04
=0,08
4
5
B
../Statoil_Kristin_data_preprocess/roS_0113a.su with fldr from 1300 to 1600
Figure 93: Receiver deghosted Kristin P at 15m: Shots 1300-1600 (by 50) of 694.
0
1
0,08
0,04 2
0
3
—0,04
-0.08
.
E)
B
+./Statoil_Kristin_data_preprocess/ro5_0113a_i,su uith fldr fron 1 to 450

Figure 94: Receiver deghosted Kristin P at 15m: Interpolate shots so that the distance between shots
= distance between receivers. Shots 1-401 (by 50) of 450.
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0,08

,./Statoil Kristin_data_preprocess/roS_0113a_ia,su uith sstat fron 0 to 443

Figure 95: Receiver deghosted Kristin P at 15m: Assign station numbers to sources and receivers.
Shot stations 0—400 (by 50) of 450.

0,08

../Statoil Kristin_data_preprocess/roS_0113a_iar,cu with sstat fron 0 to 743

Figure 96: Receiver deghosted Kristin P at 15m: Use reciprocity between sources and receivers to
compute the opposite side of shots, i.e., convert one-sided data to split-spread data. Shot stations
0-700 (by 100) of 749.
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0,08

../Statoil_Kristin_data_preprocess/roS_0113d_nsusp,su with sstat from 0 to 743

Figure 97: Source and receiver deghosted Kristin P at 15m: Shot stations 0-700 (by 100) of 749.

0,08

+./Statail_kristin_data_prepracess/roB_01134_unsusp_iarh.su uith sstat from 0 to 743

Figure 98: Source and receiver deghosted Kristin P at 15m: Replace source and receiver locations
(sz and gx) with source and receiver stations (sstat and gstat) and make sy = gy = 0. Shot stations
0-700 (by 100) of 749.
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0,08

. .#Statoil Kristin_data_preprocess/roS_0113d_unsuap_iarhb,su with sstat fron 0 to 450

Figure 99:
50) of 451.

Source and receiver deghosted Kristin P at 15m: Select blocks.

Shot stations 0-450 (by

1200 1400 1600 1800 2000 2200 2400 2600 2600

0,08

../Statoil Kristin_data_preprocess/roS_0113d_unswap_iarhbf,su with sstab from 0 to d49

3400 3600 3800 4000

Figure 100: Source and receiver deghosted Kristin P at 15m: Fill shots
Shot stations 0-400 (by 50) of 450.
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0,08

.. /Statoil_kristin_data_preprocess/roS_0113d_unsuap_iarhbft,su with sstat from 0 to 443

Figure 101: Source

and receiver deghosted Kristin P at 15m: Taper to smooth the transition from

the original data to the padded null traces. Shot stations 0-400 (by 50) of 450.

1400 1600 1800 2000 2200 2400 2600 3000 3200 3400 3600 3800 4000

. /HOSRPY IRTA/r05_0113d_unsusp_iarhbft, FSPRED, =u uith sstat fron 0 to 449

Figure 102: Source

and receiver deghosted Kristin P at 15m: Output of free-surface-multiple code.

Shot stations 0-400 (by 50) of 450.

More work is needed here because of the problem mentioned in section 6.5.
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K Isis compute cluster

e 13 AMD Opteron nodes each with 2 dual-core processors and 4 GB of shared memory
e 9 % Intel Xeon nodes each with 2 single core processors and 2.5 GB of shared memory

e 14 TB of disk space (expanded from 2 TB)
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Abstract

In towed marine acquisition, the source arrays that are commonly used exhibit directivity
in take-off angle. Directivity is an issue when we are removing or attenuating multiples. In
seismic processing, it is essential that we characterize the source array’s effect on any seismic
processing method. Removing free-surface multiples is a crucial step before internal multiple
attenuation/elimination, imaging and inversion. The effectiveness of the free-surface multiple
elimination method directly affects the performance of later operations. A new method is
proposed for dealing with source array data and is intended to improve the accuracy of predicted
multiples. It modifies and extends the current inverse scattering series (ISS) free-surface multiple
elimination (FSME) algorithm (Carvalho, 1992; Weglein et al., 1997, 2003) from an isotropic
point source to a source array by incorporating an angle-dependent source signature. The
modified FSME method is tested on simple 1D acoustic models with a 1D source arrays, and
the results indicate that the new method predicts more accurate and encouraging results than
does the current FSME algorithm.

1 Introduction

In seismic exploration, a common sequence of data processing is source wavelet estimation, deghost-
ing, free-surface multiple elimination, internal multiple attenuation /removal, imaging, and inversion.
The order of these processing steps is important because the performance of the later operations
could be affected by the former ones. As one of the crucial steps for imaging and inversion, multiple
removal is a classic long-standing problem in marine exploration seismology.

Various methods (e.g., Verschuur et al., 1992; Weglein et al., 1997; Berkhout and Verschuur, 1999;
Dragoset et al., 2008) have been developed to either attenuate or eliminate free-surface multiples,
which are dominant in the marine cases, especially for the case in which the water bottom has a
high velocity contrast. In spite of great efforts in this area, removing multiples continues to be a
challenging task in seismic data processing. As we know, if the multiples are not removed, they can
be misinterpreted as primaries or can interfere with them.

114



Multiple removal M-OSRP11

Frequently there are noticeable residual multiples remaining in the final migration image. There
are numerous causes for these residual multiples. First, the predicted multiples are not accurate
enough because of insufficient data acquisition, or the directivity of the source array. Second,
subsequent subtraction techniques are too conservative to preserve weak primary reflections. Third,
the prediction and removal of internal multiples have not yet become routine. These types of residual
multiples are commonly found in shallow marine or land data. The residual multiples presented
in the final migration images can make the subsequent seismic interpretation work harder, and in
some cases may lead to incorrect interpretation. For example, in the Gulf of Mexico, these residual
multiples can be mistakenly interpreted as subsalt primary reflections and can also lead to inaccurate
salt-body definition.

Hence, effective demultiple algorithms are required in marine seismic data processing. The inverse
scattering series (ISS) free-surface multiple elimination method is an important multidimensional
free-surface demultiple method. It does not require any subsurface information and most impor-
tantly it preserves primary energy (e.g., Carvalho, 1992; Aratjo, 1994; Weglein et al., 1997). A
crucial assumption in this method, however, is that the source is an isotropic point source, i.e.,
there is no variation of amplitude or phase with take-off angle. In practice, the source array is
widely employed in marine seismic exploration to increase the power of the source, broaden the
bandwidth and cancel the random noise. The source array is usually designed to make its signature
short and sharp in the vertical-downward direction and to render its spectrum smooth and broad
over the frequency band of interest (Giles and Johnston, 1973; Nooteboom, 1978; Brandsaeter et al.,
1979). The large marine air-gun arrays exhibit directivity and produce significant variations of the
source signature (Loveridge et al., 1984). The directivity and the variation of the source array have
significant effects on the ISS FSME algorithm. Therefore, to improve the accuracy of the predicted
multiples, in this report, the FSME algorithm is extended in this report from an isotropic point
source to a source array with a radiation pattern.

The report is organized as follows: First, the scattering series is discussed for a general source p.
Second, the modified ISS FSME algorithm (Yang and Weglein, 2011) is derived. Third, we give some
analysis on the modified FSME method. Finally, the testing results are provided and discussed.

2 Scattering theory

The scattering series theory can be derived from two basic differential equations (Weglein et al.,
2003), which govern wave propagation in actual medium and reference medium, respectively,

LP=p (2.1)

LoGo =6 (2.2)

where L, Ly are respectively the differential operators in the actual and reference media. The
perturbation V can be defined as Ly — L. Gy is the Green’s function in the reference medium and
P is the total wavefield in the actual medium; that wavefield is generated by an arbitrary source
distribution p.

If we know the reference medium, the reference wavefield, and the perturbation operator, the actual
wavefield can be obtained using the forward scattering series; on the other hand, if the reference
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Figure 1: The source array (a) can be described as a function p(7/,7s,w), which cares only about
the difference between the source array locator 75 and the specific air-gun point 7/ when the source
is moving (b).

Free surface

Source G
Gi
G, =G +GF Receiver

Figure 2: The reference Green’s function Gy consists of two parts: Go = G¢ + G{;S. GY is the direct

Green’s function and Ggs is the additional part of the Green’s function caused by the presence of
the free surface.

medium, the reference wavefield and the actual wavefield are known, the perturbation operator or
the earth property can be solved using the inverse scattering series.

On the basis of equations 2.1 and 2.2, the reference wavefield Py can be solved as the integral of
the causal reference Green’s function Gq over Vs, the whole range occupied by the general source p
(Morse and Feshbach, 1953), i.e.,

Po(7 o) = [ a7 7o) ol 7, ), (23)
where 7, 7' and 7 represent, respectively, the observation position, the source distribution and the
source array locater, as shown in figure 1(a). Note: P is the response of the reference medium to a
general source, which is a superposition of impulsive point sources, while G is an impulse response.

Green’s function G consists of two parts: the direct arrival Gg and its free-surface reflection G ®
shown in figure 2. The reference wavefield also consists of two contributions: the direct reference
wavefield Pél, and its ghost )2 ® which propagates from the source up to the free-surface and reflects
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down to the receivers:
Py= P+ PJ*. (2.4)

Thus, the direct reference wavefield Péi is expressed as

PY(F, Py w) = / di' p(F' Py ) GL(F, 7' w). (2.5)

Due to the translational symmetry of the source array, its geometry is invariant with respect to
the source array locator 75, and the source distribution p cares only about the difference between
the source array locator 75 and the specific air-gun 7', as shown in figure 1(b), which means that
the source distribution p doesn’t depend on a specific 7' and 7. In other words, for a given source
array, the source distribution is the same about the source array locator 7s. Thus, the source array
is only a function of the relative distance to the source array position as p(7’, 7s,w) = p(7’ — 75, w).
The direct reference wavefield Péj becomes

PL(F, 7y w) = / P p(F — 7y, w)G(F, 7', w). (2.6)

Note: If the source array reduces to an isotropic point source, the source distribution p(7" — 7, w)
becomes A(w)d(7" — 75), where A(w) is the point source signature.

When we change the coordinate, 7/ = 7/ — 7, and P¢ can be rewritten as

PU(F, 7y w) = / (" w) G, 7+ 7o),

s

Recalling 7 as 7/, the direct reference wavefield P{ becomes

PR, 7, w) = / 7! p(F! ) GL(F, 7+ 7, 0), (2.7)

E]

where 7/ describes the source distribution with respect to 7, and 7’ is invariant while the source is
moving.

On the other hand, on the basis of Green’s theorem, the reference wavefield Py can also be obtained
by measuring the total wavefield P and its normal derivative (Appendix A) as

Py(7, s, w) = / dS" i [P(F!, 75, w)V'Go(F, 7,w) — Go(7, 7, w) V' P, 75, w)]. (2.8)

Here we choose that (1) the reference medium is a half space of air over a half space of water,
(2) the source distribution is located between the measurement surface and the free surface (i.e.,
outside V'), and (3) the observation position 7 is in the volume V. Using the deghosting algorithm
(Zhang, 2007) that is based on Green’s theorem, the reference wavefield Py can be deghosted to the
direct reference wavefield Pgl. Jim Mayhan, a fellow graduate student in our group, can provide the
numerical Py and Péi for the FSME algorithm.
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3 ISS FSME algorithm for the source array

We assume that the source array is invariable from one shot to the next and only varies along the
horizontal axis. The source array locates at the same depth €; below the free surface. The direct
reference wavefield Péi for a 2D case can be expressed as

Pg(w,z,ws,es,w) = /dw'p(:v',es,w)Gg($,z,m'—I—:I:S,es,w), (3.1)

where (z,2) and (xs,€s) are the observation point and source point, respectively. The term ' is
the lateral variation of the source with respect to .

Using the bilinear form of Green’s function and Fourier transforming over z,, we obtain the rela-
tionship between p and P (Appendix B) as

d eoslemesl e
P§(x, z, ks, €5,w) = p(ks,w)we st (3.2)
S

where k2 + ¢2 = wQ/C% and z > €;. Equation 3.2 is also equivalent to

p etalz—es|
Pk, z,x5,e5,0) = p(k,w)——e® (3.3)
2iq

after Fourier transforming over x. Therefore, the general source signature, in other words, the
angle-dependent source signature p(k,w), can be calculated theoretically from the direct reference
wavefield Péi in the f-k domain, where the variable k represents the amplitude variations of the
general source signature with angles. To incorporate the source angle dependence, Ikelle et al. (1997)
also proposed a similar quantity A(k,w), which is the inverse source wavelet and can be solved by
the energy minimization criterion.

The FSME algorithm for a source array with a radiation pattern (Yang and Weglein, 2011) is derived
by following the procedure of the FSME algorithm (Carvalho, 1992; Weglein et al., 1997, 2003).

The final expression is a series for deghosted and free-surface demultipled data D’ in terms of
deghosted data D} and the angle-dependent source signature p(k,w), as follows:

1
D}, (kg ks, w) = / (Z%D’(k k,w)ge ot Dl (k, ks, w) (3.4)

and
D' (kg ks, w) = ZD’ kg, ks, w), (3.5)

where kg, ks and w represent the wavenumbers along the source, receiver and temporal frequency
axes, respectively. p(k,w) is the angle-dependent source signature, which is represented as a function
of wavenumber £ and temporal frequency w in the f-k domain. The terms €, and €5 are the depth

of the receiver and the source below the free surface, respectively, and ¢ is the obliquity factor given
by:

q=sgn(w)y| — — k2 (3.6)
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Using the free-surface multiple removal subseries, the FSME algorithm is extended and derived by
incorporating the angle-dependent source signature p(k,w), which includes the effects of the source
directivity. The extended FSME method requires the deghosted data D} and the angle-dependent
source signature p(k,w) but does not need any subsurface information.

The details of the derivation for equation 3.4 can be found in Appendix C.

4  Analysis

First, the extended FSME algorithm should be consistent with the current FSME algorithm (Car-
valho, 1992; Weglein et al., 1997, 2003) during the time that the source array reduces to a point
source. When the source array reduces to an isotropic point source A(w), the source distribution
p(7 — s, w) becomes A(w)§(7 — 75) and the direct reference wavefield P§ becomes A(w)GE&. Thus,
the recursive expression equation 3.4 reduces to

1 .
Dy (kg, ks, w) = M(w)/de’l(k:g,k,w)qelq@ﬁes)D;1(k:,/<:5,w), (4.1)

which is exactly the current FSME algorithm.

Second, if all the air guns are at the same depth and are identical, meaning that they have the
identical source signature A(w), the general source signature p(k,w) in equation 3.3 becomes

a

plh,w) = Aw) > e, (4.2)

r'=—a

where we assume that the range of the source array is from —a to a. For example, p(k,w) can be
expressed analytically for 3 point sources as,

plk,w) = A(w) Z e k" — A(w)(1 + 2cos(ka)). (4.3)

9 Numerical tests for synthetic data

For a source array that varies laterally with identical source signatures, the modified FSME algo-
rithm is tested on basis of equation 3.4. The model has only one reflector, i.e., the water bottom,
which is shown in figure 3(a).

5.1 Numerical tests for source array data

Using two different source arrays, one with 5 point sources and the other with 9 point sources,
as shown in figure 3(b), the data sets are generated by the Cagniard-de Hoop method. Only
the primary and free-surface multiples are generated, so we don’t need removing the ghosts. The
advantage of the Cagniard-de Hoop method is that we can accurately calculate any specific event we
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Figure 3: (a) One-dimensional acoustic constant-density medium. The depths of source, receiver,
and water bottom are 7m, 9m and 300m, respectively. The trace interval is 3m. (b) Two source
arrays are applied in the model, one with 5 point sources and another with 9 point sources. The
ranges of the two source arrays are 12m and 24m, respectively.

are interested in, so that we can compare it with the results predicted by our current and modified
FSME algorithms.

Next the free-surface multiples are predicted by the current FSME algorithm and the modified
FSME algorithm, respectively, for both data sets. After the predicted free-surface multiples have
been subtracted from the data sets, it can be seen that there are still some residual multiples when
we use the current FSME algorithm. However, for the modified FSME algorithm, the multiples are
removed completely, as shown in figure 4. Comparing figures 4(b) and 4(e), we conclude that the
larger the range of the source array is, the more residual multiples there are.

For details, we pick four traces from the source array data with 9 point sources and the predicted
free-surface multiples due to both the current and modified FSME algorithms. Here, only the first-
order free-surface multiples are compared with the exact calculated multiples. In figure 5(a), at zero
offset, both the amplitude and phase of the predicted first-order free-surface multiple are accurate;
at large offsets, the predicted free-surface multiple’s phase is correct, while its amplitude has some
errors. In figure 5(b), the amplitude and phase of the predicted first-order free-surface multiple are
very accurate at both zero and large offsets.

5.2 Numerical tests for receiver array data

Up until now, all the tests have been based on point receiver data. A receiver array is a set of
receivers whose records are summed together so that the signal can be enhanced and the random
noise suppressed. Since this summation will inevitably damage the actual wavefield, it is important
to characterize its effect on any wave-theory method. We use the same model as in figure 3(a), and
an isotropic point source is used to generate the data. Every 5 receivers are summed together with
equal weights to produce a new receiver, as shown in figure 6.

For the receiver array data, both the current and modified FSME algorithms are applied to predict
the free-surface multiples. After removing the free-surface multiple, there are residual multiples
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Figure 4: For source arrays with 5 and 9 point sources: (a)&(d) the data sets; (b)&(e) following
free-surface multiple removal using the current FSME algorithm, there are some residual multiples;
(¢)&(f) following free-surface multiple removal using the modified FSME algorithm, all the multiples
are completely eliminated.
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Figure 5: Red line: The exact calculated first-order free-surface multiple; Green line: (a) first-
order free-surface multiple predicted by the current FSME algorithm and (b) first-order free-surface
multiple predicted by the modified FSME algorithm.
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Figure 6: Every 5 receivers are summed together with equal weights to produce one record at the

center of the array. The new record interval is 15m.
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Figure 7: For a receiver array: (a) the data sets; (b) following free-surface multiple removal using
the current FSME algorithm, there are some residual multiples; (c) following free-surface multiple
removal using the modified FSME algorithm, all the multiples are completely eliminated.

when we use the current FSME algorithm, while all the multiples are removed completely using the
modified FSME algorithm. The testing results are plotted in figure 7. The reason that the modified
FSME alogrithm can work for the receiver array data is that the receiver array data and the source
array data have the similar configuration.

5.3 Numerical tests for data with source and receiver arrays

The modified FSME method is also tested for data with both source and receiver arrays. Here,
we choose the source array data with 9 point sources, and sum every 5 receivers to produce the
source-receiver-array data. The data are processed using (a) the current FSME algorithm, and also
using the modified FSME algorithms: (b) considering only the source array, (c) considering only
the receiver array, and (d) considering both source and receiver arrays. In figure 8, there are some
residual multiples in (b), (¢) and (d); but all the multiples are removed completely in (e). If we only
consider partial array information in the modified algorithm, the results in (c¢) and (d) are better
than in (b), which was processed by the current algorithm. If both source and receiver arrays are
considered in the modified algorithm, the result in (e) is better than all other results.

These numerical tests have demonstrated the effectiveness and benefit of the modified FSME algo-
rithm. Use of the current FSME algorithm to remove free-surface multiples leads to many residual
multiples, which can make the subsequent seismic interpretation work difficult and in some cases
may lead to incorrect interpretation. On the other hand, use of the modified FSME algorithm leads
to very accurate results.
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Figure 8: Source-receiver array: (a) data sets; following free-surface multiple removal (b) using the
current FSME algorithm; and using the modified FSME algorithms (c) considering only the source
array, (d) considering only the receiver array, and (e) considering both source and receiver arrays.
There are some residual multiples in (b), (¢) and (d); but all the multiples are completely eliminated
in (e).
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6 Conclusions

The modified FSME algorithm is derived by incorporating an angle-dependent source signature
p(k,w), which includes the effects of the source directivity. The wavenumber k describes the am-
plitude variations with angle in the f-k domain. The modified FSME method requires only the
deghosted data and the angle-dependent source signature p(k,w), without any subsurface infor-
mation. The modified FSME algorithm is consistent with the current FSME algorithm when the
source array reduces to an isotropic point source. The numerical tests for the synthetic data show
that the modified FSME algorithm predicts more accurate and encouraging results than the current
FSME algorithm produces. The modified FSME algorithm is a multidimensional algorithm, which
can be directly extended from 2D to 3D. Therefore, the modified FSME algorithm is a more general
and effective multidimensional free-surface multiple elimination method that can deal with a source
whether that source is with or without a radiation pattern.

7 Acknowledgements

The first author is grateful to all M-OSRP sponsors for their support of this research and to Di
Chang, Jim Mayhan and Lin Tang for their helpful and valuable discussions regarding this research.
My special appreciation goes to my advisor, Dr. Arthur Weglein, for his teaching, guidance and
patience.

125



Multiple removal M-OSRP11

Appendices

A Estimation of reference wavefield P,

The effective source signature or reference wavefield Py is derived in Weglein and Secrest (1990),
in which the authors derive two equations: the Lippmann-Schwinger equation and Green’s second
identity. Comparing the two equations gives an equation for the reference wavefield Py as a function
of measured data and a reference-medium Green’s function.

