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M-OSRP 2012 Annual Report:
INTRODUCTION AND SUMMARY

Arthur B. Weglein

April 29, 2013

The 2012-2013 Annual Report focuses on recent progress, developments and plans, and how changes
and concomitant challenges within our sponsor’s portfolios are influencing the introduction of new
subtopics and allocation and distribution of resources within projects. Your feedback at the May
2012 M-OSRP Annual Technical Review and Meeting, in Austin, and at the Executive Summary
Meeting at the 2012 SEG Conference and Convention in Las Vegas, was extremely positive, worth-
while, encouraging and very much appreciated — and your response galvanizes and energizes our
research efforts and progress to reach our goals .

1 OVERVIEW

The main recent petroleum industry shift in sponsor portfolios for difficult on-shore (with near
surface complexity and shale-oil/shale-gas objectives) and complex marine plays communicated
what amounts to a new and heightened research interest and focus requiring a higher priority and
pressing need for an increased capability in the area of multiple removal. The earlier trend (25
years ago) to deep water exploration caused many traditional multiple removal methods to bump
up against their assumptions, with a concomitant rejuvenated interest in multiple attenuation. New
methods were developed and delivered in response to that earlier challenge. At this time, we are once
again experiencing a period of heightened industry interest with a yet higher demand and standard
for multiple attenuation effectiveness. That priority translates into the need to be able to predict the
amplitude and phase of free surface and especially internal multiples at all offsets, and of all orders,
and along an arbitrary offset trajectory. The ability to predict multiples with phase and amplitude
fidelity would allow the surgical removal of the multiple without damaging proximal primaries. The
inverse scattering series communicates its potential to provide that capability, which is beyond what
we have developed and delivered to-date for internal multiple attenuation. The frequent inability
to provide adequate subsurface information for multiple removal, in these challenging on-shore and
off-shore plays, once again points to the inverse scattering series as the place to find a solution.
We felt that M-OSRP was particularly well-suited to respond to that new priority and pressing
challenge. That decision resulted in a new focus and effort with significant fundamental research
and practical aspects, with a reassessment and return to a problem we had considered mature, and,
we viewed as basically “paying the rent.” Multiple removal returned to center stage as a fundamental

1
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research project within M-OSRP. The prerequisites that are needed to allow the inverse scattering
series methods to reach their potential also needed an upgrade and increased attention and resource
allocation within the group. That resulted in a heightened interest and examination of Green’s
theorem for wave-field separation applications, e.g., de-ghosting and determining the reference wave
and the scattered wave-field. That focus also (inadvertently) led to a new wave-field prediction,
as well, and the first wave theory for RTM. The Green’s theorem wave-field separation methods
were intentional projects within M-OSRP strategy and linked chain of processing methods. The
Green’s theorem for wave theory RTM was neither planned nor part of the M-OSRP global strategy.
However, that wave theory RTM “spinoff” appears to have more significance than those of us who
developed the method understood or anticipated.

2 SUMMARY

All projects within the program had significant progress to report since the 2012 Annual Meeting
and Technical Review in May, 2012.

Below please find a succinct summary of the status, progress and plans within individual projects
in the program.

3 Green’s theorem delivered prerequisites for wavelet estimation and source
and receiver de-ghosting

There has been a keen industry-wide interest in de-ghosting due to the need for low frequency within
methods to iteratively model match update the velocity model at, e.g., the top salt and for shallow
hazard detection.

Separately, inverse scattering series for multiple removal have a serious and non-linear interest
in wavelet removal and source and receiver de-ghosting, to allow predictions with amplitude and
phase fidelity. Green’s theorem methods for de-ghosting have several practical advantages over
the industry standard P − Vz summation. In contrast to the latter, the former doesn’t require:
a 1D earth, Fourier transforms, or a horizontal measurement surface for sources and receivers
(for ocean bottom or on-shore application). Tests on the Green’s theorem methods were carried
out with synthetic, SEAM and field data with encouraging results. The preprocessing impact on
subsequent ISS processing (e.g., multiple elimination) have been tested and evaluated along with the
accommodation of source and receiver arrays and other acquisition and preprocessing parameters,
e.g., estimating near-surface effective properties for on-shore Green’s theorem and ISS applications.
P−Vz (i.e., operating in the kx, ω domain) wave separation methods have an advantage over Green’s
theorem methods (operating in the x, ω domain) when the interest is in having the source on the
receiver measurement surface and the output on that surface, as well. The latter is an essential
difference and advantage of (kx, ω) methods for on-shore application.
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4 Multiples: Encouraging news and new fundamental issues and practical chal-
lenges for on-shore and off-shore plays

We were very pleased to hear about and read (this past year) published papers and public reports
from M-OSRP sponsor companies, further documenting stand-alone capability of the leading order
inverse scattering series (ISS) internal multiple attenuator, compared to all other methods with
the same purpose and objectives, and demonstrating their mettle under the most complex and
daunting on-shore and offshore field data circumstances. However, the sponsor/industry trends to
ever more complex offshore (e.g., targets beneath complex 3D salt and complicated and numerous
salt layers) and on-shore plays (with e.g., challenges that arise with a large number of high contrast
near surface internal multiple generators, and unconventional oil and gas plays) can often have
multiples proximal to or intersecting primaries or multiples of different orders — and raises the bar
and demand for yet more effective free surface and internal multiple removal. Surgical removal of
multiples at all offsets will be the goal, with a demand for amplitude, phase and shape fidelity.
The standard reliance on prediction and subtraction, with the latter based on different versions of
“energy minimization” will not fit that new challenge and demand. The current leading order ISS
internal multiple attenuation algorithm predicts the precise time and approximate amplitude of all
first order internal multiples, including converted wave internal multiples. The ISS internal multiple
prediction has to become significantly stronger to provide amplitude and phase fidelity, to allow the
algorithm to go from an attenuator to an eliminator. Also, new issues arise for the leading order
internal multiple algorithm (that has been delivered in 1D, 2D and 3D) when three or more strong
reflectors generate the multiples, and when internal multiples are themselves treated as subevents
in the leading order algorithm.

However, all of the shortcomings and limitations of the leading order internal multiple algorithm
are anticipated by the inverse scattering series, and higher order ISS internal multiple removal
terms directly address each and every one of them. The M-OSRP plan (and on-going activity) is
to harvest all of the beyond leading order terms that will allow that surgical removal of multiples
without damaging proximal or intersecting primaries — to meet the yet more daunting challenges
our sponsors are currently facing, and will increasingly face. The inverse scattering series is the
only candidate method with that potential and promise, and always achieves a processing goal
without requiring subsurface information or interpreter intervention. We are also actively pursuing
replacements for the “energy minimization” adaptive subtraction, with a criteria that always aligns
with and is consistent with the multiple removal prediction the “subtraction” it is meant to serve.
Another key project is continuing to deliver algorithms that reduce the run-times of the 3D internal
multiple algorithm. Finally, and equally important is the delivery of ISS prerequisites like wavelet
estimation and de-ghosting from Green’s theorem to allow ISS free surface and internal multiple
algorithms to reach their potential.

5 Green’s theorem for RTM, direct depth imaging with a velocity model

First steps towards implementing a new wave-theory formulation for RTM from Green’s theorem
that doesn’t require a PML is underway, with a parallel effort to implement asymptotic (and industry
standard) RTM with PML. The purpose is to study and compare run times and cost benefit of both
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approaches. At some point soon, we will connect with sponsors with RTM PML expertise to
assure that our tests and comparisons are relevant and realistic. The Green’s theorem method for
RTM came about as a natural extension of our Green’s theorem methods for wavelet estimation
and de-ghosting. However, the Green’s theorem wavelet estimation and de-ghosting are wave-field
separation methods whereas the Green’s theorem for RTM is wave-field prediction. Green’s theorem
for wave-field separation doesn’t require subsurface information. Green’s theorem for wave-field
prediction and RTM is a linear depth imaging method, and, in common with all current industry
best practice migration methods, requires a velocity model.

The asymptotic PML RTM and the new wave-theory Green’s theorem RTM that we are developing
and have begun to test are within current migration concepts. For clarity, wave theory migration
in our communication refers to first predicting the wavefield for a source and receivers in the sub-
surface and then applying an imaging condition to locate structure. Traditional migration means a
migration that requires subsurface information.

To understand the value of wave theory RTM, it’s useful to think of the two ingredients: wave theory
and RTM, and what does each separately bring on its own, and, e.g., under what circumstances wave
theory migration provides value beyond asymptotic (e.g., Kirchhoff and Beam) migration methods,
for one way migration. Then separately, consider when current industry standard RTM migration
provides value beyond industry standard one way migration, and then to imagine when both of
those values and differences/benefits (RTM and wavefield prediction and imaging migration) are
called upon and would be simultaneously provided within a single algorithm as needed/required to
address a challenging imaging problem requiring both wave theory propagation and imaging and
RTM.

6 Migration history in a nutshell

We can think of migration theory history as first being formulated as a wave theory (Claerbout
1971, Stolt 1978, Schneider 1978) with a one way downward continuation of sources and receivers
and a causality based imaging condition at depth to locate reflectors. Then for lack of adequate data
(in line and especially cross line) the less complete and less demanding asymptotic (“ray”) methods
came into vogue (Kirchhoff) based on a less than wave theory travel time arguments for imaging,
and a less complete picture of how waves actually passed through the overburden on their trip back
into the subsurface and before imaging. Then with subsalt imaging the latter compromises were
decided to be contra-indicated, and a return to the original wave theory propagation and imaging
became the standard, and the strategy was to collect the data needed. Then a thought emerged
that perhaps imaging the base salt by a going around the outside with a two way diving wave with a
v(z) medium in the sediments was useful, and that led to the recent increase in RTM activity today.
However, the current RTM methods based on: (1) using the data as a boundary condition in a finite
difference modeling run backwards in time, (2) together with a forward modeling of a shot record and
(3) and then the latter two are linked for imaging with a ray theory travel time imaging condition.
The latter single shot experiment RTM is not a wave theory for predicting a source and receiver at
depth, nor is it calling on the original wave theory imaging conditions (small time for a predicted
coincident source and receiver at depth) to locate reflectors. That is, RTM today is a an asymptotic
ray theory migration, with all the benefits and drawbacks that implies. Current RTM allows two
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way propagation, and that’s a step forward — but it’s a step back to Kirchhoff rather than wave
theory. Asymptotic migration and travel-time imaging conditions can have problems with amplitude
analysis at the target, even when the overburden can justify asymptotic propagation models.

7 Wave theory RTM

The Green’s theorem RTM method that we have developed provides more than just a way to deal
with incidental PML boundary issues impinging on the image space. It provides a wave theory for
RTM, allowing for downward continuing receivers and sources and then a causality based imaging
condition in a way consistent with what the original migration pioneers (Stolt 1978) as well as
avoiding (sometimes) troublesome boundary conditions. We understand that perhaps for a simple
c(z) medium outside a salt body, that an asymptotic migration might be adequate for structure,
however, it can be inadequate if you are interested in amplitude analysis at the target. If you are
interested in amplitude analysis at the target or if you had a two way wave in a complex medium,
wave theory RTM from Green’s theorem would probably be indicated, even for structure. We plan
to test and evaluate and report on these different approaches for RTM in terms of effectiveness
and efficiency. Professor Fang Liu has recently produced the first wave theory RTM result in a 1D
medium with rapid variation (i.e., reflectors), and his output predict the location of reflectors and
the reflection coefficient at the reflector. That’s very positive and encouraging.

8 Inverse scattering series for direct depth imaging without the velocity model

Weglein et al. (2012, JSE) provided the first field data examples of direct depth imaging without a
velocity model. We were honored and enormously pleased to have had our SEG Abstract, on that
subject, selected for the Recent Advances and Road Ahead session of the 2012 International SEG
Convention and Conference. The paper and SEG Abstract explain in logical detail why the results
on field data demonstrate that ISS direct depth imaging without the velocity model is working on
that field data test and is viable. It is shown that when ISS depth imaging algorithms produce
a flat common image gather, the image has moved until it stops and when it stops it’s at the
correct depth. For ISS direct depth imaging the flat CIG is a necessary and sufficient condition that
depth has been found, in contrast with traditional velocity dependent imaging where CIG flatness
is a necessary but not sufficient condition, and the correct and other velocity models can satisfy
that criteria, with the correct and incorrect depth being produced. The presentation at the SEG
described the three steps that will be needed to go from “working” to “adding value and a place in
the seismic toolbox” with the goal of improving upon current best practice depth imaging with a
velocity model. Those three steps are being pursued.

9 Summary

This past year produced good progress in each of the projects within the program. There has been
a resource reallocation and focus on projects in response to sponsor communicated prioritized and
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pressing fundamental challenges that M-OSRP is particularly well-suited to address. The 2012-2013
Report describes the goals, progress and plans in each project.

Thank you for your encouragement and support.

Best regards,

Art
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Green’s theorem de-ghosting algorithms in the k, ω (e.g., P − Vz de-ghosting) as
a special case of x, ω algorithms (based on Green’s theorem) with: (1)
significant practical advantages and disadvantages of algorithms in each

domain, and (2) a new message, implication and opportunity for marine towed
streamer, ocean bottom and on-shore acquisition and applications.

Arthur B. Weglein∗, James D. Mayhan∗, Lasse Amundsen†, and Hong Liang∗

April 29, 2013

Abstract

This paper is examining the implication/differences of a Green’s theorem method of deghosting
in two domains: (x, ω) and (kx, ω). Substituting Vz for Pn, in the (kx, ω) domain, and ben-
efits/limitations that arise from that substitution (while important) are not within the scope
of this paper. We point out how P − Vz deghosting (in ~k, ω) can be derived from Green’s
theorem deghosting (in ~r, ω). We discuss the advantages and disadvantages of each deghosting
method. For example, Green’s theorem deghosting is less sensitive to sampling and aperture
and can handle an arbitrary measurement surface, whereas P −Vz deghosting allows the source
and field locations to be on the receiver measurement surface. We discuss the implications of
each deghosting/wavefield separation method for towed-streamer, ocean-bottom and on-shore
acquisition.

1 Introduction

We start with the meaning of deghosting, and the simplest up-down separation idea. Then, we
show how those early simple ideas and thinking have evolved and advanced through methods based
on Green’s theorem. We then show explicitly how these recent advances reduce to the original, and
readily accessible and understandable concepts and algorithms, and the advantages and disadvan-
tages, and delivery that the original and more recent progress represent.

We will connect Green’s theorem deghosting to the industry standard P −Vz. We will show a more
direct way to derive that connection than appears in Appendix B of Mayhan and Weglein (2013).
We start with what resides behind the industry standard type of deghosting algorithm, review the
Green’s theorem deghosting method, and then show how the industry standard is a special case of

∗M-OSRP, University of Houston, 617 Science & Research Bldg. 1, Houston, TX, 77004-5005. E-mail: awe-
glein@central.uh.edu

†Statoil Research Centre, Norway, and The Norwegian University of Science and Technology, Department of
Petroleum Engineering and Applied Geophysics, Norway. E-mail: lam@statoil.com
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the more general Green’s theorem approach. We point out how the P − Vz form has advantages
over Green’s theorem for on-shore application where the source is on the receiver measurement
surface and the interest is in deghosting the data you acquired on the cable. Green’s theorem has
advantages over P − Vz with limited aperture and sparse sampling and when the receiver/source
acquisition is not on a horizontal surface.

2 The processing flow (steps) that are followed before ISS processing

Let’s assume that the actual medium consists of air, a free surface at the air/water boundary, a
water column, and earth. The sources and receivers for the towed streamer experiment are located
in the water column. For the purposes of ISS multiple removal, depth imaging and AVO, we suggest
the steps and definitions below.

First step: Define the reference medium as air and water with an assumed free surface at the
air/water boundary. The latter assumes the air-water boundary can be replaced by a vacuum-water
boundary. The reference wave is the wavefield in the reference medium. The reference Green’s
function is the response due to a localized source in the reference medium. Second step: For the
actual medium, the Green’s function, G, is the wavefield due to an idealized source (δ(~r−~rs)δ(t−ts)).
The scattered wavefield, ψs, for an idealized δ source is G−G0. Third step: Deghost, i.e., remove
events which have begun their history going up from the source and/or end their history travelling
downward when they are measured. We express G0 as G0 = Gd0 +GFS0 , where Gd0 is the whole space
causal Green’s function and GFS0 is the extra term in G0 due to the presence of the free-surface. In
terms of G0 and Gd0, we can describe source and receiver deghosting of the scattered wavefield as
follows:

Gd0G
−1
0 ψsG

−1
0 Gd0. (1)

Equation 1 removes 3/4 of the events in the scattered wave, ψs. Events that go up (from the source)
and down (from the free surface) can destructively interfere with non-ghosted events putting notches
in the data, which are not in the source spectrum. Deghosting removes destructive interference and
boosts low frequencies. Removing the downwave recorded by the receiver, we want to be left with
an upwave, which is up/down separation. In addition to the traditional interests in deghosting
described above, we prefer to deghost data prior to calling upon the inverse series to remove free
surface multiples. Primaries, free surface multiples, and internal multiples are defined as events in
the deghosted part of the measured scattered field. We want ghosts out first, because we want the
free surface multiple prediction algorithm to focus on removing free surface multiples, not ghosts.
If we don’t deghost the data, then the role of GFS0 inside each term of the free surface multiple
prediction algorithm has to remove both free surface multiples and ghosts, which is a much more
complicated task. GFS0 in the forward series creates ghosts and free surface multiples, and GFS0 in
the inverse series removes ghosts and free surface multiples. The removal of ghosts in equation 1
involves G−1

0 Gd0 = (Gd0 +GFS0 )−1Gd0, and GFS0 is the sole factor in that form that differentiate this
deghosting operator from the unit operator. Hence, GFS0 is responsible for creating and removing
ghosts. It’s more economical to get rid of ghosts first (before you start with the series for multiple
removal).
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Consider a simple 1D normal incidence example, where in the vicinity of the (towed streamer) cable
the pressure field P satisfies:

[
∂2

∂z2
− 1

c2
0

∂2

∂t2

]
P = 0, (2)

where c0 is the wave speed in water, and
[
d2

dz2
+
ω2

c2
0

]
P = 0 (3)

is the temporal Fourier transform of equation 2. The solution of equation 3 is

P = A exp (ikz)︸ ︷︷ ︸
down

+B exp (−ikz)︸ ︷︷ ︸
up

, (4)

where the convention exp (−iωt) is used for going from ω to t. For deghosting, we want to up-down
separate P at the assumed measurement location z = a. That requires two pieces of information
about P .

2.1 Two measurements at one depth

If we make the required two pieces of information about P measurements of the field and its
derivative at one level, for a cable at z = a,

P (a) = A exp (ika) +B exp (−ika)

P ′(a) = ik[A exp (ika)−B exp (−ika)],

again with the convention exp (−iωt) is used for going from ω to t. Solve for B,

B =
ikP (a)− P ′(a)

2ik
exp (ika)

and the upgoing wave at z = a is

ikP (a)− P ′(a)

2ik
.

If we extend the above to a multi-D world in the vicinity of the cable,
[
∇2 − 1

c2
0

∂2
t

]
P (x, z, xs, zs, t) = 0.

In the temporal Fourier domain, this becomes

(∇2 + k2)P (x, z, xs, zs, ω) = 0,

and then Fourier transforming over x we have
[
d2

dz2
+ k2 − k2

x

]
P (kx, z, xs, zs, ω) = 0. (5)
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Equation 5 looks like equation 3 where q2 ≡ k2 − k2
x. The solution is

P = A exp (iqz) +B exp (−iqz),

where A,B are functions of kx and ω, whereas in equation 4, A,B are functions of ω. We get B
the same way as before except that the role of k will be played by q, i.e., in the prestack form
(equation 5) the deghosted data at the cable (at z = a) is

Pr(a, kx, ω) =
iqP (a, kx, ω)− P ′(a, kx, ω)

2iq
(6)

with q = +
√

(ω/c0)2 − k2
x.

When P ′ is substituted with iωρVz where ρ is the local mass density at the cable and Vz is the
vertical component of velocity, equation 6 becomes

Pr(a, kx, ω) =
iqP (a, kx, ω)− iωρ Vz(a, kx, ω)

2iq
(7)

the receiver deghosted data on the cable at z = a. The latter formula is the proto-type industry
standard P − Vz summation for deghosting.

2.2 Two measurements at two depths

Another way to provide two pieces of information about P is to use P on the cable and P at the
free surface (where P = 0). We get

P (0) = A+B (8a)
P (a) = A exp (ika) +B exp (−ika). (8b)

To solve for B, multiply equation 8a by exp (ika) and subtract equation 8b to get,

exp (ika)P (0)− P (a) = B[exp (ika)− exp (−ika)]

B =
exp (ika)P (0)− P (a)

exp (ika)− exp (−ika)

=
exp (ika)P (0)− P (a)

2i sin (ka)
, (9)

which in principle is entirely equivalent to equation 7, but can have stability issues compared to
equation 7 for small errors in the cable depth, especially in the vicinity of notches. This was noted
in Mayhan and Weglein (2013). To illustrate, let’s assume that the total wave is upgoing and it
doesn’t need deghosting. Then the measured wave is P (z) = P (0) exp (−ikz). Then put P (a) into
equation 9 to get

B =
exp (ika)P (0)−

P (a)︷ ︸︸ ︷
P (0) exp (−ika)

exp (ika)− exp (−ika)
= P (0),
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the deghosted data at z = 0; if the depth is correct, then the exponentials (exp (ika)− exp(−ika))
in the numerator and denominator cancel for any frequency and there’s no problems. But, if you
got the cable depth wrong (the cable is at a but you think it’s at b), the exponentials don’t cancel,
and you can get zeros in the denominator.

There is no sensitivity in equation 7 to division. Equation 7 is the solution for B with two mea-
surements at one depth, while equation 9 is the same formula for B with two measurements at two
depths. In theory equations 7 and 9 are the same, but in practice equation 9 can have issues. Zhang
(2007) shows that for small error in depth equation 7 is stable. For typical towed streamer data
at 6m, the receiver notch occurs at 125Hz. This frequency is usually outside your data (say max
70Hz). But if you’re collecting data to 250Hz, the notch is in your data. The zero is at ka = π,
or k = π/a. If you make the cable deeper, the notch comes in quicker. At the ocean bottom, the
notches can come at 5Hz. Deghosting is very serious for ocean bottom data, because the notches
are inside your data. Equation 7 is two measurements (field and its derivative) at one level. That’s
what Green’s theorem depends on, (P∇′G0 −G0∇′P ) on the measurement surface.

3 Green’s theorem

Green’s theorem has two applications for us: wave separation and wave prediction. Both come
from the same equation. Wave separation comes from the following idea. The actual medium is the
reference medium plus sources located on both sides of the measurement surface. In the reference
medium plus source math-physics description, sources don’t interact (unlike individual air guns in
an array). On the left hand side of the differential equation, write the reference operator, and
sources are the terms on the right hand side of the differential equation. The total field P cares
about the reference medium and all sources. Consider

Pr(~r, ~rs, ω) =

∮

S
[P (~r ′, ~rs, ω)∇′G+

0 (~r, ~r ′, ω)−G+
0 (~r, ~r ′, ω)∇′P (~r ′, ~rs, ω)] · n̂ dS ′. (10)

Make part of the closed surface S ′ on the measurement surface. This integral is a function (not a
number). ~r ′ is on the measurement surface, and ~r is free. When you evaluate equation 10 for ~r
inside a volume V , it gives the contribution due to sources outside V .

For deghosting, choose the reference medium as a whole space of water, and with that reference
medium there are three sources. One source converts water to air, one source corresponds to the
air guns, and one source converts water to earth. With this homogeneous reference medium, the
causal whole-space Green’s function from a source to the field point is always outgoing and straight
away from the source. Once you’re in this math-physics description, it doesn’t make sense to
talk about the wave emitted from the airguns bouncing off the free surface. For an alternative
description, where the reference medium is vacuum/air-water, once a source (e.g., airguns) emits
a wave, that outgoing wave interacts with the reference medium (the air-water boundary is a part
of that reference medium). In a source description where the reference is a whole space of water,
everything just goes off and outwards forever, with no bouncing between sources. In this whole
space reference medium, the reference wave is just Gd0, and outgoing everywhere from each source.

In the whole space reference picture, at a point ~r above the water bottom but below the air guns, the
wave due to the earth is upgoing, whereas the waves from the air guns and air are downgoing. With
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the description of three sources and the whole space reference medium, the integral in equation 10
gives the portion of the total wavefield due to the source ρearth. At that point, ~r, the portions of the
total wave due to the other two sources are downgoing. Hence, equation 10 removes the reference
wave and receiver deghosts the scattered wave.

4 Derive P − Vz from Green’s theorem

We now start with equation 10 and derive equation 7, the latter being the basis of P−Vz deghosting.
We provide the derivation in 2D, and the 3D derivation is a straightforward generalization. Let
x′, z′ be the receiver coordinates, i.e., x′ runs along the cable and z′ is the constant depth of the
cable, xs, zs is the source location, and x, z is the prediction point, where we choose for deghosting
zs < z < z′. The integral (in equation 10) produces an upwave at x, z, which outputs the receiver
deghosted field.

Equations 1 and 9 depend on measurements at two depths. The integral (in equation 10) relates
to equation 7. Advances in acquisition have allowed equation 10 to be realized in practice. Writing
equation 10 in 2D,

Pr(x, z, xs, zs, ω) =

∫
dx′

×
{
P (x′, z′, xs, zs, ω)

∂

∂z′
G0(x, z, x′, z′, ω)−G0(x, z, x′, z′, ω)

∂

∂z′
P (x′, z′, xs, zs, ω)

}
, (11)

where the left hand side is the receiver deghosted portion of P . The next steps in this derivation
benefit from the work of Corrigan et al. (1991), Amundsen (1993) and Weglein and Amundsen
(2003). Fourier transforming equation 11 with respect to x gives

∫
exp (−ikxx)dxPr(x, z, xs, zs, ω) =

∫
exp (−ikxx)dx

∫
dx′

×
{
P (x′, z′, xs, zs, ω)

∂

∂z′
G0(x, z, x′, z′, ω)−G0(x, z, x′, z′, ω)

∂

∂z′
P (x′, z′, xs, zs, ω)

}
, (12)

where G0 satisfies

(∇2 + k2)G0(~r, ~r ′, ω) = δ(~r − ~r ′). (13)

Substitute the bilinear form of the Green’s function

G0(~r, ~r ′, ω) =

∫
1

(2π)3

exp (−i~k ′ · ~r ′)
−|~k ′|2 + k2 + iε

exp (i~k ′ · ~r)d~k ′, (14)

This bilinear form is the plane wave decomposition of G0. Equation 14 requires all wavenumbers
to produce a single temporal frequency wave solution in a region that includes the source, because
this form works where equation 13 is valid. With the source included in the region the solution is
not a d’Alembert form. It takes a superposition of plane waves of every wavenumber to produce
a single frequency response in the region that includes the source. Why does a single temporal
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frequency solution, G0, require all ~k ′? Because the Dirac delta does, the source or the driving
function contains all wavenumbers, so the solution does as well. In 2D,

G0(x, z, x′, z′, ω) =
1

(2π)2

∫
exp (ik′x[x− x′]) exp (ik′z[z − z′])

−k′ 2 + k2 + iε
dk′x dk

′
z

Fourier transform G0 with
∫

exp (−ikxx)dx,
∫
dx exp (−ikxx) exp (ik′xx)

︸ ︷︷ ︸
2πδ(kx−k′x)

exp (−ik′xx′) exp (ik′z(z − z′))

and the Dirac delta allows you to carry out
∫
dk′x

exp (−ikxx′)
∫

exp (ik′z(z − z′))
−k2

x − k′ 2z + k2 + iε
dk′z. (15)

The integral looks like a 1D Green’s function if we define k2− k2
x ≡ q2. The latter relation between

q, kx and k is not due to a dispersion relationship but by introducing and defining the quantity q.

The 1D causal solution to

(
d2

dz2
+ k2

)
G0 = δ

is

G+
0 =

exp (ik|z − z′|)
2ik

. (16)

The integral in equation 15 then results in:

exp (iq|z − z′|)
2iq

,

from equation 16, and equation 15 becomes

exp (−ikxx′)
exp (iq|z − z′|)

2iq
.

Now differentiate equation 15 with respect to z′,

iq sgn(z′ − z)
2iq

exp (iq|z − z′|) exp (−ikxx′).

The other term (in equation 11) will have G0 with no derivative. Performing the integral over x′

we then find

Pr(kx, z, xs, zs, ω) (17)
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=P (kx, z
′, xs, zs, ω)

sgn(z′ − z)
2

exp (iq|z − z′|)− P ′(kx, z′, xs, zs, ω)
exp (iq|z − z′|)

2iq
.

