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Key Points

In 3D acquisition, the data in cross-line are typically characterized with
sparse sampling and narrow aperture compared to in-line direction;

Compared to spatial wavenumber and temporal frequency domain (e.g.,
P-V, ) approach, Green’s theorem de-ghosting method achieved in space
and temporal frequency domain shows the advantages of producing
effective result and boosting low frequency energy.

Numerical comparisons
1) Spatial sampling interval

2) Aperture
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Motivation

e Ghosts:
— (1) Cause notches in the frequency spectrum, especially for deep
water acquisition, like OBC;
— (2) Reduce the resolution, increase the uncertainty of inversion

and interpretation.

« For our group, we wish to use iIsolated data for each

processing step In order to get a more satisfactory result.



Introduction

Weglein et al. (02), Zhang and Weglein (05, 06); Zhang (07),
Mayhan(12, 13):
Green’s theorem deghosting method

— Space and temporal frequency domain

— Spatial wavenumber and temporal frequency domain



Introduction

Weglein et al. (02), Zhang and Weglein (05, 06); Zhang (07),
Mayhan(12, 13):
Green’s theorem deghosting method

— Space and temporal frequency domain

— Spatial wavenumber and temporal frequency domain

So guestion Is:

Are they equivalent except calculated in different domains ?
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Theoretical Analysis

e Green’s Theorem de-ghosting (x—w )

— No assumption

P'r(X,z,x w) =

1 Ngy 51

[ (P(x',z',X,,2,0)VG{ (X,2,X', 2", @) -GS (X,2,X", 2", w)V P(x', 2' ®))-nds'

 Xs1 Zg s
— P the receiver side de-ghosted data;

— P the pressure data;

— VP the gradient of pressure data;

— G! the causal Green’s function:;

— (x', z")point on measurement surface; (x, z ) prediction location;

— (X, z,) source location, ¢ circular frequency.



Theoretical Analysis

* Green’s Theorem de-ghosting (k, — o)

— Assume the acquisition geometry is horizontal

. 1 1 dP
P.(X,2,X,,2,0) ==[P(K,,Z,X,, 2, 0) ——— (K, Z, X, Z,,
((X,2.%,2,0) = 2 [P 2%, 2,0) = = )]

Y4

— P'R the receiver side de-ghosted data;
— P the pressure data;
dP _ .
~ the vertical derivative of pressure;
— Kk, horizontal wavenumber; K, vertical wavenumber ;
—~( X, z) prediction location; (X, Z,) source location,

— @ circular frequency.



If acquisition geometry is horizontal, Green’s theorem de-ghosting methods in

these two different domains are theoretically equivalent.
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If acquisition geometry is horizontal, Green’s theorem de-ghosting methods in

these two different domains are theoretically equivalent.

Even though geometry is horizontal, for cross-line, because of sparse spatial

sampling and narrow aperture, spatial Fourier Transform will encounter

difficulties to give a precise result.
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Numerical Analysis
----- Spatial Sampling Interval

In order to prevent alias, the sampling interval should satisfy
Ax<1/2k . — At<1/2f_

Slnce kmax — fmax /C

Then AX<cl2f .

If not, alias will appear in the data and contaminate the result.

So we need low-pass filtering before de-ghosting.
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Air-water boundary

Source: 7/m

Vel=2250m/s Receiver: 11m
Sampling interval: 3m

Aperture: 2400m

Velocity model
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Trace
500 1000

Synthetic data

1500

Keep the aperture of 2400m

Increase spatial sampling interval

gradually:
3m-12m —-30m - 60m — 100m

To reduce the space alias, apply
low pass filter before calculation.
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Aperture: 2400m
Spatial sampling interval: 3m

0.5

Trace Trace
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X - o deghosted result

17



Spatial sampling interval: 3m

Trace 1000
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Spatial sampling interval: 3m

Trace 1000
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Spatial sampling interval: 12m (low cut filter: 60Hz)

Trace 1000
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Spatial sampling interval: 12m (low cut filter: 60Hz)
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Spatial sampling interval: 30m (low cut filter: 25Hz)

Trace 900
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Trace 900

Spatial sampling interval: 30m (low cut filter: 25Hz)
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Spatial sampling interval: 60m (low cut filter: 12Hz)
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Spatial sampling interval: 60m (low cut filter: 12Hz)
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Spatial sampling interval: 100m (low cut filter: 7Hz)
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Spatial sampling interval

x107™

: 100m (low cut filter: 7Hz)

54

Trace 990

0 0.2 0.4 0.6 0.8 1.0 5012 14
Time/s
g-eo-
:
<
Red line:  CdH upgoing wave "
Green line: X - o deghosted
> 3 1 5 & ¥ &

Frequency (Hz)



Dense
Ideal Ideal
(e.g. 3m,12m)
Spatial Intermediate _ _
Has residual Satisfactory
Sampling (e.g. 30m,60m)
Sparse Has residual Has residual
(100m) Worse Better

Boosts low frequency
Frequency spectrum

energy
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Numerical Analysis

Aperture
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Numerical Analysis

Trace

----- Aperture

Time/s

500 1000

Synthetic data

1500

Keep the spatial sampling interval
of 3m

Reduce aperture gradually:
2400m — 300m — 150m — 75m —

45m
To reduce the edge effect, apply

taper at far offset before
calculation.
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Aperture: 2400m

Trace 1000
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Aperture: 2400m
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Aperture: 300m

Trace 820
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Aperture: 300m

Trace 820

0.005
0 f \ﬁ \/\f
-0.005
0 0.2 0.4 0.6 0.8 1.0
Time/s
-30
g
g 401
g
<
Red line:  CdH upgoing wave 50-
Green line: X - o deghosted
'60 T T
0

10 20 30 40 50 66 70
Frequency (Hz)



Aperture: 150m

Trace 810

0.005 -
-0.005
0 0.2 0.4 0.6 0.8 1.0
Timel/s
-30
g
g 401
g
<
Red line:  CdH upgoing wave 50-
Blue line: Kk, - @ deghosted
'60 T T
0

10 20 30 40 50 66
Frequency (Hz)

70



Aperture: 150m

Trace 810
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Aperture: /om
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Aperture: /o5m

Trace 810
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Aperture: 45m
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Aperture: 45m

Trace 810
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Wide

Ideal Ideal
(e.g. 2400m)
Intermediate _ _
Aperture Has residual Satisfactory
(e.9.300m,150m)
Narrow Has residual Has residual
(75m, 45m) Worse, artifacts Better
Boosts low
Frequency spectrum

frequency energy
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Key Points and Conclusion

For dense spatial sampling and wide aperture (e.g., in-line data),
Green’s theorem de-ghosting techniques in k, - @ and X - ® domains

both have ideal results;

For sparse spatial sampling and narrow aperture (e.g., cross-line
data), compared to Kk, - ® domain, the approach in X - @ domain

produces a better result;

Green’s theorem de-ghosting method in x - ® domain shows its

advantage in boosting low frequencies.
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