The acoustic wave equation with constant density for the total field P created by a general source
p(7,Ts, t) at the effective position 75 in frequency domain is

2

(v2 + C;’(F)) P77, w) = p(7, s, w). (A1)

Characterizing ¢(7) in terms of ¢y and the variation index of refraction «(7) gives
1 1
(1= a(). (A.2)

@ 2

Substituting equation A.2 into equation A.1 gives

w2 w2
<v2 + CQ) P(7, 75, w) = p(7, 75, w) + 6—204(17)13(77, Foyw). (A.3)
0 0

Converting equation A.3 from a partial differential equation into an integral equation (the Lippmann-
Schwinger equation) gives

2
PO, w) = / & o, 'y, ) Gol(7, 7, w) + / A Go (7, 7, 0) S alF) P ). (A4)
e’} 0

Choosing a causal Green’s function G(T in the Lippmann-Schwinger equation gives a causal solution
P(7, 7, w):

2
P(7,7s,w) = /dF’p(F’,Fs,w)Ga“(F,F’,w) +/ dF’GS“(F,F’,w)%a(F’)P(F',Fs,w). (A.5)
o) €

Substituting P and Gq into Green’s theorem gives
/ dF'[P(7', 75, w)V 2Go(7', Fyw) — Go (7', 7,w)V 2P (7!, 7, w)] =

1%
dS' i - [P(F', 7, w)V ' Go(F', 7,w) — Go (i, 7, w)V ' P(F', 7y, w))], (A.6)
S

where V' is the hemispheric volume below the measurement surface, and S is the hemisphere’s sur-
face. Substituting equation A.3 and its corresponding reference-medium Green’s function differential
equation into equation A.6 gives

% dS" i [P(F', 75, w)V'Go (7', 7,w) — Go(7, 7, w) V' P(F, 75, w)]
s
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= /dF/[P(F',stw) V2G’0(F 7, w)
1% %/_/
(—w?/c3)Go (7! ,Fw)+6(F' —F)

—Go(F', 7 w) V2P |7, w) ]
~—_——
(w2 /G P(F! s )+ 25 a7 P (7 s w) (7 s )
0
w2
= /d [——GO(F Fw)P(F’,FS,w)—i—é(F'—F)P(F’,Fs,w)
\% Co
carzgels
w2 w2
+ =5 P(7', Fs,w)Go (7', F,w) ——5 a7 ) P(F', Fs, w) Go (7, 7, w)
i) =)
cancels

_p(F,7F87w)GO(F,7F7w)}
2
_ / A7 [P(7! 7o, )3(7! — 7) — o ol )P (7", Py w) o7, 7, w)
1% 0]
~p(7', 7, 0)Go (7, 7)) (A1)

If we choose 7 € V, the general source p is zero because it is outside of the volume, and the
equation A.7 will be

fds’ﬁ-[P(f’,fs,w)v'ao(f',f,w)—Go(r OV P 7 w)]
S

2
— =] = — w — =] = -] =
= /Vdr'[P(T’,rs,w)d(r’—F)—C%a(r’)P(r’,rs,w)Go(r’,r,w)

P(F7FS 7w)

— (77, w) Go(F, 7, w)]
%,_/

- / dF’w—a V(7 7, w)Go (7', 7, w). (A.8)

If the support for a € V, rearranging equation A.8 gives

w?

P(7, 7y w) = /dF’Go(r 7 w) ool
v €

ﬁ
—
e
—
=y
Pl
&
N~—

—I-% dS' i [P(7, 75, w)V/'Go(F', Fw) — Go (7', 7, w) V' P(F' s, w)]
S
= / dFIGo(T 7r7w)—2a(F/)P(F/,FS,w)

+f{ dS' i - [P(F', 7, w)V ' Go (7', 7,w) — Go(i!, 7, w)V ' P(F', s, w)]. (A.9)
S

In equation A.9 the surface integral involves actual pressure measurements and their vertical deriva-
tives. For consistency with equation A.5 choose a causal Green’s function, which gives

2
P(7,Fy,w) = / i GE (7 7, w) o5 a(F) P, 7oy w)
(%) cO
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+:%cﬁyﬁ-U%FﬂT& w)V'G§ (7,7 w) — G§ (7, 7,w)V ' P(F Fs,w)] (A.10)
S

Comparing the Lippmann-Schwinger equation (A.5) and Green’s theroem (A.10) gives an equation
for the effective source signature or reference wavefield Fy:

Py(Frs,w) = /dr p(7, 7, w)Go (7, 7, w)
= 7{(15“ (7,75, ) VG (7!, 7y w)

—G§ (7, F,w)V' P(F | 7y, w)). (A.11)

Equation A.11 is one form of the "triangle relation” relating the pressure wavefield P(7/, 7, w), its
vertical derivative V' P(7’, 75, w), and the effective source signature or reference wavefield Py (775, w).

B Derivation of Equation 3.2

Here, the general source signature p(k,w) is solved from the reference wavefield Py. We assume that
(1) the distribution of the general source is the same for each experiment, which means that the
source distribution doesn’t depend on the effective source position 75, and (2) the general source
only varies along the horizontal variable /. Thus, P can be rewritten as

Pgl(x,z,xs,es,w) = /dx'p(m’ + xs,es,w)Gg(a:,z,J:/ + x5, €5, w), (B.1)

where 2’ is the source distribution with respect to the effective horizontal source position xs. Since
the source distribution doesn’t depend on the effective source position x5, we can express p(x’ +
Ts, €s,w) as p(z’,w) in this integral. The integral becomes

Pz, 2,4, €5,w) = /dx/p(x’,w)Gg(x,z,m’ + x5, €5,W). (B.2)
Using the bilinear form of Green’s function, it becomes
J , , eikz(:ffz —s) pikz(z—€s)
Py(x,z, x5, €5,w) = /d:n p(x ,w)/dkxdkz ETERTINTI (B.3)
xX

0

Fourier transforming with respect to x, gives

d , , eika(z—2'—as) pikz(2—¢s) .
PO (:U?z? kS) 65,(4.1) - /dx p(x ,W) /dkzdkz 5 el std.%'s
—k; -k + %
0

, , eikx(:c—az’)eikz (z—es)
= [ d2'p(z’,w) [ dk.dk, 5—0(ks — kz)
BoRte

iky(z—es)
_ iks(z—1x' €
= /dac’p(x',w)e ( )/dk22

—k2 k2 +

———
+q2
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k , zkzz €s)

X MIS‘Z 55‘
_ /dxlp(l,/’w)ezks(a:—x’)e

eiqs |z—es]

21qs

— Lk iksx
p( S7w)e 2,qu

e_iQst

plhs ) ——e

kT oidsz (B.4)
2iqs

Here z > ¢, is used. Similarly, we can obtain

eiq5\2—65| _ eiq5|z+es|

PQ(I,Z,]{IS,ES,W) :p(k's,W) 27/QS

e—iqsss(l _ e2iqses) )

= o(k igsz
p( Saw) 2/qu €

= P(, 2, ke, €5,w) (1 — €9:), (B.5)

C Derivation of Equation 3.4

The nt* order free-surface demultipled data

D;(xg,eg,acs,es,w) = —/d:cldzldmgdZQGg(xg,eg,xl,zl,w)Vl(ml,zl,xg,zQ,w)
*G{;S(xg,zz,mg,Z3,w)Vn_1(:1:3,zg,:r4,z4,w)P5l(:r4,z4,3:s,es,w)d$3dzgd:c4d24. (C.1)

Substituting the bilinear form of the Green’s function

J . eikz(:c—x’)eik (Z—z’)
Go(z,z, 2", 2" w) :/dkxdkz ETET (C.2)

O

into equation C.1 gives

, e gk )
Dn(xg7€g7xsaﬁsvw) = _/d.’lfleldlUQdZQ/d]f dk k’2 k22+w—22 %(l’l,Zl,l’Q,ZQ,W)
o

e k(zo—x3) ,ikz(z2+23)
*/dkdk:z 2 5 Vn_l(xg,23,:E4,Z4,w)P61(1:4,24,1:5,es,w)dx3dz3d:c4d24. (C.3)
— — k2 + w=

0
Fourier transforming with respect to x4, and x, gives
ik’z(xg—aq) ikl (eg—21)

/2 /2 w
—k2 — K

O

eflkg:vg dxg

2

D, (kg, g, ks, €5,w) = —/dmldzldxgdzz/dk;dk’ze
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eik(1'27x3)eikz(22+z3)
*‘/1(1'1, 21,2, ZZyw)/dkdkz _k2 — kg + %22

0

Vo—1(x3, 23, 4, 24, w)

*Pod(ac4, Z4, T, €s, w)estdemsdm3d23d:c4d24

o
= _ dxldz1d$2dz2/dk;dk;
/ —kZ K2 4 %

ikl xy eik; (eg—21)

27‘-5(]{:;: - kg)Vl(iL‘l, 21y L2, 22, (/J)

eik(z2—23) gik:(22+23) d
*/dk’dkz k2 _ g2 4 @2 Vi1(23, 23, T4, 24, W) By (24, 24, ks, €5, w)dwzdzzdadzy. (C.4)
—k2 — k2 + “;—2

0

Integrating over k!, gives

e*ikgxleiklz (eg—21)
D;L(k:g,eg,ks,es,w) = —/d$1d21d$2d2227r/dk; 2 Vi(xy, 21, 22, 22, w)
2
k2 —k2+ 5
0
—_———
+a3
e'k(xg—xg)eikz(z2+23) d
*/dkdkz 5 Va—1(23, 23, T4, 24, W) Py (T4, 24, ks, €5, w)dr3dzzdrsdzy
w
k2 -k + =
€
—_———
+q¢?

otk (eg—21)

7‘/1(.%'1 Z1, X2, 292 w)
_k/2+q2 ) ) ) )
z g

= — / dridz drodzee” Fa™127 / k.

e‘k(xzfz‘g)eik‘z(Z2+23) d
*/dk;dkz Vi—1(xs, 23, x4, 24, w) Py (x4, 24, ks, €5, w)dx3dzzdradzy

—k2+q?
. iqgleg—z1| 1 . iq|za+23]
T /dxldzld@dzw_mgrle‘V1($1721,$2,Z2,w) /dkelk(“_“)e .
2iqy 2 2iq
«Vi—1(x3, 23, T4, 24, w)Pg(m, 24, ks, €5, w)drsdzzdrydzy. (C.5)

Since €4 < z1 and 22, 23 > 0, equation C.5 becomes

giqg(eg_zl)

. Vi(x1, 21, T2, 22, W)
2iqy

Dy, (kg €9, ks €5,0) = _/d$1dZ1dx2dzzeik911

1 , ela(z2+23) 4
*%/dkezk(m_m)%Vn_l(x3,23,a:4724,w)P0 (x4, 24, ks, €5, w)dx3dzgdrsdzy

1 g_i‘lg% i . ik . 1
= —— | dk— /da:ldzldxgd@el 9T ItV (21, 21, T2, 22, w)e" 22 —
27 21qq 2iq
xe kT3 01023 Vi—1(x3, 23, 4, 24, w)Pg(m, 24, ks, €5, w)drgdzsdrydzy
Lk k Ly
= —— - —qq, —k, — —Vh_1(k,—q, x4, 24, w
5 2igs 1(kg, —qq, —k, Qaw)%q n—1(k, —q, x4, 24, w)
*Pg(m,z4,ks,es,w)d:c4dz'4. (C.6)
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Inserting two identities into equation C.6 gives

1 e 9 e 2iqg 1
D! (k k w)=—— [ dbk———V1(ky, —qq, —k, —q,w —
n( gy €gy s, €s,y ) o 2z'qg 1( 9> —dg> » 4, ) 2iqg e~ 2iq
—_—
1
2iq e
* 6—iqﬁg Tq Vn—l(kv —q,%4, 24, w)P()d(x47 24, k87 €s, w)dx4dz4

N————

e 2ig 1 2iq

1
Uk k
N _27T/ W 1 9 ~99> )¢, w) 2iq e~ 2q e—1¢

D/ (kg.eg k-€s,w) 2iged(esteg)
p(k,w)
e—iqeg 4
* 2’Lq anl(k% —q,T4, 24, w)PO ($47 24, k57 €s, (JJ)d.’E4dZ4
D! _(k,eg,ks,es,w)

1 dk , :
_ ste€g /
= / p(Tw)Dl(kg’ €g, k, es,u})qe“](6 6J)Dn_l(k‘, €g, ks, €5,w). (C.7)
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Abstract

The Inverse Scattering Series (ISS) is a comprehensive framework for achieving seismic data pro-
cessing goals without requiring subsurface information. Distinct isolated task-specific subseries
can accomplish free-surface-multiple removal, internal-multiple attenuation, depth imaging, and
inversion of primaries. The ISS can predict and eliminate internal multiples without a pri-
ori information. Although the leading-order ISS internal multiple attenuation algorithm for the
first-order internal multiples has shown unmatched capability on complex synthetic and onshore
data compared with other methods (e.g., Fu et al. (2010); Luo et al. (2011)), there are open
issues to be addressed (e.g., Weglein et al. (2011)). For example, spurious events can be pre-
dicted in the first-order attenuator (leading-order prediction of the first-order internal multiples)
when there are both primaries and internal multiples in the input data. This report proposes
a new algorithm to directly address the most significant spurious events observed in Fu et al.
(2010) and Luo et al. (2011). It also provides a template for identifying ISS terms addressing
these more general spurious events, which can arise from using a leading-order internal multiple
attenuation algorithm with complex media and complex data.

1 Introduction

In seismic exploration, primaries are events that have experienced only one upward reflection, while
multiples are events that have experienced multiple upward reflections. Multiples are further clas-
sified by the location of their downward reflections. Multiples that have at least one downward
reflection at the free surface (air-water or air-land) are free-surface multiples. Multiples that have
experienced all their downward reflections below the free surface are internal multiples. The number
of downward reflections determines the order of an internal multiple. For example, the first-order
internal multiples have only one downward reflection below the free surface (dashed line in Figure
2). Although both primaries and internal multiples contain subsurface information, the primaries-
only assumption in seismic data analysis requires removal of multiples. The methods for removing
multiples were classified as separation and wavefield prediction in Weglein (1999). The separation
methods sought a characteristic to distinguish primaries from multiples, while the early wavefield
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prediction methods first modeled and then subtracted multiples. Both of these approaches have
earned well-deserved places in the seismic toolbox. However, as seismic exploration moves toward
more complex areas, such methods have limitations resulting from their assumptions and the re-
quirements for subsurface information. The ISS free surface multiple removal algorithm (Carvalho,
1992; Weglein et al., 1997) and internal multiple attenuation algorithm (Araajo, 1994; Weglein
et al., 1997) start by avoiding the assumptions of the earlier methods, e.g., they are completely
multi-dimensional and have no requirements for subsurface information. There are both separation
and wavefield prediction ingredients in the ISS multiple-removal methods and they can be viewed
as a next step in the development of separation and wavefield prediction methods (Weglein et al.,
2011). For example, the ISS free-surface-multiple separation distinguishes the free-surface multiples
from other events by the downward reflection at the free surface. In contrast, the ISS internal-
multiple separation is realized without any a priori information, by understanding the difference in
the construction of primaries and internal multiples in the forward series. As an example, the ISS
leading-order prediction for the removal of the first-order internal multiple provides a “lower-higher-
lower’relationship in the pseudo-depth domain and uses only primaries as subevents to predict the
first-order internal multiples from all reflectors, at all depths at once, and without any subsurface
information.

Previous work focused on predicting internal multiples using only primaries in the input data.
When there are internal multiples in the input data, the ISS leading-order prediction of internal
multiples can produce spurious events. This limitation results from using a single leading-order
term to predict internal multiples with complex data. The term leading-order means it can by
itself effectively attenuate, but not completely eliminate, internal multiples. While we recognize
the shortcomings of the current leading-order ISS internal-multiple-attenuation algorithm, we also
recognize that addressing them resides in the ISS (Weglein et al., 2011). Each term in the subseries
achieves what the order of that term enables it to achieve. There are certain issues that a term
of a given order can address, and other issues that require aid from higher-order terms. The
more difficult the task, the more complicated and more inclusive the subseries is. For example, it
requires an infinite series (in a closed form) to completely eliminate all first-order internal multiples
generated at the shallowest layer when the properties at and above that reflector are unknown
(Ramirez and Weglein, 2005). Similarly, the internal-multiple-attenuation task is more difficult
when the input data contains internal multiples as well as primaries than it is when the input
data contain only primaries. Thus the ISS internal-multiple-attenuation algorithm needs to capture
terms in order to address the spurious events. In this report, we provide an understanding of the
issue of the leading-order prediction of the first-order internal multiples when the input data consist
of both primaries and internal multiples. We also provide a new higher-order ISS internal-multiple-
attenuation algorithm to address a particular type of spurious event that is predicted when the
middle subevent in the first-order attenuator is an internal multiple.

2 An overview of inverse scattering theory

Scattering theory is a form of perturbation analysis. It describes how the scattered wavefield (the
difference between the actual wavefield and the reference wavefield) relates to the perturbation
(the difference between the actual medium and the reference medium). A forward scattering series
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constructs the scattered wavefield from the perturbation, while an inverse scattering series provides
the perturbation from a scattered wavefield.

We start the mathematical description of scattering theory with the differential equations governing
wave propagation in the media:

LG =6(r—rs) (2.1)
LoGo = 6(r —rs), (2.2)

where L, Lg are differential operators in the actual and reference medium, respectively. G, Gg are
the actual and reference wavefield, respectively. Define the perturbation as V = Lo — L. Then the
Lippmann-Schwinger equation is

G =Go+ GoVG. (2.3)
Iteratively substituting equation 2.3 into itself gives the forward scattering series
Vs = GoVGo+ GoVGoV Gy + GoVGoVGeV Gy + - - -
= (ws)l + (%)2 =+ (7/}5)3+7 T (2'4>

where 15 = G — Gy is the scattered wavefield, and (vs)y, is the portion of v, that is the nth order
in V. The data D are the scattered wavefield evaluated on the measurement surface D = (1)) s-

We expand the perturbation V as a series,
V=Vit Vot Vit (2:5)

where V, is the portion of V' that is the nth order in the data, D. Substituting equation 2.5 into
equation 2.4 and evaluating both sides on the measurement surface, and then making terms of equal
order in the data equal gives the following set of equations

(Vs)m = (GoV1Go)m»

(2.6)

0 = (GoVaGo)m + (GoV1GoV1Go)m» (2.7)

0 = (GoV3Go)m + (GoVaGoViGo)m + (GoViGoVaGo)m + (GoViGoViGoViGo)m, (2.8)
0= (GoVnGo)m + (GoViGoVi—1Go)m + - - + (GoViGoVIGo Vi - - - GoViGo) - (2.9)

V1 can be solved in equation 2.6 by using the measured scattered wavefield (¢s),, and the reference
wavefield Gy. Then one can substitute the value of V7 into equation 2.7, and solve for V5 the same
as done for V; in equation 2.6. In this manner, we can compute any Vj,, and hence V=732V,
is an explicit direct inversion framework.

3 An overview of ISS internal-multiple-attenuation algorithm

The leading-order contribution to constructing a class of multiples in the forward series suggests the
leading-order contribution for their removal in the inverse series (Weglein et al., 2003). For example,
the mathematical realization of figure 1 is the leading-order contribution to the generation of first-
order internal multiples; it suggests the corresponding mathematical expression for the leading-order
attenuation of those multiples.
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A subseries that focuses on internal-multiple removal can be isolated from the inverse series. The ISS
internal-multiple-attenuation subseries, described here, chooses only the leading-order contribution
from the removal series of each order of multiple and uses it to form a subseries that attenuates
all the internal multiples effectively. The ISS internal-multiple-attenuation algorithm starts with
the input data, D(kg, ks,w), in 2D, which is the Fourier transform of the prestack data that are
deghosted, wavelet deconvolved and that have free-surface multiples removed. The leading-order
prediction of the first-order internal multiples makes the leading-order contribution to their removal.
In a 2D earth, the leading-order prediction of the first-order internal multiples is

1 00 00 ) )
bs(kg, ks, w) = (%)2/ d/ﬁ/ dhge™ 1 (Fo=20) gi2(20 =)

X / lebl (k‘g, k‘l, Zl)ei(qg+q1)21

Z1—€ )
X / d22b]_(k]_’ ka’ 22)6—1(Q1+Q2)Z2

—00

X / d23b1(k‘2,k‘s,23)€i(q2+qs)z3, (3.1)
zo+€

where w is temporal frequency, ks and k; are the horizontal wavenumbers for the source and re-

ceiver coordinates, respectively; g, and ¢, are the vertical source and receiver wavenumbers de-
2 . .

fined by ¢; = sgn(w), /“c’—g — k:? for i € {g,s}; z; and z4 are source and receiver depths; and z;

(2 € {1,2,3}) represents pseudo-depth using reference velocity migration. The quantity by (kg, ks, 2)
corresponds to an uncollapsed migration (Weglein et al., 1997) of effective plane-wave incident data,
and b1 (kg, ks, qq + qs) = —2iqsD(kg, ks, w).