It’s a combination of P and P ′ at z′ (the measurement depth.) Note there is no sum and no integral.
The output point is shallower than the cable, z′ > z, so sgn(z′ − z) = 1 and |z − z′| = z′ − z, and
we get the form equation 7. This is called P − Vz deghosting.

The industry standard practise replaces P ′ with displacement using the idea sketched here. Start
with a 1D Newton’s second law:

F = ma

and in the frequency domain

F = miωVz,

where a = iωVz and Vz is the vertical component of velocity. This becomes

F

A
=
m

A
iωVz,

where A is “area”.

P ′ ∼ 1

l

F

A
∼ ∂

∂z

F

A
=
m

Al
iωVz = ρiωVz, (18)

where ρ = m/(Al) is the mass density. The Fourier transform turns the integral into a single
product (diagonalizes an integral equation into an algebra expression with single products of terms).
Equation 17 with equation 18 for P ′ is the industry standard and called P − Vz summation. Why
are we interested in a Green’s theorem solution equation 10 when equations 17 and 18 are available?

1. In equations 17 and 18 we have to be able to Fourier transform. In the crossline direction, it
can be a challenge to perform a Fourier transform because crossline receivers are further apart
than inline receivers and crossline aperture is limited compared to inline. Green’s theorem
allows you to directly input and integrate the data you have recorded. Green’s theorem is less
upset with missing data, whereas transforming has a more severe requirement (see, e.g., Wu
et al. (2013)).

2. Green’s theorem can perform a line or surface integral on the ocean bottom or onshore or for
a non horizontal cable. Ghosts are particularly important at the ocean bottom because the
notches arrive at lower frequencies and within the seismic bandwidth.

We have shown that Green’s theorem relates to the industry standard when the measurement surface
is horizontal and the data is adequate to perform Fourier transforms. Wu et al. (2013) compared
Green’s theorem and P − Vz for different numbers of receivers and different distances between
receivers. Green’s theorem and P − Vz are not the same for a curved boundary. Green’s theorem is
directly applicable to any shape or form of measurement surface whereas P − Vz is not.

14
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5 On-shore Green’s theorem wave field separation: near surface properties

On shore multiple attenuation can be an outstanding issue and significant challenge. Among issues
that contribute to this pressing and high priority challenge are: (1) complex and ill-defined near
surface properties, (2) numerous and hard to identify multiple generators, and (3) interfering pri-
maries and multiples. To address the latter issue, you need surgical removal of multiples so you
don’t damage the primaries, and that in turn requires capable delivery of the prerequisites required
by ISS multiple removal. A set of Green’s theorem procedures have been developed by Weglein
et al. (2002), Jingfeng Zhang (Zhang and Weglein, 2005, 2006; Zhang, 2007), Jim Mayhan (Mayhan
et al., 2011, 2012; Mayhan and Weglein, 2013), Lin Tang (Tang et al., 2013), and others to separate
reference wave and deghost. These procedures have shown value in synthetic SEAM data and ma-
rine field data (Mayhan et al., 2012; Mayhan and Weglein, 2013). The biggest challenge is on land;
how do we get the prerequisites on land?

On land, the measurement surface is right on the perturbation, and the source is on the same line
as the measurements. We want to identify/remove the reference wave/surface wave. The reference
wave now has surface waves, and Green’s theorem can be a way to remove surface waves. Today the
industry often uses a combination of filter methods and intervention by capable processors. Surface
wave removal remains an open and important practical problem.

In the marine application of Green’s theorem wavefield separation methods, we assume the source
is above the cable and the output point is either above or below the measurement surface. For
on-shore application the source can be on (or below) the measurement surface, and we might want
the wave separation of the measured data itself. In Mayhan and Weglein (2013) it was shown that
using the Green’s theorem form (equation 10) that the output point must be more than 1/2 ∆x
above the measurement surface, i.e., that ∆z ≥ 1/2 ∆x, where z is the output depth, z′ is the cable
depth, and ∆x is the sampling interval. If it gets closer, the calculation becomes unstable, with
empirically observed numerical issues. That numerical issue in the x, ω domain (Green’s theorem)
precludes the output point that is too close to the cable, let alone on the cable. ∆z ≥ 1/2 ∆x holds
for both Green’s theorem deghosting and wavefield separation (P = P0 + Ps) in the x, ω domain.

However, in the P −Vz, or kx, ω domain, form of wave field separation (for deghosting or separating
P0 and Ps, see Weglein and Secrest (1990)), when you Fourier transform, it assumes you have
sampling sufficient to do the integral correctly without error. If you assume ∆x = 0 as in P − Vz
forms, you can accommodate proximal to and on the cable for both the source and output point.

The consequences of this difference between x, ω (Green’s theorem) and kx, ω (P − Vz) approaches
are more significant than just wanting to deghost marine data on the cable. The difference between
these two will allow us to deghost and wave separate on land. We will illustrate this using a simple
example separating P0 and Ps in a 1D earth with a normal incidence wave . In our example, we will
further assume there is no earth, that P is P0 and the scattered wave is zero. What if we want the
source on the cable and the prediction point on the cable? Don’t use equation 10 directly; instead
put equation 10 (Weglein et al., 2002) in the Fourier domain. We will do it in 1D normal incidence
which is the same as being in the kx, ω domain, since there is no x and no integral over x. Another
question is how do we get P ′ on land? There are a lot of ways for doing this . If you are in the
Middle East, one uses Vibroseis. The base plate has a phone and you get something like a wavelet.
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From the wavelet and the field you get the derivative. A(ω), P, P ′ are called the triangle; given two,
the triangle will give you the third (Weglein and Amundsen, 2003).

Fourier transform equation 10 and you produce an algebra problem. In equation 10 the derivative is
inside the integral, and you have to invert a Fredholm one integral equation, which is often unstable.
Fourier transform and suddenly you have no integrals; the integrals have become products (the
Fourier transform has diagonalized the problem). Once you have P ′, you can calculate P0 (which
is an effective reference wave with a source signature and a radiation pattern).

From Weglein and Secrest (1990) we know that

∣∣∣∣
b

a

{
P
dG+

0

dz′
−G+

0

dP

dz′

}
=





−Ps
above z=a

P0
below z=a

(19)

This is a 1D formula or the Fourier transform of the multi-D formula equation 10. Equation 10 in 1D
normal incidence becomes equation 19, or Fourier transform equation 10 over x to get equation 19.

In the example, a is on the measurement surface on the surface of the earth, b is below a, and zs
is above a. The output point is above a or below a. Later in this example, we will make zs on the
surface of the earth, and our output point will be on a, as well. In the world of a whole space of
water, the output point above a gives Ps and below a gives P0. And in this simple world, separating
P0 and Ps is also deghosting, because it is the same G+

0 = Gd+
0 . (For deghosting pick G+

0 = Gd+
0 .

In general, deghosting and wavefield separation are not the same.) There is no Ps because there is
no up going wave anywhere, including above z = a. The source wave is moving down so deghosting
gives zero.

When we want to compute something where: (1) the source is on the measurement surface, and (2)
we want to calculate Ps and P0 in the data/on the cable. But we can’t do that in the ~r, ω domain.
Equation 10 makes you stay above the cable (by an amount that depends on sampling), whereas
P − Vz has in principle perfect sampling (∆x is zero).

For transparency we consider the 1D normal incidence example. In equation 19

P =
exp (ik|z′ − zs|)

2ik
dP

dz′
= ik

exp (ik|z′ − zs|)
2ik

sgn(z′ − zs)

G0 =
exp (ik|z − z′|)

2ik
dG0

dz′
=
ik sgn(z′ − z)

2ik
exp (ik|z − z′|)

∣∣∣∣
b

a

{
exp (ik|z′ − zs|)

2ik

{
sgn(z′ − z)

2
exp (ik|z − z′|)

}
− exp (ik|z − z′|)

2ik

1

2
exp (ik|z′ − zs|)sgn(z′ − zs)

}
.

Evaluate at a < z < b. a will contribute and b won’t contribute. This is shown below.

exp (ik(b− zs))
2ik

1︷ ︸︸ ︷
sgn(b− z)

2
exp (ik(b− z))− exp (ik(b− z))

2ik

1

2
exp (ik(b− zs))

1︷ ︸︸ ︷
sgn(b− zs)
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−





exp (ik(a− zs))
2ik

−1︷ ︸︸ ︷
sgn(a− z)

2
exp (ik(z − a))− exp (ik(z − a))

2ik

1

2
exp (ik(a− zs))

1︷ ︸︸ ︷
sgn(a− zs)




(20)

=
exp (ik(b− zs))

2ik

1

2
exp (ik(b− z))− exp (ik(b− z))

2ik

1

2
exp (ik(b− zs))

︸ ︷︷ ︸
=0

−
{

exp (ik(a− zs))
2ik

−1

2
exp (ik(z − a))− exp (ik(z − a))

2ik

1

2
exp (ik(a− zs))

}

=
1

2ik
exp (ik(z − zs)) = P = P0

There is no contribution from b. The terms with b’s cancel, and P = P0 because the reference wave
is the total wavefield. If we evaluate at zs < z < a, the total contribution is zero because P0 = P
and Ps = 0.

What do you do when you put the source on the cable? Fourier transforming into a kx, ω form
avoids the ∆z ≥ 1/2 ∆x restriction because it begins with P (kx, z

′, xs, zs, ω). No integral is left for
x. The only question is where do you choose the output point, z? If you want to deghost on the
cable, Fourier transform over x and use the P − Vz forms. The Dirac delta function properties are:

∫

V
δ(~r − ~r ′)f(~r ′)d~r ′ =

{
f(~r) ~r in V

0 ~r outside of V.

The application of Green’s theorem methods to either the source or output point on the surface
(the measurement surface) boils down to the question of what is

∫
V δ(~r − ~r ′)f(~r ′)d~r ′ when ~r

is on the surface enclosing V . You can choose whether it’s in or out of V (Morse and Fesh-
bach, 1953, page 805). In our example above, evaluate at a, when the source is on the cable
(sgn(z′ − zs) = sgn(0)), and if you want the source on the cable to be treated as the source above
the cable, then choose sgn(a − zs) = 1 with zs = a. For the output point, when z = a (predict at
the cable), if we want the same sign as when z > a, choose sgn(a − z) = −1 when z = a. If you
want the output point when it is on the surface (measurement surface) to be included with points
above the cable choose sgn(a− z) = +1 when z = a.

So our choice of sgns will give P0 or Ps on the cable, depending on whether you choose the cable
to be included with the region below or above the cable, respectively. You’re deciding whether the
boundary is inside or outside the volume. You can’t arrange this in equation 10 because you can’t
get to the boundary, at least not while keeping the algorithm stable.

The bottom line here is for land you can’t get close enough (to the boundary) to make a decision
in equation 10. This is not true if you go to the Fourier kx, ω domain. But there is no free lunch.
If ∆x gets too big, P (kx, z, ω) becomes inaccurate, and P − Vz can have issues.

6 Summary

x, ω methods for wave separation have advantages compared to kx, ω for limited data (sampling
and aperture) and for non horizontal measurement surfaces (ocean bottom, dipping cable). For

17



Preprocessing and impact M-OSRP12

applications where the interest is in wave separation on the cable itself and where the source is on
the measurement surface (on-shore) kx, ω would accommodate that interest whereas x, ω (Green’s
theorem) will not. This paper is examining the implication/differences of a Green’s theorem method
of deghosting in two domains: (x, ω) and (kx, ω). Substituting Vz for Pn, in the (kx, ω) domain, and
benefits/limitations that arise from that substitution (while important) are not within the scope of
this paper.
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Abstract

Green’s theorem deghosting requires the pressure and its normal derivative on a cable. Current
marine dual measurement deghosting approaches can have issues caused by: (1) using over-
under cable pressure measurements to provide a finite difference approximation to the normal
derivative; or (2) using the pressure, P , and the vertical component of particle velocity, Vz,
can have issues at low frequency, and with instrument response differences. The deghosting
method provided in this paper avoids both of those issues. Analytic and numerical tests show
encouraging results, in comparison with current approaches.

1 Theory

We show in Weglein et al. (2013) that a two way wavefield in a homogeneous medium can be written

P = A exp (iqz) +B exp (−iqz), (1)

where q = +
√

(ω/c0)2 − k2
x (2D) or q = +

√
(ω/c0)2 − k2

x − k2
y (3D). If an over/under cable at

depths a, b is used directly, the upwave (deghosted wave) is

Pr = B exp (−iqz) =
P (b) exp (iqa)− P (a) exp (iqb)

2i sin (q(a− b)) exp (−iqz). (2)

Equation 2 is found by using the cable measurements to solve for B in equation 1:

B =

∣∣∣∣
exp (iqa) P (a)
exp (iqb) P (b)

∣∣∣∣
∣∣∣∣
exp (iqa) exp (−iqa)
exp (iqb) exp (−iqb)

∣∣∣∣
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Figure 1: 1D normal incidence analytic data including one primary and one receiver ghost.

=
P (b) exp (iqa)− P (a) exp (iqb)

exp (iq(a− b))− exp (−iq(a− b))

=
P (b) exp (iqa)− P (a) exp (iqb)

2i sin (q(a− b)) .

Equation 2 assumes sufficient inline and crossline sampling for a Fourier transform from ~r, ω to ~k, ω.
Equation 2 has ghost notches when q(a− b) = nπ, where special care must be taken. On the other
hand, a− b may be smaller than the depth of a single cable, which means the ghost notches move
out (to higher frequencies).

2 Analytic example

2.1 Analytic data including one primary and one receiver ghost

For a 1D normal incidence case, as shown in Figure 1, assume the recorded data at z′ is

P (z′, zs, ω) = R× eik(2zw−z′−zs)

2ik
−R× eik(2zw+z′−zs)

2ik

= R
eik(2zw−zs)

2ik
(e−ikz

′ − eikz′), (3)

where z′, zs, and zw are the depths of receiver, source and water bottom, respectively, and k = ω/c0.

Therefore, the exact derivative of the wavefield at z′ is

P ′(z′, zs, ω) = R
eik(2zw−zs)

2ik
(−ike−ikz′ − ikeikz′)

= −R
2
eik(2zw−zs)(e−ikz

′
+ eikz

′
). (4)
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2.2 Up-down separation using two measurement at two depths

Consider a simple 1D normal incidence example, where in the vicinity of the (towed streamer) cable
the pressure field P satisfies:

[
∂2

∂z2
− 1

c2
0

∂2

∂t2

]
P = 0, (5)

where c0 is the wave speed in water, and
[
d2

dz2
+
ω2

c2
0

]
P = 0 (6)

is the temporal Fourier transform of equation 5.

The solution of equation 6 is

P = Ae(ikz)
︸ ︷︷ ︸
down

+Be(−ikz)
︸ ︷︷ ︸

up

, (7)

Using two measurement at two depths

P (a) = Aeika +Be−ika, (8a)

P (b) = Aeikb +Be−ikb. (8b)

By multiplying equation 8a with eik(b−a) and subtracting equation 8b, we get

eik(b−a)P (a)− P (b) = Beik(b−2a) −Be−ikb

B =
eik(b−a)P (a)− P (b)

eik(b−2a) − e−ikb . (9)

Therefore, the upgoing wave at z′ = a is

Pr(a) = Be−ika

=
eik(b−2a)P (a)− e−ikaP (b)

eik(b−2a) − e−ikb . (10)

From equation 3, we can get the two measurements, i.e., P (z′ = a, zs, ω) and P (z′ = b, zs, ω), as
follows:

P (a, zs, ω) = R
eik(2zw−zs)

2ik
(e−ika − eika), (11a)

P (b, zs, ω) = R
eik(2zw−zs)

2ik
(e−ikb − eikb). (11b)

and then substituting equations 11a and 11b into equation 10, we get
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Pr(a) =
Reik(2zw−zs)[(e−ika − eika)× eik(b−2a) − (e−ikb − eikb)× e−ika]

2ik[eik(b−2a) − e−ikb]

=
Reik(2zw−zs)[eik(b−3a) − eik(b−a) − e−ik(b+a) + eik(b−a)]

2ik[eik(b−2a) − e−ikb]

=
Reik(2zw−zs)[eik(b−3a) − e−ik(b+a)]

2ik[eik(b−2a) − e−ikb]

=
Reik(2zw−zs)e−ika[eik(b−2a) − e−ikb]

2ik[eik(b−2a) − e−ikb]

=
Reik(2zw−zs)e−ika

2ik

= R
eik(2zw−a−zs)

2ik
. (12)

This is exactly the upgoing wave recorded at z′ = a with source at zs (in this case, is the primary).

2.3 Up-down separation using wave-field and the exact derivative of wave-field
at one depth

For equation 7, if we have the wave-field and the exact derivative of the wave-field at one depth,
then

P (a) = Aeika +Be−ika, (13a)

P ′(a) = ikAeika − ikBe−ika. (13b)

By multiplying equation 13a with ik and subtracting equation 13b, we have

ikP (a)− P ′(a) = ikBe−ika + ikBe−ika

B =
ikP (a)− P ′(a)

2ik
eika. (14)

Therefore, the upgoing wave at z′ = a is

Pr(a) = Be−ika

=
ikP (a)− P ′(a)

2ik
. (15)

Substituting P (a) and P ′(a) (using equations 3 and 4) into equation 15, we have

Pr(a) =
ikP (a)− P ′(a)

2ik
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=
ikR eik(2zw−zs)

2ik (e−ika − eika)− [−R
2 e

ik(2zw−zs)(e−ika + eika)]

2ik

=
Reik(2zw−zs)e−ika

2ik

=
Reik(2zw−a−zs)

2ik
, (16)

which is the same result as equation 12.

2.4 Up-down separation using wave-field and approximate derivative of wave-
field at one depth

If we have two measurements at two depths, we can also get the approximate derivative of the
wave-field using finite difference, for example,

P ′(a) =
P (b)− P (a)

b− a . (17)

Substituting P (b) in equation 11b and P (a) in equation 11a into equation 17, we can have

P ′(a, zs, ω) =
Reik(2zw−zs)

2ik
× (e−ikb − eikb)− (e−ika − eika)

b− a

=
Reik(2zw−zs)

2ik
× −2i sin(kb) + 2i sin(ka)

b− a
= −Reik(2zw−zs) × sin(kb)− sin(ka)

k(b− a)
. (18)

In comparison, the exact derivative of the wave-field in equation 4 at z′ = a can be rewritten as

P ′(a, zs, ω) = −R
2
eik(2zw−zs)(e−ika + eika)

= −R
2
eik(2zw−zs) × 2 cos(ka)

= −Reik(2zw−zs) cos(ka)

= −Reik(2zw−zs)d sin(kz′)
kdz′

∣∣∣∣
z′=a

. (19)

And, we have

d sin(kz′)
kdz′

= lim
(b−a)→0

sin(kb)− sin(ka)

k(b− a)
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= cos(ka). (20)

Hence, if the two depths (b and a) are close enough, equation 18 will reduce to equation 19, and
using wave-field and approximate derivative of wave-field at one depth in equation 15 can give a
reasonable result; otherwise, using the approximate derivative in equation 15 can produce an error.

The method developed in this paper can be derived from Green’s theorem, where the closed surface
consists of the over/under cables and the Green’s function is arranged to vanish at each cable. In
the kx, ω domain the Green’s theorem method comes closest to the 1D analysis in this paper, and
would allow deghosting on the cable.
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3 Numerical examples

 

 

Figure 2: Two cables: (a) source depth 7m receiver depth 11m, spatial sampling interval 3m, trace
number 801 (zero offset trace). (b) source depth 7m receiver depth 9m, spatial sampling interval 3m,
trace number 801. Using this two data get dp/dz and put it on 11m. Predicted depth is 11m. Red
line represents the data generated by using Cagniard-de Hoop method, exact data without receiver
side ghosts, depth is 11m. Blue line represents result using dp/dz. Green line represents result using
the cables directly.
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Figure 3: Same as Figure 2 except trace 1201 (half way between zero offset trace and far offset
trace).
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Figure 4: Two cables: (a) source depth 7m receiver depth 21m, spatial sampling interval 3m, trace
number 801 (zero offset trace). (b) source depth 7m receiver depth 11m, spatial sampling interval
3m, trace number 801. Using this two data get dp/dz and put it on 21m. Predicted depth is 21m. Red
line represents the data generated by using Cagniard-de Hoop method, exact data without receiver
side ghosts, depth is 21m. Blue line represents result using dp/dz Green line represents result using
the cables directly.
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Figure 5: Same as Figure 4 except trace 1201 (half way between zero offset trace and far offset
trace).

4 Summary

A new deghosting method is proposed, for dual cable measurements, that addresses shortcomings
in current approaches. Analytic and numerical examples are encouraging, and further tests are
planned.
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Abstract

Deghosting benefits traditional seismic processing and is a prerequisite to all inverse-scattering-
series (ISS) based processing. The freedom of choosing a convenient reference medium (and
associated Green’s function) means Green’s theorem offers a flexible framework for deriving
a number of useful algorithms including deghosting. Among the advantages of GreenâĂŹs
theorem deghosting over traditional deghosting methods are: (1) there is no need for Fourier
transforms over receivers and sources, and (2) GreenâĂŹs theorem deghosting can accommodate
a horizontal or non-horizontal measurement surface, the latter being of particular interest for
ocean-bottom and on-shore applications. A brief tutorial is presented on the theory of Green’s
theorem-derived deghosting, and several properties of Green’s theorem-derived deghosting are
discussed. Deghosting is illustrated with images before and after receiver deghosting for sepa-
rated data (where the source and receivers are deep enough to separate events and their ghosts),
partially interfering events, and overlapping events. The advantages and disadvantages of each
kind of cable configuration are listed. Green’s theorem-derived deghosting is insensitive to cable
depth, gives better results as the vertical distance between over and under cables decreases,
and (for wavefield prediction) is sensitive to the presence of ghost notches in the data. Green’s
theorem-derived deghosting has fewer requirements than does wavenumber-based deghosting.

1 Introduction

Deghosting is a long-standing problem (see, e.g., Robinson and Treitel (2008)) and benefits both
traditional seismic processing and all inverse-scattering-series (ISS)-based processing. The benefits
of deghosting include the facts that: (1) removal of the downward component of the recorded
pressure wavefield (receiver deghosting) enhances seismic resolution by removing ghost notches and
boosting low frequencies, (2) deghosting is a prerequisite for many processing algorithms, including
multiple elimination (ISS free-surface multiples, ISS internal multiples, and surface-related-multiple
elimination (SRME)), and (3) model-matching full-wave inversion (FWI) benefits from enhanced
low-frequency data.

While ISS methods are independent of subsurface velocity (and in fact of all subsurface properties),
they make certain assumptions about their input data. Weglein et al. (2003) describe how every
ISS isolated-task subseries requires (1) the removal of the reference wavefield, (2) an estimate of
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the source signature and radiation pattern, and (3) source and receiver deghosting, and they also
explain how the ISS has a nonlinear dependence on these preprocessing steps. The fact that the
ISS is nonlinear places a higher premium on preprocessing requirements. An error in the input to
a linear process creates a linear error in its output, but the same linear error in ISS input creates
a combination of linear, quadratic, cubic, etc. errors in its output. The non-linear model matching
FWI would share that interest.

The freedom of choosing a convenient reference medium (and associated Green’s function) means
that Green’s theorem offers a flexible framework for deriving a number of useful algorithms. Green’s
theorem methods can be categorized as wavefield-prediction or wavefield-separation methods. In
order to predict the wavefield anywhere in a volume V , Green’s theorem-based wavefield prediction
has the traditional need for (a) wavefield measurements on the boundary S enclosing V and (b)
a knowledge of the medium throughout V . Examples of wavefield prediction based on Green’s
theorem include Schneider (1978), Clayton and Stolt (1981), Stolt and Weglein (2012), and reverse
time migration (RTM) (Weglein et al., 2011a;b). In contrast, Green’s theorem-based wavefield
separation only assumes separate sources inside and outside V , and nothing about the character of
those sources is called for or needed. Within wavefield separation, different applications (e.g., wavelet
estimation and deghosting) call for different choices of reference media and sources. Examples of
wavefield separation based on Green’s theorem include source-wavelet estimation (Weglein and
Secrest, 1990) and deghosting (Weglein et al., 2002; Zhang and Weglein, 2005; 2006; Zhang, 2007).
In Green’s theorem wavefield-separation methods, evaluation of the surface integral at a point inside
V provides the contribution to the total field at a point inside V due to sources outside V , without
needing or determining the nature or properties of any of the actual (active or passive) sources
inside or outside V . Hence, Green’s theorem-derived wavefield-separation preprocessing steps (e.g.,
for wavelet estimation and deghosting) are consistent with subsequent ISS processing methods that
also do not assume knowledge of or require subsurface information. The Green’s theorem wavefield-
prediction and wavefield-separation methods are multidimensional and work in the (r, ω) or (r, t)
data spaces (and, hence, are simple to apply to irregularly spaced data).

Green’s theorem-derived deghosting was developed in a series of papers (Weglein et al., 2002; Zhang
and Weglein, 2005; 2006; Zhang, 2007) and has characteristics not shared by previous methods. For
example, there is no need for Fourier transforms over receivers and sources, and it can accommodate
a horizontal or non-horizontal measurement surface. In Mayhan et al. (2011), we reported the first
use of Green’s theorem-derived receiver deghosting on deep-water Gulf of Mexico synthetic (SEAM)
and field data; in Mayhan et al. (2012), we reported the first use of Green’s theorem-derived source
deghosting on the same data; and in this paper we provide more detail on the algorithms used.

A brief aside on our terminology. (1) The total wavefield P measured by the hydrophones is
considered as the sum of a reference wavefield P0 (which for a homogeneous whole space reference
medium (used in Green’s theorem deghosting) is a direct wave from source to receiver) and the
scattered wavefield Ps (which is P − P0). (2) Ghosts begin their propagation moving upward from
the source (source ghosts) or end their propagation moving downward to the receiver (receiver
ghosts) or both (source/receiver ghosts) and have at least one upward reflection from the earth.
After the reference wavefield and all ghosts have been removed, multiples and primaries are defined.
(3) Free-surface multiples have at least one downward reflection from the air/water boundary and
more than one upward reflection from the earth. (An nth-order free-surface multiple has n downward
reflections from the air/water boundary.) (4) Internal multiples have no downward reflections from
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Marine events
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locate invert

Tools
Green’s theorem
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Figure 1: Classification of marine events and how they are processed by M-OSRP’s methodology.

the air/water boundary, more than one upward reflection from the earth, and at least one downward
reflection from inside the earth. (An nth-order internal multiple has n downward reflections from
any reflector(s) inside the earth.) (5) Primaries have only one upward reflection from the earth.
These marine events are summarized in Figure 1.

The source- and receiver-deghosting steps described below essentially follow the method described
and exemplified in pages 33-39 of Zhang (2007). The difference is that for each shot we choose to
input dual measurements of P and ∂P/∂z along the towed streamer, whereas Zhang chose to use the
source wavelet and P along the cable for his numerical examples. (The theory in Zhang (2007) covers
both cases.) The advantages of having the wavefield P and its normal derivative along the towed
streamer are (1) to allow deghosting for an arbitrary source distribution without needing to know or
to determine the source, and (2) to increase stability in the vicinity of notches. Using measurements
at two depths (or GDD0 , as described below) introduces a depth-sensitive denominator.
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2 Tutorial on Green’s theorem-derived deghosting

2.1 Receiver deghosting

Green’s theorem-derived-preprocessing is based on a perturbation approach in which the actual
problem and medium are considered to be composed of a reference medium plus “sources.” The latter
arise as source terms in the differential equation that describes the wave propagation in the actual
medium. A reference medium (and its associated Green’s function) is chosen to facilitate solving
the problem at hand, and the perturbations are represented as source terms necessary to write
the actual propagation in terms of a reference-medium source-term picture. Within that general
reference-medium and source-term framework, Green’s theorem-derived preprocessing is remarkably
wide ranging. For example, Figure 2 shows the configuration chosen for Green’s theorem-derived
deghosting. For deghosting, a reference medium that consists of a whole space of water requires
three source terms: a source that corresponds to air and begins above the air-water boundary, the air
guns in the water column, and a source that corresponds to earth and begins below the water-earth
boundary. Choosing a hemispherical surface of integration bounded below by the measurement
surface, and the prediction or observation point inside the surface of integration, gives receiver-
deghosted data, P ′R (as explained in Appendix 11.1). A different choice of a reference medium (a
half space of air and a half space of water, separated by an air/water boundary with two source
terms), is useful for separating the reference wave P0 (P d0 +PFS0 ) and Ps = P −P0. The prediction
or observation point outside or inside the surface of integration gives wavefield separation in which
the total wavefield P is separated into the reference wavefield P0 (prediction or observation point
outside) or the scattered wavefield Ps (prediction or observation point inside).