(a) Forward (b) Inverse

Figure 1: The leading-order contribution to the generation of first-order internal multiples in the
forward series is represented in (a) and suggests the leading-order contribution to the removal of
first-order internal multiples in the inverse series in (b). Figure adapted from Weglein et al. (2003).

With the input data and the leading-order prediction of the first-order internal multiples, we can
obtain the data with the first-order internal multiples attenuated,

D(kg>k737w) +D3(l€g,k5,w), (3'2>

where D3(kg, ks,w) = (—Qiqs)*lbg(kg, ks,qq + qs).
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The data with both the first-order and higher-order internal multiples attenuated are,
D(kg, ks,w) + D3(kg, ks,w) + Ds(kg, ks, w) + D7(kg, ks,w) + -+, (3.3)

where Doy, 1 (kg, ks,w) = (—2iqs)_1b2n+1(kg,k:8,qg + gs). A recursive relationship that provides
ban+1 in terms of by,—1 is given in Aratjo (1994) and Weglein et al. (2003).

For a 1D earth and a normal incident plane wave, equation 3.1 reduces to

oo ' z1—€ ' oo '
bg(l{:) :/ dzle’kzlbl(zl)/ dZQGZkZZbl(ZQ)/ dZ3€Zkngl(Z3). (3.4)

—00 —0o0 zo+€

The leading-order ISS internal-multiple-attenuation algorithm for the first-order internal multiples
of a 1D earth and an impulsive incident plane wave is

b1 + bs. (3.5)

Note that the (—2igs) factor is not needed here because the incident wave is an impulsive plane
wave. However, in general, the output of the ISS leading-order removal of the first-order internal
multiples needs the (—2igs) factor to take b to D, as in equation 3.2.

S* 1] E V R

Figure 2: Combination of subevents for the first-order internal multiple (dashed line), (SABE)time+
(DBCR)time — (DBE)time = (SABCR)time. The capitalized letters indicate a primary or an
internal multiple. Figure adapted from Weglein et al. (2003).

The portion of the third-order term of the ISS that predicts the first-order internal multiple is
isolated by requiring the “lower(A)-higher(B)-lower(C) relationship in the pseudo-depth domain,
as shown here in Figure 2. The assumption behind the first-order internal-multiple prediction in
Figure 2 is that all of the subevents have to be primaries for the prediction to be an internal multiple.
There are circumstances, shown in the next section, where the “lower-higher-lower’template would
produce spurious events when one of the subevents is an internal multiple. However, these spurious
events are fully anticipated and can be attenuated by other terms in the inverse series.
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4 A new ISS internal-multiple-attenuation algorithm to attenuate
the spurious event arising in a three-reflector model

Now we consider a three-reflector analytic example. We first examine the prediction of the first-order
internal multiple attenuator using only primaries. We have

D(t) = Ri0(t —t1) + RL0(t — t2) + R50(t — t3), (4.1)

where R, = To1 RoTho; Ry = TorTh2RsTo1Tho, and t;, R; are two-way times and reflection coefficients
from the ith reflectors, respectively. T;; is the transmission coefficient between the ith and jth
reflectors.

Given these data, we find from equation 3.4 that
bg(t) :Rl(RIQ)Q(S(t — (2t2 — tl)) + 2R1R,2Rg(5(t — (t2 + i3 — tl))
FRy(RA)20(t — (2t — 1)) + Ra(R4)20(t — (215 — t2)). (4.2)

The four events are predictions of the first-order internal multiples associated with these three
primaries. When added to the data, the predictions can effectively attenuate the first-order internal

multiples.

t1 t2 t3 2t>-t1
Vol A\ A ke
71 R, Iy L, Ty 10 {o —R 10
7 sz I, 7, R, R 1!
R 2

Z3

3

Figure 3: Three primaries and one internal multiple in a three-reflector model.

Next, we examine the prediction when there are three primaries and one specific internal multiple
associated with the first two reflectors in the input data. In this case,

D(t) = Ri6(t — t1) + R56(t — t2) + R56(t — t3) + Ry6(t — (2t2 — 1)), (4.3)
where Ri} = TOlRQ(—Rl)RQTl().
Given these data, we find from equation 3.4 that
bg(t) :Rl(R/Q)Q(S(t — (2t2 — tl)) + 2R1R,2R,35(t — (tQ + i3 — tl))

FRUR0(t — (2t — 01)) + Ra(By)?0(t — (2t — 12)

2R RO RS (t — (3t3 — 2t1)) + RS (R))?6(t — (3t3 — 2t2))

+2RIRLR)S(t — (ts + 2t2 — 2t1)) + Ri(R})*6(t — (422 — 3t1))

+2RLRER)S(t — (3 +ta — t1)) + (R RS (t — (2t3 — (2t2 — t1))). (4.4)
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We have assumed that t3 > 2t — ¢1 in deriving equation 4.4.

In addition to the four first-order internal multiples (first two rows in equation 4.4), the first-order
attenuator, bz, predicts some additional events because of the specific internal multiple in the input.
Analysis of the traveltimes of these additional events shows that each of them corresponds to one
specific internal multiple of higher order with the exception of the last event (R%)2R5(t — (2t5 —
(2ta — t1))), which is a spurious event prediction.

4.1 Properties of the first-order attenuator when both primaries and internal
multiples are input as subevents

When there are internal multiples in the data, there will be many other possible subevent combi-
nations in the first-order internal-multiple attenuator, b3. Because when by = P+ I, it follows from
equation 3.4 that,

b3 :b1 *bl *bl
=(P+D)(P+I)(P+1I)
=PPP+ PPI+ PIP+IPP+PIIT+IPI+IIP+ 111,

where * stands for the nonlinear interaction between the data. P stands for primaries, and I stands
for internal multiples. Besides the primaries-only subevent combination, PP P, there are subevent
combinations involved with the internal multiple that produce the spurious event. A more detailed
analysis shows that the spurious event (Rj)2R}d(t — (2t3 — (2t2 — t1))) in equation 4.4 comes from
PIP as shown in Figure 4 .

b(® [XG) b 2t3-(2t2-t1)

P1 t

P2 t2
l212 2t-t1

P3 t3

Figure 4: An analogous W-like configuration to produce the spurious event using the internal
multiple as a subevent.

We use a diagram to illustrate the generation of the spurious event by the PIP subevent combina-
tion. The diagram for PIP is shown in the left panel in Figure 5, which satisfies the “lower-higher-
lower’relationship, as required by the algorithm.

Following the logic of predicting internal multiples by the “lower-higher-lower’pattern of three
primary subevents, the PIP diagram will split into a “lower—higher—-much higher—lower—-much
lower”configuration as shown in the right panel of Figure 5. The resultant configuration does not
agree with the double W-like configuration, which constructs a second-order internal multiple using
five primary subevents.

The pseudo-depth of the two outermost primaries, P, should be deeper than the effective pseudo-
depth of the middle internal multiple, I, to allow the PIP spurious events to happen, as shown in
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Figure 5: Separation for PIP into a W-like configuration.

Figure 4. In other words, the PIP spurious events can exist in a medium that has three or more
reflectors. That explains the fact that there are no spurious events produced in the two-reflector
example in the work of Zhang and Shaw (2010), even though an internal multiple is included in
their data.

When the internal multiple in PPI or IPP is separated into three “lower-higher-lower”primary
subevents, it leads to a double W-like configuration restricted by our three-reflector example. The
double W-like configuration will predict the second-order internal multiple, as shown in Figure
6, and explains the additional higher-order internal-multiple predictions in b3 from our analytic
example. It can be shown that there are circumstances where PPI produces spurious events in a
medium that has more than three reflectors (Liang et al., 2012).

P P P
P

Figure 6: One possible separation for PPI into a double W-like configuration.

Terms like ITP or I11 may also produce spurious events. However when compared with the effects
of terms like PIP, these terms can often be ignored in practice. The removal of the latter spurious
events also resides in the higher-order ISS terms, and beyond those considered and included in this
report.

4.2 A new term to attenuate the PIP spurious event

To remove the spurious events produced by the first-order attenuator when using an internal multiple
as the middle subevent, a new and higher-order ISS term, which has that capability, is included in
the current algorithm.

Guided by Figure 5, a portion of the fifth-order term from the ISS (GoV1GoV3GoV1Go) can be
employed to predict the PIP spurious events in 1D given by

00 ) Z1—€ ) 00 )
ngP:/ dzlemzlbl(zl)/ dZQG_zkz2b3(22)/ d23elk'z3b1(23), (4.5)

—0o0 Z2+€

where by (z) is an uncollapsed migration and b3(z) is the first-order attenuator.
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Compared with equation 3.4, this equation also requires the “lower-higher-lower’relationship, but
the middle b; becomes b3 to obtain a prediction of the spurious event using the predicted internal
multiple.

Then, adding equation 4.5 and equation 3.4 leads to our new algorithm for a 1D earth and an
impulsive incident plane wave,

by + b plIP

fe’e) ) Z1—€ ) 00 )
=by —|—/ dzle’kzlbl(zl)/ dZQé’_ZkZQ (51(22) + bg(ZQ))/ d23elkz3bl(23), (4.6)
—00 —00 zo+€
where b?lf PP — ps. The superscript indicates the subevent combination that the algorithm can
accommodate.

Compared with the original algorithm (equation 3.5), the new algorithm includes a portion of a
higher-order term (bf1F) to attenuate the PIP spurious events predicted by bFF when internal
multiples are in the data.

We use the same analytic example to test the new algorithm. Substituting D(¢) in equation 4.3 and
b3 in equation 4.4 into equation 4.5 produces

by'" = Ri(Ry)*(R3)*8(t — (2t3 — (2t2 — 1))
+ (2R Ry R (R3)? + Ry(R))* (R5)*)3(t — (265 — (3t2 — 2t1)))
+ Ry (R))*(RS)0(t — (2t3 — (4ty — 3t1))). (4.7)
The first term is the prediction of the spurious event. Substitution of R, = Ty RoThg leads to
(TorT10)” Ra(Ra)?(R5)?6(t — (2t3 — (2t2 — t1))).

The last term (Rj)?R)0(t — (2t3 — (2ta — t1))) in equation 4.4 is the spurious event. Substitution of
Rﬁl = TglRQ(—Rl)RQTw leads to

(=To1T10)R1(R2)?(RS)5(t — (2t3 — (2t2 — t1))).

When added to bs, the first term in equation 4.7 will effectively attenuate the spurious event. The
To1T10 error is because bf IP yses the predicted internal multiple as the middle subevent to predict
the spurious event, whereas b uses the actual internal multiple as the middle subevent (middle b),
as shown in Figure 4 and Figure 7.

It is the geometric similarity (single W-like configuration) between bf’F and b3 (Figure 5) that
enables bg P t6 contribute to removing the spurious events produced in b3. We note that each term
in the inverse series does what the order of that term is capable of performing. Different portions of
a given order term in the ISS can contribute to different tasks. For example, in our case, although
both the leading-order prediction of the second-order internal multiples b5 (right side in Figure 6)
and bg TP (right side in Figure 5) come from the fifth-order term in the inverse series, they have
different tasks determined by their different geometries. Indeed, b5p IP has a single W-like geometry
that is capable of attenuating the spurious events, whereas bs has a double W-like geometry that
is capable of predicting second-order internal multiples using primaries. Both are contained in the
fifth-order term in the ISS.

Therefore, by incorporating a higher-order ISS term into the attenuator, equation 4.6 can effectively
attenuate the PIP spurious events predicted by bs.
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b X0 b (D)
P1 u

P2 t
l212 2t-ta

P3 t3
I312 ta+ta-ta

2t3-(2t2-t1)
ls23 ta+t2-t1

laz3 2t3-ta

Figure 7: Illustration of the spurious event prediction in bg TP Notice the middle b3 produces
predicted internal multiples that have the opposite sign of the actual internal multiples. Only the
first-order predicted internal multiples (black dashed line) and spurious event (red dashed line) are
shown.

5 Discussion

In a medium that has more than three reflectors, (1) PPI or IPP can also predict spurious
events. Other portions of the fifth-order terms can be identified to address those spurious events
(Liang et al., 2012). (2) In equation 4.5, in addition to the prediction using the “primary—
predicted internal multiple—primary”subevent combination, there are possible “primary—spurious
event—primary”subevent combinations. However, at this point we can often reasonably disregard
this kind of newly created event in practice since the amplitude of these events is small. (3) Al-
though b? P is designed to address PIP spurious events, it can also address PII or I1P spurious
events using “primary—predicted internal multiple—internal multiple”or “internal multiple—predicted
internal multiple—primary”subevent combinations, respectively. The difference between b? P and bg
is in the middle diagram, one has primaries and real internal multiples (middle diagram in Figure
4); one has predicted spurious events and predicted internal multiples (middle diagram in Figure 7),
and the coefficients of real and predicted internal multiples are opposite.

6 Conclusions

In this report, we provide both (1) an algorithm to address the most significant spurious events
observed in Fu et al. (2010) and Luo et al. (2011) and (2) a template for locating ISS terms
addressing these more general spurious events that can arise from using a leading-order internal
multiple attenuation algorithm on complex media and complex data. The ISS can remove all
internal multiples without subsurface information and can also remove spurious events that arise
from using complex data in a leading-order algorithm. We exemplify that capability in this report.

To conclude, the new algorithm in this paper retains the strength of the original algorithm while
also addressing a limitation in the current algorithm, and it provides an extension to accommodate
data consisting of both primaries and internal multiples.
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Appendix

A Derivation of b’” from the fifth-order term from the ISS
One portion of the fifth-order term in the ISS is capable of predicting the artifacts we want to
remove. Start from the fifth-order equation,

Vs = = ViGoViGoViGoViGoVi — VaGoViGoViGoVi — ViGoVaGoViGoVy
— ViGoViGoVaGoVi — ViGoViGoViGoVa — V3GoViGoVa
— ViGoV3GoVi = ViGoViGoVa — ViGoVi — ViGoVy.

Inspired by the analog between the forward and inverse series and the logic of constructing internal
multiples using primaries, Vs7 = V1GoV3GoVy is chosen for further study. Using effective data in
the pseudo-depth domain to express it as (Ramirez, 2007)

Bsr(k / dzby (2 / dz'bs (2’ / dz" e by (2"
+/ dzby (2 )/ dz'e™ " by(2 )/ dz"by(2")

+/ dzeikzbl(z)/ dz’eikz/bz;(z/)/ dz”eik’z//bl(z”)

J —00 J —00 J —o0

—l—/ dzeikzbl(z)/ dZ,bAg(Z,)/ dz"b1(2"),
—00 —00 —00

where b3(2) is the data representation of one portion of third-order terms such that b3(z’) can be
employed to predict the artifacts.

To make sure the prediction is of the correct time, the third term is chosen, and in order to satisfy the
"lower-higher-lower" requirement in the pseudo-depth domain, the rightmost and middle integral
limits are further separated as follows,

Bss(k) = / dze**by(2) / dz'e % by () / dz2" e by (2"

= / dze**by(2) / / / )dz e by (2"

- +€

2 +e .
% (/ / / )dzllezkz bl (Z//)
— 2! 2/ +e
_ / dzeikzbl( ) / dz/efikz’ 63(2/) / dzlleikz"bl (Z//)
z—€ o 2/ +e o
/ dzezkzbl / dz/e—zkz bg(Z,) / dzllezk:z bl (Z”)

z—€ ()
+ / dze?lszbl( ) / dzle—zk,z’bg(z/) / dz//ezkz” by (Z//)
—00 —00 z'+e
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o] ) z+e A 2 —e e
_|_/ dzezkzbl(z)/ dz/e—zk’z bg(Z,)/ dzllezkz bl (z//)

—00 —€ —0o0
%) ) 2+e R 2 +e y

+/ dzezkzbl (Z)/ dzlefzk:z b3(2’/)/ dzl/ezkz bl (Z//)
—0o0 z—e€ z'—e€

[e'e] ) z+e o [e'e] _y
+ / dzezkzbl (Z) / dzle—zkz bg(z/) / dzl/ezkz bl (Z//)
—0o0 z—e€ z'+e

+/ dzeikzbl(z)/ dz’e_"kzlb;,(z')/ d2" e by ()

—00 +e€ —00
oo X o0 oA Z'+e 7

+/ dzezkzbl(z)/ dzle—zk;z 53(2,)/ dzllezkz bl(Z”)
—00 z 2/ —e

+/ dzeikzbl(z)/ dz’e_ikZ,bAg(z')/ dz" e by (2").
—o0 z+e z'+e

From the above separation, we choose the third term because it satisfies the requirement in the
pseudo-depth domain. Then we examine the third-order term to determine bs(z’):

Vs = =V1G1V1GoVi — VaGoVi — ViGoVa.

For the same reason, V1G1V1GoV1 is chosen for further study. Expressing this term using effective
data and doing the separation,

Bs(k)

/ dzeikzbl(z) / dzlefikz’bl (Z/) / dzl/eikz”bl (ZH)
7oo ) 7275 z+e ooi _

/ dze‘kzbl(z)(/ + / + / )dz'e "% by (2)
—0 —o0 z—€ z+e

2/ —e 2/ +e oo .
« (/ +/ +/ )dzllezkz bl(Z”)
—0o0 zl—e z'+e

dzeikzbl(z)/ dz/eikzlbl(z')/

—00 —00

oo ] z—€ ny 2 +e .
+/ dzezkzbl(z)/ dz/e—zkz bl(z/)/ dz//ezkz bl(ZH)

z'—e

—e “00
+/ dzemzbl(z)/ dz'e % bl(z’)/ d2"e* by (")
—00 00 z/+e€

o) ) z+e L, 2 —e o
+/ dzezkzbl(z)/ dzle—zkz bl(z')/ dzllezkz bl(Z”)

—€ —00

0 ] 2+e y 2 +e
+/ dze”kzbl(z)/ dz' e~z bl(z’)/

700 ) ;Jre Y o;
+/ dze”kzbl(z)/ dz'e= k= bl(z’)/

—0o0 z—e€ z'4e

+/ dze**by (2) dz'e_ikzlbl(z')/ d2"e™* by (")
—0o0 z+e —0o0

[e.e] z—

dzlleikz”bl (Z//)

dz//eikz”bl (Z”)

dz//eikz”bl (Z”)
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00 ) 00 g 2 +e e
+/ dzezkzbl(z)/ dz/e—zk:z bl(Z/)/ dzllezkz bl(Z//)

—00 z4e€ z'—e
oo ] oo g oo o

+/ dze”kzbl(z)/ dz' e~ k= bl(z’)/ dz" e by (2").
—00 z+e z'+e

The term we need from the above result is essentially the attenuator, since what we need in bs () is
the predicted internal multiple. Notice that here the work is almost the same as the work deriving the
leading-order internal-multiple eliminator (Ramirez, 2007), the difference being the work in Ramirez
(2007) needs data self-interaction whereas our solution needs W-like interaction. To summarize, we
have,

bETE = Brras (k) :/ dzeikzbl(z)/ dz/e_ikz/bz;(z’)/ dz" e by ("),
—00 —00 Z/+E
where - . -
bs (k) :/ dzeikzbl(z)/ dz’e_ikzlbl(z')/ d2"e™" by (2").
—00 —00 z+e€
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Abstract

Multiple removal is a prerequisite for depth imaging and target identification. The inverse
scattering series (ISS) predicts and removes internal multiples directly and without any subsur-
face information. This is achieved through a task-specific subseries within the overall ISS. The
ISS leading-order attenuator is the leading-order term of the subseries contributing to the re-
moval of first-order internal multiples. The idea behind the leading-order attenuator is that the
time of the first-order internal multiples can be predicted from primaries in the data that act as
subevents of the first-order internal multiples. However, the entire data, consisting of primaries
and internal multiples, enter the algorithm. When internal multiples in the data themselves
act as subevents, the leading-order attenuator produces not only first-order internal multiples,
but also higher-order internal multiples and spurious events, which have been observed in the
tests of Fu et al. (2010) and Luo et al. (2011). Weglein et al. (2011) also pointed this out and
suggested that the resolution of the problem would reside in other terms of the ISS. Within the
framework of ISS, each term of a task-specific subseries only performs a certain specific task.
The ISS leading-order attenuator has shown stand-alone capabilities for removing internal mul-
tiples. This report shows that the removal of the spurious events arising from the leading-order
attenuation algorithm is performed by other higher-order terms. Hence, a shortcoming of the
current leading-order internal-multiple algorithm is anticipated and addressed in later terms in
the ISS. The resulting new ISS internal-multiple algorithm presented in this report retains the
strengths of the current algorithm while avoiding a serious shortcoming.

1 Introduction

Seismic processing methods that extract subsurface information from seismic data typically assume
that the data consist only of primaries. Thus, multiple removal is a prerequisite to those methods.
Depending on the location of downward reflections, multiples can be divided into free-surface mul-
tiples or internal multiples. Multiples that have at least one downward reflection at the air-water or
air-land surface (free surface) are called free-surface multiples. Multiples that have all their down-
ward reflections below the free surface are called internal multiples. For the purpose of this report,
we will focus on the analysis of internal multiples.
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The inverse scattering series can achieve all processing objectives directly and without subsurface
information. With the ISS free-surface-multiple-removal method, the location and properties of
the free surface (the shallowest reflector) responsible for free-surface multiples are well defined.
In contrast, with the ISS internal-multiple-removal method, the shallowest reflector at which an
internal multiple experience a downward reflection could be anywhere in the subsurface, and its
properties are unknown. Thus, the internal-multiple-removal algorithm performs without a priori
information; it is data-driven and predicts internal multiples at all depths at once.