Green’s theorem-derived deghosting (of both receiver and source) is based on Weglein et al. (2002),
Zhang and Weglein (2005), Zhang and Weglein (2006), and Zhang (2007). Depending on the marine
experiment, we have the following options for receiver deghosting. (1) If we have P measurements
only, we can use a derived variation of Green’s theorem (equation 3), a “double Dirichlet” Green’s
function (equation 7 or 8), and an estimate of the source wavelet to predict P and ∂P/∂z above
the towed streamer(s). Then we can use the derived variation of Green’s theorem, a “whole space”
Green’s function (equation 1), and the predicted P and ∂P/∂z to predict receiver-deghosted P ′R
above the input P and ∂P/∂z. (2) If we have a dual-sensor towed streamer or over/under towed
streamers, we can use the derived variation of Green’s theorem and a whole-space Green’s function to
directly predict receiver-deghosted P ′R above the towed streamer(s). The theory of case (2) assumes
measurement of the pressure wavefield P and its normal derivative ∂P/∂n ≡ ∇P (r, rs, ω) · n̂ where
r is the receiver location, rs is the source location, and n̂ is the unit normal to the measurement
surface (pointing away from the enclosed volume V ).

The reference medium is chosen to be a whole space of water (where a causal solution exists for the
acoustic wave equation in 3D). In the (r, ω) domain the causal whole-space Green’s function is

G0(r, r′g, ω) = Gd0 =

{
−(1/4π) exp (ikR+)/R+ in 3D
−(i/4)H

(1)
0 (kR+) in 2D,

(1)

where r′g is the observation or prediction location, k = ω/c0, c0 is the wave speed in the reference
medium, R+ = |r − r′g|, and H

(1)
0 is the zeroth-order Hankel function of the first kind (Morse
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Fig. 2.10: First configuration for derivation of the deghosting algorithm.

mentioned property, the surface integration will eliminate wavefield contributions due to

the source inside of V (which are the active source and the air) and only contributions due

to source outside of V (which is the earth) will be kept. Since the wavefield due to the earth

is up-going at r, the surface integration term will produce the receiver side deghosted field.

Another way of using the Extinction Theorem to derive Eq. 2.24 is to choose the volume

V as the half space below the measurement surface (Figure 2.11), with the position of r

(outside of V ) and the causal Green’s function being the same as above. Then the surface

integration will only keep the contribution due to the source inside of V , which is the earth.

Hence, the integration provides the up-going, or receiver side deghosted wavefield.

Discussion

1. Eq. 2.24 requires both pressure and its vertical derivative to perform deghosting.

Similar to the wavelet estimation algorithm mentioned above, new acquisition methods

will provide an opportunity to directly apply this method. Performing deghosting

31

Figure 2: Configuration for Green’s theorem-derived deghosting (Zhang, 2007, Figure 2.10). αair
and αearth are perturbations, the differences between the actual medium (half space of air, water, half
space of earth) and the reference medium (whole space of water). The closed surface S of integration
is the measurement surface plus the dashed line. r in the figure corresponds to r′g in equation 2.

and Feshbach, 1953, § 7.2). The observation or prediction point is chosen between the air/water
boundary and the measurement surface, i.e., inside the volume V bounded by the closed surface of
integration consisting of the measurement surface and the dashed line in Figure 2. For a discussion
of why the causal whole-space Green’s function exhibits the forms in equation 1, please see chapter 7
in Morse and Feshbach (1953).

The configuration in Figure 2, the derived variation of Green’s theorem, and the acoustic wave
equations for P and Gd0 combine to give the key equation,

P ′R(r′g, rs, ω) =

∮

S
dS n̂ · [P (r, rs, ω)∇Gd0(r, r′g, ω)−Gd0(r, r′g, ω)∇P (r, rs, ω)], (2)

where S is the closed surface consisting of the measurement surface and the dashed line in Figure 2,
and n̂ is the unit normal to S (pointing away from the enclosed volume V ). The source location,
rs, and observation or prediction point, r′g, are inside the volume V . Extending the radius of
the hemisphere to infinity, invoking the Sommerfeld radiation condition, and assuming a horizontal
measurement surface, the integral over the closed surface becomes an integral over the measurement
surface (Weglein et al., 2002, equation 5),

P ′R(r′g, rs, ω) =

∫

m.s.
dS[P (r, rs, ω)

∂

∂z
Gd0(r, r′g, ω)−Gd0(r, r′g, ω)

∂

∂z
P (r, rs, ω)]. (3)

The algorithm in equation 3 lends itself to application in a marine single-shot experiment. If
the predicted cable is above the towed cable and below the shots, equation 3 identifies and at-
tenuates downgoing waves at the predicted cable (as shown in Appendix 11.1). Receiver ghosts,

35



Preprocessing and impact M-OSRP12

source/receiver ghosts, the direct wave, and the direct wave’s reflection at the air/water boundary
are removed.

Green’s theorem-derived receiver deghosting can be compared with a conventional P + Vz sum
method of deghosting (Amundsen, 1993b; Robertsson and Kragh, 2002; Kragh et al., 2004). Given
a horizontal acquisition and adequate sampling to allow a Fourier transform from space to wavenum-
ber, the two algorithms are equivalent. However, these givens can be an issue. In addition, the
application of the P +Vz sum, under certain circumstances, brings other assumptions. For example,
a 1D layered earth is assumed and dense sampling is needed to support its inverse Hankel transform
(Amundsen, 1993b, page 1336). The latter (a P + Vz sum with a 1D layered earth) is often consid-
ered the current industry standard deghosting method. In contrast, the Green’s theorem deghosting
algorithm (1) can accommodate a 1D, 2D, or 3D earth and (2) stays in coordinate space. By im-
posing suitable restrictions, P + Vz can be derived from Green’s theorem, as shown in Section 6.1.
The derivation follows in the tradition of Corrigan et al. (1991), Amundsen (1993b), and Weglein
and Amundsen (2003). This derivation, which to our knowledge has not been published before,
shows that deghosting in the wavenumber-frequency domain is a special case of the more general
deghosting in the space-frequency domain derived from Green’s theorem.

2.2 Source deghosting

We have shown how Green’s theorem can be applied to select the portion of the seismic wavefield
that is upgoing at a field position above the cable. The algorithm uses data from a single shot gather
and the receiver coordinate as the integration variable. This section shows how the theory can be
similarly applied for source deghosting, where the portion of the wavefield that is downgoing at the
source is sought. Depending on the marine experiment, we have the following options for source
deghosting. (1) If we have a collection of single source experiments, we can use the derived variation
of Green’s theorem (equation 3), a double Dirichlet Green’s function (equation 7 or 8), and receiver-
deghosted data P ′R to predict new P ′R and ∂P ′R/∂z above the receiver-deghosted data. Then we
can use the derived variation of Green’s theorem, a whole-space Green’s function (equation 1), and
the predicted P ′R and ∂P ′R/∂z to predict source- and receiver-deghosted P ′SR above the input P ′R
and ∂P ′R/∂z. (2) If we have over/under shots, we can use the derived variation of Green’s theorem
(equation 4), a whole-space Green’s function, and receiver-deghosted data P ′R to directly predict
source- and receiver-deghosted P ′SR above the receiver-deghosted data. An application of reciprocity
to the entire set of shot records allows the original receiver-ghost removal to become a source-ghost
removal. Then a second application of the derived variation of Green’s theorem over receivers
results in source- and receiver-deghosted data. An experiment with both over/under receivers and
over/under sources can be receiver deghosted and source deghosted by a double application of the
derived variation of Green’s theorem (part of Weglein et al. (2002)).

The first step in Green’s theorem-derived source deghosting uses source-receiver reciprocity. We
interpolate shots so that the distance between shots is the same as the inline distance between
receivers, assign “station numbers” to shots and receivers relative to a grid fixed in space, use
the station numbers to re-sort the sail line from common-shot gathers (CSGs) to common-receiver
gathers (CRGs), and exchange the locations of the shots and receivers. Source ghosts upgoing
at the shots are now receiver ghosts downgoing at the “receivers,” and a second application of
equation 3 will remove them. This can be seen in Figure 3. Panel (a) shows the recorded data (for
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(a) Input

Theory

Earth Earth

Fig. 2.14: Receiver side deghosting works in common shot gather domain. Solid lines: primary;
Dashed line: receiver ghost and source-receiver ghost; Dotted lines: source ghost. Left
figure: Before deghosting (four events); Right figure: After receiver side deghosting (two
events)

Earth

Fig. 2.15: The data is arranged into common receiver gather before perform source side deghosting.
Solid lines: primaries; Dotted lines: source ghosts

35

(b) R deghosted

Theory

Earth Earth

Fig. 2.14: Receiver side deghosting works in common shot gather domain. Solid lines: primary;
Dashed line: receiver ghost and source-receiver ghost; Dotted lines: source ghost. Left
figure: Before deghosting (four events); Right figure: After receiver side deghosting (two
events)

Earth

Fig. 2.15: The data is arranged into common receiver gather before perform source side deghosting.
Solid lines: primaries; Dotted lines: source ghosts

35

(c) CSG to CRG

Theory

Earth Earth

Fig. 2.14: Receiver side deghosting works in common shot gather domain. Solid lines: primary;
Dashed line: receiver ghost and source-receiver ghost; Dotted lines: source ghost. Left
figure: Before deghosting (four events); Right figure: After receiver side deghosting (two
events)

Earth

Fig. 2.15: The data is arranged into common receiver gather before perform source side deghosting.
Solid lines: primaries; Dotted lines: source ghosts
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(d) Exchange coordinates

Theory

Earth

Fig. 2.16: After switching the positions of source and receiver, Eq. 2.24 can be directly applied in
this common source gather. Note that the original source ghosts in Fig. 2.15 become
receiver ghosts.

cal derivative. This approach can be advantageous in practice since integration is a

process that is usually very stable and helps reduce random noise.

Also, the effect of the limited data aperture is small since as discussed above in the

prediction of wavefield and its vertical derivative, GDD
0 decays exponentially as the

horizontal distance between the prediction point and receivers on the cable increases.

This again might be of some advantage compared to methods that try to obtain the

vertical derivative of pressure through Fourier transforming the data into wavenumber

domain (Amundsen et al., 2005).

4. New receivers that measure both pressure and its vertical derivative provide an op-

portunity not only to directly apply this deghosting algorithm, but also help solve

the rough sea problem. All of the deghosting schemes (Robertsson and Kragh, 2002;

Amundsen et al., 1995) that try to deal with the rough sea problem in the frequency

domain are limited since the sea surface is changing all the time. Deghosting in time

domain seems a better approach.
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Figure 3: Figures are Zhang 2007, Figs. 2.14–2.16.

simplicity only primaries and their ghosts are shown), and panel (b) shows receiver-deghosted data
(the receiver ghosts and source/receiver ghosts have been attenuated, leaving primaries and their
source ghosts). In panel (c) CSGs have been sorted to produce CRGs, and in panel (d) shot and
receiver locations have been exchanged. The configuration in panel (d) looks like that in panel (a),
so a second application of equation 3 will remove the source ghosts.

If the experiment has over/under shots, the integral analogous to equation 3 is

P ′SR(r′g, r
′
s, ω) =

∫

sources
dS n̂ · [P ′R(r′g, r, ω)∇G+

0 (r, r′s, ω)−G+
0 (r, r′s, ω)∇P ′R(r′g, r, ω)]. (4)

Otherwise, the second step in Green’s theorem-derived source deghosting predicts a dual-sensor
cable. Equation 3 uses a whole-space Green’s function Gd0 to receiver deghost. We now take
advantage of the flexibility of Green’s theorem and construct and use a double Dirichlet Green’s
function GDD0 to predict a dual-sensor cable above the receiver-deghosted cable. GDD0 is constructed
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(using the method of images) to vanish on both the air/water boundary and the measurement surface
(Morse and Feshbach 1953, pages 812ff.; Osen et al. 1998; Tan 1999; Zhang 2007, pages 20ff.). In
the (r, ω) domain, Green’s theorem now takes the form

P ′R(r′′g , rs, ω) =

∫

m.s.
dS′g P

′
R(r′g, rs, ω)

∂GDD0

∂z′g
(r′g, r

′′
g , ω)

∣∣∣
z′g=m.s.

(5)

∂P ′R
∂z′′g

(r′′g , rs, ω) =

∫

m.s.
dS′g P

′
R(r′g, rs, ω)

∂2GDD0

∂z′g∂z′′g
(r′g, r

′′
g , ω)

∣∣∣
z′g=m.s.

, (6)

where r′′g is the observation or prediction point, rs is the shot location, r′g is the receiver location
on the receiver-deghosted cable, and differentiating equation 5 with respect to the observation or
prediction coordinate z′′g derives equation 6. P ′R is the result of receiver deghosting and source-
receiver reciprocity. Green’s theorem takes this form for the following reason. The surface integral
vanishes at the air/water boundary because (a) P vanishes and (b) by construction, GDD0 vanishes.
By construction, GDD0 also vanishes on the measurement surface (i.e., the receiver-deghosted cable),
leaving the above form of Green’s theorem.

In 2D the analytic form of the double Dirichlet Green’s function GDD0 in the (r, ω) domain is

GDD0 (r′g, r
′′
g , ω) = −1

b

∞∑

n=1

1√
β

exp
(
−
√
β |x′g − x′′g |

)
sin
(nπ
b
z′g
)

sin
(nπ
b
z′′g
)
, (7)

where (x′′g , z
′′
g ) are the observation or prediction coordinates, (x′g, z

′
g) are the receiver coordinates on

the receiver-deghosted cable, the air/water boundary is at z′g = 0, the input (receiver-deghosted)
cable is at z′g = b, and we assume β ≡ (nπ/b)2 − k2 > 0 (Osen et al., 1998; Tan, 1999). In 3D

GDD0 (r′′g , r
′
g, ω) =

2πi

b

∞∑

n=1

H
(1)
0 (γρ) sin

(nπ
b
z′g
)

sin
(nπ
b
z′′g
)
, (8)

where γ = i
√
β and ρ =

√
(x′′g − x′g)2 + (y′′g − y′g)2 (Osen et al., 1998). For a discussion as to why

GDD0 has these forms, please see page 820 in Morse and Feshbach (1953). For purposes of numeric
evaluation, the Hankel function with imaginary argument is replaced by a hyperbolic Bessel function
with real argument,

GDD0 (r′g, r, ω) =
4

b

∞∑

n=1

K0(
√
βρ) sin

(nπ
b
z′g
)

sin
(nπ
b
z
)
,

where K0 is a modified Bessel function of the second kind (Morse and Feshbach, 1953, page 1323).
Like the 2D double Dirichlet Green’s function GDD0 , K0 exponentially decays (Figure 4), and its
numerical evaluation rapidly converges.

The third step in Green’s theorem-derived source deghosting is a repetition of receiver deghosting,
except we are in the CRG domain and the input is the dual-sensor cable predicted in the second
step. The predicted source-deghosted cable is above the input (the predicted dual-sensor cable).

The following two derivations (in 1D for simplicity) show that using two measurements at one depth
can be more stable than two measurements at two different depths. Using P measured at two depths
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Figure 4: Modified Bessel functions exponentially decay (Wikipedia, 2012).

introduces a depth-sensitive denominator. Under perfect conditions the two methods are equivalent,
but under practical conditions they are not. For example,

P = A exp (ikz) +B exp (−ikz)
P (0) = A+B

dP

dz
(0) = ik(A−B)

A =
dP/dz(0) + ikP (0)

2ik

B =
dP/dz(0)− ikP (0)

−2ik

is stable. However, measurements at two depths or at GDD0 (the latter comes from G0 = 0 at two
depths) gives

P (0) = A+B

P (a) = A exp (ika) +B exp (−ika)

A =
P (0) exp (−ika)− P (a)

−2i sin (ka)

B =
P (0) exp (ika)− P (a)

2i sin (ka)
,

which is sensitive in the vicinity of ghost notches (where ka = nπ). If our interest is away from
ghost notches, one-source experiments will be fine for source and receiver deghosting, whereas if our
interest includes the ghost notches, two-source experiments can provide more stability for source-
side deghosting. The choice depends on bandwidth and depth of sources and receivers. If our
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Figure 5: Green’s theorem-derived deghosting can accommodate various configurations of sources
and receivers (Wang, 2012, slide 10).

sources and receivers are at the ocean bottom, ghost notches come up early and double sources
would be indicated. This also impacts receiver deghosting that uses measurements at two depths
because of the sensitivity to ghost notches. The alternative method of receiver deghosting using
the source wavelet A(ω), P along the cable, and the double Dirichlet Green’s function GDD0 , allows
receiver deghosting without the need for measurements at two depths, but GDD0 uses information
at two different depths and hence may have stability issues compared with two measurements at
one depth.

Figure 5 summarizes how Green’s theorem-derived deghosting can accommodate various configura-
tions of sources and receivers.

2.3 Code

The implementation of the above theory is done in a straightforward manner. The Green’s theorem-
derived algorithm computes the surface integral in equation 3. The method requires as input two
wavefields, the pressure measurements P and their normal derivatives ∂P/∂z. Measuring the latter
requires a dual-sensor cable or over/under cables. The programs use data in the Seismic Unix (SU)
format and integrate with all native SU programs.
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Figure 6: Cagniard-de Hoop data: Ps at 11m. The first event is the water-bottom primary and its
ghosts, and the second event is the first free-surface multiple and its ghosts. The right panel shows
the zero-offset trace (801 of 1601). More detail is given in Appendix 11.2.1.

2.4 Numerical example

We illustrate Green’s theorem-derived deghosting using Cagniard-de Hoop data (more detail on
the data is given in Appendix 11.2). The input data are shown in Figure 6. The first event is
the water-bottom primary and its three ghosts (source ghost, receiver ghost, and source/receiver
ghost), and the second event is the first free-surface multiple and its three ghosts. We begin by
receiver deghosting (in the common-shot-gather (CSG) domain) using equation 3, and the output is a
receiver-deghosted pseudocable above the towed cable and below the source, shown in Figure 7. The
first event is the water-bottom primary and its source ghost (the receiver ghost and source/receiver
ghost have been attenuated), and the second event is the first free-surface multiple and its source
ghost (the receiver ghost and source/receiver ghost also attenuated).

Next we use source-receiver reciprocity to prepare for source deghosting. Resort the sail line from
CSGs to common receiver gathers (CRGs) and exchange locations of shots and receivers. The
source ghosts upgoing at the shots are now receiver ghosts downgoing at the receivers, and a second
application of equation 3 will remove them. See Figure 3.

Next we use a double Dirichlet Green’s function GDD0 to predict new P ′R, ∂P
′
R/∂z (a pseudo dual-

sensor cable), i.e., equations 5 and 6 with A(ω) = 0.

Finally, we source deghost by inputting the CRG data (P ′R, ∂P
′
R/∂z) into equation 3. The predicted

pseudocable is above the inputs and is shown in Figure 9. The first event is the water-bottom
primary (its source ghost has been attenuated), and the second event is the first free-surface multiple
(its source ghost has been attenuated). Source and receiver deghosting can also be seen by comparing
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Figure 7: Cagniard-de Hoop data: Receiver-deghosted Ps at 8m. Note that the receiver and source-
receiver ghosts have been attenuated. The right panel shows the zero-offset trace (801 of 1601).

Figures 8 and 9. Plotting the frequency spectra (Figure 10) shows that deghosting boosts low
frequencies.

3 What does deghosting look like?

The purpose of this section is to show what receiver deghosting looks like for separate vs. overlapping
events in the input data. Details on the input data are given in Appendix 11.2.

3.1 Separated events

Compare Figures 11 and 12 to see receiver-ghost attenuation. In Figure 11, the third event is the
water-bottom primary’s receiver ghost and source/receiver ghost, and the fifth event is the first
free-surface multiple’s receiver ghost and source/receiver ghost.

3.2 Partially interfering events

Compare Figures 13 and 14 to see receiver-ghost attenuation. In Figure 13, the bottom of the second
event is the water-bottom primary’s receiver ghost and source/receiver ghost, and the bottom of
the third event is the first free-surface multiple’s receiver ghost and source/receiver ghost.
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Figure 8: Cagniard-de Hoop data: receiver deghosted at 8m (same as Figure 7).
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Figure 9: Cagniard-de Hoop data: Source and receiver deghosted Ps at 1m. Note that the source
ghosts have been attenuated. The right panel shows the zero-offset trace (801 of 1601).

43



Preprocessing and impact M-OSRP12

0

5

10

15

20

25

30

35

40

45

50

55

60

F
re

qu
en

cy
 (

H
z)

-35 -30 -25 -20 -15 -10 -5 0
Amplitude (dB)

0

5

10

15

20

25

30

35

40

45

50

55

60

F
re

qu
en

cy
 (

H
z)

-35 -30 -25 -20 -15 -10 -5 0
Amplitude (dB)

0

5

10

15

20

25

30

35

40

45

50

55

60

F
re

qu
en

cy
 (

H
z)

-35 -30 -25 -20 -15 -10 -5 0
Amplitude (dB)

Jinlong’s CdH data (blue=input, red=R deghosted, green=S/R deghosted)

Figure 10: Cagniard-de Hoop data: frequency spectra (blue=input, red=receiver deghosted,
green=source and receiver deghosted). Note that deghosting boosts low frequencies. Source and
receiver deghosting (green) has a larger effect than does receiver deghosting (red). Receiver deghost-
ing results from one application of the algorithm to measured data, whereas source and receiver
deghosting results from three applications: receiver deghosting, wavefield prediction (of the receiver
deghosted data at a point above the cable), and source deghosting.
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Figure 11: Reflectivity data, separated events: source at 30m, receivers at 139m and 141m.

3.3 Overlapping events

Compare Figures 15 and 16 to see receiver-ghost attenuation. In Figure 15, the bottom of the second
event is the water-bottom primary’s receiver ghost and source/receiver ghost, and the bottom of
the third event is the first free-surface multiple’s receiver ghost and source/receiver ghost.

3.4 SEAM data

Compare Figures 17 and 18 to see receiver-ghost attenuation. The bottom of the first event is the
water-bottom primary’s receiver ghost. Note the collapsed wavelets in Figure 18.

3.5 Field data

Compare Figures 19 and 20 to see receiver-ghost attenuation. The second event is the water-bottom
primary’s receiver ghost and source/receiver ghost, and the fourth and fifth events are likely receiver
ghosts and source/receiver ghosts of sub-water-bottom primaries. Note the collapsed wavelets in
Figure 20.

4 Deghosting user’s guide

The purpose of this section is to list the advantages and disadvantages of various towed-cable
configurations.
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Figure 12: Reflectivity data, separated events: receiver deghosted at 120m.
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Figure 13: Reflectivity data, partially interfering events: source at 9m, receivers at 49m and 51m.
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Figure 14: Reflectivity data, partially interfering events: receiver deghosted at 30m.
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Figure 15: Reflectivity data, overlapping events: source at 8m, receivers at 14m and 16m.
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Figure 16: Reflectivity data, overlapping events: receiver deghosted at 9m.
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Figure 17: SEAM Phase I data, shot 131373: source at 15m, receivers at 15m and 17m.
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Figure 18: SEAM Phase I data, shot 131373: receiver deghosted at 1m.
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Figure 19: Field data, deep-water Gulf of Mexico: source at 9m, receivers at 25m.
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Figure 20: Field data, deep-water Gulf of Mexico: receiver deghosted at 0m.

4.1 Single cable

minus Receiver deghosting requires an estimate of source wavelet (Zhang 2007, page 32).

minus Receiver deghosting and source deghosting require wavefield prediction using a double
Dirichlet Green’s function GDD0 (Osen et al., 1998; Tan, 1999), which uses information at
two different depths and hence may have stability issues compared with two measurements at
one depth.

4.2 Single cable with an extra hydrophone

minus This algorithm is “unstable” because it “is too sensitive” (Tan 1999, pages 1839, 1843).

4.3 Over/under cables

plus Zero-angle ghost notches for hydrophones at different depths are shifted relative each other
(Figure 21).

minus Lin Tang has shown (Tang, 2012; 2013) that wavefield separation improves as cables get
closer, and her best results are at ∆z = 1m, but Kristin cables have ∆z = 7m and 9m.

minus Absent over/under sources, source deghosting requires wavefield prediction using GDD0 .
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Increased resolution of seismic data from a dual sensor streamer cable  
David Carlson, Walter Söllner, Hocine Tabti, Eli Brox, Martin Widmaier*, PGS

Summary 
 
Presented are processed seismic data acquired from a dual 
sensor marine cable that records with both hydrophones 
and motion sensors.  An overview of the theory for this 
acquisition concept is presented with an outline of the steps 
used that utilize the benefit of acquiring two separate wave-
field components (Fokkema and van den Berg, 1993). 
 
2D field test data was acquired concurrently with a survey 
that used standard (hydrophone only) cables. The data 
acquired using the dual sensor cable is shown to be 
correctly deghosted and has improved frequency bandwidth 
compared with the data acquired using standard cables.  

Introduction 
 
Traditionally, marine cables measure the  seismic wave-
field pressure using hydrophones. A new solid core dual 
sensor cable has been introduced (Tenghamn et.al., SEG 
submitted abstract, 2007). This cable measures the pressure 
wave-field using hydrophones and simultaneously 
measures the vertical component of the particle velocity 
using motion sensors. The advantages of measuring the 
complete wave field in this manner are numerous. These 
advantages include reduced acquisition noise and improved 
ability to acquire data during rough weather. The 
advantages arise from the fact that the cable can be towed 
deeper and that both wave-field measures are at exactly the 
same location.  The simultaneous recording at the same 
location avoids cable positioning difficulties. 
 
One particular advantage is that the two independent 
measures can be combined to separate the wave-field into 
up-going and down-going components. This separation has 
many applications. This paper shows an application for 
increased bandwidth for both low and high frequencies. 
Another application is multiple elimination (Söllner et.al., 
SEG submitted abstract, 2007).   
 
Complementary amplitude spectra 
 
The responses of a hydrophone and a motion sensor are 
fundamentally different. The hydrophone records a scalar 
measure of a wave-field;  the measurement does not depend 
on the direction of the wave pulses.  The motion sensor 
records a directional measure of a wave-field. This 
 

 
 
difference is most prevalent when the sea surface ghosts are 
recorded.  For each type of measurement, the  water surface 
reflections (ghosts) imposes a filter on the data. The 3D 
filter can be illustrated by restricting the effect to angle 
zero, i.e. vertically propagating signal.  

 
For zero angle reflections, the hydrophone recording has a 
notch at 0 Hz and  c/(2*d)  where c is the velocity of water 
and  d is the cable depth of the hydrophones. There also is a 
notch at all integer multiples of c/(2*d).  Figure 1 shows 
the notches for d equal to 6, 7.5, and 15 meters with c 
assuming the value of 1500 m/sec.   The frequency of the 
second notch become smaller as the depth becomes larger.  
Also, note that the lower frequencies are better preserved as 
the depth becomes larger. Because these notches should not 
be within the frequencies needed for data interpretation,  
hydrophone acquisition cable are not generally towed 
deeper than 8 meters. The second hydrophone notch is at 
50 Hz. when the depth is 15 meters. 
  
Figure 2 shows the notches for d equal to 15 meters for 
both the hydrophones (blue) and motion sensors (orange).  
The notches also have a spacing of c/(2*d) but the first 
notch is not at zero but at c/(4*d). That is, for the same 
depth the period of the motion sensor notches are the same 
as for the hydrophone but the notches are shifted by half 
the period or c/(4*d). Because the hydrophones and motion 
sensors compliment each other in frequencies, they can be 
combined to yield a signal that does not have the effect of 
the surface ghost. 

Figure 1: Notches for hydrophones at depths  6 (green), 7.5
(red), and 15 (blue) meters using synthetic spike data with 
time delays of  8, 10 and 20 msec., respectively. 
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Figure 21: Notches for hydrophones at depths 6m (green), 7.5m (red), and 15m (blue) using synthetic
spike data with time delays of 8, 10, and 20 ms, respectively (Carlson et al. 2007, Figure 1).

4.4 Dual-sensor cable

plus Zero-angle ghost notches for hydrophones and geophones have the same period (c0/2zg) but
geophones are shifted by 1/2 period relative to hydrophones (Figure 22).

minus Geophone signal is swamped by ambient noise below 12-15Hz, reconstructed from hy-
drophone data, but reconstruction (of Vz) is only valid for downgoing data (Appendix 11.3).

minus Absent over/under sources, source deghosting requires wavefield prediction using GDD0 .

4.5 Over/under cables or dual-sensor cable with over/under sources

plus Source deghosting doesn’t require wavefield prediction using GDD0 .

5 Test sensitivity of Green’s theorem-derived deghosting

The purpose of this section is to test the sensitivity of Green’s theorem-derived deghosting to errors
in depth and to differences in configuration. The following model was used: a half space of air, water
(300m deep), and a half space of acoustic earth (c1 = 2250m/s, ρ = 1.667g/cm3). A Cagniard-de
Hoop program (written by Jingfeng Zhang), a 2D source, and a Ricker wavelet with maximum
amplitude at 25Hz were used, and a 5% taper was applied to each end of the cables.