The ISS internal-multiple-attenuation algorithm was first proposed by Aratjo et al. (1994) and We-
glein et al. (1997). It is data-driven, and it can precisely predict the time and can well approximate
the amplitude for internal multiples at all depths at once. This algorithm does not depend on the
earth model type (Weglein et al., 2003) and is applicable for towed-streamer field data, land data,
and ocean bottom data (Matson and Weglein, 1996b; Matson, 1997) and even for internal multi-
ples with converted phase (Coates and Weglein, 1996). Ramirez and Weglein (2005) extended the
attenuation algorithm to the elimination method. The ISS internal-multiple algorithm has shown
encouraging results; it is distinctive and promises significant value for application (Fu et al., 2010;
Hsu et al., 2011; Terenghi et al., 2011; Weglein et al., 2011; Luo et al., 2011).

The ISS internal-multiple method operates without a priori information, and its tasks are more
complex than those of the ISS free-surface multiple method. Early analysis of the ISS leading-order
attenuator focused on using only primary subevents to predict internal multiples. However, the
input data contain both primaries and internal multiples, and all events in the data will be treated
as subevents. Under some circumstances treating internal multiples as subevents in the leading-
order internal-multiple algorithm can lead to spurious events. We define the conditions when that
can occur, and how terms further in the ISS address and remove those spurious events. Following
the suggestion of Weglein et al. (2011), Ma et al. (2012) derived the new ISS internal-multiple
algorithm, which addresses the shortcomings arising from the second of the three integrals of the
ISS leading-order attenuator in a three-reflector medium. This report evaluates that algorithm using
numerical examples, and also extends the algorithm to the medium with an arbitrary number of
reflectors.

In Section 2, we review the current ISS internal-multiple-attenuation algorithm. In Section 3 we
diagrammatically show the output of the leading-order internal-multiple attenuator when both pri-
maries and internal multiples are included in the input, then we analyze the cause of the generation
of the false event, and finally we present the newly identified terms in the inverse scattering se-
ries that address the false events. In Section 4 we use two numerical examples to evaluate the
performance of the new terms. We follow with discussion and conclusions at the end of this report.

2 The leading-order ISS internal-multiple-attenuation algorithm

The development of the ISS internal-multiple attenuation concept was based on the analogy between
the forward series and the inverse series (Weglein et al., 2003, 1997). Matson and Weglein (1996a)
showed that the forward series could generate primaries and internal multiples through the action
of Gg on V', where Gg is a whole-space Green’s function and V is the perturbation operator. The
inverse series can achieve a full inversion of V' by using Gg and the measured data (Weglein et al.,
2003). Thus, the way that Gg acts on V to construct internal multiples also suggests the way
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to remove them. In the forward series the first-order internal multiples have their leading-order
contribution from the third term (Figure 1(a)), which suggests that we can find the leading-order
attenuator of internal multiples from the third term in the inverse series. Following this logic path,
a subseries that attenuates internal multiples has been identified and separated from the entire
inverse scattering series (Weglein et al., 1997). Figure 1(b) shows the portion of the third term in
the inverse series that contributes to the first-order internal multiple attenuation, where V; is the
first-order approximation of V', z1 > zo and z3 > z».

The ISS internal-multiple-attenuation algorithm is a subseries of the inverse scattering series. The
algorithm starts with the deghosted input data with the reference wavefield and free-surface mul-
tiples removed, D(kgy, ks,w), where kg4 and ks are the horizontal wavenumbers corresponding to
receiver and source coordinates x4 and x, respectively, and w is the temporal frequency.

D(kg, ks, w) = (—2iqs) " by (ky, ks, w). (2.1)

bi(kg, ks, w) corresponds to an uncollapsed FK migration of effective incident plane-wave data (We-
glein et al., 2003; Hsu et al., 2011). The second term in the algorithm is the leading-order attenuator,
which attenuates first-order internal multiples (the order of an internal multiple is defined by the
total number of downward reflections). The leading-order attenuator in a 2D earth is given by
Aratjo et al. (1994) and Weglein et al. (1997)

balky sty + 0 = s / / dly e (e5=0) dyein(co=es)

x/ dzlei(qg+q1)z1b1(k‘g,—klazl)

21—€ )
X / dzzel(_ql_@)”bl(k?l, —ka, 22)

—0o0

X / dZ3€i(q2+q5)z3b1(k2, —ks, Z3), (2.2)
z2+€

where ¢g is the reference velocity, g, = sgn(w),/(&)? — k7 and g5 = sgn(w),/(2)* — k3 are the

vertical wavenumbers, ¢;, ¢ = 1,2 is a small positive parameter chosen to insure that the relations
between pseudo-depths z; > 22 and z3 > 23 are satisfied, and 2z, and z, are source and receiver
depths, respectively.

For a 1D earth and a normal incidence, wave equation 2.2 reduces to

00 ) 21—€ ) o) )
bgPP = bg(k‘) :/ dzlemzlbl(zl)/ d226_1k22b1(22)/ ngemz?’bl(Zg) (23)

—00 —00 zZo+€

where the deghosted data , D(t), for an incident spike wave, satisfy D(w) = b1(2w/cg), bi(z) =

ffooo e‘ikzb(k:)dk:, and k = 2w/cq is the vertical wavenumber . Here, we introduce a new notation,
bEPP

(18]

, in which the superscript (“p” represents primary) indicates specific events in the data that
are input into each of the three integrals. The events indicated in this notation are the ones that
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(a) (b)

Figure 1: (a) The leading-term contribution to the generation of first-order internal multiples in the
forward scattering series. (b) The leading-term contribution to the removal of first-order internal
multiples in the inverse scattering series. Gg, V', and Vj are the whole-space Green’s function, the
perturbation operator, and the first-order approximation to V', respectively. Figure adapted from
Weglein et al. (2003).

the algorithm can accommodate in its goal of removing first-order internal multiples. The data with
first-order internal multiples attenuated are

D(t) + Ds(t), (2.4)

where Ds(t) is the inverse Fourier transform of Ds(w) and Ds(w) = bs(k) for an incident spike
wave. Weglein and Matson (1998) showed that this algorithm can be interpreted as the subevents
construction of internal multiples. Figure 2 illustrates the construction of a first-order internal
multiple using three primary subevents. The predicted time of the internal multiple is exact and
the predicted amplitude approximates the true amplitude (Weglein et al., 2003).

3 The general output of the leading-order internal multiple attenuator when
an internal multiple is treated as a subevent

Early analysis focused exclusively on predicting the internal multiples by using primary subevents.
However, seismic data contains not only primary events but also internal multiples. Zhang and Shaw
(2010) have shown that the leading-order attenuator can predict higher-order internal multiples
by using internal multiples as subevents in a two-interface example. However, the situation is
considerably more complicated when the data from three or more reflectors are considered. In the
latter case, spurious events can be predicted whose traveltimes do not correspond to an event in
the data. In this section, we illustrate the specific conditions under which the spurious events are
produced by the leading-order attenuator by using one internal multiple subevent in a 1D earth.

In the rest of this section, we will focus on the analysis of the ISS leading-order internal-multiple
attenuator for a 1D medium and a normal incident wave. In such a case, a first-order internal
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Figure 2: Subevents construction of an internal multiple. The phase relationship between
the internal multiple (dashed line) SABCR, and primaries (solid line) SABE, DBCR, DBE, is:
(SABE),;10 + (DBCR);100 — (DBE) .. = (SABCR) Figure adapted from Weglein et al. (2003).
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multiple (see Figure 3(a)) can be represented by the diagram in Figure 3(b), where the “-” sign in a
red circle means a downward reflection and the “+” sign in a blue circle denotes an upward reflection.
If we only consider the pseudo-depths (vertical traveltime) of the events, Figure 3(b) can also be
used to illustrate the prediction of internal multiples with three primary subevents, with each circle
representing a subevent and the sign “4+” or “-” in the circle meaning the addition or subtraction
of the pseudo-depth of the subevent. The pseudo-depths of the three primary subevents, z9, z1 and
29, satisfy the “lower—higher—lower” pattern with zo > z7. The pseudo-depth of the event predicted
by the leading-order attenuator is 2z9 — 21, which is exactly equal to that of the first-order internal
multiple in Figure 3(a). Next we will examine the cases in which one of the subevents is an internal
multiple.

3.1 An internal-multiple subevent in the second integral

Ma et al. (2012) have shown that in a medium with three reflectors, when an internal multiple acts as
a subevent in the second of the three integrals (see equation 2.3), a spurious event can be produced.
In this section, we interpret this diagrammatically using Figure 4 (pseudo-depth is determined by
the water speed image, bi(z)). An internal multiple has each of its downward reflections between
two upward reflections. Then, in the diagrammatic representation of an internal multiple (e.g.,
Figure 4(a)), a higher red circle with a “-” sign should have lower blue circles with “4” signs on
both sides. However, in Figure 4(c) each of the two red circles has only one lower blue circle on one
side, and one higher blue circle on the other side. Thus, this predicted event is neither an internal
multiple nor a primary. Figure 5 shows the construction of such a false event using the subevent
concept.
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Figure 3: Diagrammatic illustration of a first-order internal multiple: the “-” sign represents a
downward reflection and the “+” sign represents an upward reflection.

(c)

Figure 4: Diagrammatic illustration of the generation of a spurious event. (a) The diagram of
a first-order internal multiple. The sign “+” (“-”) means an upward (downward) reflection or the
pseudo-depth is added (subtracted). (b) Three subevents used by the leading-order attenuator: a
primary (“P”) with pseudo-depth z, an internal multiple (“I”) with pseudo-depth 2’, and a primary
with pseudo-depth 2", with 2’ < 2,2”. (¢) The spurious event generated with pseudo-depth (z +

2 — (2’1 + 23 — 2’2)).
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: /.

Z2

Figure 5: Generation of a false event using an internal multiple as the middle subevent, 229 —2; < z3.

The spurious event described here is generated by the leading-order attenuator by using an internal-
multiple subevent in the second integral. The way the spurious event is generated suggests the way
that it can be removed. For the removal of this type of spurious events, substituting b3 for the
second by in equation 2.3 leads to equation 3.1. The subevent combination of “primary—predicted
internal multiple—primary” in equation 3.1 can be used to attenuate the spurious event. In this
paper, we examine one of the fifth-order terms in the ISS ( GoViGoV3GpV1Gp) that satisfies the
required Figure 4(c) geometry. The derivation of this term and analytical examples are shown in
Ma et al. (2012).

z]1—€ [e's)

d22€_ikz2 1)3(2’2) / dz;geikz?’ b1 (23) (3.1)

zo+e€

bETE (k) = / dz1e1b1 (21) /

—00 —00
The output of the new ISS internal-multiple algorithm for this three reflectors case is
D(t) + Ds(t) + DETE (1), (3.2)

where DEIP (t) is the inverse Fourier transform of D'1P(w) and DEIF (w) = bE1F (k) for spike data.
The original algorithm (see equation 2.4) attenuates the first-order internal multiples and preserves
primaries but can also output spurious events. The new algorithm in equation 3.2 provides the
benefit of the original algorithm while addressing issues that are due to spurious events.

3.2 An internal-multiple subevent in the outer integral

The problem is yet more complicated when a first-order internal-multiple subevent is in either of the
outer integrals. As shown in the left panel of Figure 6, when an internal multiple with pseudo-depth
2" is in the rightmost integral (z,z” > 2’), and since 2’ = (21 + 23 — 22) > 2/, there are several

possible relations among z1, 29, 23 and 2/, which are as follows:
e As shown by the first arrow in Figure 6, when 21 > 2/, 29 # z and z3 # 2/, the predicted event

has the same pseudo-depth as dose a second-order internal multiple. Its subevent construction
is shown in Figure 7, and this occurs in a medium with the number of reflectors N > 2.
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Figure 6: Diagrammatic illustration of predicted events when an internal-multiple subevent is in
the outer integral.

e The second arrow in Figure 6 shows that when z; = 2/, the predicted event has the same
pseudo-depth as dose a first-order internal multiple. Figure 8 describes its subevent construc-
tion, which only happens in a medium with N > 3.

e The third arrow in Figure 6 shows that a spurious event is produced with z; < 2’ and 23 < 2/
(the red circle at 2’ has only one lower blue circle on one side). Its subevent construction is
illustrated by Figure 9. This type of spurious event can only be generated in a medium with
N > 4.

Using the same logic analysis that we used in the previous section, we propose another method
to address this type of spurious event, this time by replacing the third b; in equation 2.3 with bs;
the new term is shown in equation 3.3. Since this type of spurious event could be produced by the
leading-order attenuator using a first-order internal-multiple subevent in either of the outer integrals
(these two cases are equivalent), there is a leading coefficient 2 in equation 3.3. This term is also
identified from the fifth-order term of the ISS equations (from the term GoViGoViGoV3G).

(o]

z]1—€ o)

ngeiisz b1 (22) / d236“m3 53(23) (33)

zo+€

bEPL (k) =2 / dz1e®*1by (21) /

—00 —00
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Figure 8: Generation of a first-order internal multiple when an internal-multiple subevent is in the
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Figure 9: Generation of a false event when an internal-multiple subevent is in the outer integral,
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Figure 10: A one-dimensional model with three interfaces.

The new ISS internal-multiple algorithm for this case with more than three reflectors is
Di(t) + D3(t) + DYIP(t) + DEPL(t). (3.4)

where DEPL(t) is the Fourier transform of DIF!(w), and DI (w) = 1P (k) for an incident spike
wave. This new general algorithm in equation 3.4 retains the strengths of the original algorithm
while addressing issues that are due to spurious events.

4 Numerical examples

In this section, we will compute and analyze the new terms for one-dimensional, three-interface
models. The spurious event would be produced when the internal-multiple subevent is in the
second of the three integrals (see the discussions in Sections 3.1 and 3.2). Thus, only the algorithm
in Section 3.1 will be tested in this section. Numerical tests are presented using both analytic data
and synthetic data.

4.1 Numerical tests using analytic data

The test results obtained by using analytic data are shown in this section. For the model shown in

Figure 10 the reflection data that are due to an impulsive incident wave §(t — Z) are

D(t) = Rlé(t — tl) + T01R2T10(5(t — tg) + T01T12R3T21T10(5(t — t3)
— ToleRlTlo(S(t — (2t2 — t1)> e, (4.1)

where t; = 0.4s, to = 0.5s, and t3 = 1.0s. The velocities in each layer of the model are ¢y = 1500m/ s,
c1 = 2500m/s, cog = 4000m/s, and c3 = 6000m/s. The densities in the model are constant. Since
velocities are increasing with depth, all upward reflections yield positive reflection coeflicients. R;
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and T;; are reflection and transmission coefficients, respectively. We choose the temporal data so
that they contain only three primaries and all first-order internal multiples. The temporal Fourier
transform is given by

D(w) = Rleiwtl + T01R2T106i‘”t2 + T01T12R3T21T106th3
— T()lR%RlTl()Ciw(thtl) ... (4.2)

The first term in the internal-multiple-attenuation algorithm is given by Weglein et al. (2003)

bl(ki) = D(w) = Rleikzl + T01R2T10€ik32 + T01T12R3T21T10€ik23
— T()lR%RlTloeik(QZz_zl) ceey (43)

where the pseudo-depths z1,2z9 and z3 are defined as z; = cot1/2, 20 = cota/2, and z3 = cot3/2, co
is a reference velocity, and k = 2w/¢ is the vertical wave number. The data in the wavenumber
domain (see equation 4.3) are first input into equation 2.3 to calculate bs. Then both b; and b3 are
used by equation 3.1 to calculate b5P[P.

Figure 11 shows the data consisting of primaries and first-order internal multiples, where P; rep-
resents the primary reflected at the it" reflector, and I;j1, denotes the first-order internal multiple
with one downward reflection at the j* reflector and two upward reflections at the ¥ and k"
reflectors, respectively. Since the input data consists of both primaries and internal multiples, the
leading-order attenuator will produce not only first-order internal multiples, but also higher-order
internal multiples (see discussion in 3.2) and false event (see discussion in 3.1). Figure 12(a) shows
the calculated D3, where the false event is at time 1.4s and has negative polarity. The false event
is produced by the subevents combination of “Ps-Iy12-P3”, and its amplitude is —3.9331 x 1074
Figure 12(b) shows the calculated DéD TP where the predicted false event is at time 1.4s and has pos-
itive polarity. The predicted false event is produced by the subevents combination of “ P3—predicted
Iy19-P3’, and its amplitude is 3.7832 x 104, which is slightly smaller than amplitude of the pro-
duced false event. Figure 13(a) is the result after subtracting primaries from the sum of D and D3 ,
while Figure 13(b) is the result after subtracting primaries from the sum of D, D3 and D{'F. From
the result, we can see that the false event has been significantly attenuated by the new algorithm
(see equation 3.1).

It should be noted that in Figure 12(a) the internal multiple I323 predicted by b3 is composed of
three subevent combinations: “P3—Po—Ps”, “P3—I319—1I319” and “I319—I219—P3”. From Figure 12(b)
we can see that D5P TP can also predict internal multiples since all the events in b; are used as
subevents in equation 3.1. For example, the event at 1.5s in Figure 12(b) has the same traveltime
as dose I3903, and it has negative polarity. Further, it can be generated by the following subevent
combination: I312 in D (negative), predicted Ia12 in D3 (positive) and Ps in D (positive). The
new algorithm represents progress in the attenuation of first-order internal multiples. Research is
ongoing to provide further insight and capability.
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Figure 11: Primaries and first-order internal multiples in the data.
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Figure 12: (a) D3 consisting of first-order internal multiples, higher-order internal multiples and
the false event (pointed to by the red arrow and with an amplitude of —3.9331 x 10~%). (b) The

calculated D5P IP " containing internal multiples and predicted false event (pointed to by the red
arrow and with an amplitude of 3.7832 x 107%).
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Figure 13: (a) The result of D + D3— primaries, containing the remaining multiples and the false
event, with a red arrow pointing to the produced false event in D3. (b) The result of D+ D3 —|—D§ w_
primaries, containing the remaining multiples and the false event after attenuation, with a red arrow
pointing to the attenuated false event.
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4.2 Numerical tests using synthetic data

In this section we show the test result obtained by using synthetic data. A one-dimensional two-
parameter (with both velocity and density variation) model with three interfaces is used to generate
the data. The chosen parameters for the model are:

co = 1500m/s, c; = 2500m/s, ca = 3500m/s, cz = 4500m/s;
po = 1.0g/em3, p1 = 2.0g/cm?, py = 3.0g/cm?, p3 = 4.0g/cm?;
z1 = 500m, zo = 1000m, z3 = 3500m,

where ¢; and p; represent the velocity and density in each layer, respectively, and z; is the depth of
each interface. The model parameters are chosen so that the internal multiples are relatively strong.
Figure 14(a) shows the zero-offset data generated using finite-difference modeling. The internal
multiples predicted by the leading-order attenuator are shown in Figure 14(b), where the red arrow
points to the produced false event. In Figure 15(b) each event predicted by bgM is labeled, e.g.,
“2-1-2” means the first-order internal multiple with two upward reflections at the second reflector

and one downward reflection at the first reflector. Figure 15(a) shows the false event predicted by
bETP.

Similarly to the case in the previous Section, the b5P IP term here predicts not only the false event but
also internal multiples. For example, the predicted I323 in Figure 15(a) is generated by the subevents
combination of “I3jo—predicted Is10—P3” and the predicted I319 is generated by the combination of
“1212127predicted 1212*P3”.

5 Discussion

In this report, we discussed the general output of the ISS leading-order attenuator when internal
multiples are used as subevents and we proposed further new terms to improve that output by
avoiding the prediction of spurious events. The logic path that the method uses for removing the
spurious event follows the way in which the spurious event is generated. In the analysis of spurious-
event generation and removal, we only consider the cases where just one internal multiple is used
as a subevent (see discussions in Sections 3.1 and 3.2). When more than one internal multiple is
used as subevents, the generated events are weak in amplitude.

As discussed in Section 3.1, the subevents combination of “primary—predicted internal multiple—
primary” in the new term bg) P is used to attenuate the spurious event produced by the subevents
combination of “primary—internal multiple-primary” in b3. Therefore, if the predicted internal multi-
ples have exactly the same amplitude that the true internal multiples in the data have, the algorithms
presented in this report could eliminate the spurious events. For the purpose of spurious-events elim-
ination, further inclusion of the ISS internal-multiple-elimination algorithm could be one possible
solution (Ramirez, 2007).

Finally, when spurious events are produced by the leading-order attenuator b3, they could also be
used as subevents in the new terms bL'7¥ or b1, since b is one of their inputs. If this were the case
new types of spurious events would be generated. However, the newly generated spurious events
have much weaker amplitudes. Furthermore, other types of new terms can be identified to address
this issue (Ma et al., 2012).
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Figure 14: (a) Zero-offset data, where three primaries are at 0.667s, 1.067s and 2.495s, respectively.
(b) Events predicted by bs, with the red arrow pointing to the spurious event (at 3.524s).