5.1 Sensitivity to depth

In this section, deghosting is compared for known and unknown cable depths. This is easily done
with the program: if input data have cable depth zg, when submitting tell the program that the
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Resolution of dual sensor streamer data 

 

 
Figure 2: Zero angle ghost notches for the motion 
sensor(orange)  and hydrophone(blue)  at a depth of 15 
meters. 

The figures below are all derived from two shot records,  
hydrophone and motion sensor acquired at 15 meters.  
 

 
Figure 3: Amplitude spectrum of a near trace window for 
the recorded hydrophone shot record. Note the outline  of 
the notch as illustrated in figures 1 and 2. 
 

 
Preprocessing dual sensor data 
 
The preprocessing steps for dual sensor streamer data are 
similar to traditional processing of streamer data with a few 
exceptions: 
 
1) The impulse response of the motion sensor (which has a 
non-flat spectrum) is matched to the flat zero phase 
hydrophone spectrum. The sensitivity functions for both are 
taken into account.  
 
2) The hydrophone measurements are more stable because 
the motion sensor is recording a derivative or a rate of 
change of the wave-field.   A low frequency compensation 
procedure is used to stabilize the motion sensor recordings. 
 
3) The data is separated into up-going and down-going 
components using angle dependent methods similar to 
those for ocean bottom seismic processing (Ikelle and 
Amundsen, 2005). 

Figure 4: Example of an up-going pressure field. The 
hydrophone and motion sensor shots were decomposed into 
up-going and dow-going pressure and vertical velocity 
field. 

 
Figure 5: Amplitude spectrum of a near trace (green) 
window in the  up-going hydrophone record in figure 4. 
Note the wide frequency bandwidth. 

 
4) After being separated into up-going and down-going 
components, both the hydrophone data and the motion 
sensor data can be extrapolated to different receiver depths.   
 
Figures 3 through 5 illustrate some results of the above 
processing steps for one shot.  Figure 6 shows the added 
value of this method by comparing the amplitude spectrum 
for the up-going wave-field with that of total wave-fields at 
the same depth.  The up-going pressure field data does not 
have a ghost (i.e. does not have reflections from the surface 
to the cable). Multiples, including sea surface multiples, 
still remain in the up-going wave-field.  However, the 
amplitude spectrum is broader; the broader bandwidth 
giving better resolution which is seen in the migrated field 
data. 
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Figure 22: Zero angle ghost notches for the hydrophone (blue) and geophone (orange) at a depth of
15m (Carlson et al. 2007, Figure 2).

cable depth is zg + ∆.

The first test uses data containing separated events: source at 30m, over/under cables at 140m and
145m, and ∂P/∂z ' [P (145m)− P (140m)]/5m. Toggle between Figures 23 and 24 to see receiver
deghosting. The first event is the reference wavefield, the third event is the water-bottom primary’s
receiver ghost and source/receiver ghost, and the fifth event is the first free-surface multiple’s receiver
ghost and source/receiver ghost.

Now tell the program the cable is 1m shallower than it actually is. Figures 25 and 26 show the
previous receiver-deghosted result (program given the correct depth) and the receiver-deghosted
result with an incorrect depth. Now tell the program the cable is 10m shallower than it actually
is. Figures 27 and 28 show the receiver-deghosted result with the correct depth and the receiver-
deghosted result with an incorrect depth. Why is there no difference? Recall that Gd0, ∂Gd0/∂z
are functions of z′g − z, the difference between the prediction depth z′g and the cable depth z. If I
THINK the actual cable depth is z (when it’s actually z + ∆), I’m going to give the program the
same difference.

5.2 Sensitivity to cable configuration

In this section, deghosting is compared for different cable configurations: one cable plus an estimate
of the source wavelet, over/under cable, and dual-sensor cable.

How to approach one cable plus wavelet? Jingfeng Zhang’s deghosting program was designed for
two inputs of different sizes, P,A, where A is the isotropic source wavelet from a point source. For
a shot, P has one trace for each hydrophone on the cable, and A has one trace. On the other hand,
the current deghosting program was designed for two inputs of the same size: P, ∂P/∂z (or P, Vz).
The current deghosting program was modified as follows.
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Figure 23: Cagniard-de Hoop data, source at 30m, receivers at 140m and 145m.
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Figure 24: Cagniard-de Hoop data, source at 30m, receivers at 140m and 145m: receiver deghosted
at 130m.
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Figure 25: Receiver-deghosted result in Figure 24, i.e., program given correct depth.
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Figure 26: Cagniard-de Hoop data, receiver-deghosted result when the program is told the cable is
1m shallower than it actually is.
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Figure 27: Previous receiver-deghosted result (program given correct depth).
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Figure 28: Cagniard-de Hoop data, receiver-deghosted result when the program is told the cable is
10m shallower than it actually is.
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• The receiver-deghosting equivalents of equations 5 and 6 were added:

P ′R(r′g, rs, ω) = A(ω)GDD0 (r′g, rs, ω) +

∫

m.s.
dS n̂ · P (r, rs, ω)∇GDD0 (r′g, r, ω)

∂P ′R
∂z′′g

(r′′g , rs, ω) = A(ω)
∂2GDD0

∂z′g∂z′′g
(r′′g , rs, ω) +

∫

m.s.
dS′g P

′
R(r′g, rs, ω)

∂2GDD0

∂z′g∂z′′g
(r′g, r

′′
g , ω)

∣∣∣
z′g=m.s.

(Zhang, 2007, equations 2.12 and 2.13).

• A (containing a single trace) is to be modified as follows. For synthetic data, pad and replicate
the source wavelet so that its file is the same size as P . For field data, estimate A(t) (e.g.,
modeled using air gun configuration), then pad and replicate.

Then P and A are input into equation 3.

For an over/under cable, test using the same program and model as above (Section 5.1). Reuse
of the same data allows testing where the ghost notches are in the data: receiver notches are at
multiples of 1500/(2∗142.5) = 5.3Hz, and source notches are at multiples of 1500/(2∗30) = 25Hz.

For a dual-sensor cable, we do not have a program to create geophone data, so will approximate a
dual-sensor cable with over/under cables separated by 1m.

Figures 29 and 30 show the receiver deghosted result with over/under cables separated by 5m and
over/under cables separated by 1m (the latter is to approximate a dual-sensor cable).

Now we use the receiver-deghosted result (created using over/under cables separated by 5m) and the
double Dirichlet Green’s function to predict new P, ∂P/∂z. Figure 31 shows the result using data
containing notches. Since GDD0 has problems near notches, try again with data without notches:
source at 2m (vs. 30m), over/under cables at 6m and 7m (vs. 140m and 145m), and ∂P/∂z '
[P (7m)− P (6m)]/1m. In these data, receiver notches are at multiples of 1500/(2 ∗ 6.5) = 115Hz,
and source notches are at multiples of 1500/(2 ∗ 2) = 375Hz. Figures 32 and 33 show the input
data and receiver-deghosted result. The first event is the reference wavefield, the third event is
the water-bottom primary’s receiver ghost and source/receiver ghost, and the fifth event is the first
free-surface multiple’s receiver ghost and source/receiver ghost. Figures 34 shows the wavefield
prediction using GDD0 applied to these receiver-deghosted data.

5.3 Sensitivity of GDD
0 to depth

In this section, GDD0 is tested at the wrong depth. We start with the Cagniard-de Hoop data in
Figure 32, receiver deghost at 3.5m, and use GDD0 to predict new P, ∂P/∂z. Figures 35 through 40
show new P, ∂P/∂z values given the correct depth, 1m too deep, and 10m too deep. In section 5.1
(above), we showed that wavefield separation and deghosting are not sensitive to errors in cable depth
because the difference between cable depth and prediction depth enters the equation. In contrast,
wavefield prediction using GDD0 is sensitive to depth because the depth of the free surface is fixed,
so errors in the cable depth do affect the difference. An error of 1m in cable depth isn’t noticeable
(Figures 35, 36, 38, and 39), whereas an error of 10m in cable depth is noticeable (Figures 35, 37,
38, and 40).
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Figure 29: Receiver-deghosted result in Figure 24, i.e., over/under cables separated by 5m.
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Figure 30: Cagniard-de Hoop data, receiver-deghosted result where dual-sensor cable approximated
with over/under cables separated by 1m.
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Figure 31: Cagniard-de Hoop data, wavefield prediction of new P, ∂P/∂z using double Dirichlet
Green’s function GDD0 . Ghost notches are in the input data (Figure 29).
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Figure 32: Cagniard-de Hoop data, over/under cables separated by 1m, wavefield prediction of new
P, ∂P/∂z using double Dirichlet Green’s function GDD0 . Ghost notches not in the input data.
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Figure 33: Cagniard-de Hoop data: receiver-deghosted result using over/under cables separated by
1m.
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Figure 34: Wavefield prediction P using receiver-deghosted result in Figure 33.
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Figure 35: Cagniard-de Hoop data: new P given correct depth.
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Figure 36: Cagniard-de Hoop data: new P given incorrect depth (1m too deep).
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Figure 37: Cagniard-de Hoop data: new P given incorrect depth (10m too deep).
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Figure 38: Cagniard-de Hoop data: new ∂P/∂z given correct depth.
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Figure 39: Cagniard-de Hoop data: new ∂P/∂z given incorrect depth (1m too deep).
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Figure 40: Cagniard-de Hoop data: new ∂P/∂z given incorrect depth (10m too deep).
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6 Compare Green’s theorem-derived deghosting and deghosting in the k, ω
domain

PGS receiver deghosting is described in four SEG Expanded Abstracts: Carlson et al. (2007),
Tenghamn et al. (2007), Cambois et al. (2009), and Klüver et al. (2009). Their proprietary dual-
sensor cable (GeoStreamer R©) measures the total pressure wavefield p (using hydrophones) and the
vertical component vz of the total particle-velocity wavefield (using geophones). Variables p, vz are
decomposed into plane waves (in the k, ω domain), where the transformed data are denoted by
P, Vz. P is decomposed into upgoing P up (receiver-deghosted) and downgoing P down wavefields
using

P up

P down

}
=

1

2

(
P ∓ ρω

kz
Vz

)
, Klüver (1)

where kz =
√

(ω/c0)2 − k2
x − k2

y, and Klüver 1 refers to Klüver et al. (2009) equation 1. There are
key differences between this equation and Green’s theorem-derived deghosting.

• Equation Klüver 1 is equation 17 in Amundsen (1993b), which is “valid for marine data ac-
quired over a horizontally layered . . .medium” (page 1336). Green’s theorem-derived deghost-
ing makes no assumptions about the subsurface.

• The transformation of p, vz into P, Vz (and back) uses Hankel (and inverse Hankel) trans-
forms. Numerical evaluation of the inverse Hankel transform “is a difficult task” because of
rapid oscillations (page 1336). Green’s theorem-derived deghosting stays in the r domain and
requires no transformation to the k domain.

Amundsen’s derivation of equation Klüver 1 is shown in Appendix 11.4.

6.1 An alternative to equation Klüver 1

What if we don’t assume the earth is 1D? What would it look like if we transform in x, y? Note: In
PGS notation, measured data are lowercase p, vz, and measured data decomposed into plane waves
via Hankel transform are uppercase P, Vz. In our notation, used in this derivation, measured data
are uppercase P, Vz.

Substituting the (acoustic) partial differential equations for the pressure wavefield P (r′, ω) and
Green’s function G0(r, r′, ω) into Green’s second identity gives

∫

V
dr′P (r′, rs, ω)δ(r′ − r) =

∫

V
dr′ρ(r′, rs, ω)G0(r, r′, ω)

+

∮

S
dS′n̂′ · [P (r′, rs, ω)∇′G0(r, r′, ω)−G0(r, r′, ω)∇′P (r′, rs, ω)]. (9)

See (e.g.) Weglein et al. (2002) and Chapter 2 of Zhang (2007). For deghosting use the configuration
shown in Figure 2, i.e., choose
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• ρ(r′, rs, ω) = A(ω)δ(r′ − rs) + k2αair(r
′)P (r′, rs, ω) + k2αearth(r′)P (r′, rs, ω), i.e., the actual

medium is a reference medium (a whole space of water) plus three sources (air guns (first
term), air (middle term), and earth(last term)),

• V is a hemisphere bounded below by the measurement surface,

• r is above the measurement surface and below the air/water boundary (i.e., ∈ V ), and

• G0 is a whole-space causal Green’s function G+
0 .

Take the radius of the hemisphere to infinity and invoke the Sommerfeld radiation condition and
equation 9 becomes

P ′R(r, rs, ω) =

∫

m.s.
dS′n̂′ · [P (r′, rs, ω)∇′G+

0 (r, r′, ω)−G+
0 (r, r′, ω)∇′P (r′, rs, ω)]. (10)

For simplicity, assume 2D, and equation 10 takes the form

P ′R(x, z, xs, zs, ω) =

∫

m.s.
dx′

[P (x′, z′, xs, zs, ω)
∂G+

0

∂z′
(x, z, x′, z′, ω)−G+

0 (x, z, x′, z′, ω)
∂P

∂z′
(x′, z′, xs, zs, ω)]. (11)

Fourier transform equation 11 with respect to x,
∫
dx exp (ikxx)P ′R(x, z, xs, zs, ω) =

∫
dx exp (ikxx)

×
∫

m.s.
dx′[P (x′, z′, xs, zs, ω)

∂G+
0

∂z′
(x, z, x′, z′, ω)−G+

0 (x, z, x′, z′, ω)
∂P

∂z′
(x′, z′, xs, zs, ω)]. (12)

The left-hand side (LHS) of equation 12 becomes P̃ ′R(kx, z, xs, zs, ω). Substitute the bilinear form
of Green’s function in the right-hand side (RHS) of equation 12,

RHS =

∫
dx exp (ikxx)

∫

m.s.
dx′[P (x′, z′, xs, zs, ω)

× ∂

∂z′

[
1

2π

∫
dk′x

exp (−ik′x(x− x′)) exp (ik′z(z
′ − z))

2ik′z

]

− 1

2π

∫
dk′x

exp (−ik′x(x− x′)) exp (ik′z(z
′ − z))

2ik′z

∂P

∂z′
(x′, z′, xs, zs, ω)], (13)

where k′z =
√

(ω/c0)2 − k′ 2x . Substitute µ = r− r′ in equation 13,

RHS =

∫

m.s.
dx′
∫
dµx exp (ikx(µx + x′))[P (x′, z′, xs, zs, ω)

1

2π

∫
dk′x

exp (−ik′xµx) exp (−ik′zµz)
2ik′z

(−ik′z)(−1)

− 1

2π

∫
dk′x

exp (−ik′xµx) exp (−ik′zµz)
2ik′z

∂P

∂z′
(x′, z′, xs, zs, ω)]

=
1

2π

∫

m.s.
dx′
∫
dµx exp (ikx(µx + x′))[P (x′, z′, xs, zs, ω)

∫
dk′x exp (−ik′xµx)(ik′z)
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−
∫
dk′x exp (−ik′xµx)

∂P

∂z′
(x′, z′, xs, zs, ω)]

exp (−ik′zµz)
2ik′z

=
1

2π

∫
dk′x

exp (−ik′zµz)
2ik′z

∫
dµx exp (−i(k′x − kx)µx)

︸ ︷︷ ︸
2πδ(k′x−kx)

× [ik′z

∫

m.s.
dx′ exp (ikxx

′)P (x′, z′, xs, zs, ω)

︸ ︷︷ ︸
P̃ (kx,z′,xs,zs,ω)

−
∫
dx′ exp (ikxx

′)
∂P

∂z′
(x′, z′, xs, zs, ω)

︸ ︷︷ ︸
iωρVz(x′,z′,xs,zs,ω)

]. (14)

In equation 14, the integral over dµx gives a Dirac delta, 2πδ(k′x − kx), the integral over dx′ is a
Fourier transform of the pressure wavefield and gives P̃ (kx, z

′, xs, zs, ω), and the vertical deriva-
tive of the pressure wavefield is iωρ Vz(x′, z′, xs, zs, ω). (The latter relationship is derived in Ap-
pendix 11.5.) The integral of dx′ over the measurement surface allows a Fourier transform because,
in the derivation of equation 10, the radius of the hemisphere was taken to infinity. We now have
(for the right-hand side of equation 12)

RHS =
1

2π

∫
dk′x

exp (−ik′zµz)
2ik′z

2πδ(k′x − kx)

× [ik′zP̃ (kx, z
′, xs, zs, ω)− iωρ

∫
dx′ exp (ikxx

′)Vz(x′, z′, xs, zs, ω)

︸ ︷︷ ︸
Ṽz(kx,z′,xs,zs,ω)

] (15)

In equation 15, the integral over dx′ is a Fourier transform of the vertical velocity field and gives
Ṽz(kx, z

′, xs, zs, ω). Using k′ 2z = ω2/c2
0 − k′ 2x and k2

z = ω2/c2
0 − k2

x, equation 15 can be rewritten as

RHS =

∫
dk′x δ(k

′
x − kx)

︸ ︷︷ ︸
1

exp (−ik′zµz)
2ik′z

[ik′zP̃ (kx, z
′, xs, zs, ω)− iωρṼz(kx, z′, xs, zs, ω)]

=
exp (−ik′zµz)

2ik′z
[ik′zP̃ (kx, z

′, xs, zs, ω)− iωρṼz(kx, z′, xs, zs, ω)].

Collecting terms gives

P̃ ′R(kx, z, xs, zs, ω)

=
exp (−ik′zµz)

2ik′z
(ikz)[P̃ (kx, z

′, xs, zs, ω)− ωρ

kz
Ṽz(kx, z

′, xs, zs, ω)]

=
1

2
exp (ik′z(z

′ − z))[P̃ (kx, z
′, xs, zs, ω)− ωρ

kz
Ṽz(kx, z

′, xs, zs, ω)]. (16)

In the last equation, the phase factor exp (ik′z(z
′ − z)) takes the one-way wavefield P̃ ′R from the

cable depth z′ to the predicted (deghosted) depth z. This demonstrates that the Green’s theorem
deghosting reduces to the Fourier form equation 16 under conditions that allow the steps in this
demonstration. The standard-practice deghosting P − Vz algorithm today is a version of 16 that
accommodates a 3D point source, but assumes the earth is 1D. Equations 10 and 16 allow the
lifting of the 1D assumption, and in addition equation 10 doesn’t require a horizontal measurement
surface.
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Figure 41: Reflectivity data, overlapping events: source at 8m, receivers at 14m and 16m. Input
(left), receiver deghosted using equation 10 (middle), receiver deghosted using equation 17 (right).

7 Compare Green’s theorem-derived deghosting and Fourier-Bessel integral

If we have a 3D source and 1D earth, it’s better to use a Fourier-Bessel integral. Per Zhiqiang Wang
(from Fang Liu), the integral can be restated from rectangular coordinates to polar coordinates as
follows:

∫
dy

∫
dx f(x, y, z) =

∫
ρ dρ

∫
dθ f(ρ, θ, z)

If f(ρ, θ, z) = f(ρ, z) (azimuthal symmetry), then∫
ρ dρ

∫
dθ f(ρ, θ, z) = 2π

∫
ρ dρ f(ρ, z) = 2π

∫
x dx f(x, z) if 1 cable, (17)

Comparing the middle and right panels in Figure 41 shows no difference. I suspect this is because
the program computes the Green’s functions to a high degree of precision.

8 Remarks on the algorithm

1. An important relationship exists between ∆z and ∆x, where ∆z is the depth between the
input cable and output (predicted) cable in equation 3, and ∆x is the interval between adjacent
traces (receiver groups). For good results: ∆z & 0.5 ∆x. Where is this relationship coming
from?

P ′R(r′g, rs, ω) =

∫

m.s.
dx dy

[P (r, rs, ω)
−1

4π

exp (ikR+)

R+

z′g − z
R2

+

(1− ikR+)

︸ ︷︷ ︸
∂Gd+0 /∂z

− −1

4π

exp (ikR+)

R+︸ ︷︷ ︸
Gd+0

iωρVz(r, rs, ω)︸ ︷︷ ︸
∂P/∂z

],
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Figure 42: SEAM Phase I data, shot 131373: P at 17m.

where R+ = |r′g − rs|. If ∆z = z′g − z becomes too small, the first term in the integrand is
suppressed and the quality of deghosting suffers. This is also discussed in Tang (2013).

2. The current deghosting program was tested on SEAM Phase I data. Creating a receiver-
deghosted pseudo array requires that equation 10 be evaluated over the 661 × 661 receiver
array for each of the 661× 661 receivers. The job was submitted but would run for probably
several weeks. Taking advantage of the local nature of the integrand, a new way of submitting
the program was tried — restrict the integral to a radius of 100∆x or 10∆x around each
predicted receiver. The latter job ran overnight, and the results look satisfactory. Comparing
Figures 42 and 43 shows that the water-bottom primary’s receiver ghost and source/receiver
ghost are attenuated (the bottom of the first event). Comparing Figures 43 (10∆x) and 44
(100∆x) shows no difference.

3. The compute clusters I used at UH and PGS are shown in Appendices 11.6 and 11.7.

9 Conclusions

1. We have shown images before and after receiver deghosting for separated data (where the
source and receivers are deep enough to separate events and their ghosts) through partially
interfering events to overlapping events.

2. We have provided the pros and cons of each kind of cable configuration.

3. We have found that Green’s theorem-derived deghosting is insensitive to the cable depth,
gives better results as the vertical distance between over and under cables decreases, and (for
wavefield prediction) is sensitive to the presence of ghost notches in the data.

67



Preprocessing and impact M-OSRP12

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e 
(s

)

50 100 150 200
Trace number

R deghosted at 1m (shot 131373, gx=17575m) (ro5_1016b.su)

-500

0

500

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e 
(s

)

250 300 350 400
Trace number

R deghosted at 1m (shot 31373, gx=17575m) (ro5_1016b.su)

Figure 43: SEAM Phase I data, shot 131373: receiver deghosted at 1m. The integral was restricted
to a radius of 10∆x around each receiver on the measurement surface.
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Figure 44: SEAM Phase I data, shot 131373: receiver deghosted at 1m. The integral was restricted
to a radius of 100∆x around each receiver on the measurement surface.

68



Preprocessing and impact M-OSRP12

4. We have shown that Green’s theorem-derived deghosting has fewer requirements than does
wavenumber-based deghosting.
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11 Appendix

11.1 Receiver deghosting: Supplemental theory

Following Weglein et al. (2002) and Chapter 2 of Zhang (2007), to separate upward-moving and
downward-moving waves, we define the following (see Figure 2):
(1) a reference medium consisting of a whole space of water with wavespeed c0,
(2) a perturbation αair(r) that is the difference between the reference medium (water) and the upper
part (air) of the actual medium, defined by 1/c2

air = 1/c2
water(1− αair),

(3) a perturbation αearth(r) that is the difference between the reference medium (water) and the
lower part (earth) of the actual medium, defined by 1/c2

earth = 1/c2
water(1− αearth),

(4) an integration volume V consisting of a hemisphere bounded from below by the measurement
surface,
(5) a surface (air-water interface) above the measurement surface (i.e., inside V ),
(6) a source at rs above the measurement surface (again inside V ),
(7) a causal whole-space Green’s function G+

0 (r, r′g, ω) in the reference medium,
(8) k0 = ω/c0,
(9) the prediction/observation point r′g ∈ V lying below the source rs and above the measurement
surface, and
(10) S as the hemisphere’s surface.

For two wavefields P and G+
0 , Green’s theorem becomes

∮

S
dS n · [P (r, rs, ω)∇G+

0 (r, r′g, ω)−G+
0 (r, r′g, ω)∇P (r, rs, ω)]

=

∫

V
dr[P (r, rs, ω)∇2G+

0 (r, r′g, ω)−G+
0 (r, r′g, ω)∇2P (r, rs, ω)]. (11.18)

Substituting the partial differential equations for the pressure wavefield P and causal whole-space
Green’s function G+

0

(∇2 + k2
0)P (r, rs, ω) = A(ω)δ(r− rs) + k2

0(αair + αearth)P (11.19)

(∇2 + k2
0)G+

0 (r, r′g, ω) = δ(r− r′g) (11.20)
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into the right-hand side of equation 11.18 gives
∫

V
dr{P (r, rs, ω)[−k2

0G
+
0 + δ(r− r′g)]

−G+
0 (r, r′g, ω)[−k2

0P +A(ω)δ(r− rs) + k2
0(αair + αearth)P ]}

=

∫

V
dr{P (r, rs, ω)δ(r− r′g)− P (r, rs, ω)k2

0G
+
0 (r, r′g, ω) +G+

0 (r, r′g, ω)k2
0P (r, rs, ω)

− k2
0[αair(r) + αearth(r)]P (r, rs, ω)G+

0 (r, r′g, ω)−A(ω)δ(r− rs)G
+
0 (r, r′g, ω)}. (11.21)

The first term gives P (r′g, rs, ω) because the prediction/observation point r′g is between the mea-
surement surface and air-water surface, i.e., ∈ V . The cross terms −P (r, rs, ω)k2

0G
+
0 (r, r′g, ω) +

G+
0 (r, r′g, ω)k2

0P (r, rs, ω) cancel. (This cancellation occurs in the frequency domain but not in the
time domain.) αearth(r) = 0 because the volume integral doesn’t contain αearth. The last term gives
A(ω)G+

0 (rs, r
′
g, ω) because the source (air guns) are between the measurement surface and air-water

surface, i.e., are within the volume V . Substituting these four results into equation 11.21 gives for
the left member of 11.21

P (r′g, rs, ω)−
∫

V
dr k2

0αair(r)P (r, rs, ω)G+
0 (r, r′g, ω)−A(ω)G+

0 (rs, r
′
g, ω). (11.22)

Using the symmetry of the Green’s function (G+
0 (rs, r

′
g, ω) = G+

0 (r′g, rs, ω)) and collecting terms
gives

∮

S
n dS · [P (r, rs, ω)∇G+

0 (r, r′g, ω)−G+
0 (r, r′g, ω)∇P (r, rs, ω)]

=P (r′g, rs, ω)−
∫

V
drG+

0 (r, r′g, ω)k2
0αair(r)P (r, rs, ω)−A(ω)G+

0 (r′g, rs, ω). (11.23)

The physical meaning of equation 11.23 is that the total wavefield at r′g can be separated into three
parts. There are three spatially distributed sources causing the wavefield P . From the extinction
theorem/Green’s theorem, the left-hand side of equation 11.23 is the contribution to the field at r′g
due to sources outside V . There is one source outside V , ρearth = k2αearthP . The contribution it
makes at r′g is

∫
G+

0 ρearth and upgoing. The two other sources (ρair = k2αairP and ρair guns) produce
a down field at r′g.

Letting the radius of the hemisphere go to ∞, the Sommerfeld radiation condition gives
∫

m.s.
dS n · [P (r, rs, ω)∇G+

0 (r, r′g, ω)−G+
0 (r, r′g, ω)∇P (r, rs, ω)] = P ′R(r′g, rs, ω), (11.24)

where P (r, rs, ω) and ∇P (r, rs, ω) · n̂ are respectively the hydrophone measurements and normal
derivatives (in the frequency domain), and G+

0 is the causal whole-space Green’s function for a
homogeneous acoustic medium with water speed.

An anonymous reviewer noted that “to transform the volume integral to a surface integral uses
Gauss’ theorem but also requires that the wavefield satisfies a Helmholtz equation, which can only be
guaranteed for a homogeneous sub-volume.” Green’s theorem-based deghosting is computed above
the measurement surface and below the air/water boundary, where the actual medium coincides
with the homogeneous reference medium.
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11.2 Input data

11.2.1 Cagniard-de Hoop data

Parameter Value
Number of shots 1

Number of channels per shot 1601
Number of samples per trace 625

Time sampling 4 ms
Record length 2.5 s
Shot interval n.a.
Group interval 3 m
Shortest offset 0 m
Gun depth 7 m

Streamer depth 9 m & 11 m

• Data created by Jinlong Yang using a Cagniard-de Hoop program written by Jingfeng Zhang
(now at BP)

• Model: air/water boundary, water bottom at 300 m, 1D constant-density acoustic earth (c =
2250 m/s)

• 1 over/under towed streamer, ∂P/∂z ' (P (11m)− P (9m))/2m

11.2.2 Reflectivity data: Separated events

Parameter Value
Number of shots 1

Number of channels per shot 801
Number of samples per trace 1500

Time sampling 4ms
Record length 6s
Group interval 6.25m
Shortest offset 0m
Gun depth 30m

Streamer depth 139m & 141m

• Data created using reflectivity program

• Model: air/water boundary, water bottom at 300m, acoustic earth (c0 = 2250m/s, ρ =
1.667g/cm3)

• 3D source, frequency of source: 1-60Hz

• 5% taper applied to each end of cable

• ∂P/∂z ' [P (141m)− P (139m)]/2m
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11.2.3 Reflectivity data: Partially interfering events

Parameter Value
Number of shots 1

Number of channels per shot 801
Number of samples per trace 1500

Time sampling 4ms
Record length 6s
Group interval 6.25m
Shortest offset 0m
Gun depth 9m

Streamer depth 49m & 51m

• Data created using reflectivity program

• Model: air/water boundary, water bottom at 300m, acoustic earth (c0 = 2250m/s, ρ =
1.667g/cm3) (same as Appendix 11.2.2)

• 3D source, frequency of source: 1-60Hz

• 5% taper applied to each end of cable

• ∂P/∂z ' [P (51m)− P (49m)]/2m

• Gun depth same as Gulf of Mexico field data, streamer depth 2× Gulf of Mexico field data

11.2.4 Reflectivity data: Overlapping events

Parameter Value
Number of shots 1

Number of channels per shot 801
Number of samples per trace 1500

Time sampling 4ms
Record length 6s
Group interval 6.25m
Shortest offset 0m
Gun depth 8m

Streamer depth 14m & 16m

• Data created using reflectivity program

• Model: air/water boundary, water bottom at 300m, acoustic earth (c0 = 2250m/s, ρ =
1.667g/cm3) (same as Appendix 11.2.2)

• 3D source, frequency of source: 1-60Hz

• 5% taper applied to each end of cable
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• ∂P/∂z ' [P (16m)− P (14m)]/2m

• Gun depth & streamer depth same as Total data

11.2.5 Synthetic data: SEAM Phase I deep-water Gulf of Mexico model

Parameter Value
Number of shots 9×267

Number of channels per shot 661×661
Number of samples per trace 2001

Time sampling 8ms
Record length 16s
Shot interval 150m
Group interval 30m
Shortest offset 0m
Gun depth 15m

Streamer depth 15m & 17m

• 3D source, frequency of source: 1-30Hz

• Distance between towed streamers: 30m

• ∂P/∂z ' [P (17m)− P (15m)]/2m

11.2.6 Field data: deep-water Gulf of Mexico∗

Parameter Value
Number of shots 2451

Number of channels per shot 960
Number of samples per trace 3585

Time sampling 4ms
Record length 14.34s
Shot interval 37.5m
Group interval 12.5m
Shortest offset 112m
Gun depth 9m

Streamer depth 25m

• 1 dual-sensor towed streamer

• ∂P/∂z = iωρVz where ρ is density of reference medium (seawater)
∗Courtesy of PGS.
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11.3 Estimating source signature using a dual-sensor cable

Below some critical frequency, geophone readings are deleted and reconstructed using hydrophone
readings and equation (B-6) in Amundsen et al. (1995),

Vz =
kz
ρω

[exp (−ikz∆z)− exp (ikz∆z)]
−1

× {2P (kx, ky, z1, ω)

− [exp (−ikz∆z) + exp (ikz∆z)]P (xr, yr, z2, ω)},

where the over and under cables are at depths z1 and z2 and ∆z ≡ z2 − z1. The over cable is
assumed to be the air/water boundary. In this case, P (kx, ky, z1, ω) = 0, ∆z ≡ z2, and equation (B-
6) becomes

Vz = −i kz
ρω

cos (kzz2)

sin (kzz2)
P (xr, yr, z2, ω), (11.25)

which has notches when kzz2 = nπ (n an integer). For z2 = 25m (deep-water Gulf of Mexico), this
corresponds to

kz =
nπ

z2
=

2πf

c0

f =
nπc0

2πz2
=
nc0

2z2
=

1500n

50

= multiples of 30Hz. (11.26)

Since the critical frequency is about half this, equation 11.25 is valid in the required range. However,
equation (B-6) is valid only for the downgoing wavefield at the receivers (its derivation assumes that
the observation or prediction depth ζ satisfies ζ > z2 > z1). Hence, Green’s theorem cannot be used
to estimate the source wavelet given GeoStreamer R© input data. Amundsen et al. (1995) makes the
assumption that ζ > z2 > z1 in order to lift the absolute values in the derivation of equation (B-4).
Hence, equation (B-6) is valid only for observation or prediction points below the measurement
surface.

11.4 Derivation of equation Klüver 1

The derivation can be broken down into the following steps:

1. Convert p, vz into P, Vz via Hankel transform.

2. Decompose P into reference Pd and scattered Pr wavefields.

3. Find P, Vz for sources above the receivers.

4. Decompose P into upgoing U and downgoing D wavefields.

5. Show that equation 17 gives U and D.

In this derivation equation numbers are those in Amundsen (1993b).
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11.4.1 Step 1.

Amundsen (1993b) assumes a Dirac delta source. This source is radially symmetric, so p, vz depend
only on the radial distance r and depth z. He uses cylindrical coordinates and decomposes data
p, vz into plane waves P, Vz using a Hankel transform,

{
P

Vz

}
(kr, zr, ω) =

∫ ∞

0
dr rJ0(krr)

{
p

vz

}
(r, zr, ω), (1)

where r is horizontal distance, zr is receiver depth, and kr is horizontal wavenumber.

11.4.2 Step 2.

Amundsen (1993b), following Amundsen and Ursin (1991) and Ursin (1983), assumes the earth is
a 1D stack of homogeneous layers bounded by homogeneous half spaces (Figure 45). Then

Pd(zr) = {exp [ikz|zr − zs|]︸ ︷︷ ︸
direct wave

− exp [ikz(zr + zs)]︸ ︷︷ ︸
surface reflection

}Γ (4)

Pr(zr) = <(z = 0) exp [−ikz(zr + zs)]G−(zr)G−(zs)Γ, (5)

where

• Γ is the source contribution −ω2S(ω)/(4πc2ikz). This form of Γ is also used in Amundsen
and Ursin 1991, equation 8. Γ can be restated in terms of our A(ω) using Amundsen 1993a,
equation 33 and Amundsen 1993b, equations 3 and 6. The latter paper assumes a source
of the form ∇2δ(x − xs)Ss(ω), and Fourier transforming gives k2Ss(ω) = (ω2/c2)Ss(ω) =
−4πikzΓ = −2πA(ω), or Γ = A(ω)/2ikz.

• <(z = 0) = R(kr, z = 0, ω)/(1 + R(kr, z = 0, ω)), and R(kr, z = 0, ω) is the reflection
response of a stack of layers in the upper half space (Figures 45 and 46) at z = 0, modified
by 1/(1 +R(kr, z = 0, ω)) due to the air/water boundary at z = 0 and adjusted to receiver
depth by exp [−ikz(zr + zs)]. This is analogous to the derivation of the M-OSRP free-surface-
multiple algorithm (Figure 47).

• kz =
√

(ω/c)2 − k2
r is the vertical wavenumber in the first layer (water column), with velocity

c.

• G−(zr) = 1 − exp (2ikzzr) is the receiver ghost, and G−(zs) = 1 − exp (2ikzzs) is the source
ghost.

11.4.3 Step 3.

For zs < zr, the absolute value can be lifted,

P (zr) = Pd(zr) + Pr(zr) (3)
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1028 Amundsen and Ursin

with inverse transform

with respect to time and a Hankel transform of order n with
respect to radius

<1>(w, k, z) = Loc drrJn(k,r)i: dt exp (iwt)\p(t, r, z), (3)

(5)azB = iwAB + F,

surface
Zo
Zs
Zr 0 0 0 0 0 0 0 0 0

Zl

•••
Zj-l

Zj+l

Z·
J

I

HI

layer
index

where

The transform is applied with n = 0 to the variables p, vz,
and!Z' and with n = 1 to the variables v, and j.; This choice
of order in the transform reduces operations with the vari­
able r to scalar multiplications in the radial wavenumber
domain. The radial wavenumber is k; = k; + k}, and J n is
the Bessel function of order n.

This transformation enables us to write the acoustic equa­
tions (1) and (2) as an ordinary matrix-vector differential
equation

\p(t, r, z)

= ~ foo dw exp (-iwt) (00 dk,k,Jn(k,r)<1>(w, k.; z). (4)
2TI _00 Jo

The reflectivity method has been widely used in modeling
of seismic data (Kennett, 1983). Our notation and modeling
algorithm is based on Ursin (1987). We consider wave
propagation in a horizontally layered medium consisting of a
stack of homogeneous layers as shown in Figure 1. The
medium is bounded above by a free surface and below by a
half-space. The half-space is denoted as layer N + 1. We let
x = (x, y, z) denote a fixed coordinate system with the z-axis
vertically downward. The system of equations governing the
wave motion consists of the equation of motion and the
pressure-particle velocity relation (Hooke's law)

REFLECTIVITY MODELING

algorithm can also handle the case where the layer thick­
nesses are fixed.

We denote the synthetic data to be inverted as reference
data and the model-generated data computed in each itera­
tion for comparison with the reference data as predicted
data.

The reference pressure data are the response of a point
source below the free surface recorded in the surface layer
over a limited range of offsets and traveltimes. The reference
point source record is transformed to the frequency-wave­
number domain utilizing the cylindrical symmetry of the
problem. The predicted data are computed directly in the
frequency-wavenumber domain by the reflectivity algorithm
implicitly assuming infinite apertures in time and space. To
simulate the limited apertures of the reference data we apply
a frequency and wavenumber dependent filter to the pre­
dicted data. Thus, the comparison of the reference data with
the predicted data for all iterations may take place in the
spectral domain, once the reference data have been trans­
formed to this domain.

We first review briefly the reflectivity modeling method
used in the computations, and discuss some practical aspects
of the numerical modeling. In the iterative least-squares
inversion the Jacobian matrix is computed in each iteration
using analytical expressions which are related to the model­
ing algorithm. We also discuss numerical aspects of the
minimization procedure. Two numerical examples are given.
In the first example, we test the convergence of the inversion
algorithm on the same small-scale four-layer model which
was used by Kolb et al. (1986). In the second example the
algorithm is applied to a larger, more realistic data set.

p(x)alv(t, x) = -Vp(t, x) + f(t, x)

1
-(2 aIP(t, x) + p(x)V• vet, x) = 0,
C x)

(1)

(2)

•••

FIG. 1. The model is a layered medium bounded by a free
surface at the top and a half-space at the bottom. The
material properties in layer j are velocity Cj and density Pj.

The layer thickness is t1zj . The source and receivers are
positioned in layer 1 at depths Zs and z.. respectively.

where p is the pressure, v is the particle velocity, f is the
body-force distribution, p is the density and c is the wave
propagation velocity.

We let fbe the body-force equivalent to an explosive point
source located at position x, with time function set), that is
f(t, x) = VB(x - xs)s(t). Since the body-force distribution is
independent of azimuth angle, the pressure and particle
velocity depend only on depth z and radial distance r =
Vx 2 + y2. Then we introduce cylindrical coordinates with
the z-axis through the source. We use a Fourier transform

N

N+I
halfspace

Downloaded 02 Oct 2012 to 129.7.52.188. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/

Figure 45: The layered medium is sandwiched between a half space of air and a half space of earth.
Layer j is characterized by thickness ∆zj, velocity cj, and density ρj. The source and receivers are
in the first layer at depths zs and zr, respectively (Amundsen and Ursin 1991, Fig. 1).
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(a) (b) 

z = z. z = z. 

Layered medium Layered medium 

FIG. 2. Reflection and transmission matrices for a layered medium. 

Kennett and lllingworth (1981) discussed this problem, and 
they proposed a different decomposition of the wave field which 
allows a uniform approximation of the wave held near the tum- 
ing point based on the Langer approximation. A high-frequency 
asymptotic solution, also based on the Langer approximation, 
was proposed by Woodhouse (1978). 

PROPAGATION INVARIANTS 

The propagation characteristics of the wavevector B are gov- 
erned by the properties of the matrix A, or the matrices Ai and 
A?, through the differential equation (1). My formulation allows 
a more general and compact formulation of the results given by 
Kennett et al ( 1978). When the matrices A, and A1 are symmetric, 
it is seen that the form 

G(B, C) = - (B:C? - B;C,) (63) 

is constant for wave vectors B and C which satisfy the differ- 
ential equation (I). Equation (63) may be written 

G(B, C) = - BrNC (64) 

with 0 I 
N= 

[ 1, (65) 
-I 0 

where I is an n x n identity matrix. For the eigenvector matrix 
L in equation ( lOa), 

-L7NL = N (66) 

by using equation (14). By making the transformation B = LW 
and C = LV, it follows that 

G(W, V) = WrNV (67) 

is constant for the transformed vectors W and V. 
From equation (66). 

det (Lr) det (-N) det (L) = det (N). (68) 

Since det (-N) = det (N). 

(det L)’ = 1. (69) 

Dissipation may be introduced in wave propagation problems by 

allowing the parameters of the matrices A, and AZ to take on com- 
plex values. Even in this case the matrices A, and AZ are symmetric 
so that the form G in equation (64) and (67) is constant. 

For lossless media the energy flux in the z direction, given in 
equation (3), is constant. For wavevectors B and C which satisfy 
equation ( I), it is seen that the form 

H(B, C) = - By& + BYC, = B”MC (70) 

is constant if 

sA, + SAY = 0, i = 1, 2. (71) 

This equation is satisfied if s = kiw and the matrices A, are 
Hermitian: 

A, = A:, i = I. 2. (72) 

This is the case for lossless media for which the matrices A, 
and A? are real. 

The eigenvector matrix L in equations (IO) and (14) can be 
shown to satisfy the following equations using results derived in 
the appendices. -s, -s> 

-LHML = 

[ 1 sz s,’ 
(73) 

where S, = diag [S,,, _, S,,] with 

I AL real 
S Ik = 

1 

(74) 
0 AA imaginary 

and where Sz = diag [S?, , , szn] with 

I 

i AA imaginary. LA, _ xl/” 
I 

s ~ 21 - -i hk imaginary, Lk, - A;“‘, (75) 
0 AA real 

where - denotes “proportional to.” With B = LW and C = 
LV, it follows that -s, -sz 

H(W. V) = WH 

[ 1 V (76) 
Sz Si 

is constant for the transformed vectors V and W. Note that the 
matrices Si and Sr must be evaluated at each value of z together 
with the values of V and W. 

REFLECTION AND TRANSMISSION MATRICES 

Symmetry properties 

I consider a sequence of isotropic layers bounded by two iso- 
tropic half-spaces as shown in Figure 2 with an incident down- 
going wave of strength I (n X n unit matrix) which produces a 
reflected upgoing wave RD and a transmitted downgoing wave 
Tn (both RI, and Tr, are n x n matrices). I also consider an up- 
going wave of strength I which produces a reflected downgoing 
wave RU and a transmitted upgoing wave Tr,. The propagation 
invariants given previously will be used to derive several symmetry 
relations for the reflection and transmission matrices. A similar 
procedure was used by Kennett et al (1978) to derive these rela- 
tions for plane P-SV waves. 

For dissipative media, I use equation (67) to equate G(V, W) 
at the top and the bottom of the stack of layers for V produced by 
a downgoing wave of strength I and W produced by an upgoing 
wave of strength I. That is, 
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Figure 46: Reflection and transmission matrices for a layered medium (Ursin 1983, Fig. 2).
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= {exp [ikz(zr − zs)]− exp [ikz(zr + zs)]︸ ︷︷ ︸
exp [ikz(zr−zs)](1−exp (2ikzzs))

}Γ + <(z = 0) exp [−ikz(zr + zs)]G−(zr)G−(zs)Γ

= {exp [ikz(zr − zs)] (1− exp (2ikzzs))︸ ︷︷ ︸
G−(zs)

}Γ + <(z = 0) exp [−ikz(zr + zs)]G−(zr)G−(zs)Γ

= {exp [ikz(zr − zs)] + <(z = 0) exp [−ikz(zr + zs)]G−(zr)}G−(zs)Γ. (9)

∂P/∂z = iωρVz (derived in Appendix 11.5) and equation 9 give

Vz(zr) =− i

ρω

dP

dzr

=− i

ρω
{exp [ikz(zr − zs)](ikz) + <(z = 0){exp [−ikz(zr + zs)](−ikz)G−(zr)

+ exp [−ikz(zr + zs)](−1) exp (2ikzzr)(2ikz)}}G−(zs)Γ

=− i

ρω
(−ikz){− exp [ikz(zr − zs)] + <(z = 0){exp [−ikz(zr + zs)]G−(zr)

+ 2 exp [−ikz(zr + zs)] exp (2ikzzr)}}G−(zs)Γ

=− kz
ρω
{− exp [ikz(zr − zs)] + <(z = 0){exp [−ikz(zr + zs)](1− exp (2ikzzr))

+ 2 exp [−ikz(zr + zs)] exp (2ikzzr)}}G−(zs)Γ

=− kz
ρω
{− exp [ikz(zr − zs)] + <(z = 0) exp [−ikz(zr + zs)] (1 + exp (2ikzzr))︸ ︷︷ ︸

G+(zr)

}G−(zs)Γ

=− kz
ρω
{− exp [ikz(zr − zs)] + <(z = 0) exp [−ikz(zr + zs)]G+(zr)}G−(zs)Γ. (12)

11.4.4 Step 4.

For zs < zr, equation 5 gives the upgoing wave

U(zr) = <(z = 0) exp [−ikz(zr + zs)]G−(zs)Γ. (18)

For zs < zr, the downgoing wave is

D(zr) = P (zr)− U(zr)

= {exp [ikz(zr − zs)] + <(z = 0) exp [−ikz(zr + zs)]G−(zr)}G−(zs)Γ− U(zr)

= {exp [ikz(zr − zs)] + <(z = 0) exp [−ikz(zr + zs)](1− exp (2ikzzr))}G−(zs)Γ

−<(z = 0) exp [−ikz(zr + zs)]G−(zs)Γ

= {exp [ikz(zr − zs)]−<(z = 0) exp [−ikz(zr + zs)] exp (2ikzzr)}G−(zs)Γ

= exp [ikz(zr − zs)]G−(zs)Γ− exp (2ikzzr)<(z = 0) exp [−ikz(zr + zs)]G−(zs)Γ︸ ︷︷ ︸
U(zr)

= exp [ikz(zr − zs)](1− exp (2ikzzs))Γ︸ ︷︷ ︸
Pd(zr)

− exp (2ikzzr)U(zr)

= Pd(zr)− exp (2ikzzr)U(zr). (19)
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11.4.5 Step 5.

1

2
[P (zr)∓

ρω

kz
Vz(zr)]

=
1

2
[{exp [ikz(zr − zs)] + <(z = 0) exp [−ikz(zr + zs)] G−(zr)︸ ︷︷ ︸

1−exp (2ikzzr)

}G−(zs)Γ∓
ρω

kz
(−1)

kz
ρω︸ ︷︷ ︸

±
×{− exp [ikz(zr − zs)] + <(z = 0) exp [−ikz(zr + zs)] G+(zr)︸ ︷︷ ︸

1+exp (2ikzzr)

}G−(zs)Γ]

=
1

2
[exp [ikz(zr − zs)] (1± (−1))︸ ︷︷ ︸

0,2

+<(z = 0)

× exp [−ikz(zr + zs)] [(1− exp (2ikzzr))± (1 + exp (2ikzzr))]︸ ︷︷ ︸
2,−2 exp (2ikzzr)

]G−(zs)Γ.

If + (in ∓)
1

2
[P (zr) +

ρω

kz
Vz(zr)] =

1

2
<(z = 0) exp [−ikz(zr + zs)]2G−(zs)Γ

= U(zr).

If - (in ∓)
1

2
[P (zr)−

ρω

kz
Vz(zr)] =

1

2
exp [ikz(zr − zs)]2 G−(zs)︸ ︷︷ ︸

1−exp (2ikzzs)

Γ

+
1

2
<(z = 0) exp [−ikz(zr + zs)](−2 exp (2ikzzr))G−(zs)Γ
︸ ︷︷ ︸

− exp (2ikzzr)U(zr)

=
1

2
exp [ikz(zr − zs)]2(1− exp (2ikzzs))Γ

︸ ︷︷ ︸
Pd(zr)

− exp (2ikzzr)U(zr)

= D(zr).

11.5 Derivation of ∂P/∂z = iωρVz

1. Apply Newton’s second law of motion: F = mdV/dt.

2. Consider a unit volume in a fluid: F = ρ dV/dt.

3. Perform a Fourier transform: F = ρ(−iωV).

4. Force in a fluid is the pressure gradient: F = −∇P = ρ(−iωV).

5. Rewrite: ∇P = iωρV.

6. The z-component is the desired result.
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11.6 Isis compute cluster at UH

• 14 AMD Opteron nodes (compute-0-10 to compute-0-23) each with 2 dual-core processors and
4GB of shared memory

• 10 Intel Xeon nodes (compute-0-0 to compute-0-9) each with 2.5GB of shared memory
– compute-0-4 and compute-0-5 only have 1 dual-core processor (the other died in each and
there were no replacements)
– Remaining 8 nodes have 2 dual-core processors each

• 14TB of disk space (expanded from 2TB)

11.7 hdipb compute cluster at PGS

• hdipb000-010

• hdipb001-009 each have 16 Intel Xeon CPUs @ 2.13GHz and 132GB of RAM

• hdipb000 has 4 Intel Xeon CPUs @ 2.27GHz and 12GB of RAM

• hdipb002 has a failed hard drive

• hdipb009 runs noticeably slower than hdipb001,003-008 (Bryan Helvey suspects heat transfer
efficiency is declining)

• hdipb010 used for spare parts

11.8 Follow Corrigan et al. (1991)

As preparation for the derivation in Section 6.1, the logic in Corrigan et al. (1991) was followed.
In this derivation equation numbers are those in Corrigan et al. (1991). Start with Weglein and
Secrest, 1990, equation 6,

A(ω)G(rs, rg, ω) =

∫

S
[P (r′, rs, ω)∇′G(r′, rg, ω)−G(r′, rg, ω)∇′P (r′, rs, ω)] · n′ds′. [1]

For simplicity, assume 2D,

A(ω)G(0,−h;xg, zg;ω) =

∫
dx′

×{P (x′, 0; 0,−h;ω)
∂G

∂z′
(x′, 0;xg, zg;ω)−G(x′, 0;xg, zg;ω)

∂P

∂z′
(x′, 0; 0,−h;ω)}. [2]

Rearrange to get
∫
dx′G(x′, 0;xg, zg;ω)

∂P

∂z′
(x′, 0; 0,−h;ω)

=−A(ω)G(0,−h;xg, zg;ω) +

∫
dx′{P (x′, 0; 0,−h;ω)

∂G

∂z′
(x′, 0;xg, zg;ω)
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≡F (xg, zg; 0,−h;ω). [3]

Fourier transform equation [3] with respect to xg (using equation [5]), and substitute the bilinear
form of Green’s function (equation [4]),
∫
dxg exp (ikxg)F (xg, z

′; 0,−h;ω) =

∫
dxg exp (ikxg)

∫
dx′G(x′, 0;xg, z

′;ω)
∂P

∂z′
(x′, 0; 0,−h;ω)

F (k, z′; 0,−h;ω) =

∫
dxg exp (ikxg)

∫
dx′

π

2

∫
dk′

exp (−ik′(xg − x′)) exp (ik′zz
′)

2ik′z

∂P

∂z′
(x′, 0; 0,−h;ω).

Multiply both sides by 2ikz exp (−ikzz′),

2ikz exp (−ikzz′)F (k, z′; 0,−h;ω) = 2ikz exp (−ikzz′)
∫
dxg exp (ikxg)

∫
dx′

×π
2

∫
dk′

exp (−ik′(xg − x′)) exp (ik′zz
′)

2ik′z

∂P

∂z′
(x′, 0; 0,−h;ω).

Inverse Fourier transform with respect to k,
∫
dk exp (−ikx)2ikz exp (−ikzz′)F (k, z′; 0,−h;ω)

=

∫
dk exp (−ikx)2ikz exp (−ikzz′)

∫
dxg exp (ikxg)

×
∫
dx′

π

2

∫
dk′

exp (−ik′(xg − x′)) exp (ik′zz
′)

2ik′z

∂P

∂z′
(x′, 0; 0,−h;ω)

LHS =

∫
dk 2ikz exp (−ikx− ikzz′)F (k, z′; 0,−h;ω)

= RHS of equation [6].

RHS =
π

2

∫
dk

∫
dxg

∫
dx′
∫
dk′

2ikz
2ik′z

× exp (−ikx) exp (−ikzz′) exp (ikxg) exp (−ik′xg) exp (ik′x′) exp (ik′zz
′)
∂P

∂z′
(x′, 0; 0,−h;ω)

=
π

2

∫
dk

∫
dx′
∫
dk′

kz
k′z

exp (−ikx) exp (−ikzz′)
∫
dxg exp (−i(k′ − k)xg)

︸ ︷︷ ︸
2πδ(k′−k)

× exp (ik′x′) exp (ik′zz
′)
∂P

∂z′
(x′, 0; 0,−h;ω)

=
π

2

∫
dk

∫
dx′
∫
dk′

kz
k′z

× exp (−ikx) exp (−ikzz′)2πδ(k′ − k) exp (ik′x′) exp (ik′zz
′)
∂P

∂z′
(x′, 0; 0,−h;ω)

= π2

∫
dx′
∫
dk′

1

k′z

∫
dk kz exp (−ikx) exp (−ikzz′)δ(k′ − k)

︸ ︷︷ ︸
k′z exp (−ik′x) exp (−ik′zz′)
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× exp (ik′x′) exp (ik′zz
′)
∂P

∂z′
(x′, 0; 0,−h;ω)

= π2

∫
dx′
∫
dk′

1

k′z
k′z exp (−ik′x) exp (−ik′zz′) exp (ik′x′) exp (ik′zz

′)
∂P

∂z′
(x′, 0; 0,−h;ω)

= π2

∫
dx′
∫
dk′ exp (−ik′(x− x′))

︸ ︷︷ ︸
2πδ(x−x′)

1

k′z
k′z exp (ik′zz

′) exp (−ik′zz′)
︸ ︷︷ ︸

1

∂P

∂z′
(x′, 0; 0,−h;ω)

= 2π3

∫
dx′δ(x− x′)∂P

∂z′
(x′, 0; 0,−h;ω)

︸ ︷︷ ︸
∂P/∂z′(x,0;0,−h;ω)

= 2π3 ∂P

∂z′
(x, 0; 0,−h;ω)

= constant times LHS of equation [6].

11.9 Source arrays

Yang and Weglein (2013) have tested the effect of source arrays vs. point sources.
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Green’s theorem preprocessing and multiple attenuation: Acquisition
configuration impact and determining the reference velocity for on shore

application

L. Tang and A. B. Weglein

April 29, 2013

Abstract

In this report, we examine the impact of acquisition design on Green’s theorem-based wave
separation. Green’s theorem can separate the reference wave P0 and the scattered wave Ps from
the seismic data, depending on the choice of the observation point. It requires the wavefield and
its normal derivatives on the measurement surface as the input, which can be provided using an
over/under cable. The tests show that when the difference between the depths of the two cables
gets smaller, the wave separation results are clearer and more accurate. In addition, the choice
of the location of the predicted reference or scattered wave should be distant from the cable by
at least half of the length of the receiver interval in order to avoid residuals. The effect of the
interval between receivers is also considered.

1 Introduction

Preprocessing of the seismic data, including removal of reference waves, wavelet estimation, and re-
moval of ghosts, is very important in seismic data processing. The direct arrival does not experience
reflection from the earth, which is our ultimate goal, so it should be removed before the subsequent
analysis. The seismic data are affected by both the source signature and the properties of the earth.
Thus, we need to identify and remove the wavelet’s contribution from the seismic data by using
the information of the source signature (Weglein and Secrest (1990)). Deghosting will remove the
down-going wave from the scattered wave and will enhance the low-frequency contents of the data
(Zhang (2007), Mayhan and Weglein (2013)). These are the prerequisites of the following steps
of multiple removal and depth imaging in the Inverse Scattering Series (ISS) algorithm (Weglein
et al. (2003)). The consequences of and necessity for removing the reference wave and performing
deghosting in preparation for ISS multiple removal are discussed in Yang and Weglein (2013).

All three of these processing steps can be achieved by using Green’s theorem. It is an effective
method that is used in different aspects of seismic processing. In Weglein and Secrest (1990),
wave separation and wavelet estimation by using Green’s theorem are discussed. By performing an
integral along the measurement surface, we can predict the reference wave or the scattered wave,
depending on the choice of observation point. Green’s theorem can work in multiple dimensions and
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is especially powerful and effective in the case of interfering events, compared with other methods
such as simply muting the direct wave from the data, which leads to the loss of scattered wave
information.

In marine seismic exploration, dual-sensor cables that can measure both the pressure wave P and
the vertical velocities Vz are widely used. However, the two instruments of acquisition – geophone
and hydrophone – will perform differently under some bandwidths. Another acquisition tool being
employed recently is an over/under cable, which consists of two cables, each located at a different
depth. In out tests, we generated synthetic data using the reflectivity method at two depths to
model the over/under cable configuration.