(s)awil

6 Conclusions

While the ISS leading-order attenuator has demonstrated its capability for internal-multiple removal,
it has strengths and limitations as implied by “leading-order” and “attenuator”. The algorithm
presented in this report and in Ma et al. (2012) addresses a shortcoming of the current leading-
order ISS internal-multiple-attenuation algorithm that is observed in the examples of Fu et al. (2010)
and Luo et al. (2011). The new ISS internal-multiple-attenuation algorithm retains the benefit of the
original algorithm, while addressing one of its shortcomings. The new algorithm now accommodates
both primaries and internal multiples in the input data.
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Figure 15: (a) Events produced by b5P TP "where the negative of the spurious event is at 3.524s. (b)
Events produced by bs, with labels.
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Abstract

In Ramirez (2007), a subseries of the Inverse Scattering Subseries (ISS) was isolated, whose
specific task is to eliminate internal multiples of first order. This subseries naturally splits into
two subseries: the Leading-Order Internal-Multiple-Eliminator Subseries (LOIMES) and the
Higher-Order Internal-Multiple-Eliminator Subseries (HOIMES).

The purpose of this report is to propose a modification of the LOIMES. The motivation for
such a modification is twofold. First, the original formulation carries a limitation for correctly
accommodating spike-like data, due to the presence of powers of the data higher than one, which
are not well defined mathematically when the data are spike-like. Second, we wish to apply the
LOIMES to the Internal-Multiple-Attenuation Subseries (IMAS) obtained in Ma and Weglein
(2012). The proposal splits into two cases: spike-like data and non-spike (but continuous) data.
For the spike-like case, the proposal correctly overcomes the limitation of the original approach
by explicitly avoiding the higher powers of the data, and it also allows for the elimination of
the effect described in Ma and Weglein (2012), and originated by the presence of a specific
1st. order internal multiple in the input data of the leading order contribution of the original
IMAS. For continuous data the proposal fixes a mathematical issue that is present in the original
approach, regarding the behavior of the subseries when € (the parameter introduced to avoid
self interactions) goes to zero. At the same time, however, the proposal brings new questions to
the subject because it is not general enough to deal with all types of continuous data; it only
works for a very restricted class.

1 Introduction

One of the main challenges of exploration seismology is to locate hydrocarbon targets beneath the
earth’s surface. To achieve this goal, there is a sequence of steps to be performed in the data resulting
from seismic experiments: random-noise attenuation, deghosting, source wavelet deconvolution,
removal of free-surface multiples, removal of internal multiples, imaging, and inversion. All these
steps must be done in the same order in which they are listed. In particular, all current imaging
algorithms assume that the data consist exclusively of primaries, which means that any other type
of event (i.e., ghosts and multiples) is considered to be noise by the imaging process and therefore
needs to be removed from the data before the application of any imaging algorithm.
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Today, there are a number of methodologies in the oil industry that are designed to handle the dif-
ferent steps just mentioned. In particular, for the removal of internal multiples, one of the standard
methods is the energy-minimization adaptive substraction. This method works by using the internal
multiples predicted by a given model, and then systematically substracting this prediction from the
actual data, using the minimum energy criteria: the energy after the removal should be minimal.
However, this method fails, among other situations, when an internal multiple is interfering with a
primary. The reason is that in this situation the minimum energy criterium is no longer valid, and
the adaptive substraction affects also the amplitude of the primary.

A new criteria for adaptive subtraction in then necessary, but is not yet available. As such criteria
must deal with factors from the system (wavelet, ghosts internal multiples, etc.) and outside the
system (such as the irregular shape the free surface), what we can do in the meantime is to lower
the burden for the adaptive substraction. This can be done by applying to the system all the
preprocessing tools we have at hand. In this way, we help the adaptive subtraction to take care
mostly of the factors outside the system, and hence to improve its effectiveness.

Using the ISS and the concept of specific-task subseries, a multidimensional algorithm to remove free-
surface multiples was derived in Carvalho (1992), using no information about the earth’s subsurface.
Later on, this work was extended in Aratjo (1994), where a multidimensional algorithm was derived
to attenuate internal multiples present in the data. However, to reach the goal of lowering the burden
of the adaptive subtraction as much as possible, it is important to move the atenuation of internal
multiples to a total elimination.

In response to this necessity, a further subseries was isolated in Ramirez (2007). The specific task
of this subseries is to remove, rather than attenuate, internal multiples of first order. However,
this subseries is unable to deal with spike-like data, as in this case there is a mathematical in-
consistency: the subseries contains powers of the data higher than one and these powers are not
well defined when the data are spike-like (analytic). The subseries splits into two subseries: the
Leading-Order Internal-Multiple-Eliminator Subseries (LOIMES) and the Higher-Order Internal-
Multiple-Eliminator Subseries (HOIMES). The LOIMES eliminates internal multiples that are of
first-order and whose downward reflection takes place at the shallowest reflector, while the HOIMES
eliminates the first-order internal multiples generated at any reflector other than the shallowest.

Although in practice the field data is never a spike, it is very important to test any new algorithm
with analytic data, as in this case the data is error-free and we have total control on them. This
means that if we test the algorithm with analytic data, any error in the output is an error in
the algorithm. In other words, with analytic data we can isolate and test the concept behind the
algorithm. Once the algorithm is successful with analytic data, we can go ahead and test it with
synthetic data, and eventually with field data.

In this report, we modify the original derivation of the LOIMES to allow for spike-like data. We focus
on the LOIMES because of its immediate application to recent developments in Ma and Weglein
(2012) and Liang and Weglein (2012), where the original Internal-Multiple-Attenuator Subseries
(IMAS) of Aratjo and Weglein is extended to allow the input data to include first-order internal
multiples. In particular we show, by specific example, how this modified algorithm for the LOIMES
can be used to move the work in Ma and Weglein (2012), from an attenuator to an eliminator of
the effect of a particular internal multiple in the input data. Along the way, we also find the need
to rederive the LOIMES (and in general the first-order IMES) when the data are not spike-like (but
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are continuous). In this case, we find a derivation that is valid only for highly constrained data.
This last fact, together with the analysis of Ramirez and Weglein in the original derivation of the
first-order IMES, strongly suggests that more research in the subject is necessary, as there is no
physical reason for the elimination to take place only within some subset of data.

The organization of this report is as follows: in section 2, we review the original derivation of the
IMES proposed by Ramirez and Weglein. In section 3 we point out the limitation of the LOIMES
in dealing with spike-like data and explain how to overcome this limitation, by a modification of
the algorithm specific for such data. We also apply this modified algorithm to promote (for a
specific earth model) the IMAS in Ma and Weglein (2012) to being an eliminator for the effect of
the inclusion of a specific internal multiple in the input data. In section 4, we propose a slightly
different way to derive the LOIMES for continuous data, and we also make a few comments about
the HOIMES. Finally, in section 5 we present final comments and conclusions. There are two
appendices, in which we show the details of the calculations needed to follow the main body of this
report.

2 Review of the (LO)IMES

In this section, we will provide the line of thought for the original derivation of the LOIMES, and
at the same time we will highlight the problem we aim to solve. For simplicity, in this report we
will focus on a 1D earth with normal incidence.

The key point in the original approach of Ramirez (2007), in moving from the attenuator to the
eliminator, is to take into account certain self interactions of the effective data, denoted b1 (z), that
contain the correct amplitude compensation for eliminating the internal multiples rather than just
for attenuating them. The resulting Internal-Multiple-Eliminator Subseries (IMES) is

b (k) = b5 (k) + b1 (k), (2.1)
where
bi%(k) = ffooo dze'*?by (2) f_zo_oe dz e~ k= (W) bi(2")x
/oo dz"e* by ("), (2.2)
2 te
and

/
12G(2") [Z 2 d2" (")
17ff;;€ dz’”J(z’”)

VM (k) = [20 dze* by (2) [7_ ¢ d2/e™ k=

o

/ d2"e* by (2, (2.3)
z/+e

where
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bl(z’)

bl (Z///)2
J(Z") = = h ()

TGy G()

(2.4)

The task of the leading-order eliminator b?g is to eliminate, when it is added to the effective data,
the internal multiples of first order generated at the shallowest reflector. The higher-order eliminator
bﬁ\é eliminates the first-order internal multiples created at deeper reflectors, and assumes that bf‘éj
has been applied to data.

For now, we will focus on the leading-order eliminator bf\g , whose initial terms are as follows:

WM = [ dze**by(z) [ d'e™* (by(2') + bi(2) + b1(2')° + ...) x

— 00 o0

/ d2" e by (2. (2.5)

/_;’_6

Expanding (2.5), we notice that the resulting first term is exactly the first term in the IMAS
discussed in Aratjo (1994), and the following terms contain the self interactions (in the middle
integral) mentioned in the second paragraph of the present section. Now, we will briefly describe
the origin of these self interactions by analyzing the first self-interacting term-namely, the one

containing by (2)3:

bIM (k) :/ dzeikzbl(z)/ dz' e % by (2)? //+ dz"e* by (2"). (2.6)

The whole term, being of fifth order in the data, must reside somewhere within the fifth inverse
scattering equation. The correct term of this equation turns out to be V1GoV3GoV1, from which,
after selecting the model-type independent contribution, writing it in terms of effective data by,
picking up the term with the right nonlinear characteristics to predict the internal multiple’s time,
and finally selecting the lower-higher-lower contribution, we are left with

/ dze““bl(z)/ dz'e_ikzli)g(z')/ dz"e* by ("), (2.7)
—0o0 —o0 2/ +e

where 33(2’ ) is the data representation of the model-type independent part of the third equation in
the inverse scattering series

Vs = =ViGoV1GoVi — ViGoVa — VaGoVi. (2.8)

Finally, we still need to focus on Bs(k), the part of 133(2' ) coming from V1 GoV1GoVi:

By(k) = / dze by (2) / ds'e=% by (1) / 42k by (). (2.9)

—00 —00 —00
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From (2.6) and (2.7), it is clear that the self interactions must arise from (2.9), so we need to split

Bs(k) in a way that makes these self interactions evident. The result proposed in Ramirez (2007)

is:

By(k) = [%_dze™**by(z) [*  dz'e % by (2) [ dz" e by (2")

+ 75 dze by (2) [ d2 e kb () fz ~d2" e by (2")

+ [0 dze*7 b (2 fz+€ Ze= % p (2)) e dz” e by (2"

+ [%0 dzet**by (z) [7Cde e by (2) fzoge etk by ()

+ [% dze™*? by (2) [ d2 e~ b (2)6(z — 2') e dz" e by (2")6(' — 2"

+f_°ooo dze*Zby (2 f o e~k bi1(2")d(z — )fz e dz”e"kzﬁbl(z”)
( (2)
( ()
(

z

l\z

+ [% dze™*? by (2) [ d2 e by (2)(z — )fz —“d2" e by (")
+f_oooo dze*#by (2 fz+6 e~ p,
+f_oooo dze*2by (2 fz € dy e~ ikz bi(z
= Bsi(k) 4+ Bsa(k) + Bss(k) + Baa(k)

/

P " 1kz by ( )5(2/ _ z//)

)
)
)
)
)
)
)
) "t b1 ()8 (2 — ")

fOOOO
fOOOO

+ 335(1{7) + B36(k) + B37(k) + B38(k) + ng(k). (2.10)

In the above expression for Bs(k), we can see that the self-interaction terms come from the Delta
functions in the last five terms. Performing the integrals with the Delta functions in Bss(k), followed
by an inverse Fourier transform, we end up with Bs(z) = by(2/)3. Inserting this portion of bs(z')
into (2.7), we find exactly (2.6), the second term of b:¥

The next self-interaction contribution to b?g , b1(2')®, is obtained by analogous arguments applied
to V1GoV5GoV1, to finally get

/ dzeikzbl(z)/ dz'e_ikzlbl(z/f/ d2" e by (2"). (2.11)
— z'+e

—0o0 [e.9]

The closed form, eq. (2.2), becomes evident by calculating, following the procedure just described,
a few terms beyond by (2)°.

3 LOIMES and spike-like data

In this section, we will describe a limitation of the formalism described above to eliminate internal
multiples, and we will also explain the solution when the data are spike-like. As a result, the
original algorithm for the LOIMES will change and the correct prescription will be provided (at
least when the data are spike-like). We will also apply this prescription to illustrate how to promote
the IMAS discussed in Ma and Weglein (2012) to an eliminator of certain unwanted events predicted
by the IMAS under some circumstances. In the next section we will discuss an approach solving
the limitation when the data are not spike-like but instead are continuous.
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3.1 Statement of the problem

As we mentioned earlier, we consider a 1D earth with normal incidence and two interfaces at
pseudodepths z1 = cot1/2 and z9 = cote/2 with respect to a homogeneous reference medium with
constant velocity cg. The terms #; and to are the traveltimes associated with the primaries created
at the first (shallowest) and second (deepest) reflector, respectively. Consider also spike-like data,
assumed to be built up from primaries and the unique first-order internal multiple allowed by this
two-layer example (strictly speaking, for this subsection we do not need any internal multiple in the
data, but it is included for further convenience):

D(t) = Rl(S(t — tl) + T01R2T10(5(t — tg) — T01R2R1R2T10(5(t — (2t2 — t1>) (3.1)

where 2t5 —t; is the traveltime associated with the first-order internal multiple and T;; denotes the
transmission coefficient when the wave travels from the ith medium to the jth medium. Ry is the
reflection coefficient at the kth layer for a downward incident wave. Expressed in depth units the
data become

bl (Z) = R1(5(2’ — 21) + T01R2T10(5(Z — 2’2) — T01R2R1R2T10(5(Z — (22’2 — 21)). (3.2)

If we try to compute the second term of bLO, eq. (2.6), using the data given by (3.2), we immedi-
ately run into serious theoretical issues because by (2')? will involve terms with powers of the Delta
functions higher than one, i.e., terms like 8%(z — 21), etc. Unfortunately, the powers of the Delta
function are not well-defined mathematical objects and hence the spike-like data do not fit in this
formalism.

3.2 Fixing the problem

We will now propose a different way to deal with spike-like data to eliminate internal multiples of
first order generated at the shallowest reflector; i.e.; we will explain how to deal with the LOIMES
when the data are spike-like.

The starting point is eq. (2.10): it turns out that this expression has a subtle inconsistency. To see
this, take the limit € — 0, and use the following relations, involving definite integrals

lime—o /Z6 d2' f() = /Z dz' f(2") lime—so /:O d2' f(2') = /OO dz' f(2'). (3.3)

The resulting expression is

Bs(k) = Bs(k)

+ [%0 dzet**by (2) [°0 d2 e by ()6 (2 — ) [ dze® by (27)6 (2 — &)
+ [70 dze™™by (2) [7, dz'e="'by (2)6(z — 2') [ dze™™" by ()
+ f zkzb )ffooo dz’e_ikzlbl(zl)(s(z 0 ff/oo dzeikznbl(z”)
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+ [%0 dzet*eby (2) [2°dz'e % by (2) [°5 dzet* by (27)5 (2 — 2")

o0

+/ dzeikzbl(z)/ dz’e"kzlbl(z’)/ dze™ by (20 (2 — 2"), (3.4)

—0o0 —0o0

which is obviously inconsistent, because the contribution of the interaction terms is not zero. To
fix this problem, let’s go back to eq. (2.9) and split the second and third intervals of integration as
follows:

+
o=t 0+
00 2/ —e 2 +e oo
ISR Y @9
—00 —00 z'—e z'+e
The resulting expression is

Bs(k) = [%_ dze**by(2) [* Cd2'e™*by(2) [3F, . dz"e** by (2")

o0 2 e
+ [T dze™ by (2) [T, dz' e~ by () f_z;? dz" " by (2")

+ [7° dze™by (2 (2) [ dz' e by () fzo,ie dz" e by (2")

+ [T dze™by () [7° dz' e by () f_z;j dz" e by (")
[0 dze™**by (2) fz+€ dz e~ p () e Jr; dz" e by (")

+ [ dzetby (2) [ZTC A2 e by (2) [ dz" ek by (2")

+ %, dze*7by (2) fz+€ dz'e" by (2)) ff;e dz"e*" by (2")

+ 75 dze b (2) [T, dz' e by (2)) fzz,lj; dz"e*" by (2")

+ [%0 dzet**by (z) [7Cde e by (2) f;,/j: dz"e"" by (2") =

B3i(k) + Bsa(k) + Bss(k) + Bsa(k)

+ Bis(k) + Byg(k) 4 Bsr(k) + Big(k) + Byg(K). (3.6)

In the limit € — 0, (3.6) reduces trivially to Bs(k) = Bs(k), so we will use this expression, instead
of (2.10), as the starting point for the derivation of the LOIMES. In our present approach all the
arguments in Ramirez (2007) for the derivation of the LOIMES, prior to eq. (2.10), are unchanged.
The difference is that instead of Bss(k) in eq. (2.10) we now consider the analogous term Bj: (k)
in eq. (3.6), as both contain two interactions. Thus, the recipe now is that the second term in bI¥
becomes

bIM (k) = / dze** by (2) / dz'e= % B (2) / 42 ¢k by (1. (3.7)

—00 9] z'+e
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3.3 Example: The three-layer earth

In appendix A we work out the details for the above expression for the same earth model as that of
section 3.1: a 1D and three-layer (or two-interface) earth with normal incidence. The only difference
with respect to section 3.1 is that this time we assume spike-like and primary-only data. The result
for Bj.(z) is eq. (A.7), which upon its insertion into (3.7), results in

béM = R?R/geik@@_zl) = T01T10 * R% * (T01R2R1R2T10)6ik(222_21)

whose explicit calculation is also performed in appendix A, and the result is eq. (A.10). In the
above expression, the notation is also as in section 3.1: T;; denotes the transmission coefficient when
the wave travels from the ¢th medium to the jth medium, and Ry is the reflection coefficient at the
kth layer for a downward incident wave.

Eq. (A.10) is consistent with the one obtained in Ramirez (2007) for the same earth configuration.
However, in that reference it is assumed that 6" (z — z;) = §(z — z;), where 0" (z — z;) means the nth
power of d(z — z;). This statement is wrong and is only true for the definition of the Delta function
used for numerical simulations:

1 z=2z
5(Z_Zi):{0 Z?éz.'

Going back to our approach, we can now perform an analysis similar to the one presented in Ramirez
(2007): when the above expression is added to both the data b/ and the first term of the eliminator
series béM = To1T1o * (To1 RaR1R2T1p) (which is also the second term in the IMAS), we have

b{M + bgM + bgM = primaries + [—1 + T01T10 * (1 + R%)} * (TolRQRlRQTl[)). (3.8)

In the above expression the (—1) term comes from the original first-order internal multiple in the
data, whose amplitude is —Tp1 Ro R1 R2T10, and the 1+ R% term contains the first two terms in the
geometric series expansion for 1:

1
To1Tho

1
1

1 ="To1T10 <

This means that béM + bgM is closer to 1 than is the attenuator béM , and therefore the internal
multiple’s amplitude is better estimated, which means that [—1+ Ty Tho * (1 + R7)] is closer to zero
and hence this is a first step toward the complete removal of the internal multiple.

As we explained before, in Ramirez (2007) the next term in the eliminator series, b%M , whose
amplitude is Ty Tho * R * To1 RoR1RoThg, arises when we are selecting the appropriate part of
V1V5V1 by a procedure similar to the one applied in the same reference to ViV3Vj to get bgM . This
procedure will bring, when the data are spike-like, the same issue that we had with béM , l.e., an
interaction of the form by (z)® implying a fifth power of the Delta function.
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3.4 A modified closed form of the LOIMES

The issue explained in the last paragraph of the previous subsection is solved in exactly the same
way we solved the analogous problem for bgM i.e. by selecting the same term proposed in Ramirez
(2007) for bIM and performing the resulting integrals with finite intervals of integration. This
procedure can be applied to each higher-order term in the original IMES. After computing a few
higher-order terms, we can write a closed form for bf‘g :

VM = % dze™*2by(2) [*Cde/e ¥ x

—00 o

S N 1 o0 7
FL (/ dz' e by (2 ) / dz"e* by (2" 3.10
—00 1( )1—ffb1(2”) z'+e 1( ) ( )

where F~1 means the inverse Fourier transform and

st ] e ([ ) (] fo) o
and

(f [ oa(2)" = [0 dzae™ ™21y (21) [271 dzpe™™=2by (29) x

z1

f;;jee dzge 73Dy (23) fz?j_: dzge™by (z4) -+ x

Fom—2)Fe d —ikz(2n—1)}, Fen-nte d ikzanp, 0 3.12
2(2n—1)€ I(Z(anl)) Z2n€ 1(22n), n>Uu. (3.12)
Z

(2n—2)—€ Z(2n—1)—€

(f foc)

In this way we have successfully addressed the problem of incorporating the spike-like data in the
LOIMES.

1, n=0. (3.13)

3.5 Application to the IMAS: Removal of effects of internal multiples in the
input data

We will now explain an application of the modified LOIMES proposed in this report. In particular,
we will see how to eliminate the effect, created by the IMAS, when the input data include internal
multiples, and we are working with a specific 1D earth model. Speciffically, this effect is a component
of the recorded data whose traveltime cannot be related to a set of reflections and transmissions
originated in the reflector boundaries at the subsurface. In other words, it is an event that does not
exist in the earth.