This theory is implemented by Jim Mayhan in M-OSRP and has been tested in source and receiver
deghosting, wave prediction, and wavelet estimation for synthetic data and field data, both for
isolated events and for interfering events (Mayhan and Weglein (2013)). In this report we will
mainly focus the discussion on wave separation tasks. During tests using an over/under cable
configuration, we found that several factors can affect the accuracy and performance of the theory.
Here we studied the impacts of the depth difference between the over cable and the under cable,
the choice of the location of the predicted depth, and the interval of the receivers.

2 Theory

In scattering theory, we treat the actual medium as a combination of an unperturbed medium,
called the reference medium, and a perturbation. Correspondingly, the total measured wavefield P
is the summation of the reference wave P0 and the scattered wave Ps. P0 does not experience the
earth, which is our interest, thus we need to remove it before further processing and analysis. In the
marine environment, for the purpose of separating P0 and Ps, we choose as the reference medium a
half-space of water with speed c0 plus a half space of air. The reference wave then consists of two
parts: P d0 , which travels from the source to the receiver directly, plus the wave PFS0 , which goes
upward from the source to the air-water interface (the free surface) and then is reflected down to the
receiver. We consider an acoustic medium and assume that a point source and multiple receivers
are located at ~rs = (xs, ys, zs) and ~r = (x, y, z), where zs and z are the depths of the source and
receivers, respectively. The total wave P satisfies the acoustic wave equation

(
∇2 +

ω2

c2(~r)

)
P (~r, ~rs, ω) = A(ω)δ(~r − ~rs), (2.1)

where A(ω) is the source wavelet. Now, we introduce the perturbation α(~r), which is defined as

1

c2(~r)
=

1

c2
0

(1− α(~r)). (2.2)

Then Equation 2.1 becomes
(
∇2 +

ω2

c2
0

)
P (~r, ~rs, ω) =

ω2

c2
0

α(~r)P (~r, ~rs, ω) +A(ω)δ(~r − ~rs). (2.3)
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In the above equation, the perturbation α has two parts, αearth and αair. On the other hand, in
the reference world with the free surface, the Green’s function satisfies equation

(
∇′2 +

ω2

c2
0

)
G0(~r′, ~r, ω) = δ(~r′ − ~r)− δ(~r′ − ~rI). (2.4)

Here, ~rI is the image source mirrored by the free surface. We can see that G0 vanishes at the free
surface when z′ = 0. Green’s theorem gives the relationship of two arbitrary functions ψ and φ in
a volume V surrounded by surface S as,

∫

V

(
ψ(~r)∇2φ(~r)− φ(~r)∇2ψ(~r)

)
d~r

=

∮

S
[ψ(~r)∇φ(~r)− φ(~r)∇ψ(~r)] · d~S. (2.5)

Now, substituting ψ(~r) as P (~r′, ~rs, ω) and φ(~r) as G0(~r′, ~r, ω), and having ω2

c20
= k2 from Equation

2.3 and 2.4, we have

∫

V
P (~r′, ~rs, ω)

(
δ(~r′ − ~r)− δ(~r′ − ~rI)− k2G0(~r′, ~r, ω)

)
d~r′

−
∫

V
G0(~r′, ~r, ω)

(
A(ω)δ(~r′ − ~rs) + k2α(~r′)P (~r′, ~rs, ω)− k2P (~r′, ~rs, ω)

)
d~r′

=

∮

S

[
P (~r′, ~rs, ω)∇′G0(~r′, ~r, ω)−G0(~r′, ~r, ω)∇′P (~r′, ~rs, ω)

]
· d~S′. (2.6)

Next, by choosing the volume as the space between the free surface and the measurement surface,
and setting the observation point ~r below the cable, only the term of the actual source δ(~r′ − ~rs)
on the left-hand side of the equation will survive (only ~rs is inside the volume). Thus Equation 2.6
could be simplified as

A(ω)G0(~r, ~rs, ω) = −
∮

S

[
P (~r′, ~rs, ω)∇′G0(~r′, ~r, ω)−G0(~r′, ~r, ω)∇′P (~r′, ~rs, ω)

]
· d~S′

=

∫

m.s.

[
P (~r′, ~rs, ω)∇′G0(~r′, ~r, ω)−G0(~r′, ~r, ω)∇′P (~r′, ~rs, ω)

]
· ~ndr′. (2.7)

The left-hand side of Equation 2.7 is the reference wave P0, if we choose the causal Green’s function
G0. Therefore this equation will calculate the reference wave P0 below the cable by performing a
surface integral, which requires P and the normal derivatives of P on the surface. To convert the
surface integral to the integral along the measurement surface, we consider the properties of P and
G0 at the free surface, and the direction of d~S′ is defined as pointing out of the surface.

Likewise, if we choose the volume as the space below the measurement surface to infinity and set
the observation point ~r above the cable, then only the term with perturbation αearth will contribute
to the volume integral, and thus the Equation 2.6 becomes

∫

V
G0(~r′, ~r, ω)k2α(~r′)P (~r′, ~rs, ω)d~r′
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= −
∮

S

[
P (~r′, ~rs, ω)∇′G0(~r′, ~r, ω)−G0(~r′, ~r, ω)∇′P (~r′, ~rs, ω)

]
· d~S′

=

∫

m.s.

[
P (~r′, ~rs, ω)∇′G0(~r′, ~r, ω)−G0(~r′, ~r, ω)∇′P (~r′, ~rs, ω)

]
· ~ndr′. (2.8)

The volume integral represents the scattered wave that results from the “sources" inside the volume
(the earth), since when the perturbation α is zero, this quantity will vanish. In addition, because
the G0 here is the Green’s function in the reference world with the free surface, the scattered wave
also has the component of reflection from the free surface. We treat P and G0 at infinity as zero
(in accord with the Sommerfeld radiation condition) and choose the normal direction to simplify
the surface integral to the integral along the cable.

From Equations 2.7 and 2.8, we can see that given the wavefield P and the normal derivatives of
wavefield Pn on the measurement surface, we can easily calculate the reference wave P0 and the
scattered wave Ps, depending on the observation point we choose. In other words, the reference
wave and the scattered wave are separated by using Green’s theorem.

3 Factors that affect the wave-separation result

3.1 The depth difference between the upper cable and the lower cable

The above Green’s theorem-based theory for separation of the reference wave P0 and the scattered
wave Ps requires as input the wavefield P as well as its normal derivatives dP/dz at the measurement
surface. The wavefield P comes from the recorded data, whereas the normal derivatives need to be
calculated in the case of a geophone in the marine environment. When using an over/under cable,
an easy way to calculate the normal derivatives is to subtract the data of the upper cable from those
of the lower cable and then divide by their depth difference, i.e.,

dP ( z1+z2
2 )

dz
=
P (z2)− P (z1)

z2 − z1
. (3.1)

As the above equation shows, the normal derivative of P here is at the depth of (z1 + z2)/2, rather
than at z1 or z2, where wavefield P is measured. This mismatch may affect the wave separation
results.

In our synthetic tests using the reflectivity method, we first used a 1D acoustic model with the
source at 5m and two cables, one at a depth of 45m and one at 50m. Thus the two cables are
separated by 5m here. An example of the total wavefield at depth 50m is shown in Figure 1. Using
Green’s theorem, the scattered wave Ps is predicted at 20m and P0 is predicted at 80m, as shown
in Figure 2. Next, we reduced the depth difference between the two cables to 1m (one cable at
49m, the other at 50m), and in that case performing the integral gives the predicted Ps at 20m and
P0 at 80m as shown in Figure 3. From these two results, we can clearly see that when the depth
difference is 5m, as in Figure 2, there are several residuals in both cases of P0 and Ps, while in
Figure 3, the predicted results are very clean. This indicates that reducing the difference in cable
depths can significantly increase the accuracy of wave separation results, since the depth of Pn now
matches better with the depth of P in the Green’s theorem integral.
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3.2 The choice of predicted cable depth

Other factors may affect the estimated results, too. The actual experiment shows that the choice of
the predicted cable depth can change the quality of the result. Figure 4 shows the choice of different
depths when predicting the scattered wave Ps using the same over/under cable located at 49m and
50m. Here we define the depth difference between the predicted cable and the measurement surface
as 4z. We also define the interval between receivers as 4x. As we can see, the predicted result
has many residuals when 4z is very small compared with 4x. Only when 4z is at least half of
4x are the predicted results acceptable. Likewise, Figure 5 shows the predicted results of P0 at
different depths. We again got the similar conclusion that only when the depth difference between
the predicted cable and the actual cable is larger than at least 1/2 of the interval of receivers, does
the predicted direct wave have few residuals.

This requirement so far is empirically identified. One possible reason behind it lies in the form of
Green’s function that is used and in its derivatives in the frequency domain. For example, in the
2D case, the Green’s function and its derivatives are

G0(~r, ~r′, ω) = − i
4

(H
(1)
0 (kR+)−H(1)

0 (kR_)), (3.2)

∂G0

∂z′
(~r, ~r′, ω) = − ik

4

(
H

(1)
1 (kR+)

z − z′
R+

+H
(1)
1 (kR_)

z + z′

R_

)
, (3.3)

where R± =
√

(x− x′)2 + (y − y′)2 + (z ∓ z′)2. From the above expressions, we can see that the
term of z−z′

R+
in ∂G0

∂z′ contains z − z′, which is the 4z we defined above. When 4z is very small,
there might be some numerical issue occurs at the term of z−z

′
R+

in ∂G0
∂z′ .

3.3 Interval between receivers

The Green’s theorem performs an integral along the measurement surface in theory, which in reality
becomes a summation over the receivers. Then it is natural to think that reducing the interval
between receivers could make the summation be more closer to an integral. Figure 6 and Figure
7 shows the results of P0 and Ps using cables with different receiver intervals 4x of 1m, 5m, and
12.5m, respectively. The results show barely any difference between them; the estimated results
are not improved when the receiver interval gets smaller, nor do the results get worse when the
interval is larger. One probable explanation is that a 12.5m interval is good enough to imitate the
integral as Green’s theorem describes. If the spacial sampling is larger than 12.5m, it will be larger
than Nyquist rate and producing alias effect, since we are using a Ricker wavelet with maximum
frequency of 60 Hz.

4 Conclusions

In this paper we examined the wave separation results obtained by using Green’s theorem under
different conditions. The effects of (1) the difference in the depth between the over cable and the
under cable, (2) the choice of the location of the predicted reference wave or scattered wave, and
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(3) the receiver intervals, are studied and tested. The tests show that to get good wave separation
results, the depth difference between the two cables should be quite small, and we choose to predict
the wave far enough away from the cable (at least 1/2 4x). In addition, the receiver interval 4x
can be as large as 12.5m and still give good prediction results.
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Figure 1: Total wavefield P at 50m.
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(a) (b) 

Figure 2: Using an over/under cable with a 5m depth difference. (a) Ps predicted at 20m, (b) P0

predicted at 80m.
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(a) (b) 

Figure 3: Using an over/under cable with a 1m depth difference. (a) Ps predicted at 20m, (b) P0

predicted at 80m.

93



Preprocessing and impact M-OSRP12

0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e(
s)

100 200 300 400
Trace Number

-1.0 -0.5 0 0.5 1.0

0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e(
s)

100 200 300 400
Trace Number

-1.0 -0.5 0 0.5 1.0
0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e(
s)

100 200 300 400
Trace Number

-1.0 -0.5 0 0.5 1.0

0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e(
s)

100 200 300 400
Trace Number

-1.0 -0.5 0 0.5 1.0Figure 4: Predicted Ps at: (a) 48.43m (4z =1/8 4x), (b) 46.88m (4z =1/4 4x), (c) 43.75m (4z
=1/2 4x), and (d) 37.5m (4z = 4x).

94



Preprocessing and impact M-OSRP12

0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e(
s)

100 200 300 400
Trace Number

-1.0 -0.5 0 0.5 1.0

0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e(
s)

100 200 300 400
Trace Number

-1.0 -0.5 0 0.5 1.0
0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e(
s)

100 200 300 400
Trace Number

-1.0 -0.5 0 0.5 1.0

0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e(
s)

100 200 300 400
Trace Number

-1.0 -0.5 0 0.5 1.0Figure 5: Predicted P0 at: (a) 51.56m (4z =1/8 4x), (b) 53.13m (4z =1/4 4x), (c) 56.25m (4z
=1/2 4x), and (d) 62.5m (4z = 4x).

95



Preprocessing and impact M-OSRP12

0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e(
s)

2000 4000 6000
Trace Number

-1.0 -0.5 0 0.5 1.0

0

0.5

1.0

1.5

2.0

2.5

T
im

e(
s)

200 400 600 800 1000 1200
Trace Number

-1.0 -0.5 0 0.5 1.0
0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e(
s)

100 200 300 400
Trace Number

-1.0 -0.5 0 0.5 1.0Figure 6: Predicted Ps using the receiver interval: (a) 4x=1m, (b) 4x=5m, and (c) 4x=12.5m

96



Preprocessing and impact M-OSRP12

0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e(
s)

2000 4000 6000
Trace Number

-1.0 -0.5 0 0.5 1.0

0

0.5

1.0

1.5

2.0

2.5

T
im

e(
s)

200 400 600 800 1000 1200
Trace Number

-1.0 -0.5 0 0.5 1.0
0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e(
s)

100 200 300 400
Trace Number

-1.0 -0.5 0 0.5 1.0Figure 7: Predicted P0 using the receiver interval: (a) 4x=1m, (b) 4x=5m, and (c) 4x=12.5m.

97



Preprocessing and impact M-OSRP12

References

Mayhan, J.D. and A. B. Weglein. “Green’s theorem-derived deghosting of marine seismic data.”
Mission-Oriented Seismic Research Program Annual Report (2013).

Weglein, A. B., F. V. Araújo, P. M. Carvalho, R. H. Stolt, K. H. Matson, R. T. Coates, D. Corrigan,
D. J. Foster, S. A. Shaw, and H. Zhang. “Inverse Scattering Series and Seismic Exploration.”
Inverse Problems (2003): R27–R83.

Weglein, Arthur B. and Bruce G. Secrest. “Wavelet estimation for a multidimensional acoustic earth
model.” Geophysics 55 (July 1990): 902–913.

Yang, J. and A. B. Weglein. “ISS free-surface multiple removal for source array data with interfering
primaries and multiples.” Mission-Oriented Seismic Research Program Annual Report (2013).

Zhang, J. Wave theory based data preparation for inverse scattering multiple removal, depth imaging
and parameter estimation: analysis and numerical tests of Green’s theorem deghosting theory.
PhD thesis, University of Houston, 2007.

98



Comparison and analysis of space and temporal frequency, and, spatial
wave-number and temporal frequency ( e.g., P-Vz ) Green’s theorem
de-ghosting methods, with different receiver spacing and aperture:

Implications for 3 D de-ghosting

Jing Wu, Arthur B.Weglein and James D. Mayhan

April 29, 2013

Abstract

As one important segment of preprocessing, the result of deghosting influences the following pro-
cessing steps.To thoroughly understand Green’s theorem-derived deghosting, which is achieved
by an integral in the frequency-space domain, the analysis and comparison are made with P+Vz
deghosting method, which is achieved in the frequency-wavenumber domain. Under some specific
assumptions, these two methods are equivalent. However, some influential factorsâĂŞâĂŞthe
spatial sampling interval, spatial aperture, and vertical component of the wavenumberâĂŞâĂŞ
cause these two methods have different numerical results.

1 Introduction

Deghosting is not only important for the following processing steps, but it also acts as a challenge for
seismic exploration and its applications in the oil industry. Amundseen (1993) proposed a deghosting
method (P+Vz for short),which achieves receiver deghosting in the frequency-wavenumber domain.
The method requires the acquisition geometry to be horizontal in order to obtain the accurate
vertical component of velocity., Additionally, the algorithm suitable for a1Dmedium or for one that
is approximately horizontal in order to make a 0th Hankel Transform.

With the development of Green’s theorem (Weglein et al. (2002);Zhang and Weglein (2005);Zhang
and Weglein (2006)), another method for deghosting has become available. On the basis of its advan-
tageous flexibility in choosing an appropriate reference medium, Zhang (2007) and Mayhan et al.
(2012) developed a Green’s theorem-derived deghosting method, which is achieved in frequency-
space domain.There are no assumptions acting on the Green’s theorem deghosting. It has a wider
application range than does P+Vz, especially for a complicated subsurface and in difficult acquisition
conditions.

In this paper, the theoretical equivalence between these two methods will be demonstrated by
setting some specific assumptions. As P+Vz is achieved in the frequency-wavenumber domain, the
spatial sampling interval and spatial aperture are two important factors affecting the final result.
In addition, since the vertical component of wavenumber is a denominator in P+Vz formula, the
singularity may cause instability and artifact. Thus, those factors will be analyzed and compared
individually between these two deghosting methods in different domains.
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2 Theoretical equivalence between two deghosting methods

Under the assumption of the horizontal acquisition geometry and a1D medium, the P+Vz formula
for receiver deghosting is

U(kr, z
′, rs, zs, ω) =

1

2
[P (kr, z

′, rs, zs, ω)− ρω

kz
Vz(kr, z

′, rs, zs, ω)]. (2.1)

where U is upgoing wave; P is pressure field data ; Vz is the vertical component of partial velocity;
kr is horizontal wavenumber; kz is vertical wavenumber; xs, zs is source location; z′ is measurement
depth; rho is density of water; omega is circular frequency.

For Green’s theorem deghosting, the homogeneous whole space of water is chosen as reference
medium. The air, air gun, and earth are treated as three sources. After choosing the volume V as
the half space above the measurement surface, we can arrive at the formula for receiver deghosting.
The result corresponds to the upgoing waves, which is caused by the contribution from the earth.
The formula is

P ′R(r, rs, ω) =

∫

m.s.
dS[P (r′, rs, ω)

∂

∂n′
Gd0(r, r′, ω)−Gd0(r, r′, ω)

∂

∂n′
P (r′, rs, ω)]. (2.2)

where P ′R is receiver deghosting wave at position r; P and ∂
∂n′P are pressure field data and gradient

of pressure on the measurement surfacer′ respectively.

Gd0 is the Green’s function for a point source in a whole-space water medium, and it has the following
format:

Gd0(r, r′, ω) = −1/4πexp(ikR+)/R+. (2.3)

where R+ = |r − r′|.
So now if after applying spatial Fourier transform on Green’s theorem deghosting formula, the new
form is same as the one given by P+Vz, we can say these two methods are theoretically equivalent.

2.1 Derivation of P+Vz from Green’s theorem (take point source as an exam-
ple)

For a point source, with a horizontal receiver cable (the first assumption), the Green’s theorem
deghosting formula can be written as

P ′R(x, y, z, xs, ys, zs, ω) =

∫∫
dx′dy[P (x′, y, z′, xs, ys, zs, ω)

∂

∂z′
Gd0(x, y, z, x′, y, z′, ω)

−Gd0(x, y, z, x′, y, z′, ω)
∂

∂z′
P (x′, y, z′, xs, ys, zs, ω)]. (2.4)

With constant velocity, Gd0 is invariant under lateral translation, so

Gd0(x, y, z, x′, y, z′, ω) = Gd0(x− x′, y − y, z, , z′, ω). (2.5)
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Then equation(4) can be written as

P ′R(x, y, z, xs, ys, zs, ω) =

∫∫
dx′dy[P (x′, z′, xs, zs, ω)

∂

∂z′
Gd0(x− x′, y − y, z, , z′, ω)

−Gd0(x− x′, y − y, z, , z′, ω)
∂

∂z′
P (x′, z′, xs, zs, ω)] (2.6)

Equation 6 is clearly a two-dimension convolution format, so when we are transforming to wavenum-
ber domain( kx, ky ) from the space domain( x, y ), the result shows as a product. If the medium
is 1D (the second assumption), then 2D Fourier Transform can be replaced by Hankel transform to
improve calculation speed.Then

P ′R(kr, z, rs, zs, ω) = P (kr, z
′, rs, zs, ω)

∂

∂z′
Gd0(kr, z, z

′, ω)

−Gd0(kr, z, z
′, ω)

∂

∂z′
P (kr, z

′, rs, zs, ω). (2.7)

Gd0(kr, z, z
′, ω) can be written as:

Gd0(kx, z, z
′, ω) =

eikz(z′−z)

2ikz
. (2.8)

where kz =
√

w2

c2
− k2

r .

∂

∂z′
Gd0(kr, z, z

′, ω) =
eikz(z′−z)

2
. (2.9)

Substituting formulas(8) and (9) into formula (7),

P ′R(kr, z, rs, zs, ω) = P (kr, z
′, xs, zs, ω)

eikz(z′−z)

2
− eikz(z′−z)

2ikz

∂

∂z′
P (kr, z

′, xs, zs, ω).

= eikr(z
′−z) ∗ 1

2
[P (kr, z

′, rs, zs, ω)− 1

ikz

∂

∂z′
P (kr, z

′, rs, zs, ω)]. (2.10)

eikz(z′−z) represents upward continuation from z′ to z. When z = z′,we get

P ′R(kr, z
′, rs, zs, ω) =

1

2
[P (kr, z

′, rs, zs, ω)− 1

ikz

∂

∂z′
P (kr, z

′, rs, zs, ω)]. (2.11)

Substituting equation (12) into equation(11),

∂

∂z
P = iρωVz. (2.12)

We arrive at

P ′R(kr, z
′, rs, zs, ω) =

1

2
[P (kr, z

′, rs, zs, ω)− ρω

kz
Vz(kr, z

′, rs, zs, ω)]. (2.13)

This resulting equation is the same as the P+Vz formula (equation (1), above). Thus, to some
extent, we can say that these two methods are theoretically equivalent and just are calculated
in different domains. Without those constraints, the Green’s theorem deghosting has a broader
application.
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2.2 Derivation of P+Vzfrom Green’s theorem (take Line source as an example)

For a line source, the derivation is similar to that for a point source, except we only require a 1D
spatial transform from x to kx. Again, we get the same conclusion that these two methods are
theoretically equivalent under some assumptions. Only horizontal acquisition geometry is needed
here but without 1D medium, since no Hankel Transform.

3 Analysis of numerical influencing factors

With regard to wavenumber, we cannot ignore the effect from spatial sampling interval and spatial
aperture. Those effects may contaminate the result or make it lose its resolution and in so doing
sometimes may make the profile even worse. In this section, we will discuss the influences of
these two factors separately. After that, another influential factor, vertical wavenumber kz, will be
analyzed.

3.1 Influence factor - spatial sample interval

In order to prevent alias, the sampling interval should satisfies the Nyquist Condition:

∆x ≤ π

kmax
. (3.1)

∆t ≤ π

ωmax
. (3.2)

By using the dispersion relation,

kmax ≤
ωmax
c

. (3.3)

Finally, the spatial sample interval should satisfy:

∆x ≤ πc

ωmax
. (3.4)

So the spatial sampling interval should be very small to prevent alias. Both the calculations in
space and wavenumber-domain will be effected by this factor. So low-pass filter is an inevitable step
before calculation.

3.2 Influence factor - spatial aperture

We can treat the limited-aperture data as a result of truncation acting on the unlimited-aperture
data. The calculations with limited-aperture data, no matter the integral in space domain or product
in wavenumber domain, will produce edge effect and weighted sum. To reduce the influence of edge
effect, we need add a smoothing window on the truncated data. But for weighted sum, the only
way to get an accurate result is increase aperture.

102



Preprocessing and impact M-OSRP12

On the basis of the formula of equation (3), Gd0with point source reduces when going away from
the âĂĲsourceâĂİ point r′, meanwhile ∂

∂z′G
d
0 reduces even faster. So the integral will get an stable

result even with small aperture, although it’s less accurate under such condition.

Amundsen (1993) gave some analysis of the influence of limited spatial aperture on P+Vz. The
relation between finite-aperture [r1, r2] data P̂ (kr, z

′, ω)and infinite-aperture data P (kr, z
′, ω) is

P̂ (kr, z
′, ω) =

∫ r2

r1

drrJ0(krr)

∫ ∞

0
dk′rk

′
rJ0(k′rr)P (k′r, z, ω)

=

∫ ∞

0
dk′rK(r1, r2, k

′
r, kr)P (kr, z, ω) (3.5)

with a resolution kernel

K(r1, r2, k
′
r, kr) = K(r2, k

′
r, kr)−K(r1, k

′
r, kr) (3.6)

K(r, k′r, kr) = k′r

∫ r

0
drrJ0(k′rr)J0(krr)

= k′r
rkrJ1(rkr)J0(rk′r)− rk′rJ1(rk′r)j0(rkr)

k2
r − k′2r

. (3.7)

Obviously, the result of P+Vz depends on the aperture, both on the near and far offset.

3.3 Influence of kz

In the P+Vz formula, the vertical wavenumber component kz works as a denominator. The result
will be unstable when the value of kz, which is a factor of denominator, is very small.

As we know, kz =
√

w2

c2
− k2

r . The biggest value of both
w
c and kr are usually less than 1, so it’s not

difficult to understand that kz is a small value, especially when the former two values are close to
each other. The result will not be exact whether we add a small value after such kz or pass through
these points. As around these points, the calculation becomes very sensitive, a small change of
kz may exert a huge influence. Additionally, ignoring these points is at the cost of reducing the
method’s deghosting effectiveness. Especially when the ghost events have a dip angle at the far
offset, kz is very small. Ignoring these points cannot remove the ghost in these areas. So the
reference wave often has residual after calculation.

4 Conclusion and Discussion

Both of the two methods examined here are achieved by rigorous theoretical derivation and have
validity. In addition, they are in principle equivalent if we invoke some specific assumptions on
Green’s theorem-deghosting formula, which demonstrates the greater applicability of Green’s theo-
rem deghosting method and the limitations of P+Vz deghosting method.

There are some conclusions we can draw after analyzing the different factors.(1) If the spatial
sampling interval is small enough and the spatial aperture is big, both of these methods can give
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a satisfactory result and Green’s theorem-deghosting method may give a even better result. (2) If
the events have a big dip angle in the far offset, then the P+Vz method becomes unstable; however,
the Green’s theorem-deghosting method is still useful. (3) If the deghosting result is requested to
be at the depth of the cable, P+Vz exactly satisfies the requirement; Green’s theorem deghosting
will lose effectiveness if the target depth is too close to the cable depth. (4) When the subsurface is
more complicated, Green’s theorem deghosting can give a more satisfactory result.
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Abstract

This report discusses free-surface multiple removal from source-array data that have interfer-
ing or proximal primaries and multiples, by using the inverse scattering series (ISS) method
(Carvalho, 1992; Weglein et al., 1997; 2003). If all the prerequisites are provided, the ISS free-
surface multiple elimination (FSME) algorithm can accurately predict the free-surface multiples
for the interfering data. Therefore, through a simple subtraction, the ISS method can remove
the free-surface multiples without any subsurface information. After removing the free-surface
multiples, the ISS internal multiple attenuation algorithm (Araújo et al., 1994; Weglein et al.,
1997) with and without deconvolution of source wavelet is also tested. The test results show
that with deconvolving the source wavelet, the internal multiple attenuation algorithm provides
more accurate amplitude and shape of the predicted internal multiple.

1 Introduction

In marine seismic exploration, multiple removal is a classic long-standing problem. Various methods
(e.g., Carvalho, 1992; Verschuur et al., 1992; Araújo et al., 1994; Weglein et al., 1997; Berkhout
and Verschuur, 1999; Dragoset et al., 2008) have been developed to either attenuate or eliminate
free-surface and internal multiples, and each method has different assumptions, advantages, and
limitations.

Among these methods, the ISS FSME method (Carvalho, 1992; Weglein et al., 1997) does not
need any subsurface information, which is a big advantage, especially under conditions of complex
geology. The ISS method predicts the free-surface multiples accurately while the feedback-loop
method (Verschuur et al., 1992) only provides approximate predictions. Therefore, the ISS method
can remove the free-surface multiples through a simple subtraction, while the feedback-loop method
has to remove the multiples adaptively using certain criteria (energy minimization, for example).
The energy minimization criterion works well when there are no overlapping primaries and multiples
in the input data. If primaries and multiples are overlapping and interfering destructively, the
energy minimization criterion can fail and the adaptive subtraction will not work very well. The
ISS method can in principle predict the multiples accurately if all of the requirements are provided.
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The prerequisites include (1) removing the reference wavefield, (2) an estimation of the source
wavelet and radiation pattern, (3) an obliquity factor, and (4) source and receiver deghosting.
Green’s theorem wave separation methods (Weglein and Secrest, 1990; Weglein et al., 2002) that
are consistent with the ISS method have been applied to provide these criteria, since they are both
multidimensional wave theoretic methods and do not need any subsurface information.