In the original IMAS algorithm in Aratijo (1994), one of the basic assumptions is that the input data
were made only of primaries and that the internal multiples’ times are constructed via interactions
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of these primaries. In other words, the internal multiples are constructed using the primaries as
subevents. However, the data collected from the seismic experiment obviously contain internal
multiples, and a consequence of their inclusion as part of the input data for the IMAS is that, under
certain conditions, the effects mentioned in the paragraph above are created. The presence of such
events can potentially decrease the effectiveness of the subsequent imaging algorithm applied to the
data. For this reason, it is important to find the way in which the ISS deals with the presence of
those events.

The answer to this is provided in Ma and Weglein (2012) and Liang and Weglein (2012), each of
which propose an extension of the IMAS. This extended IMAS contains some terms attenuating the
amplitude of the unusual events, created by the presence of internal multiples in the input data. We
will go a step further and explain how this attenuator subseries can be extended to an eliminator (of
effects of internal multiples in the input data) subseries by using the modified LOIMES proposed in
this report. For this we will focus on the simplest situation in which such a unusual event is created:
a 1D earth with three reflectors and with the traveltime ¢35 of the primary associated with the third
layer satisfying t3 > 2ty — t1, where t2 and ¢; are the traveltimes of the primaries associated with
the second and first layer, respectively, and t2 > t1, as before. We also assume normal incidence
and include in the input data the first-order internal multiple, associated with the first (shallowest)
layer, and with traveltime 2t — ¢;.

With the assumptions of the paragraph above, the second term of this IMAS becomes

400 y P ny 0o ny
bg(k)+/ dzie’kzlbl(zi)/ 1 dzéelkZng(zé)/ dzbe™3by (24), (3.14)
—0o0 —o0 zh+e
where
+oo - #—e - 00 -
b3 (k) :/ dzielkzlbl(zi)/ dzéeZkZle(zé)/ dzhe™3by (24) (3.15)
—o0 —00 zh+e

is the leading order contribution in the original IMAS.

The reason for the second term in (3.14) is as follows. The inclusion of the first-order internal
multiple IM; = —TgleRleTmeikm?*'zl] in the input data (2, T;; and Ry are defined as in
section 3.1) results in the presence of the term SE = (T01T12R3T21T10)2(7T01RgRleTlo)eik[z@_Zl]
in (3.15). Now, if the ISS is right, this event should be attenuated at least in some way; in other
words, it should be possible to find a term from the ISS predicting the same phase of the SE but
with an attenuated amplitude and positive sign. This is exactly what the second term in (3.14)
does: it creates the term (TOlTl())(T01T12R3T21T1[))2(T()lRQRlRQTlO)GikPZQ_ZI], which when added
to SE event, results in

(1- T01T10)(T01T12R?,T21T10)2(—T01R2R1R2T10)€ik[222721]- (3.16)

The above expression is an attenuator of the amplitude of SE, because Tp17T19 < 1. Our claim
in this report is that the ISS is able to completely remove SE rather than just to attenuate it.
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In the particular earth model we are considering, it is easy to prove our claim: notice in (3.16)
that if we can add to (3.14) more terms from the ISS, such that the correction to the amplitude
of SE is changed from Tp17Tp; to 1, then the amplitude of the SE is canceled. It is clear that
the contributions of the extra terms must match exactly those of (3.9), when we explained how to
promote the IMAS proposed by Aratijo and Weglein to the role of an eliminator. But we know
that in (3.9) this contribution comes from the LOIMES, when eliminating the first-order internal
multiple generated at the shallowest reflector. Hence, if it is possible to somehow include the
modified LOIMES described in this report into (3.14), then we will be able to eliminate the SE. It
turns out that the right place to plug in the LOIMES is in the second term of (3.14), because this
is the term responsible for the factor T707p; in (3.16). Therefore, at least for this configuration,
(3.14) can be promoted to being an eliminator of SE. This subseries takes the form:

—0o0 —0o0

+oo iy Z—e o, 00 ny
bg(k‘)—l—/ dz'le’kzlbl(zll)/ dzée_mz2b£%(z§)/ dzhe™3by (25), (3.17)
zh+e

whose first term is exactly (3.14). To see explicitly how this subseries works, we write the second
term in (3.17) in expanded form:

400 ny 2] —e€ ny 0o y
/ dzjett= bl(zi)/ dzhe ™22 (by(24) + bEM (2h) + )/ dzbe™3by (24). (3.18)

—00 —oo L+e

On the other hand, for the particular earth configuration studied in this example, we have

bg(z) = -TnTio*xIM + SE + ... (319)

bg(z) -+ bgM(Z) + .= —T01T10(1 + R% + ) « My + ... (3.20)

Inserting (3.20) into (3.18):
fj;o dz} ey (2)) ffgs dzhye™*% (~Tor Tio(1 + R} + ..) « IMy + ...) [, dzhe™ by (24) =

!
Zote€

400 z]—€ o

dzye=* M, / dzhe™by (24) + ... (3.21)

!
zyte

— T01T10(1 + R% + ) * / dzieikzibl(zi) /

—0o0 —0o0
Among other terms, (3.21) produces, when the middle integral is combined with the two outer

integrals containing the primary associated with the third layer, the event SE. Hence, using (3.9),
(3.21) reproduces —SE plus other contributions. Therefore, the first term of eq. (3.14), becomes

SE—SE+..=.. (3.22)

From the above expression, it becomes evident that the amplitude of SE is completely removed, as
desired.
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It is not coincidence that the terms added are exactly those of the LOIMES, as we are trying to
eliminate the contribution of an event created by the first-order internal multiple generated at the
shallowest reflector; this internal multiple is exactly the contribution that the LOIMES takes care
of. In more general earth models, in which events similar to SE can be generated by first-order
internal multiples generated at reflectors other than the shallowest, we would need the HOIMES.

It is worth mentioning that (3.17) will bring more terms than the ones needed for the elimination
of the SE. It would be interesting to do further research into the specific tasks of these terms.

4 LOIMES and continuous data

In section 2, we modified the LOIMES to correctly accomodate spike-like data. The key point
was writing the correct splitting of Bs(k), eq. (3.6), as opposed to eq. (2.10), and then selecting
B (k) instead of Bss(k). Analogously, in this section we will propose a derivation for the LOIMES,
suitable for nonspike-like but continuous data, starting from eq. (3.6) and Bj; (k).

4.1 LOIMES and the mean value theorem

Our goal is to make explicit the interactions contained in the finite-interval integrations in eq. (3.6).
For that we will use a sort of "complex mean value theorem” (CMVT) :

b
/ f(z)dz= (b—a)f(n) for somen € (b,a), (4.1)

where f(z) is a complex-valued, real function. Also we assume that the real and imaginary parts of
f(z) are continuous on (a,b).

For complex-valued functions, eq. (4.1) is not true in general, but it can be for certain cases. Hence,
(4.1) is a restriction for the data in which the present approach to the LOIMES can be applied. To
determine whether the CMVT applies to a given data, we need to split f(z) into real and imaginary
parts and apply the usual mean value theorem (MVT) to each of them. If n in (4.1) is the same for
both integrals, then we can proceed with the application of the LOIMES to these specific data.

Let’s now apply the CMVT to Bj; (k). From (3.6)
Bis(k) = [ dze™® by (2) [T d2'e by () [

o0 zZ—€ z

ffo dze*?by (2) f;f; dz’e_ikzlbl(z’)(2e)eik(z’+f3)b1(z’ +B) =

e}

22 dze*2by (2)e™*Pby (2 + ) (2€)%b1 (2 + a + B) =

o0

! . "
Z/:F: dzeikz by (Z”) _

[e.e]
kB / (2€)2dze™**by (2)by (2 + a)by (2 + a + ), (4.2)

—0o0
where z + « and 2’ + 8 are the parameter 1 introduced by the mean value theorem, for the middle
and left integrals in Bjs(k), respectively. Note that o and § represent the deviation from the center

of the interval of integration of the respective integrals, and hence
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a<e/2 B <e€f2 a+ B <e.

Notice that the factor (2¢)? makes the value of Bjs(k) go to zero when € — 0, as is desired. Using
the fact that € is small (and also €/2), and with the continuity of bi(z), we can make the following
approximation:

bi(z) ®bi(z +a) = bi(z+ B) = bi(z +a+B).

kB 1, (4.3)
Hence we end up with
S .
Bl (k) = (26)? / dzei®=hy (27, (4.4)
—0o0
which upon a Fourier transform becomes Bj;(2) = (2¢)%b1(2)3. We propose eq. (4.4) as the

part of by to be inserted into (3.7) to get b, the second term in b, Using the fact that
Bi=(2) = (2€)%b1(2)® = (2€)?B3s(2), the result is the original term (2.6) times a factor (2¢)2:

(26)2/ dzeikzbl(z)/ dz'e_ikzlbl(z')g/ dz"e* by (2"). (4.5)
—0o0 — 2/ +e

[e.9]

As we anticipated in the introduction, this CMVT scheme has its own issues. For example, by
applying the CMVT to obtain subsequent terms in b?g , we predict a subseries whose closed form
is, when the data are continuous and hence are not spike-like:

bijg = ffooo dz@ikzbl(Z) f_Z;OE dz’eiikzl (W) bl(Z/)X

/ d2" e by (2. (4.6)
z/+e

Notice the 2e factor in the quotient that is present in (4.6) but is not present in the original series
(2.2). This means that both subseries agree only if € = 1/2. At first we may think that we have a
generalization of (2.2), but this is not true because we should keep in mind that we want a subseries
that eliminates multiples and for this we need to predict the right amplitude, which is exactly what
(2.2) does. This means that any deviation from the amplitude predicted by (2.2) will result in the
failure of the series to eliminate internal multiples. This forces us to interpret the condition € = 1/2
as a restriction to the class of experiments to which the LOIMES can be applied, namely, those for
which € = 1/2.

We now discuss some intriguing relations between the approach we have just described for continuous
data, and another procedure commonly used in the physics literature to circumvent difficulties
similar to the ones encountered in this report.

A common approach used to overcome difficulties such as ill-definiteness of the higher powers of the
Delta function is to introduce into Bss(k) the two parameters o and [ into the arguments of the
Delta function, as follows
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Bss(a, B, k) = [22_dzet?by (2) [°2_dz'e by (2)5(2 — 2/ + ) [°0 dz"e®# by (2")3(2 — 2" + B) =

oo o0

[ dze™*2by (2) [2°_d2'e=* by (2)0((2 + ) — 2) e+ (2 4 B)

_ ikt / dze™ by (2)b1 (2 + )b (2 + a + B). @)

In this way, the self interactions are removed and are, when the data are spike-like, the higher-than-
one powers of the Delta function. The next step would be to define

335(1{3) = l’ima’ﬁ_ﬂ)ng)(a, /B, k), (48)

where the limit is performed after the integral Bss(«, 3,k) has been calculated. What we have
described is analogous to the procedure used in Green’s function theory, in which the resulting
integral defining the Green’s function is not well defined (due to the presence of poles in the path
of integration). Hence it is made well defined by deforming the contour of integration, which we
accomplished by introducing a small parameter € to avoid the poles of the integrand, followed by
the limit € — 0.

Unfortunately, this solution is not powerful enough for our present issues, and the reason is that if
we take (4.8) as the definition for the interactions, then with the spike data Bss(k) becomes zero,
which is obviously not what we want.

If we assume (1) that the data are continuous and (2) that the operation of taking limits commutes
with the integral, then (4.8) reduces to the original integral Bss(k) containing interactions. This
means that at least for continuous data, we can consider (4.8) to be an equivalent expression for
the interaction contribution to the eliminator subseries bﬂ% .

At this point it is worth comparing (4.2) with (4.7), the expression obtained using the approach
described earlier that was based on the CMVT. We can see that they are similar, with the obvious
difference of the factor (2¢)? in (4.2). In this way, the CMVT approach reproduces the regularization
scheme just explained and at the same time fixes the problem with the original splitting of Bs(k),
eq. (2.10). It’s fair to say that it is not expected for (4.8) to fix the issue related to the limit
e — 0, as it was obtained from the old expression for Bs(k), eq. (2.10), which is not well behaved
in this limit. However it is interesting that we partially reproduce the result of the CMVT. This
might mean that although not strictly correct, eq. (2.10) may still be useful for studying some
properties and obtaining some insight about the LOIMES; after all, in practice € is small but not
zero. Another nice feature of the CMVT is that whereas in the regularization scheme both o and
8 were introduced in a somewhat arbitrary way, here they arise naturally: they are the coordinates
of the point whose image is used by the CMVT.

Given the similarities between those two approaches, it would be interesting to perform a more de-
tailed study of the relation between them, in order to better understand the nature of the LOIMES.

As we explained earlier, the LOIMES matches the amplitude of the internal multiple by using
interactions in the integrals of certain terms of the ISS. Now, if we just require the filtering (or
extraction) of the self interaction contained in the integrals in (3.6) instead of insisting on looking
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for a convenient expression for the value of the integrals with a finite interval of integration (i.e.,
looking for an expression in which are the self interactions become evident), we only need to multiply
the integral times a Delta function with the correct argument. In this way we arrive, for the non-
spike data, at an expression similar to the right-hand side of (2.10), but we must keep in mind that
this expression is not equal to Bs(k) anymore. Now we can proceed by selecting the original Bss(k),
instead of Bé5(k:), to be the term associated with the LOIMES. By repeating this filtering process
in the appropriate higher-order terms, we arrive at the original form for the LOIMES, eq. (2.2). In
general this filtering process can be applied also to the HOIMES, obtaining in this way the original
expression for the IMES, as stated in eqgs. (2.1)-(2.4).

The advantage of this argument is that, although not mathematically rigorous, it is fairly general
and can include all continuous data, as opposed to the scheme proposed in this report. Again, the
spike-like are not included, as this would bring the original problem with the powers of the Delta
function. However we can now argue, on the basis of of the results of Appendix A, that the filtering
process is not necessary for the Delta function. That is because of the function’s very particular
properties under integration; it automatically selects the self-interaction part of the integral, without
the need of any further filtering process. This argument is highly plausible, even though ideally
it would be desirable to have a filter working with all kinds of data at once including the Delta
function.

Although the central subject of this report is the LOIMES, it is worthwhile to say some words about
the HOIMES. As can be seen from the general form, eqgs. (2.3) and (2.4), this subseries also contains
interaction terms, thereby causing the same problem that the leading-order eliminator subseries has
with spike-like data. A detailed analysis of such a case is beyond the objective of this report, but
it is easy to provide some evidence that the formalism described here can be also applied to the
HOIMES. For this, let’s focus on continuous data, so we can apply the CMVT approach.

The first term in the HOIMES is

2 —e 0

dz”/b%(zm) / dz//eilcz”b1 (Z”), (4.9>
z'+e

v :/ dze““zbl(z)/ dz’e"kzl2(2e)b1(z’)/

—0o0 —0o0 —0o0

and it was derived in Ramirez (2007) on the basis of the symmetry Bsg(k) = Bsg(k) in (2.10). So,
a first hint that the HOIMES can be described by the CMVT approach is that this symmetry is
preserved by the corresponding terms in (3.6): Bjg(k) = Bjg(k). This fact is proved in Appendix
B, where we also use this symmetry to show that, in this case, the parameters arising from the
application of the CMVT are unambiguously zero. Thus, by using Bjg(k) and Bjy(k) instead of
Bsg(k) and Bsg(k), and using the MVT, we get our proposal for the first term of the HOIMES:

bid :/ dzeikzbl(z)/ dz’eikzl2(26)b1(z’)/

o0 —0o0

dz’”b%(z”’) / dZ,leikZNbl(Z//), (4.10)
z2'+e

which also contains the factor 2¢, characteristic of the CMVT approach. Notice that this modified
term is, as in the LOIMES, the old term multiplied by a factor of 2e. The rule is that for each time
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the CMVT is applied, there is a factor of 2¢ and also an interaction of the data. More precisely,
if the MVT is applied ntimes in a single term of the ISS, we get a factor of (2¢)™ and a factor of

bl (Z)nJrl.

Following these criteria, and provided the corresponding symmetries are preserved, we conjecture
that the HOIMES predicted by the MVT is
P2G() [ ()

1_ff;;€ dz”’J(z”’)

Vil = [ dzet*by(z) [* S dem*=

—0o0

/ dz"e™* by (") (4.11)
z'+e

where

" 2¢by (2")°
J(E") = (221(;,,,))2 (4.12)

By expanding (4.11), we have

DML — [ dzeihzhy (2) [7C d2'e R (2(26)b1 () [F L B2 ()+

—00 —00

2(2€)3b1 (') [7 LB + 2(20)33 () [7 0 02+

Zl

2(2¢)201 (') / TR / TR / O: 42" by (). (4.13)

—0o0 —00

Notice that this conjecture also works only for e = 1/2, as in this case it coincides with (2.3), the
old version of the HOIMES. Notice also that the factors 2¢ in each term satisfy the general rule just
explained in the paragraph above.

5 Discussion and conclusions

As mentioned in the introduction, the present report is oriented to lower the burden of the adaptive
subtraction of internal multiples, by promoting to elimination, the attenuation provided by the
leading order contribution of the original attenuator subseries. In particular, we have rederived and
modified the LOIMES in order to accommodate spike-like data. As a result we find a modified closed
form for the Leading-Order Internal-Multiple-Eliminator Subseries (LOIMES) originally proposed
in Ramirez (2007). Such a closed form, egs. (3.10)-(3.12), is only valid for this kind of data.

The relevance of this work is that now we can test the algorithm itself: as the analytic data is perfect,
any problem in the output is caused by the algorithm, which means that it must ve revisited. Also,
as we did in this work, this allows the elimination subseries to enhance the effectiveness of other
algorithms, which are also being tested with analytic data.

Also, we illustrate how to apply the modified closed form of the LOIMES to promote the IMAS
of Ma and Weglein (2012), eq. (3.14), to the role of an eliminator of some effects, caused by the
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inclusion of internal multiples in the input data. We do this for the simplest case, in which the
contribution of (3.14) differs from that of the original IMAS of Araujo and Weglein: a four-layer
1D-earth, with normal incidence. The traveltime t3 represents the primary associated with the
third (deepest) layer satisfying t3 > 2t — t1, where t2 and t; are the traveltimes of the primaries
associated with the second and first (shallowest) layer, respectively. We also include in the input
data the first-order internal multiple with traveltime 2t — ¢1, associated with the first layer.

As was explained in section 3.1, both the LOIMES and the HOIMES were first derived from (2.10),
which is not strictly correct. Hence the need to rederive both suberies, including for continuous data
starting from the correct expression, eq. (3.6). We do this for the LOIMES, and we conjecture the
answer for the HOIMES. Unfortunately, the derivation we found is not general enough to include

all types of continuous data, but only a very restricted class-i.e., continuous data that satisfy the
CMVT, eq. (4.1).

A further research topic in this direction is to write the modified closed form, analogous to (3.10),
corresponding to the HOIMES. The potential applications are (1) elimination of effects, created
by the original IMAS, when the input data includes first-order internal multiples, whose downward
reflection is generated at deeper reflectors, and more important, (2) elimination of first-order internal
multiples, created at salt deposits beneath the earth’s surface.
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A Calculating the modified LOIMES for spike data.

In this appendix we will show explicitly, for 1D and three-layer earth, how to perform the integral
(3.7), when the input data are the two spike-like primaries, with normal incidence, associated with
the two interfaces.

D(t) = R10(t —t1) + To1RoT10 6(t — t2). (A.1)
Ry

The notation is the same as in section 3.1: 1 and to are the traveltimes associated with the primaries
created at the first and second reflector, respectively, and to > ¢, T;; denotes the transmission
coefficient when the wave travels from the ith medium to the jth medium, and Ry, is the reflection
coefficient at the kth layer for a downward incident wave. We will also need the pseudodepths
21 = cpt1/2 and z9 = cota/2, of the two interfaces, with respect to a homogeneous reference medium
with constant velocity cg.