The current ISS FSME method (e.g., Carvalho, 1992; Araújo, 1994; Weglein et al., 1997) assumes
an isotropic point source, i.e., the source has no variation of amplitude or phase with take-off angle.
In actual marine seismic exploration, a source array is widely employed to increase the power of the
source, broaden the bandwidth, and cancel the random noise. The source array is usually designed
to make its signature short and sharp in the vertical-downward direction and to render its spectrum
smooth and broad over the frequency band of interest (Giles and Johnston, 1973; Nooteboom,
1978; Brandsaeter et al., 1979). A large marine air-gun array will exhibit directivity and produce
significant variations of the source signature (Loveridge et al., 1984). That directivity has significant
effects on AVO analysis and removing or attenuating multiples. In seismic processing, it is essential
that we characterize the source (and receiver) array’s effect on any seismic processing methods.
Therefore, to improve the accuracy of the predicted multiples, the ISS FSME algorithm is extended
by accommodating a source array. That accommodation can enhance the fidelity of amplitude and
phase prediction of free surface multiples at all offsets.

Furthermore, the current ISS internal attenuation algorithm (Araújo et al., 1994; Weglein et al.,
1997) predicts the correct travel-times and only approximate amplitudes of all the internal multiples,
because the input data is band limited and the ISS subseries for internal multiple is attenuation
but not elimination. In addition, in the internal multiple attenuation algorithm we assume that the
input data are a spike data. However, the data usually convolve with a source wavelet. The source
wavelet has significant effects on the shape and amplitude of the predicted internal multiples. To
improve the shape and amplitude of internal multiple prediction, the internal multiple attenuation
algorithm is modified and tested by incorporating the source wavelet.

If multiples are removed completely, the residual multiples presented in the final migration images
can affect Amplitude-Versus-Offset (AVO) analysis and then make the subsequent seismic interpre-
tation work harder, and in some cases they may lead to incorrect interpretation. For example, in
the Gulf of Mexico, these residual multiples can be mistakenly interpreted as subsalt primary reflec-
tions and can also lead to inaccurate salt-body definitions. Hence, effective demultiple algorithms
are required in marine seismic data processing.

The report is organized as follows: First, the modified ISS FSME algorithm (Yang and Weglein,
2012) is briefly reviewed and analyzed. Second, the synthetic data with interfering events are tested
by using both the current and the modified ISS FSME algorithms. Third, the internal multiple
attenuation algorithm with and without deconvolution of source wavelet is tested. Finally, we
discuss our findings and conclusions.
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Figure 1: The reference Green’s function G0 consists of two parts: G0 = Gd0 +Gfs0 . Gd0 is the direct
Green’s function, and Gfs0 is the additional part of the Green’s function caused by the presence of
the free surface.

2 The ISS FSME algorithm with source array

Starting from two basic differential equations (Weglein et al., 2003), which govern wave propagation
in an actual medium and a reference medium, respectively,

LP = ρ (2.1)

L0G0 = δ, (2.2)

the forward and inverse scattering series can be derived. Here L and L0 are respectively the
differential operators in the actual media and the reference media. The perturbation V can be
defined as L0−L. G0 is the Green’s function in the reference medium, and P is the total wavefield
in the actual medium; that wavefield is generated by an arbitrary source distribution ρ.

As we know, if a given term in the forward scattering series creates a certain type of data, that term
in the inverse scattering series removes that type of data; e.g., if there is no free surface, there are no
ghosts and free-surface multiples in the data. Hence, the reference Green’s function G0 must consist
of two contributions: the direct arrival Gd0 and its ghost GFS0 , shown in figure 1, where GFS0 acts to
create (in the forward series) and remove (in the inverse series) ghosts and free-surface multiples.

The inverse scattering series algorithm for free-surface multiple removal is derived as follows:

(1) The data D are calculated by removing the reference wavefield P0 from the total wavefield P
on the measurement surface. In Tang’s report (Tang and Weglein, 2013), the authors discuss how
to obtain an accurate P0 by adjusting the measurement parameters.

(2) Using Green’s theorem (Zhang, 2007; Mayhan and Weglein, 2013) deghosting algorithm, both
source and receiver side deghosted data D′1 are obtained as

D′1 = Gd0V1P
d
0 , (2.3)

where the deghosted data D′1 are also the first term in the series for data without free-surface effects
and P d0 is the direct reference wavefield, which can be solved by deghosting P0.
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(3) V1 can be expressed in terms of the deghosted data from equation 2.3 (the first-order equation
in the data) by inverting Gd0 and P d0 .

(4) Substituting V1 into the second-order free-surface subseries and replacing the inner Green’s
function G0 with GFS0 , the second-order term is obtained as

D′2 = Gd0V
′

2P
d
0 = −Gd0V1G

FS
0 V1P

d
0 (2.4)

by choosing the portion of V2 in terms of the presence of the free surface.

(5) The final expression is a series for deghosted and free-surface demultipled data D′ in terms of
deghosted data D′1 and the projection of the source signature ρ(k, q, ω), as follows:

D′n(kg, ks, ω) =
1

iπ

∫
dk

ρ(k, q, ω)
D′1(kg, k, ω)qeiq(εg+εs)D′n−1(k, ks, ω), (2.5)

and

D′(kg, ks, ω) =

∞∑

n=1

D′n(kg, ks, ω), (2.6)

where kg, ks and ω represent the Fourier conjugates of receiver, source, and time, respectively. εg
and εs are the receivers’ and sources’ depth below the free surface, respectively. The obliquity factor
q is given by q = sgn(ω)

√
ω2/c2

0 − k2, and c0 is the reference velocity. ρ(k, q, ω) is the projection
of source signature in the f -k domain and k2 + q2 = ω2/c2

0. The projection of source signature
ρ(k, q, ω) can be directly achieved from the reference wavefield that is separated from the measured
data by using Green’s theorem method (Weglein and Secrest, 1990) by choosing air-water as its
reference medium.

To obtain the projection of the source signature ρ(k, q, ω) from the reference wavefield, we assume
that the source array is invariant from one shot to the next. In other words, the geometry or the
distribution of the source array remains for each shot. The direct reference wavefield P d0 for a 2D
case can be expressed as an integral of the direct reference Green’s function Gd0 over all air-guns in
an array,

P d0 (x, z, xs, zs, ω) =

∫
dx′dz′ρ(x′, z′, ω)Gd0(x, z, x′ + xs, z

′ + zs, ω), (2.7)

where (x, z) and (xs, zs) are the prediction point and source point, respectively. (x′, z′) is the
distribution of the source with respect to the source locator (xs, zs). Using the bilinear form of
Green’s function and Fourier transforming over x, we obtain the relationship between ρ and P d0 as

P d0 (k, z, xs, zs, ω) = ρ(k, q, ω)
eiq|z−zs|

2iq
eikx. (2.8)

Since k2 +q2 = ω2/c2
0, q is not a free variable, hence, we can not obtain ρ(x, z, ω) in space-frequency

domain by taking an inverse Fourier transform on ρ(k, q, ω). However, the projection of the source
signature ρ(k, q, ω) can always be achieved directly from the direct reference wavefield P d0 in the f -k
domain, where the variable k or q represent the amplitude variations of the source signature with
angles. Ikelle et al. (1997) also proposed a similar quantity A(k, ω), the inverse source wavelet, and
solved it indirectly using the energy minimization criterion.

108



Multiple attenuation part I M-OSRP12

The modified algorithm accommodates a source (and receiver) array and can provide added value
compared to previous methods that assumed a single point source (air-gun) for the fidelity of
amplitude and phase prediction of free surface multiples at all offsets. The modified FSME algorithm
is fully multidimensional and does not require any subsurface information. Therefore, it is consistent
with Green’s theorem methods that provide all the data requirements. The details of the derivation
for equations 2.5 and 2.8 can be found in last annual report (Yang and Weglein, 2012). In addition,
the modified FSME algorithm is also consistent with the current FSME algorithm (Carvalho, 1992;
Weglein et al., 1997; 2003) when the source array reduces to a point source. When the source array
reduces to an isotropic point source A(ω), the source distribution ρ(~r′−~rs, ω) becomes A(ω)δ(~r′−~rs)
and the direct reference wavefield P d0 becomes A(ω)Gd0. Thus, the recursive expression equation 2.5
reduces to

D′n(kg, ks, ω) =
1

iπA(ω)

∫
dkD′1(kg, k, ω)qeiq(εg+εs)D′n−1(k, ks, ω), (2.9)

which is exactly the current FSME algorithm.

3 Free-surface multiple removal for synthetic data with interfering primaries
and multiples

In this section, I will show numerical tests of the free-surface multiple removal for both the point-
source data and the source-array data with interfering primaries and multiples. The numerical tests
are based on a simple 1D acoustic model with varying velocity and constant density, as shown in
Figure 2a. The model has one shallow reflector at 90m, so the primary is interfering and overlapping
with the free-surface multiples. The depths of the source and receiver are 7m and 9m, respectively.
Using the Cagniard-de Hoop method, we generate the synthetic data for this model by applying two
kinds of source separately: one is a point source and the other is a source array, as shown in Figure
2b. Here, we assume that the source array only varies laterally with identical source signatures, but
this assumption is not necessary in the ISS FSME theory. The advantage of the Cagniard-de Hoop
method is that we can accurately calculate any specific event we are interested in, so that we can
compare it with the results predicted by our ISS FSME algorithm.

The ISS free-surface multiple elimination method has the ability to predict accurately the phase and
amplitude of multiples if its pre-requisites (acquisition signature and deghosted data) are satisfied.
If the input data are not deghosted, ISS free-surface multiple removal method can predict the
exact phase but only approximate amplitude of multiples. For example, Figure 3a is the input
data with ghosts. Inputting it into ISS free-surface multiple elimination algorithm, Figures 3b is its
corresponding free-surface multiple prediction. Figure 3c shows the result after free-surface multiple
removal through a simple subtraction. We can see that the multiples are not removed and even
worse the primary is altered. Therefore, to remove the multiples effectively, the input data should
be deghosted before inputting into the ISS FSME algorithm.

3.1 Free-surface multiple removal for the point-source data

The data are generated by an isotropic point source by using the Cagniard-de Hoop method. For
simplicity, only the primary and the first-order free-surface multiple are generated, as shown in
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(a) (b)

Figure 2: (a) One-dimensional acoustic constant-density medium. The depths of source, receiver,
and water bottom are 7m, 9m, and 90m, respectively. The trace interval is 3m. (b) Two sources
are applied in the model, one with a point source and another with nine point sources. The range
of the source array is 24m.
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Figure 3: (a) Input data with ghosts; (b) The free-surface multiple prediction; (c) After free-surface
multiple removal through a simple subtraction.

Figure 4a. Here, we assume the ghosts are not generated or have been removed. Figure 4a indicates
that the primary and free-surface multiple are overlapping when the offset exceeds approximately
1000m. Furthermore, in Figure 4c it can be seen that they are destructively overlapping. Therefore,
the adaptive subtraction method cannot deal with this kind of situation, because the method is based
on the energy-minimization criterion, which assumes that the energy of the data will be minimized
after the multiples are removed. However, in this case, the energy increases after removal of the
multiples.

Since the data are a point-source data, we can apply the current FSME algorithm (Carvalho,
1992; Weglein et al., 1997; 2003) to predict free-surface multiples. The current FSME algorithm
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Figure 4: (a) The point-source data set; (b) After removing the free-surface multiple from the
point-source data; (c) and (d) are their corresponding wiggle plots for the traces from 1330 to 1420
(offset from 1590m to 1860m).

is sufficient to predict both the accurate amplitude and phase of the free-surface multiples. Then,
through a simple subtraction, the free-surface multiples can be removed completely, as shown in
Figure 4b. For details, picking one trace (offset = 1800m) from each of the two Figures 4a and 4b
and comparing them, we can see that the amplitude of the primary increases after the free-surface
multiples are removed, as shown in Figure 5. That is the reason why the energy-minimization
criterion can fail in this case.

111



Multiple attenuation part I M-OSRP12

1.2

1.4

T
im

e(
s)

-0.010 -0.005 0 0.005 0.010
Amplitude

Figure 5: The wiggle plot for one trace at offset = 1800m: Blue: the input data (primary and
the first-order free-surface multiple); Green dash: after removing free-surface multiple; Red: the
original primary. After free-surface multiple removal, the primary is boosted.

3.2 Free-surface multiple removal for the source-array data

The source-array data are generated by nine point sources. Here, we assume the nine point sources
are identical and aligning in one line; in other words, the source array only varies laterally. Similarly,
using the Cagniard-de Hoop method, only the primary and the first-order free-surface multiple
are produced, as shown in Figure 6a. The primary and multiple are overlapping and interfering
destructively, hence, only the ISS method may be able to remove the free-surface multiples.

For the source-array data, we first apply the current FSME algorithm to predict the free-surface
multiples. It predicts phase accurately but only an approximate amplitude. After removing the free-
surface multiple, Figure 6b shows that most multiples are removed, but there are still some residual
multiples. Whether this result is valuable or not depends on the objective. If the amplitude is
not critical, then this method is sufficient. For cases like AVO analysis and inversion, in which the
amplitude is important, such residual multiples could produce serious errors in the prediction.

Next, we apply the modified FSME algorithm (Yang and Weglein, 2012) to predict the free-surface
multiples. It can predict both amplitude and phase very accurately for the source-array data. After
a simple subtraction, all the multiples are eliminated completely, as shown in Figure 6c. Therefore,
the modified FSME algorithm works very well for the source-array data that have interfering events.
Comparing Figures 6f and 6e, we can see that the primary is still affected by the residual multiple in
Figure 6e, while in Figure 6f, the primary remains untouched as the original primary. For detail, we
pick one trace (offset = 1800m) from each of these two figures and compare them. The results are
plotted in figure 7. The primary in Figure 6e is weaker than that in Figure 6f, and this amplitude
error can seriously affect AVO analysis.

The numerical tests in (Yang et al., 2013) also show more details about how to obtain the direct
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Figure 6: (a) The source array data set; After the free-surface multiple removal (b) using the
current FSME algorithm and (c) using the modified FSME algorithm. (d), (e), and (f) are their
corresponding wiggle plots for the traces from 1330 to 1420 (offset from 1590m to 1860m).

reference wavefield and source and receiver deghosted data. These numerical tests for the synthetic
data with interfering events have demonstrated the effectiveness and advantages of the ISS FSME
method. For point-source data the current FSME algorithm is sufficient to remove free-surface
multiples, while for source-array data the modified FSME algorithm leads to very accurate results.

4 Internal multiple attenuation with and without deconvolution of source wavelet

The output of the free-surface multiple elimination algorithm will input the ISS internal multiple
attenuation algorithm. In this section, the internal multiple attenuation algorithm with and without
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Figure 7: The wiggle plot for one trace (offset = 1800m) after removing the free-surface multiple:
Blue: using the current FSME algorithm; Green dash: using the modified FSME algorithm; Red:
the original primary. The red line and green dash line are overlapping.

deconvolution of source wavelet will be applied to predict the internal multiples.

4.1 The ISS internal multiple attenuation algorithm

The ISS internal multiple attenuation algorithm for the first-order internal multiple prediction is
proposed by Araújo (1994) and Weglein et al. (1997). Figure 8 illustrates how the algorithm
constructs a first-order internal multiple. The first-order internal multiple is created by combining
three events using convolutions and cross-correlations. The travel time of the internal multiple is
predicted by adding the travel-times of the two deeper events and subtracting the travel time of a
shallower one. Since, not all combinations of subevents will generate an internal multiple, the depth
integrals are constrained to impose a lower-higher-lower relationship between the three subevents
as represented in Figure 8. Therefore, the third subevent has a pseudodepth above the two other
events such that z2 < z3 and z2 < z1.

The internal multiple attenuation algorithm assumes that the input data are a spike data. Actually,
the input data generally convolves with a source wavelet. Therefore, the internal multiple attenu-
ation algorithm can only predict an approximate amplitude and shape of the internal multiple. To
improve the amplitude and shape, the internal multiple attenuation algorithm will be modified by
accommodating the source wavelet. First, the input data are deconvolved by the source wavelet and
the output of the algorithm convolves the source wavelet back. In Liang’s report (Liang and We-
glein, 2013), the authors also discussed the source wavelet effects on the internal multiple prediction
for a more layer model.
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Figure 8: Subevents of an internal multiple. The internal multiple (black) is constructed by three
arrivals (blue, green and red) that satisfy a lower-higher-lower relationship in pseudodepths, zi.

4.2 Internal multiple prediction for the synthetic data

The internal multiple attenuation algorithm with and without deconvolution of source wavelet will
be tested using a simple earth model, as shown in Figure 9a. Figure 9b is the source wavelet that we
applied. Figure 10 shows the synthetic data that are generated by finite difference method and their
predicted internal multiples. In the input data, the first two strongest events are the primaries, and
the other events are internal multiples. Figures 10b and 10c show the predicted internal multiples
using the ISS internal multiple attenuation algorithm with and without deconvolution of the source
wavelet. From Figures 10b and 10c, we can see that both algorithms predict the correct travel time
of the internal multiple and different amplitude and shape of the internal multiple.

To see the details of the predicted internal multiples, we pick the middle trace at the time window
0.85s to 1.15s from each figure in Figure 10. Comparing Figures 10e with 10d, we can see that the
shape of the internal multiple predicted by the internal multiple attenuator without deconvolution
of source wavelet is totally different with the original one and their amplitudes are not comparable.
However, comparing Figures 10f with 10d, it shows that the amplitude and shape the internal
multiple predicted by the internal multiple attenuation algorithm with deconvolution of source
wavelet are similar with the original one, as shown in Figure 11. It demonstrates that the internal
multiple attenuation algorithm with deconvolution of source wavelet gives more accurate internal
multiple prediction, in which the predicted phase is accurate, the predicted shape looks similar,
and the predicted amplitude is almost the same. The predicted amplitude is not exact because the
internal multiple attenuation algorithm is an attenuator but not eliminator and the input data is
band limited.

The synthetic data test shows that incorporating the source wavelet into the internal multiple
attenuation algorithm produces more accurate and encouraging results. The predicted internal
multiple has the correct travel time and almost identical amplitude and shape. This is the first
test accommodating the source wavelet into the internal multiple attenuation algorithm. There are
more tests underway. In addition, there are some more test results given by Liang and Weglein
(2013). The authors discussed the source wavelet effects on the internal multiple prediction for the
1D normal incident model and 1.5D more layers model.
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(a) (b)

Figure 9: (a) The earth model we used to generate the synthetic data. It is an one-dimensional
acoustic constant-density medium. (b) Ricker wavelet.

5 Discussion and Conclusions

The inverse scattering series free-surface multiple removal method is tested on synthetic data that
have interfering primaries and multiples. If all the prerequisites are provided, the ISS method has
the ability to accurately predict the free-surface multiples without any subsurface information. For
point-source data, the current ISS FSME algorithm is sufficient to accurately predict free-surface
multiples, while for source-array data, the current algorithm can only predict phase accurately
but amplitude approximately. This amplitude error can seriously affect the prediction results, in
processes such as AVO analysis and inversion. However, the modified ISS FSME algorithm works
very well for the source-array data. The numerical tests for the source-array data show that the
modified FSME algorithm predicts more accurate results than does the current FSME algorithm.
Therefore, for data with interfering events, the ISS FSME method can remove the free-surface
multiples completely through a simple subtraction. Moreover, the internal multiple attenuation
algorithm has been modified by accommodating the source wavelet and tested. The test results
show that the internal multiple attenuation algorithm with deconvolution of the source wavelet
predicts more accurate amplitude and shape of the internal multiples.
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Figure 10: (a) The input data; (b) and (c) The internal multiples predicted by the ISS internal
multiple attenuation algorithm without and with deconvolution of source wavelet, respectively. (d,
e, f) are their corresponding wiggle plots at the time window 0.85s to 1.15s.
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Figure 11: The comparison between the original internal multiple in the input data and internal
multiple predicted by the internal multiple attenuation algorithm with deconvolution of source
wavelet at zero offset.

References

Araújo, F. V. Linear and non-linear methods derived from scattering theory: backscattered
tomography and internal multiple attenuation. PhD thesis, Universidade Federal da Bahia, 1994.

Araújo, F. V., A. B. Weglein, P. M. Carvalho, and R. H. Stolt. “Inverse scattering series for multiple
attenuation: An example with surface and internal multiples.” 64th Annual International Meeting,
SEG, Expanded Abstracts (1994): 1039–1042.

Berkhout, A. J. and D. J. Verschuur. “Removal of internal multiples.” 69th SEG Annual
International Meeting (1999): 1334–1337.

Brandsaeter, H., A. Farestveit, and B. Ursin. “A new high-resolution or deep penetration air gun
array.” Geophysics 44 (1979): 865–879.

Carvalho, P. M. Free-surface multiple reflection elimination method based on nonlinear inversion
of seismic data. PhD thesis, Universidade Federal da Bahia, 1992.

Dragoset, B., I. Moore, M. Yu, and W. Zhao. “Removal of internal multiples.” 78th SEG Annual
International Meeting (2008): 2426–2430.

Giles, B. F. and R. C. Johnston. “System approach to air gun array design.” Geophys. Prosp. 21
(1973): 77–101.

Ikelle, Luc T., Graham Roberts, and Arthur B. Weglein. “Source signature estimation based on the
removal of the first-order multiples.” Geophysics 62 (1997): 1904–1920.

Liang, H. and A. B. Weglein. “Source wavelet effects on the ISS internal multiple leading order
attenuation algorithm and its higher order modification.” MOSRP Annual Report (2013).

118



Multiple attenuation part I M-OSRP12

Loveridge, M. M., G. E. Parkes, L. Hatton, and M. H. Worthington. “Effects of marine source array
directivity on seismic data and source signature deconvolution.” First Break 2 (1984): 16–22.

Mayhan, J. and A. B. Weglein. “Green’s theorem-derived deghosting of marine seismic data.”
MOSRP Annual Report 1 (2013).

Nooteboom, J. J. “Signature and amplitude of linear air gun arrays.” Geophys. Prosp. 26 (1978):
194–201.

Tang, L. and A. B. Weglein. “Study on factors that affect wave separation tests using Green’s
theorem with an over/under cable configuration.” MOSRP Annual Report 1 (2013).

Verschuur, D. J., A. J. Berkhout, and C. P. A. Wapenaar. “Adaptive surface-related multiple
elimination.” Geophysics 57 (1992): 1166–1177.

Weglein, A. B., F. V. Araújo, P. M. Carvalho, R. H. Stolt, K. H. Matson, R. T. Coates, D. Corrigan,
D. J. Foster, S. A. Shaw, and H. Zhang. “Inverse Scattering Series and Seismic Exploration.”
Inverse Problems (2003): R27–R83.

Weglein, A. B., F. A. Gasparotto, P. M. Carvalho, and R. H. Stolt. “An Inverse-Scattering Se-
ries Method for Attenuating Multiples in Seismic Reflection Data.” Geophysics 62 (November-
December 1997): 1975–1989.

Weglein, Arthur B. and Bruce G. Secrest. “Wavelet estimation for a multidimensional acoustic earth
model.” Geophysics 55 (July 1990): 902–913.

Weglein, Arthur B., S. .A. Shaw, K. H. Matson, J. L. Sheiman, R. H. Solt, T. H. Tan, A. Osen, G. P.
Correa, K. A. Innanen, Z. Guo, and J. Zhang. “New approaches to deghosting towed-streamer
and ocean-bottem pressure measurements.” 72nd Annual International Meeting, SEG, Expanded
Abstracts (2002): 1016–1019.

Yang, J. and A. B. Weglein. “Incorporating source and receiver arrays in the Inverse Scattering
Series free-surface multiple elimination algorithm: theory and examples that demonstrate impact.”
MOSRP Annual Report 1 (2012): 114–132.

Yang, Jinlong, James D. Mayhan, Lin Tang, and Arthur B. Weglein. “Accommodating the source
(and receiver) array in free-surface multiple elimination algorithm: impact on interfering or prox-
imal primaries and multiples.” Submitted to 83rd SEG international meeting (2013).

Zhang, Jingfeng. Wave theory based data preparation for inverse scattering multiple removal, depth
imaging and parameter estimation: analysis and numerical tests of Green’s theorem deghosting
theory. PhD thesis, University of Houston, 2007.

119



Accuracy of the internal multiple prediction when a time-saving method based
on two angular quantities (angle constraints) is applied to the ISS internal

multiple attenuation algorithm

Hichem Ayadi and Arthur B. Weglein

April 29, 2013

Abstract

The inverse scattering series (ISS) is a direct inversion method for a multidimensional acous-
tic, elastic and anelastic earth. It communicates that all inversion processing goals can be
achieved directly and without any subsurface information. This task is reached through a task-
specific subseries of the ISS. Using primaries in the data as subevents of the first-order internal
multiples, the leading-order attenuator can predict the time of all the first-order internal multi-
ples and is able to attenuate them.
However, the ISS internal multiple attenuation algorithm can be a computationally demanding
method, especially in a complex earth. By using an approach that is based on two angular
quantities and that was proposed in Terenghi et al. (2012), the cost of the algorithm can be
controlled. The idea is to use the two angles as key-control parameters, by limiting their varia-
tion, to disregard some calculated contributions of the algorithm that are negligible. Moreover,
the range of integration can be chosen as a compromise of the required degree of accuracy and
the computational time saving.
This time-saving approach is presented in this report and applied to the ISS internal multiple
attenuation algorithm. Through a numerical analysis, the relationship between accuracy and
performance is examined and discussed.

1 Introduction

In exploration seismology, a source of energy generated on or near the surface of the earth or of
water produces waves that propagate into the subsurface. The wave travels through the earth until
it hits a rock layer or a material with a different impedance. A part of the energy is reflected back
towards the surface and is recorded at the measurement surface by geophones or hydrophones. An
arrival of seismic energy is called an event. An event that experiences just one upward reflection is
a primary. A ghost is an event that starts its path by propagating up from the source and reflecting
down from the free surface (a source ghost), or ends its path by propagating down to the receiver
(a receiver ghost). An event that experiences more that one downward reflection is a multiple. We
consider two kinds of multiples. A free-surface multiple is a multiple that experiences more than
one upward reflection and at least one downward reflection at the air-water or air-land surface. An
internal multiple is an event that experiences more than one upward reflection and all downward
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reflections from below the free surface. Ghosts and multiples are considered to be noise. A primary
has only one upward reflection, which makes it relatively easy to extract information from about
the subsurface.
In this report we will focus only on the study of primaries and internal multiples.

Araújo et al. (1994) and Weglein et al. (1997) have proposed the ISS internal-multiple-attenuation
algorithm. It is a leading-order contribution towards the elimination of first-order internal multi-
ples. The algorithm is based on the construction of an internal-multiple attenuator coming from
a subseries of the ISS. It has received positive attention for stand-alone capability for attenuating
first-order internal multiples in marine and offshore plays.

Terenghi et al. (2012) introduced two angular quantities that can be used as a key-control parameter
on the computational cost of the ISS leading-order internal-multiple-attenuation algorithm. The
two angles, α (the dip of the reflection in the subsurface) and γ (the incidence angle between the
propagation vector of a wave and the normal to the reflector), are related to the wavefield variables
in the f-k domain. Therefore, control of this angle can be key to our ability to control the time
loop of the algorithm. That has been discussed by Terenghi et al. (2012). In this report, we will
discuss how the computational cost can relate to the accuracy of internal-multiple prediction. In
other words, is it possible to reduce the computational time of the ISS internal-multiple attenuation
algorithm without affecting its efficiency?

In the first part of this report, a description of the internal-multiple-attenuation algorithm will be
provided. It discusses how the first-order internal-multiple attenuator can be constructed from a
subseries of the ISS. Then, the computational cost savings proposed by Terenghi et al. (2012) will
be developed and applied to the ISS internal-multiple-attenuation algorithm. Finally, a numerical
analysis will be presented, in order to discuss the accuracy and efficiency of the algorithm with this
key control.

2 The ISS internal multiple attenuation algorithm

In seismic processing, many processing methods make assumptions and require subsurface infor-
mation. However, sometimes these assumptions are difficult or impossible to satisfy in a complex
world. Furthermore, when the assumptions are not satisfied, the method is not functional. The
inverse scattering series states that all processing objectives can be achieved directly and without
any subsurface information.
The inverse scattering series is based on scattering theory, which is a form of perturbation analysis.
It describes how a scattered wavefield (the difference between the actual wavefield and the reference
wavefield) relates to the perturbation (the difference between the actual medium and the reference
medium).

The forward scattering series construction starts with the differential equations governing wave
propagation in the media:

LG = δ(r − rs), (2.1)

L0G0 = δ(r − rs). (2.2)
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Where L and L0 are the actual and the reference differential operators, respectively, and G and G0

are the actual and reference GreenâĂŹs functions, respectively.