Inserting (A.1) into the right integral of B (k), we get by following eq. (90) in Weglein et al. (2003)
let":: dZ”eikZ”bl(Z//) _ fz/’j-ee dz" eik?" [Rl(s(zll _ Zl) + R’25(2” . 22)] _

z z
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Rie™ H(z1 — (2 — €))H((2' +¢€) — 21) + Rhe*2 H (2o — (' — €))H((2' + €) — 22).
Substituting the above result into the second integral in Bjg(k), we have
SIS A2 e by () [Rie® H(z — (7 — €))H((2 +€) — 21)+

Rhek22 [ (29 — (2 — ) H((' +¢€) — 22)] = fz+6 dz'e ™ [R15(2 — 21) + RL6(2 — 22)] %

[Rie™1 H (21 — (2 — €)) H((2' +€) — 21) + Rhe™ H(z2 — (2 — €)) H((2' + €) — 22)] =
[ de e Ri5 (2 — z) Rie™ H (21 — (2 — ) H((2' +€) — z1)+
[7rede'e ™ Ri§ (2 — 1) Rhe* 2 H (2o — (¢ — €))H((#' + €) — 22)]+
[7rede'e ™ RYS (2 — ) Rie* H (21 — (2 — €))H((2' +€) — z1)+
J7TCdz e RS (2 — 2o) Rhe 2 H (2 — (2 — €))H((2' +€) — 22) =
L+ I+ I3 + L. (A.2)

Performing the four integrations, we arrive at
I = fz+€ dz e*lkz,Rlé(z' — )R e* H(zy — (2 —))H((Z +€) — 1) =
R%e_’kzleZkle(zl —(z—€)H((z+€)—2z1)H(z1 — (21 —€)) H((21 + €) — 21) =

=1 =1

RH (21 — (= — )H((z + ) — 1)

I = fz+€ dz'e ™" R16(2' — z1)Rhe*2 H (zp — (2" — €))H((' +€) — 22) =

RiRhe *=2¢etkz2 [] (21 — (z — e))H((z +€) — 21)H (22 — (21 — €)) H((21 +€) — 22) =0
=0

Is = fzzje dze " RLS(2 — 20)R1e* H (21 — (2 — €))H((2' + €) — 21) =

€

RiRye™ =2k [ (29 — (2 — €))H((z +€) — 22) H(21 — (22 —€)) H((z2 + €) — 21) = 0
=0

I, = f;fﬁ dze % RL5(2' — zo) Rhe ™2 H (29 — (2/ — €))H((2 + €) — z3) =

€

(Ry)?e~*=2e™=2 H (2 — (2 — ) H((2 + €) — 22) H(22 — (22 — €)) H((22 + €) — 22) =

(RY)?H (20 — (2 — €))H((2 4 €) — 22). (A.3)

Finally, substituting the value of the integrals in (A.3) into the third integral in Bjs(k), we end up
with

Bis(k) = [70 dze™™ [R10(z — 21) + Ry(z — 22)]x
[RIH (21 — (2 = €))H((z + €) — 21) + (R3)*H (22 — (2 — ) H((2 + €) — 22)] =
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[, dze** Ri6(2 — 21)R3H (21 — (2 — €))H((z + €) — 21)+
JZoe dze™* Rid(2 — 21)(Ry)*H (22 — (2 — €)) H((2 + €) — 22)+
o2, dze™ Ry5 (2 — 2) RIH (21 — (2 — €))H((2 + €) — 21)
oo dze™ Ryd (2 — z2)

R RS (2 — 22)(RY)?H (20 — (2 — €))H((2 +€) — 22) =

I+ I+ Is + I,
Evaluating the integrals above, we have
I = f_oooo dze® R16(z — 21)R3H (21 — (z — ) H((z + €) — 21) =
R} 1 H (2 — (21 — €))H((21 + €) — 21) = Rjett™

Iy = [, dze™ Rid(z — 21) (RY)PH (22 — (2 — ) H((z + ) — ) =

Rl(R’Q)Qeikle(zg —(z1—€)H((z14+€)—22)=0
=0
Iy = [75 dze™ Ryd(z — 22) RiH (21 — (2 — €))H((z + €) — 21) =

RYRye™2 H(z1 — (22— €)) H((22 +€) —21) = 0

=0

I, = [, dze™ Ry (= — ) (Ry)*H(zs — (2 — ) H((= +¢) — ) =

(Ry)*e™*2 H (23 — (22 — ) H((22 +¢) — 22) =

Adding the integrals above, we finally have

Bé5(k‘) RS ikz1 + (R/) zkzz

When transformed to the space domain, (A.6) becomes

(R/ ) zkzz

Bis(2) = R{8(z — 21) + (R5)*6(2 — 22).

Now we will evaluate b2 the second term in b2 using (A.7):

bIM (k) = / dze*?by (2) / dz'e” "% Bl (z) /

z'+e

—0o0 —0o0

The first integral in the above expression is

o0

d2"e* by (2).

[5. A" by (2) = [, d2"e* [R15(2" — z1) + (R)S(2" — 29)] =

2'+e€ 2'+e€

Rie**1 H(z — (2 +€)) + Rhe*2 H (29 — (2 + €)).
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Substituting the above result into the second integral of (A.8), we get
[ZCd'e ™ [R36(2) — 21) 4 (RY)36(2 — 22)|[Rie™ H(z1 — (2 + €)) + Rhe™ ™2 H (20 — (2 + €))]

= [ 5dZe " RIS (2 — z) Rie* 1 H (2 — (2 + €))+

7 dz’e*ikZlR:l)’é(z' — 21)Rhye?*2 H (29 — (7' + ¢€))

—0o0

[ZCdz"e ™ (RY)36(2" — zo) Rie™ H(z1 — (2 + €))+

—00

[ZCd2 e (RY)30(2" — z0) Rye™ 2 H (29 — (2 +¢€)) =

—0o0

I+ 1)+ 1§ + 1. (A.9)
Evaluating the above integrals, we have

Il = [*°d'e ™R35 (2 — 21)Rie™ H(21 — (2 +€) = R{ H(z1 — (21 +€)) H((z —€) — 21) = 0

[e.e]

=0

I = [*°dz'e™ ™ R}5 (2 — 21) Rhe™ H (2 — (2 +€)) =

RIRLe™*(2=2) H (29 — (21 + €))H((2 — €) — 21)
I = [*°d2'e ' (R,)35(2" — z9) Rie™ H (21 — (2 +¢)) =

o0

Ry(RY)3e*=1=22) H(z) — (29 +€) H((z —€) — 22) =0

=0
I} = f_zc;e dz’e*ikz/(R’z)?’(S(z’ — 29)Rhe?*2 H (29 — (2 +€)) =
(Ry)*H(z — (22 +€) H((z—€) —22) =0

=0
Substituting the only nonzero value, I/, in the last integral of (A.8), we finally have
bIM = [% dze**[R16(z — 21) + Ry6 (2 — 22)| RERhe™ 2"V H (25 — (21 + €))H((2 — €) — 21) =

R%RlzeikZQH(ZQ —(z14+€)H((z1 —€) — 21) +R‘%R’22eik(222_zl)H(22 —(z14+€)H((22 —€) —21) =
=0

R3RZek(2z2—21) (A.10)

B Calculating o and 3 for the HOIMES

In this appendix we will show that the ISS requires the parameters o and 5 to be zero. We begin
by showing that the integrals Bjg(k) and Bjy(k) in (3.6) have the same value.

Byo(k) = [, dze™®=by (2) [72Cd2'e by (') [27 do"et®" by (2") =

o0 z

[ dze™*2by (2) [%_d2/e= by (2 VH((2 — €) — 2') %

o0 [e.9]
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[ d2"e* by (ZVH((2' +€) — 2"V H (2" — (2 —€)) =

o0

[ d2"e*# by (2") [ dz'e= by (ZVH((2 + €) — 2" VH (2" — (¢ — €)) ¥

—00 o0

22 dze**by(2)H((z — €) — 2')

—00

Making the change of variables z” — z and z — 2", we get:

Bio(k) = [ dze® by (2) [ dz'e ® by (2 VH((2' +¢€) — 2)H(2 — (2' — €))x

o0 o0

ffooo dZ”eikz//bl(Z”)H((Z” _ 6) _ Z/)

[ dze™by(2) [2 d2'e by (¢ VH(2' — (2 — €))H((z + €) — 2')x

o0 o0

ffo dZ”eikz//bl(Z”)H(Z" _ (Z/ + 6))

o0

o] ) z+e€ Y o] _y
/ dze““zbl(z)/ dz' e~ k= bl(z’)/ dz" e by (2") = Bhs(k). (B.1)

—00 z—e€ z'+e

The following step is to apply the mean-value theorem to both Bjs(k) and By (k):
Blg(k) = [°_dze™**b, () f;j: d2' e * by () [3° d2"e by () =

) z'+e

[ dze™*2by (2)2ee *EF0Y (2 + ) [ d2"e* by (") =

—00 z4+a+e€
(26)ehe / dzbi ()1 (= + ) / "% by (VH (" — (2 + a+ €) (B.2)

Big(k) = [°° dze®2by(2) [* dz'e ™ by (2)) f’z,/j: dz"e*" by (2")

o0 o0 z

= f_oooo dze*?by (2) f_oooo dz' e~ *="p, (ZNVH((z —€) — z’)2eeik(zl+5)b1(z’ + )

= (2€)e™8 [ dze™*2by(2) [7_d2'bi(2)b1 (2 + B)H((z — €) — 2/)
= (2€)et*hB f_oooo dz'bi(2")b1 (2" + B) ffooo dze**by (2)H((z — €) — 2')

= (2¢)e'*P / h dzb1(2)b1 (2 + B) / h d2"e* b (ZVH((2" — (2 +¢€)). (B.3)

— 00 —0o0

We have just proved that Bis(k) = Bjg(k). Hence, (B.2) and (B.3) must be equal-i.e.,
(2e)e= ke [ dz"by(2)b1(z + @) [0 dze* by (2" H (2" — (2 + a + €))
= (2€)€ik5/ dzb1(z)b1(z + ﬁ)/ d2"e* by (ZVH (2" — (2 + €)). (B.4)

—00 —00

From the phase outside the integral, the argument of the data and the argument of the step function
respectively, in the expression above, we get the following over constrained, but consistent set of
equations:
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a=—0, a=p, a = 0. (B.5)

whose only solution is & = = 0. This shows that the parameters introduced by the CMVT are
zero. Notice that those o and § are not the same as the a and 5 of section 4.
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Abstract

In this report we provide, in preparation for seismic applications, a review of the theory
behind the Perfectly Matched Layer (PML) technique, which aims to minimize the noise in nu-
merical simulations. That noise is caused by reflections of the wavefield at the boundary of the
Finite-Difference (FD) domain, where hard-wall (either Dirichlet or Neumann) boundary con-
ditions (BCs) are imposed. We will explain the split-field and the complez-coordinate-stretching
approaches to the subject, focusing on the 2D situation. Although the original formulation
(split-field) of the PML technique was set for electromagnetic applications, we restrict our at-
tention to the acoustic wave equation as this is of immediate interest for seismic applications.
Emphasis is made on the calculation of the reflection coefficient at the interface between two
PML media, and on the conditions for rendering this reflection coefficient identically zero. In
particular we consider the situation in which one of the PML media is the acoustic host medium.

1 Introduction

The present report aims to provide, in preparation for the seismic applications mentioned later in
this section, a background review of the theoretical foundations of the PML technique in 2D. In
particular we will explain both the original split-field formulation of Bérenger and the complex-
coordinate-stretching approach. We will follow that by an explanation of the existing relation
between them.

One of the most common migration methods used in the oil industry nowadays is Reverse Time
Migration (RTM), which allows the imaging of two-way waves, e.g., waves that move down and up
from the source to a reflector, and down and up from a reflector to the geophones (Weglein et al.
2011a, Weglein et al. 2011b). This method is computationally implemented by extrapolation of the
source wave field forward in time and of continuation of reflection data backwards in time, using
the full two-way wave equation. This is followed by an imaging condition to find the reflectivity
function. The numerical technique commonly used in the continuation (either of source wave field or
reflection data) stages of RTM is the time-domain finite-difference algorithm. The main advantage
of FD methods is their ability to produce the full wavefield (reflections, refractions, prismatic waves,
etc.) with correct amplitudes and phases.
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On the other hand, finite-difference methods intrinsically require the truncation of the computational
domain in which the wave equation is being solved. Hence, it is necessary to feed the computer with
the values of the wave field at the boundary of the so-called Finite-Difference (FD) domain. This
boundary is adjacent to the computational domain and extends a few computational cells beyond,
i.e., the FD domain by definition includes the computational domain plus its own boundary, which
is a layer surrounding the computational domain (Figure 1). The BCs imposed in the FD domain
boundary are usually either Dirichlet or Neumann conditions. Unfortunately, while some problems
are naturally truncated, those involving wave equations are not, as they have oscillating solutions.
This means that the magnitude of these solutions cannot be neglected at the boundary of the
FD domain. Therefore, the truncation of the FD domain with either of the boundary conditions
just mentioned, will introduce artifacts in the form of reflections of waves striking the domain’s
boundary. This is why both, Dirichlet and Neumann boundary conditions, are called hard-wall
boundary conditions (Johnson 007a). These reflections are artifacts because they are not present
in the original unbounded problem, and their presence in the computational simulation will clearly
introduce noise.

Edges of the computational domain

Computational domain

Boundary of the FD domain

=T
|~
Hard-wallB.C’s
[Dirichlet or Neumanmn,

Figure 1: Array of a typical FD simulation in 2D: The computational domain is the region in which
the relevant wave equation is solved. Surrounding this computational domain it is the boundary
of the FD domain, with a thickness of a few cells. Altogether, the computational domain and the
boundary of the FD domain, constitute the whole FD domain. At the boundary of the FD domain
is usually imposed a hard-wall B.C. (either Dirichlet or Neumann).

Over the years, several techniques have been developed in order to deal with the artifacts just
mentioned. Although we will not provide a detailed evolution of these techniques, we can mention
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some of the most relevant examples. First, we have the silent-boundary method for the elastic wave
equation described in Lysmer and Kuhlemeyer (1969). This approach works well for the source
applied within the grid, but should not be used when the source in applied at the top or bottom
boundaries of the computational domain. There is also a family of approaches, based on convenient
factorizations of the wave equation (Lindman 1975, Engquist and Majda 1977, Reynolds 1978, etc.),
into incoming and outgoing factors. We can also mention Smith (1974), where the wave equation
is solved twice for each boundary: once with Dirichlet BCs and once with Neumann BC’s; with the
final wavefield being defined as the addition of both of them. A further approach to deal with these
reflections at the boundary was provided in Keys (1985), where perfect transmission is allowed for
two arbitrary directions.

A major development is presented in Bérenger (1994) towards the solution of this puzzle concerning
the reflection artifacts produced by truncation of the FD grid. Bérenguer’s solution consisted of
placing an absorbing boundary layer adjacent to the edges of the computational domain. The ma-
terial filling this layer was designed to absorb incident waves without reflection (for all frequencies
and any angle of incidence) at the interface between the propagation medium filling the computa-
tional domain and itself. Such an absorbing boundary layer is called, because of its reflectionless
properties, a perfectly matched layer, or PML. This may sound unfamiliar, as a wave is usually
reflected when it goes through an interface. However, Bérenger was able to show that a material
with such reflectionless properties can be constructed, at least theoretically. It is worth to mention
that originally the PML was formulated for the Maxwell’s equations of electromagnetism, but it
was soon adapted for the acoustic wave equation (Qi and Geers 1998).

The original formulation of the PML method in Bérenger (1994) is called the split-field PML. There
is also a second formulation called the uniazial PML or UPML. However, those formulations are
hard to implement in coordinates systems other than Cartesian; they also hide the important fact
that the PML also works for inhomogeneous media. Remarkably, there is a third approach to the
PML, called complex-coordinate-stretching, from which it is possible to rederive both the split-field
and the UPML formulations. This approach is based on the analytic continuation of the wave
equation into the complex plane.

Our interest in the PML technique arises from the recent papers of Weglein et al. (2011a) and
Weglein et al. (2011b). In these references a novel approach to RTM, using Green’s theorem, is
addressed. This new RTM has the potential to improve the results of the PML technique in RTM,
by placing the BC’s on a Green’s function rather than in the wave-field. This report is part of a
broader research project, whose objective is to compare the effectiveness of this new Green’s theorem
approach with respect to the PML-based RTM.

The organization is as follows: in section 2 we will give a general overview of the PML method,
appealing to a typical seismic experiment. In section 3 we briefly state some properties of the
general acoustic wave equation, that are needed in later sections. In section 4 we will provide a
detailed study of the split-field formulation of the PML technique. Section 5 is devoted to the
complez-coordinate-stretching approach formulation of the PML. Section 6 illustrates the relation
between the two formulations studied in earlier sections. Section 7 contains the final conclusions
and discussions.
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2 PML and finite-difference modeling: A general overview

In this section we will explain in general terms what the PML technique is about. First of all, it is
a computational technique developed for the simulation of unbounded wave phenomena, using the
Finite-Difference method in the time domain. We will assume a single line of geophones i.e. we will
rely on a 2D seismic experiment to explain the technique.

It is useful, for the implementation of the PML technique, to split the space of a seismic experiment
into two different zones or regions. First we have the interest region, which is where all the seismic
experiment is performed, and of course that is also where we want to see the results of the RTM. In
this region we have the sources, the geophones, the reflectors and a portion of the radiation pattern
which includes of course the waves scattered towards the geophones i.e. the data. Second, we have
the radiation region, consisting of all the space not included in the interest region. This region is
the place where the waves produced in the seismic experiment propagates at late times. Being the
space in a seismic experiment that is unbounded, this region is infinite and therefore it is also called
the infinite region (Figure 2).

SEISMICEXPERIMENT

vy

NN s
"‘-, f//"
/ Reflector
@ Source
Regionof
¥ Receiver " interes
——=Recordeddata _

. Radistedware Infin'rtn:.-‘radiation
region

Figure 2: Array of a typical seismic experiment in 2D: The blue-colored components (including the

source, geophones, reflectors and recorded waves) constitute the region of interest for the compu-

tational implementation of the PML technique. The red-colored components (the scattered waves

not recorded by the geophones) are part of the radiation pattern that eventually propagates to the

radiation zone.

To ensure that all interesting phenomena in the seismic experiment are included in the computational
implementation of RTM, we place the edges of the computational domain outside the region of
interest. The objective is to at least attenuate the reflections created by either of the first two steps
in the RTM technique (extrapolation of the source wave field and continuation of the reflection
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data) due to the hard-wall B.C’s imposed at the boundary of the FD domain. As was mentioned
in the introduction, the PML technique is designed for this task, and the idea is to cover the edges
of the computational domain with a layer made of a very special material called PML media. This
layer extends in the direction opposite to the FD boundary i.e., it is positioned in the interior of
the computational domain.

The PML media are engineered to absorb, without reflection, any radiating wave escaping from the
region of interest of the seismic experiment, and incident at the interface between the computational
domain and the PML layer !. Once in the PML media, such an incident wave is attenuated until
it strikes the boundary of the FD domain, where it is reflected due to the hard-wall boundary
conditions (BCs). The reflected wave keeps being attenuated as long as it remains in the interior
of the PML media; but this attenuation stops when the reflected wave returns to the region of
the computational domain filled with the original propagation media. However, at this stage, the
amplitude of the wave is so attenuated by the PML media, that even if it travels inside the region
of interest, its effects can be neglected (Figure 3).

IThe definition of a PML medium only involves a set of equations governing the propagation of waves in its
interior, and it is allowed to have an arbitrary shape. When the shape of the PML medium is a layer, then it is
usually called, by abuse of language, just PML instead of PML layer.
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of the computstional domain

Boundary of the FO' domain

i
|~ \
Hard-emll B.Cs wave attenuated at PML kyer

| Dirichist o Meuwmanin]

Figure 3: Finite-difference implementation of the PML technique in 2D: The scattered waves
escaping from the interest zone (red colored) eventually strike the radiation zone-PML interface
and are transmitted without reflection. Once in the PML media, the transmitted waves keep being
attenuated, before and after they are reflected at the boundary of the FD domain, as long as they
remain in the interior of the PML zone. In this way, once the waves have left behind the PML zone,
they are so well attenuated that their effects in the region of interest can be neglected.

As mentioned in the introduction, in section 4 we will discuss with detail the original split-field
formulation for the acoustic wave equation. In particular we will provide the mathematical definition
of a PML medium and we will also explain how to obtain a zero reflection coefficient, at the interface
between the propagation (acoustic) media and the PML media. In section 5 we will explain the
complez-coordinate-stretching approach to PML. This last approach is used, along with some of its
variants, in seismic physics and in particular in RTM.

Strictly speaking, as suggested by Figure 3, we will focus on the forward modeling step of RTM
i.e., on the extrapolation of the source wave field. This assumption is implicit in the fact that we
will be dealing with waves propagating forward in time. However, the same discussion is valid for
the continuation of data backwards in time, as in this step a wave field is also created with the FD
technique, starting at a later time ¢’ and ending at the time at which the source was fired, which
is usually ¢ = 0 (Stolt and Weglein (2011)). This wave field eventually strikes the boundary of the
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FD domain where the hard-wall BCs are imposed.

3 The acoustic wave equation

It can be seen in Johnson (007b), that all the familiar wave equations appearing in physics (acoustic,
Maxwell, Lamé-Navier equations for elastic waves in solids, etc.) can be written as:

aavtv = Dw, (3.1)
for an anti-Hermitian operator D. Tt is this anti-Hermitian property of D that makes them “wave
equations” i.e., that allows oscillating solutions, conservation of energy, and other properties char-
acteristic of wave phenomena (Johnson 007b). It turns out that the PML ideas apply equally well
in all those cases. However, for further applications to seismic physics, in this report we will focus
on the implementation of the PML technique for the acoustic case.

The acoustic (source-free) wave equation is:

10%P

V- (aVP) = TR (3.2)

where P(x,t) is the wavefield and ¢ = v ab is the phase (or propagation) velocity of the wave, for
parameters a(x) and b(x) of the (possibly inhomogeneous) medium. For seismic applications, a(x)
is the inverse of the density:

a(x) = —. (3.3)

It is convenient, for its PML implementation, to write eq. (3.2) as an equivalent system of two
coupled first-order differential equations:

ov oP

where v(x,t) is a new auxiliary vector field.

It is easy to show the equivalence of eq. (3.2) with eqs. (3.4): upon multiplication by b~! and
differentiation with time of the second of egs. (3.4) we have

182P_ v.<8V

e &) =V (aVP). (3.5)

For completeness, we will use egs. (3.4) to show that the acoustic wave equation, eq. (3.2), can be

written as (3.1):
ow 0 (P bV-\ [P\ _ -~
M_2 <V> _ (w > <V> - Dw. (3.6)
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4 Split-field formulation of the PML technique.

In this section we will explain the split-field formulation of the PML technique. As was mentioned in
the introduction this is the original formulation and was introduced in Bérenger (1994) for Maxwell’s
equation of Electromagnetism. We will follow Qi and Geers (1998) in which this formalism is
incorporated into the acoustic wave equation.

4.1 Definition of the 2D acoustic PML medium.

For simplicity we will focus on the 2D version of the acoustic wave equation, as written in eqgs. (3.4).
Making explicit the derivatives and the components of the vector field v, egs. (3.4) are equivalent
to the following set of equations:

ov, __ 0P ov, __op
ot Oz ot oy
oP ovy  0vy

Now we are ready to provide the definition of a general heterogeneous acoustic-PML medium.
Assuming an artificial splitting of the pressure field into two nonphysical subcomponents

P=P,+P, (4.2)

and the introduction of four positive, nonphysical parameters (qz, gy, 4y, gy ), the definition of the
2D acoustic PML medium is given by the following set of equations:

88‘;”’0 + Ve = —aaax(Px + By), (4.3)
B 4y = —ag (P4 B (1.4
8{;:@ g P, = —b(?;;x’ (4.5)
iBalz?/+q;Py:— 88\;’; (4.6)
Notice that if
Q=0 =q=q, =0, (4.7)
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the acoustic PML medium reduces to the original acoustic medium of eqs. (4.1). For this reason
the medium defined by eqs. (4.1) is called the acoustic host medium.

Notice from eqgs. (4.3)-(4.6) that this formalism is defined in the time domain. This is in contrast to
the complex-coordinate-stretching approach to be explained in the next section, which is formulated
in the frequency domain.

4.2 Solutions of the PML equations.

In this subsection we will study solutions of the PML equations, egs. (4.3)-(4.6). In particular we
will search for plane-wave solutions of the form

Vv, = voge Witikertikyy (4.8)
v, = voye—iwt—‘,-ikgca?-‘rikyy, (4.9)
P, = PO:E6—iu.nf-l—ik:avac—f—ikyy7 (4'10)
P, = Pyye~ Witthartikyy, (4.11)

Any other solution can be expressed as a linear superposition of plane-waves. By substitution of
eqs. (4.8)-(4.11) into egs. (4.3)-(4.6) we get the following set of relations:

—iWVog + @2 Vor = —aiky (Poy + Poy) = —iw <1 + qx> Vor = —atk, Py =
N e’ w

Py
Sx

ka
WV = CL*PQ, (4.12)

Sx

—iwVoy + qyVoy = —aiky (Pogz + Poy) = —iw (1 + wqy> Voy = —aiky Py =
———
Po —

Sy

k
wvoy = a2 Py, (4.13)
Sy

—iwPyy + Q;PQI = —bik,vo; = —iw (1 + Zqi) Py, = —bikyvor =
w
— —

*
Sz
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k
wPyz = b—-Voq, (4.14)
S

T

—iwPoy + ¢, Poy = —bik,vo, = —iw <1 + wqy) Pyy = —bikyvoy =
—_——

s
Sy

k
wPyy = b2 vy, (4.15)
Sy

In the above equations, sz, sy sy, s, are called stretching factors.

Adding eqgs. (4.14) and (4.15), we have:

ko k
wPy=1b <*v0$ + §v0y> (4.16)
S Sy

Substituting eqs. (4.12) and (4.13) into eqgs. (4.16), we get

ke a ky k, ak b k2 k2
wPy=b <*aP0 + fayP0> = EPO ( =+ y*> ) (4.17)
Sy W Sz Sy W Sy w SpSy  SySy

which can be expressed as

2 k2 2
el T (4.18)
ab  spsy o sysy

Using the relation ¢ = vab, eq. (4.18) can be written as

2 k2 k2
Yot Y (4.19)
S5y SySy

Eq. (4.19) is the dispersion relation for the acoustic PML media and is a necessary condition for
the existence of plane-wave solutions, eqgs. (4.8)-(4.11).

The following step is to find explicit solutions for eq. (4.19). A particular family of solutions is given
by

o = 2 frasicos 6 by = 5 fsusieos 6 (1.20)
IS C

where ¢ is a free parameter whose interpretation will be explained later in this subsection. It is
easy to see that eq. (4.20) is a solution of eq. (4.19):
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2 2

k2 k2 1 /w ~ 2 1 /w - 2w N o w
+—= (;\/sxsxcos qb) + — (;Msysysm q5> = 0—2(008 ¢+ sin® @) = =

SzSy  SySy  SzSy Sysy,
(4.21)

It is worthwhile to mention that eq. (4.20) is not unique and there exist more general solutions
involving two free parameters. These two-parameters solutions are relevant for the modeling of
evanescent waves, and the interested reader can refer to Bérenger (2007) for more details about this
application. In this report we will restrict our discussion to solutions of the form eq. (4.20) and to
plane-wave solutions of the acoustic wave equation.

Using eq. (4.20), we can now write a generic plane-wave solution for the PML equations:

P = g et (i E[VErETeosd vty /sysing y] (4.22)

where 9y is either v, vy, Py, or P,.

In order to understand the meaning of the free parameter ¢ in eq. (4.20), we need to impose the

so-called matching condition in the two pairs of stretching factors (sz,sy) and (sy, s;) :

Sy = S, and Sy = 8. (4.23)
For the specific case of the acoustic wave equation, the condition in eq. (4.23) can be reformulated
in terms of the parameters as

4 = q; and Gy = G, (4.24)
respectively. After imposing the condition in eq. (4.23), eq. (4.22) reduces to

w _ 1/}0 efiwt ei%[cosqﬁ z+sing y) ef%”co&b T equysinqb v (425)

From eq. (4.25) it is evident that if we identify ¢ with the angle between the positive x-direction
and a vector k/ with components

w w
K, = ~ cos 0] ky = S sin b, (4.26)

then the first two exponentials in eq. (4.25) describe a plane-wave solution propagating in the
direction of k/ and velocity ¢ in the acoustic host medium. Also the third and fourth factors in
eq. (4.25) are attenuation factors in the z and y directions respectively. In this way, when the
matching condition holds for (sz,s;) and (sy,sy), the plane-wave solutions for the PML medium
represent decaying solutions for the ordinary acoustic host medium. Additionally the matching
condition in terms of the parameters, i.e., eq. (4.24), together with ¢, = ¢, = 0, imply that
eq. (4.25) reduces to a plane wave for the acoustic host medium, as expected.
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4.3 Reflection and transmission of plane waves at a PML-PML interface

The purpose of the present subsection is to study the physics of the propagation of a PML plane
wave that is incident at an interface between two PML media built from the same acoustic host
medium. For this, let’s consider two semi-infinite PML media, adjacent to each other and with the
interface between them placed at = 0, and parallel to the y axis. The two PML media are defined
by two sets of parameters (g1, 51, qy1, qzl) and (a2, ¢5ay 9y2, q;2) for x < 0 and z > 0 respectively.
Assume also that an incident wave P; is striking the PML-PML interface from the left— i.e., the
wave is propagating in the medium (gz1,¢%;, qy1, q;ﬁ) with incident angle ¢;. From experience we
know that there is a transmitted wave P, with refraction angle ¢o and a reflected wave P, with
reflection angle ¢,, where all angles are measured relative to the positive z direction (Figure 4).
Our goal is to calculate the reflection coeflicient at the PML-PML interface of this configuration.

¥
Pz
P, _ ™
) L N
IEjIr i- Ly, _:;.-:j__lI Iiil
: - X
@yl 1
P,
PML1 (u Gr1-Gy1-Gy1) PML2 (Qup QrzrQyz-9yz)
¥=0

Figure 4: Two semi-infinite PML media defined by two set of parameters (qs1,qy;,qy1,¢;;) and
(qxg,q;Q,qyg,qZQ) for x < 0 and = > 0, respectively, are placed adjacent to each other with the
interface at * = 0. An incident wave P is striking the interface at an angle ¢1, resulting in a
transmitted wave P, with a refraction angle ¢o and a reflected wave P, with a reflection angle ¢,.

The general solutions for the incident, reflected and refracted waves are

—i i ; —i = [1/5 s*.cosp1 T4, /Sy187, sin ]
Pl — P01 e zwt61k11$+zky1y — P01 e iwt e 21651 CO5P1 V SylSy1 b1y , (427)
— ; ; — 1 [,/s s*.cosp1 T+4/5y18%5in ]
Pr — POT‘ e 'Lwtezkmz+zkwy — P()r e iwt ele ©18},1COSP1 Y18y $1y 7 (428)
Py = Py e—iwteikzzx—i-ikyzy = Py e—iwt ei%[\/ 522839C0502 Th/5y25,,85inP2 y] ) (429)
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The presence of OP/0x in eq. (4.3) means that it must be defined everywhere and in particular
at the interface. A necessary condition for this to happen is that the total pressure field must be

continuous at the interface:

P+P =P at z=0.

Upon substitution of eqs. (4.27)-(4.29) into eq. (4.30) we get

Py GZkyly + Porelkyry = P02ezky2y‘

It turns out that each term in eq. (4.31) is independent of the other terms as a function of y.

the condition to guarantee the equality at any point of the interface is

kyl = kyr = k’y?a

as in this case eq. (4.31) reduces to

Po1 + Por = Poa,

which is a constant. Using the first equality in eqs. (4.32) and (4.20) we get

St @1 = sin Op.

Under the change of variable ¢, = m — ¢’ for ¢’ < 7/2, we have the following result:

sin ¢ = sin (m — ¢') = sin 7w cos ¢ — cos 7 sin ¢ = sin ¢/,

Eq. (4.35) implies ¢/ = ¢1, which means

Or =T — P1.

A direct consequence of eq. (4.35) is

w w w
kyr = E‘/leszl cos ¢ = ;w/SmS;l cos (m— ¢1) = _;\/35015;1 cos ¢1 = —kz1.

Using again eq. (4.32), we have the Snell-Descartes law for a PML media:

* . _ * .
\/ Sy181 sin o1 = ,/sygsyQ sin ¢o.

Also, upon division of (4.33) by FPp1, we obtain

201

(4.30)

(4.31)

Thus,

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)
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1+7r=t, (4.39)
where r = Py, /Py is the reflection coefficient and ¢ = Pya/ Py is the transmission coefficient.
Eq. (4.39) is the first equation relating r and ¢ to each other. However, we still need a further
relation in order to solve for r. To find such a relation we will use the continuity of the velocity field
v(z) across the interface i.e. at x = 0 and eq. (4.3). The continuity condition is sensitive to the

total field FP;,; at each side of the interface, and not to the individual components of the artificial
splitting assumed in eq. (4.2).

Let us start with the medium 2, as in this case P;,; = P», and therefore the calculation is easier
than in medium 1 where P, = Py + P,.. By inserting P» into eq. (4.39) we get

. 8P . = * P W
WVt Qe Ve = 37332 _ Pogeﬂmezﬂ [\/512512C05¢2 T+ /5y25, 0 SinP2 y] (z;@cosgﬁz $) : (4.40)

which can be arranged as

. Law i 1< [1/5 28%, cospo T+ /Sy28%,s5inds ]
— (WSzaVao = —i— Pogr/ 82255, cospy € wt  1c |V Sa285g o5 v28y2sing2 Y| (4.41)
c

Evaluating eq. (4.41) at = = 0 and using eq. (4.38) we arrive at

*
S a . ;W * o
Vo = | 22 = Pyy cosgy e Wlele Vo s s oy, (4.42)
Sz C

Evaluating now eq. (4.39) in medium 1, we get

. i 1< [1/5 8%, cosp1 T+4/Sy18%sin ] LW
—twVel + ¢r1Ve1 = Pore wiehe 21851 C0501 y18y1 51 y i—1/5z155,CO5¢1 T
&

—1 = x ;; r T+ * . 5ingr LW
+ Pyre iwt e [\/s 1551c08¢r T+, /sy15; sind y] (7,; /8$18;1008¢T x) ) (4_43)
Using eq. (4.34) and cos ¢, = —cos¢1, the above expression becomes

— WSz Vel =

. a i</ * si — i</ * e/ *
= /3:513;1610 Sy18, Sing1 Ye iwt (Pme’c 82155,C08P1 T __ PO're 124/ Sx15, €051 x) cos ¢1’ (444)
c
which upon evaluation at x = 0 reduces to
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* . .
- % Sz1 e—zwt@z%@sm% Y(Py1 — Por)coser. (4.45)

Szl

Continuity of v implies the matching of eq. (4.45) with eq. (4.42):

* *
a S —q = * gq a S . cw ¥ of

Ry i3 X e zo.)te’bc 8y18y181n¢1 y(POl - POr)COS(ﬁl = - 2 P02 COS¢2 e ZWt€ZC Sy18y181n¢1 Y, (446)
CV Sz1 CV Sz2

After division by Pp; eq. (4.46) becomes

Sl (1 —7r)cospr = Q/Sﬂ t cosopa. (4.47)
Szl Sx2

Eq. (4.47) is the second relation among r and ¢. Upon insertion of eq. (4.39) into the right-hand
side of eq. (4.47), we can solve for r:

Sp1 S3o
v/ 2= cospy — /) =2 cospo
r = szl S:Q . (4.48)
S S
v/ Tﬁ cos¢y + —Szg coS¢pa

Eq. (4.48) is the reflection coefficient for the configuration of Figure 4. Let’s now study under what
conditions 7 = 0. Notice first that if the transverse conductivities on both media are the same i.e.,
if g1 = qy2 = qy and g,y = g5 = g, then eq. (4.38) immediately implies that ¢1 = ¢2 and therefore
eq. (4.48) reduces to

Sr1 _ S3o
po Ve “Ves (4.49)
sy sy
Via T Vs
Furthermore, if the matching condition holds for both PML-media in the z-direction, i.e., if s, =
sk (g1 = &) and sz2 = sy (qu2 = ¢y), then eq. (4.49) gives r = 0. For short, in order to the

reflection coefficient to be identically zero, the PML-parameters on both sides of Figure 4 must be
as follows:

PML 1: (g1, 1,4y, qy) PML 2 : (g2, 422, 4y, ) (4.50)

and this is true for all frequencies and all angles of incidence. Two comments about eq. (4.50) are
in order:

1. The reflectionless property remains true for a wave going from medium PML 2 to medium

PML 1.
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2. If the roles of g1 and g2 are interchanged, so that the two PML materials are interchanged
in Figure 4, then by repeating the same analysis as before we can conclude that a plane wave,
propagating in the direction of negative x, in the medium PM L1 (now filling the half-space
x > 0) will also be transmitted to medium PM L2(now filling the half-space = < 0) without
reflection.

In the particular situation in which one of the two PML media is the acoustic host medium, eq. (4.50)
takes the form

PML1:(0,0,0,0) PML 2:(gz,4,0,0), (4.51)

or

PML 1: (¢z, ¢z, 0,0) PML 2:(0,0,0,0). (4.52)

The same discussion can be held if the interface between the two PML media is now parallel to the
x direction. In this case the reflectionless property arises if the parameters satisfy

PML1: (Qx7Q;aQy17Qy1) PML 2: (Q:E7Q;7Qy27Qy2)a (453)

for y < 0 and y > 0, respectively. (Analogously to the vertical interface, we can interchange the
role gy1 and gy2 so that y > 0 and y < 0 for the media PM L1 and PM L2 respectively, and the
same result still holds). Moreover if PM L 1 is the acoustic host medium (4.53) reduces to

PML 1:(0,0,0,0) PML 2:(0,0,qy,qy), (4.54)

and if PML 2 is the acoustic host medium (4.53) reduces to
PML1:(0,0,qy,q,) PML 2:(0,0,0,0). (4.55)

4.4 Attenuation factor at a PML layer bounded by the acoustic host medium
and hard-wall BCs

Assume we have the configuration depicted in Figure 5: an interface between an acoustic host
medium (0,0,0,0) and a matched PML-medium with parameters (g, g,0,0) is placed at x = 0
and parallel to the y direction. The PML medium is bounded at x = § by an interface where
Dirichlet B.C’s are imposed. In other words the PML medium is a PML layer (or just PML) with
thickness 0. Also a wave Py, is propagating within the acoustic host medium (z < 0) towards the
interface with the PML layer at x = 0. As there is no reflection at this interface, there will only be
a transmitted wave Pj.qns. However, when this transmitted wave strikes the interface at x = ¢, the
Dirichlet BCs produce a reflected wave P2, which eventually hits the interface at + = 0 and is
transmitted again without reflection to the acoustic host medium. This transmitted wave is denoted
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as Pr.p1 because it is similar to a reflected wave. The ratio of the magnitude Fy; of Pj,. and the
magnitude Py,1 of Py is called the apparent reflection factor as Pyyq is not the reflection of Py,

_ Por1
- )
Po

R(w) (4.56)

ML 2 (G Gy 0,0)

ML 1 (0,0,0,0)

Y

B ... Dirichlet B.C's
6~

~ Ping

x=0 X=0

Figure 5: A PML layer with parameters (g, ¢z, 0,0) is bounded by the acoustic host medium with
parameters (0,0,0,0) at x = 0 and by an interface with Dirichlet B.C’s at = = §. Also a wave Py,
is propagating in the acoustic host medium and is transmitted without reflection at x = 0. The
transmitted wave Py qns is reflected at x =  and this reflected wave, denoted Py, is transmitted
at x = 0, without reflection, back to the acoustic host medium. This last transmitted wave is called
P, as it resembles a reflection of Pj,..

In this subsection we will compute the apparent reflection factor, which in general depends on the
frequency of the incident wave. For the configuration in Figure 5, we have

F)inc _ POIefiwt 6i%[cos¢1x+sin¢1y]’ (457)

Prefl — P()rleiiwt ei%[fcosdn:1:+sin¢>1y}7 (458)

Prrans = POte—iwt ez’%[cos¢1m+sin¢1y]e—qTf”cosd)lx’ (4.59)

Pref2 _ P0r2€_w)t ei%[—cos¢1m+sin¢1y]eq%cosqﬁlx‘ (460)

At z =0 egs. (4.57)-(4.60) reduce to
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Pinc = Pyre™ ™" elesino, (4.61)
Prep1 = Pyppe @t glesindy, (4.62)
Pirans = Pope™ " e sindry, (4.63)
Prepy = Popge™ ™t giesinéry, (4.64)

On the other hand, continuity of P at x = 0 requires Pj,c + Pref1 = Pirans + Prep2, which upon
substitution of egs. (4.61)-(4.64) gives

Por + Por1 = Pot + Pora. (4.65)

Now, using eq. (4.3) at x = 0, we have
_ a —iwt i< sing1y
Vel = (POI - POTI)*COS(?I e €« (466)
c
_ a —iwt _i¥sind1y
veo = (Por — POTQ)Ecosgbl e ele . (4.67)
From the above expressions, continuity of v, implies

Po1 — Por1 = Pot — Poro. (4.68)

Solving the system (4.65)-(4.68), we have:

Po1 = Pot Por1 = Pora, (4.69)

which implies that R(w) can be written as

R(w) = . (4.70)

At x = ¢, the Dirichlet B.C’s require

Prrans + Pref2 _ POte—iwt ei%[cos¢16+sin¢1y}€—‘%zcos¢16 + P[)TQB_iwt ei%[—cosqblé—&—sin(j)ly]eq%cosqﬁlc? =0,
(4.71)

which upon division by Py and using eq. (4.70) gives
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w

e—iwt ei 2 [cas¢15+sin<b1y]€—q?zcos¢15 + R(w)e—iwt ei%[—cos¢15+sin¢1y]e%cos¢15 —0. (472)

Solving eq. (4.72) for R(w), we have

R(OJ) _ e%iw cosp1d 6—2%“%05(1)15_ (4'73)

In eq. (4.73) the first exponential factor is a phase that does not affect the amplitude of Pf1;
however, the second exponential is an attenuating factor that represents how much P, is attenuated
after its propagation inside the PML layer and back to the acoustic host medium.

Notice also that the attenuation factor in eq. (4.73) is independent of w. If this were not the case,
then in the FD implementation we would need a different PML for each wavelength in the radiation
zone, with each PML layer having a different thickness in order to provide good attenuation to the
corresponding wavelength. This of course would make impossible the implementation of the FD
algorithm.

If the attenuating factor eq. (4.73) is big enough, then the effect of reflections produced by the
Dirichlet B.C. at x = 0 is small, i.e., P.f1 can be neglected in the FD simulation. At least
theoretically we can achieve any attenuation rate by choosing a large enough value of either § or g,
(or both of them).

In practice however this is not a simple choice: from the point of view of computational cost the
thickness  should be as small as possible; otherwise, the size of the FD domain will be too big and
will result in an expensive simulation. On the other hand very large values of ¢, produce “numer-
ical reflections” i.e. reflections arising from the discretization of the computational domain. Such
numerical reflections can be attenuated by either increasing the resolution of the grid (with the
subsequent increased slowness of the algorithm, increased memory requirement and thus increased
computational cost again) or by a slow turn-on of ¢