Define the scattered field as ψs = G−G0 and the perturbation as V = L0 − L.
The Lippmann-Schwinger equation relates G, G0, and V :

G = G0 +G0V G (2.3)

Substituting iteratively the Lippmann-Schwinger equation into itself gives the forward scattering
series:

ψs = G0V G0 +G0V G0V G0 +G0V G0V G0V G0 + ...
= (ψ1) + (ψ2) + (ψ3) + ...,

(2.4)

where, (ψn) is the portion of the scattered wavefield that is the nth order in V . The measured
values of ψs are the data D.

The perturbation V can also be expanded as a series,

V = V1 + V2 + V3 + ... (2.5)

Substituting V into the forward scattering series and evaluating the scattered field on the measure-
ment surface results in the inverse scattering series:

(ψs)m = (G0V1G0)m (2.6)
0 = (G0V2G0)m + (G0V1G0V1G0)m (2.7)
0 = (G0V3G0)m + (G0V2G0V1G0)m + (G0V1G0V2G0)m + (G0V1G0V1G0V1G0)m (2.8)

...

the inverse scattering series internal-multiple-attenuation concept is based on the analogy between
the forward series and the inverse series. The forward series could generate primaries and internal
multiples through the action of G0 on the perturbation V , while, the inverse series can achieve a
full inversion of V by using G0 and the measured data. The way that G0 acts on the perturbation
to construct the internal multiples suggests the way to remove them.
In the forward series, the first-order internal multiples have their leading-order contribution from
the third term: G0V G0V G0V G0. This suggests that the leading-order attenuator of internal mul-
tiples can be found in the third term in the inverse series equation (2.8). In Weglein et al. (1997)
a subseries that attenuates internal multiples was identified and separated from the entire inverse
scattering series.

The ISS internal-multiple-attenuation algorithm is a subseries of the inverse scattering series. The
algorithm begins with the input data D(kg, ks, ω), which are the data in the ω temporal frequency
deghosted and with free-surface multiple removed. Here ks, kg are the source and receiver horizontal
wavenumber, respectively. Then, let us define b1(kg, ks, ω) which corresponds to an uncollapsed f-k
migration of effective incident plane-wave data as

b1(kg, ks, ω) = (−2iqs)D(kg, ks, ω) (2.9)
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where qs = sgn(ω)
√

( ωc0 )2 − ks is the sourceâĂŹs vertical wavenumber and c0 the reference velocity.
The second term in the algorithm is the leading-order attenuator b3, which attenuates all the first-
order internal multiples. The leading-order attenuator for a 2D earth is given by,

b3(ks, kg, ω) =
1

(2π)2

∫ +∞

−∞
dk1

∫ +∞

−∞
dk2e

−iq1(zg−zs)e−iq2(zg−zs)

∫ +∞

−∞
dz1b1(kg, k1, z1)ei(qg+q1)z1

∫ z1−ε

−∞
dz2b1(k1, k2, z2)e−i(q1+q2)z2

∫ +∞

z2+ε
dz3b1(k2, ks, z3)ei(q2+qs)z3

(2.10)

where z1, z2, and z3 are the pseudo-depths. ε is a small positive parameter chosen in order to make
sure that z1 > z2 and z3 > z2 are satisfied.

Finally, using the input data and the leading-order attenuator of the first-order internal multiples,
the data with the first-order internal multiples attenuated is given by

D(kg, ks, ω) +D3(kg, ks, ω) (2.11)

with D3(kg, ks, ω) = (−2iqs)
−1b3(kg, ks, ω).

3 Computational cost saving using two angle constraints.

Terenghi et al. (2012) discuss two angular quantities that can be used in order to reduce the
computational cost of the ISS internal-multiple-attenuator algorithm. The idea is to construct
key-control parameters that allow to disregard some part of the calculus that is insignificant during
the computation. In other words, use this key-parameters to optimize some intervals of calculus in
the algorithm. The approach used is based on certain angular quantities in order to control the cost
of the algorithm.

Stolt and Weglein (2012) define the image-function wavenumber as a difference between the receiver
and source-side wavenumbers

~km = ~kg − ~ks = ( ~κg − ~κg, qg − qs) (3.1)

Here ~κs and ~κg are the horizontal components of the source and receiver wavenumbers, respectively.

This definitions allows the construction of two angles, α and γ (cf. Figure 1). The dip angle α
corresponds to the angle between the surface and the horizontal component. The incident angle γ is

123



Multiple attenuation part I M-OSRP12

Figure 1: Plane waves at an interface in the subsurface. α is the angle between ~κm and the vertical.
γ is the angle between ~κm and ~κr or ~κs. Figure from Terenghi et al. (2012).

the angle between the image-function wavenumber and the source- (or receiver-)side wavenumber.
Using simple trigonometry, α and γ can be related to the field quantities in the f − k domain:

α = tan−1

( √
~κm. ~κm

| qg − qs |

)
(3.2)

γ =
1

2

(
− c

2
0

ω2
( ~κg. ~κs + qgqs)

)
(3.3)

The dependence of α and γ on the temporal frequency is carried by the occurrences of the vertical
wavenumber q. Further, the relationship between α, γ and ω is monotonic. This means that at
fixed values of ~κs and ~κg any given value of ω unequivocally identifies angles α and γ. Then,
increasing the temporal frequencies in the data map to decreasing values of the reflection dip and
the frequencies in the data maps to decreasing values of the reflection dip and the aperture angle. At
set values of ~κs and ~κg it is possible to conclude that any desired finite angle-domain interval maps
to a similar finite frequency domain interval. This may be used in order to decrease the number
of loops. Indeed, looking at the eq (2.10), has b3 - in 2D - two integrations over the wavenumber
component. Therefore, it is possible to constrain the algorithm within a range of angular quantities,

αmin ≤ α ≤ αmax (3.4)
γmin ≤ γ ≤ γmax (3.5)

By using the α/γ and ω relationship, the total frequency interval can also be constrained as

124



Multiple attenuation part I M-OSRP12

max(ωminγ , ωminα ) ≤ ω ≤ min(ωmaxγ , ωmaxα ) (3.6)

Then, the reduction of the total frequency interval allows us to reduce the interval of integration of
b3 and which means reducing the number of loops.

Figure 2: Process of the ISS internal multiple attenuation with angle constraints.

The Figure 2 recapitulates in a graph all of the process described previously. In the next section,
a numerical analysis continues and illustrates the discussion from sections 2 and 3, in which the
efficiency and accuracy of the angle-constraints method are presented.
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4 Numerical analysis

In this section numerical examples are shown in order to illustrate the concepts previously presented.
The model considered in this numerical analysis is a three layer earth at depths : z = 1000m, 1300m
and 1700m. The source shot (z = 910 and x = 6086) is recorded by 928 receivers. The maximum
offset is at 2320m. Figure 3 shows the shot gather with the different events: primaries (green array)
and internal multiples.

Figure 3: Shot gather recorded. The three primaries resulting from the three layers are shown in
green.

Figure 4, illustrates the internal-multiple prediction using the ISS internal multiple attenuation
algorithm. All first-order the internal multiple are predicted.

Figure 6 illustrates the internal-multiple prediction following the process uses angle constraints, as
shown in the Figure 2. The model is in 1D; consequently, just one angle (the incident angle γ) can
be constraint. The analysis made in 1D for γ can be extended to α by analogy.

A first interpretation would be that we do not need to compute for a full open angle in order to
have an accurate prediction of the internal multiples. Notice that a prediction with a full open
angle corresponds to an internal multiple prediction without any angle constraints. Even so, with
reduction to a certain angle (γlimite) the prediction of the internal multiples is degraded.

Figure 7 shows the amplitude for different γmax angles at zero offset and comparing with the
amplitude for a full open γ-angle. It is clear that the amplitude, at zero offset, is not affected. The
first-order internal multiple are predicted at the right time and the right amplitude.
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Figure 4: Prediction of all the first-order internal multiples.

Figure 8 plots the amplitude for different values of γmax at offset 1405m and comparing with the
amplitude for a full open γ-angle. In Figure 6, the prediction of the internal multiples for γmax = 20◦

seems to be the same as that for γmax = 25◦ and Figure 4. If we look more precisely at the amplitude,
we can see that it has been affected. The amplitude for γmax = 20◦ does not correspond exactly to
the amplitude for γmax = 90, for the same trace number. However, for γmax = 25◦, the amplitude
is exactly the same as that for the full open Îş angle. Notice that even if the amplitude is affected,
the internal multiple are still predicted at the right time.

If we look at the shape (cf. Figure 9), the same interpretation can be made. For γmax = 25◦ the
shape matches with an usual internal multiple prediction (full open γ-angle). Bellow this incident
angle, the shape do not match which means that the prediction can not be considered accurate.
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Figure 5: Computational time in function of the incident angle chosen.
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Figure 6: Internal-multiple prediction for different angles of γ: γmax = 15◦, γmax = 20◦ and
γmax = 25◦.
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Figure 7: Amplitude for different γmax angles at zero offset.
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Figure 8: Amplitude for different γmax angles at offset 1405m.
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Figure 9: Wiggle plot for γmax = 15◦, γmax = 20◦, γmax = 25◦ and full open γ-angle. Source at
trace number 119.

132



Multiple attenuation part I M-OSRP12

5 Discussion and conclusions

Terenghi et al. (2012) have introduced a time saving method: the angle constraints. Looking at
the procedure (cf. Figure 2) and the performance analysis (cf. Figure 5), it is undeniable that
applied to an algorithm defined in source and receiver transformed domain like the ISS internal
multiple attenuation, this approach can reduce considerably the computational cost of the algorithm.
Studying the impact of this key-control method in the algorithm, it appears that a compromise
between the time saved and the accuracy of the internal multiple prediction has to be made. Indeed,
above a certain "angle limit" the internal multiple prediction stays accurate and precise. Below,
the internal multiples are still predicted at the right time but with an approximate amplitude. This
"angle limit" depends on the depth of the reflector which generate the multiples and the maximum
offset. Thus, the angle constraints is a trade-off tool between accuracy and cost of the algorithm. In
other words, the ISS internal multiple algorithm will have its computational time reduced according
to the degree of accuracy required by the user. The next step will be to identify this two angles
using the input data in order to be able to define the constraint limits.
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Abstract

Internal-multiple removal becomes more important and challenging as seismic exploration moves
towards more complex areas. To meet this challenge, a multi-dimensional method that does not
assume the earth properties is developed; the method is based on the inverse scattering series
(ISS)(Araújo, 1994; Weglein et al., 1997). Tests of the current ISS leading-order internal-multiple
attenuation algorithm have shown a stand-alone capability of this algorithm and indicate promis-
ing future applications (Fu et al., 2010; Luo et al., 2011; Terenghi et al., 2011; Hsu et al., 2011).
However, there are still subjects to be studied (Weglein et al., 2011). The current leading-
order algorithm uses primaries in the input data as subevents to predict the first-order internal
multiples. Focusing on the effects of internal multiples acting as subevents, we compare the dif-
ferent outputs of the current algorithm using different input data (i.e., data with and without
internal-multiples). We analyze the output in both two-reflector and three-reflector examples to
show different effects. Also, we compare those effects with the effects of including free-surface
multiples in the ISS free-surface multiple removal algorithm and analyze the similarities and
differences between these two cases. Their similarities and differences demonstrate the charac-
teristic of requiring specific contributions from terms in the inverse series in order to collectively
accomplish certain seismic processing tasks (e.g., free-surface multiple removal and internal-
multiple elimination). This characteristic further demonstrate to us the necessity of including
higher-order terms in the inverse series to address the limitations of the current leading-order
algorithm.

1 Introduction

Traditionally, seismic exploration assumes the seismic data contain only primaries (events that
experience only one upward reflection in history). Hence, that assumption requires the removal
of multiples (events that experience multiple reflections). Depending on the location of downward
reflection, multiples are divided into free-surface multiples and internal multiples. Free-surface
multiples are events that experience at least one downward reflection at the air-water or air-land
surface (i.e., at the free surface), whereas internal multiples are events that experience all of their
downward reflections below the free surface.
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Many methods that are based on assumptions regarding the data characteristics or the nature of
earth have been developed to remove multiples (Weglein and Dragoset, 2005). Such methods are
effective when those assumptions are satisfied or mildly violated. However, as seismic exploration
moves towards more complex areas, these methods have limitations due to their assumptions and
the requirements for subsurface information. This motivates development of new methods that
avoid those assumptions or requirements.

The application of inverse scattering series methods in exploration seismic reflection data was intro-
duced by Weglein et al. (1981) and Stolt and Jacobs (1980). It provides a comprehensive framework
for achieving seismic data processing goals. Within that overall seismic processing series, different
sub-series can be isolated to achieve free-surface-multiple removal, internal-multiple elimination,
depth imaging and inversion of primaries.

The current ISS leading-order internal-multiple-attenuation algorithm was first proposed by Araújo
(1994) and Weglein et al. (1997). It is entirely data driven and requires no subsurface informa-
tion, and it predicts all internal multiples at all depths at once with the correct time and well-
approximated amplitude of true internal multiples (Weglein et al., 2003). Matson (1997) extends
the theory to land and ocean-bottom survey application. Higher-order terms are captured to extend
the leading-order algorithm from attenuation to elimination (Ramírez and Weglein, 2005; Ramirez,
2007). The first towed streamer data are test by Maston et al. (1999) and first land data are shown
in Fu et al. (2010). More recent tests (Luo et al., 2011; Terenghi et al., 2011; Hsu et al., 2011) show
encouraging results and stand-alone capability of the ISS leading-order internal-multiple-attenuation
algorithm.

However, there are still subjects remaining to be studied (Weglein et al., 2011). Previous work on
current leading-order internal-multiple-attenuation algorithm mainly focused on predicting multiples
by using primaries in the seismic data. Zhang and Shaw (2010) use a two-reflector analytic example
to show a more complicated prediction (i.e., higher-order internal multiples are predicted) when the
input data contain internal multiples. Ma et al. (2011) and Liang et al. (2011) show that in the cases
where there are three or more than three reflectors, not only higher-order internal multiples but also
spurious events are generated by the leading-order algorithm, and they propose higher-order terms
to address that spurious prediction. In this report, we show similarities and differences of including
the corresponding multiples in the input data of the free-surface-multiple-elimination algorithm and
internal-multiple-elimination algorithm.

2 1D analytic example – Free-surface-multiple prediction

For the purpose of comparison, we first examine the role of free-surface multiples in a free-surface-
multiple removal case. The ISS free-surface-multiple elimination subseries was developed by Car-
valho (1992) and Weglein et al. (1997). The subseries for deghosted and free-surface demultipled
data D′ is given by deghosted data D′1 as follows (Weglein et al., 2003):

D′n(kg, ks, ω) =
1

iπρ0B(ω)

∫ ∞

−∞
dkqeiq(εg+εs)D′1(kg, k, ω)D′n−1(k, ks, ω)
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n = 2, 3, 4, · · · , (2.1)

and

D′(kg, ks, ω) =
∞∑

n=1

D′n(kg, ks, ω), (2.2)

where B(ω) and ρ0 are source signature and reference density, respectively.

In the free-surface-multiple elimination equation 2.2, the first term, D′1, is the deghosted input
data, including both primaries and multiples; the nth term (n ≥ 2) can be considered to be the
prediction of the (n − 1)th-order free-surface multiples. Equation 2.1 and equation 2.2 show that
the ISS free-surface-multiple-removal algorithm works one temporal frequency at a time and works
order by order.

In a 1D earth with a normal incident plane wave and a source wavelet with a unit amplitude, i.e.,
A(ω) = 1, the algorithm can be written as (Weglein et al., 2003):

R =
RFS

1−RFS
=RFS +R2

FS +R3
FS + · · · , (2.3)

where RFS and R are data with and without free-surface multiples, respectively. Notice that the
free-surface is characterized by a reflection coefficient of -1 for a pressure wavefield. Similarly, we can
consider the second term in equation 2.3 as the prediction of the first-order free-surface multiples
and the third term as the prediction of the second-order free-surface multiples, etc.

We use a 1D analytic example to illustrate the prediction of the free-surface multiples. The model
(Figure 1) has two reflectors, and the deghosted data, D(t), with two primaries, three first-order
(blue terms) and four second-order (red terms) free-surface multiples, can be written as:

RFS(t) = R1δ(t− t1) +R′2δ(t− t2)−R2
1δ(t− 2t2)−R′22 δ(t− 2t2)− 2R1R

′
2δ(t− t1 − t2)

+R3
1δ(t− 3t1) +R′32 δ(t− 3t2) + 3R1R

′2
2 δ(t− t1 − 2t2) + 3R2

1R
′
2δ(t− 2t1 − t2) + · · · , (2.4)

where R1 and R′2 are amplitudes of the first and second primaries, respectively. We have assumed
the downward reflection coefficient at the free-surface to be -1.

F.S.	


t1 

t2 t1+t2 2t1 2t2 

Figure 1: A two-reflector model with a free surface.
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In the temporal frequency domain, the data are

RFS(ω) = R1e
iωt1 +R′2e

iωt2−R2
1e
iω2t1 −R′22 eiω2t2 − 2R1R

′
2e
iω(t1+t2)

+R3
1e
iω3t1 +R′32 e

iω3t2 + 3R2
1R
′
2e
iω(2t1+t2) + 3R1R

′2
2 e

iω(t1+2t2) + · · · . (2.5)

The first- and second-order free-surface-multiple predictions in equation 2.3 are

R2
FS(ω) = R2

1e
iω2t1 +R′22 e

iω2t2 + 2R1R
′
2e
iω(t1+t2)

−6R1R
′2
2 e

iω(t1+2t2) − 6R2
1R
′
2e
iω(2t1+t2) − 2R3

1e
iω3t1 − 2R′32 e

iω3t2 + · · · , (2.6)

and

R3
FS(ω) = R3

1e
iω3t1 +R′32 e

iω3t2 + 3R1R
′2
2 e

iω(t1+2t2) + 3R2
1R
′
2e
iω(2t1+t2) + · · · , (2.7)

respectively.

From equation 2.6, we can conclude that (Weglein et al., 2003) when R2
FS(ω) is added to RFS(ω),

two things happen: (1) The first-order free-surface multiples are eliminated (blue terms in equations
2.5 and 2.6 cancel each other) and (2) Higher-order free-surface multiples are altered. Together with
R3
FS(ω), second-order free-surface multiples are eliminated (red terms in equations 2.5, 2.6 and 2.7

cancel each other) as shown in equation 2.8.

RFS(ω) : 1× [R3
1e
iω3t1 +R′32 e

iω3t2 + 3R2
1R
′
2e
iω(2t1+t2) + 3R1R

′2
2 e

iω(t1+2t2)]

R2
FS(ω) : −2× [R3

1e
iω3t1 +R′32 e

iω3t2 + 3R2
1R
′
2e
iω(2t1+t2) + 3R1R

′2
2 e

iω(t1+2t2)]

R3
FS(ω) : 1× [R3

1e
iω3t1 +R′32 e

iω3t2 + 3R1R
′2
2 e

iω(t1+2t2) + 3R2
1R
′
2e
iω(2t1+t2)] (2.8)

The alteration in R2
FS(ω) prepares for the elimination of second-order free-surface multiples using

R3
FS(ω). Hence, strictly speaking, R2

FS(ω) is not just a first-order free-surface-multiple predictor.
Also we can infer that R3

FS(ω) is not just a second-order free-surface-multiple predictor.

To explicitly show the roles of lower-order free-surface multiples as input for removing higher-
order free-surface multiples, we further categorize the results as follows. Consider the input data
containing primary and free-surface multiples, i.e.,

RFS(ω) = P + F,

where P and F stand for primaries and free-surface multiples, respectively.

Therefore, R2
FS(ω) can be expressed as

R2
FS(ω) = (P + F )2 = PP + PF + FP + FF.

Under this categorization, the blue and red terms in equation 2.6 come from combinations of PP
and PF (or FP ) terms, respectively.

Together with the 1D analytic example, we conclude that the PP combination in R2
FS(ω) is used to

eliminate first-order free-surface multiples, whereas the PF (or FP ) combination in R2
FS(ω) is used
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to alter second-order free-surface multiples. In other words, the inclusion of lower-order free-surface
multiples into the input data is necessary for the prediction and removal of higher-order free-surface
multiples.

In this section, we use a 1D analytic example to exemplify the necessity of including lower-order
free-surface multiples in the input data for removing higher-order free-surface multiples. Within
the analytic example, the ISS free-surface subseries demonstrates the collaborative nature among
the different terms in collectively fulfilling a task. It is interesting that the ISS free-surface-multiple
removal anticipates that there are both primaries and free-surface multiples as input and uses both
of them to achieve that task. In the next section, we will use a two-reflector example to discuss
an analogous feature in an internal-multiple-attenuation case, and we will analyze the difference
between these two cases.

3 1D analytic example – Internal-multiple prediction in a two-reflector exam-
ple

The current leading-order internal-multiple-attenuation algorithm starts with the input data,
D(kg, ks, ω), in 2D, which is the Fourier transform of the deghosted prestack data with the wavelet
deconvolved and the free-surface multiples removed. In a 2D earth, the leading-order prediction of
the first-order internal multiples is

b3(kg, ks, ω) =
1

(2π)2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2e

−iq1(zg−zs)eiq2(zg−zs)

×
∫ ∞

−∞
dz1b1(kg, k1, z1)ei(qg+q1)z1

×
∫ z1−ε

−∞
dz2b1(k1, k2, z2)e−i(q1+q2)z2

×
∫ ∞

z2+ε
dz3b1(k2, ks, z3)ei(q2+qs)z3 , (3.1)

where ω is temporal frequency; ks and kg are the horizontal wavenumbers for the source and
receiver coordinates, respectively; qg and qs are the vertical source and receiver wavenumbers defined
by qi = sgn(ω)

√
ω2

c20
− k2

i for i ∈ {g, s}; zs and zg are source and receiver depths; and zj (i ∈
{1, 2, 3}) represents pseudo-depth using a reference velocity migration. The quantity b1(kg, ks, z)
corresponds to an uncollapsed migration (Weglein et al., 1997) of effective plane-wave incident data,
and b1(kg, ks, qg + qs) = −2iqsD(kg, ks, ω).

For a 1D earth and a normal incident plane wave, equation 3.1 reduces to

b3(k) =

∫ ∞

−∞
dz1e

ikz1b1(z1)

∫ z1−ε

−∞
dz2e

−ikz2b1(z2)

∫ ∞

z2+ε
dz3e

ikz3b1(z3). (3.2)
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First, we examine a two-reflector example (Figure 2). The reflection data due to an impulsive
incident wave are

D(t) = R1δ(t− t1) +R′2δ(t− t2) +R′4δ(t− (2t2 − t1)) + · · · , (3.3)

where R′2 = T01R2T10, and R′4 = T01R2(−R1)R2T10. Note that in order to show the analogous
feature, we include a first-order internal-multiple in the data.

t1 

t2 

2t2－t1 

Figure 2: A two-reflector example with data containing two primaries and one first-order internal
multiple.

A temporal Fourier transform of D(t) gives the data in the frequency domain,

D(ω) = R1e
iωt1 +R′2e

iωt2 +R′4e
iω(2t2−t1) + · · · . (3.4)

For a 1D medium and a normal incident wave, D(ω) = b1(kz) and the vertical wave number is
kz = 2ω

c0
. Then, the reflection data can be expressed in terms of kz,

b(kz) = R1exp[i(
2ω

c0
)(
c0t1

2
)] +R′2exp[i(

2ω

c0
)(
c0t2

2
)] +R′4exp[i(

2ω

c0
)(
c0(2t2 − t1)

2
)] + · · · . (3.5)

Define the pseudo-depths z1 and z2 in the reference medium as z1 ≡ c0t1
2 and z2 ≡ c0t2

2 , respectively.
Rewrite the data as,

b(k) = R1e
ikzz1 +R′2e

ikzz2 +R′4e
ikz(2z2−z1) + · · · . (3.6)

After performing the Inverse Fourier transform from kz to z, b(z) =
∫∞
−∞ e

−ikzzb(kz)dz, substituting
the data into the algorithm 3.2, and Fourier transforming back to the time domain, we have

D3(t) =R1R
′2
2 δ(t− (2t2 − t1)) + 2R1R

′
2R
′
4δ(t− (3t2 − 2t1)) (3.7)

+R′2R
′2
4 δ(t− (3t3 − 2t2)) +R1R

′2
4 δ(t− (4t2 − 3t1)).

Equation 3.7 shows that the leading-order prediction of the first-order internal multiples includes
(1) the first-order internal multiples (blue term) and (2) higher-order internal multiples (red terms).
This is analogous to the free-surface case; see equation 2.6.
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Also, to categorize the result, consider the input data containing primary and internal multiples,
i.e.,

b1 = P + I,

where P and I stand for primaries and internal multiples, respectively. The leading-order prediction
of first-order internal multiples is

b3 =b1 ∗ b1 ∗ b1
=(P + I)(P + I)(P + I)

=PPP + PPI + PIP + IPP + PII + IPI + IIP + III (3.8)

Further analysis shows that the prediction of first-order internal multiples (blue term in equation
3.7) results from PPP combinations and prediction of all other higher-order internal multiples (red
terms in equation 3.7) results from PPI (or IPP or IPI) combinations.

To summarize analogous points in the free-surface multiple and internal multiple cases: (1) both
first-order and higher-order multiples are predicted in R2

FS(ω) (or b3); and (2) higher-order multiples
are predicted because of the lower-order multiples in the input data acting as subevents.

3.1 Higher-order internal-multiples predicted in b3

In section 2, it was shown that the second-order free-surface multiples predicted by R2
FS(ω) are used

to eliminate the second-order free-surface multiple, together with R3
FS(ω). A question is whether

the higher-order internal-multiples predicted in b3 will play the same (or at lease an analogous) role
in removing higher-order internal multiples

In order to answer that question, we first examine the prediction of a second-order internal-multiple
attenuator (Araújo, 1994), i.e.,

b5(k) =

∫ ∞

−∞
dz1e

ikz1b1(z1)

∫ z1−ε

−∞
dz2e

−ikz2b1(z2)

∫ ∞

z2+ε
dz3e

ikz3b1(z3)

×
∫ z3−ε

−∞
dz4e

ikz4b1(z4)

∫ ∞

z4+ε
dz5e

−ikz5b1(z5). (3.9)

Given equation 3.9, the second-order internal-multiple prediction using the same input data (equa-
tion 3.3) is

D5(t) = R′32 R
2
1δ(t− (3t2 − t1)) + · · · = T 3

01T
3
10R

3
2R

1
1δ(t− (3t2 − 2t1)) + · · · . (3.10)

This is the prediction of the second-order internal-multiple. The corresponding real second-order
internal multiple is T01T10R

3
2R

1
1δ(t− (3t2 − 2t1)). Hence, the real second-order internal multiple in

the data D(t), the second-order internal-multiple prediction in D3(t), and D5(t) are

D(t) : 1× [T01T10R
3
2R

2
1δ(t− (3t2 − 2t1))]

140



Multiple attenuation part II M-OSRP12

D3(t) : (−2T01T10 + (T01T10R1)2)× [T01T10R
3
2R

2
1δ(t− (3t2 − 2t1))]

D5(t) : (T01T10)2 × [T01T10R
3
2R

2
1δ(t− (3t2 − 2t1))] (3.11)

Comparing equations 2.8 and 3.11, we find analogous roles of the higher-order internal-multiple
prediction in D3(t). Taking D3(t) into consideration, it is easy to explain why the second-order
internal-multiple attenuator D5(t) actually increases, rather than attenuates, the amplitude of the
second-order internal-multiple. Recall that the second-order internal multiple in D3(t) is predicted
because of lower-order internal multiples in the input data.

Therefore, besides the two points mentioned above, another related point is that (3) the ISS internal-
multiple-attenuation algorithm also anticipates that there are both primaries and internal multiples
as input, and it uses both to attenuate the higher-order internal-multiples.

3.2 b3 – the first-order internal-multiple attenuator

However, unlike R2
FS(ω) in free-surface case, b3 predicts approximated amplitude of the first-order

internal multiples. The leading-order algorithm means that b3 begins the removal of the first-order
internal multiples.

The reason that b3 is only an attenuator is that there is no a priori information in the internal-
multiple-attenuation algorithm, whereas there is a priori information in the free-surface-elimination
algorithm.

Without a strictly mathematical proof, we can explain that difference as follows. First, both the
ISS free-surface-multiple and internal-multiple predictions uses subevents to predict multiples; see
Figure 3. Next, imagine that we move the internal-multiple generator (a) up until it coincides
with the free-surface. Then the middle subevent is characterized by -1 and there will be no extra
two-transmission coefficients, such as T01T10; the internal-multiple prediction reduces to free-surface-
multiple prediction.

It is the fact that the internal-multiple-attenuation algorithm does not assume the location of the
downward reflection that allows the algorithm to predict all possible first-order internal multiples
at all depths at once.

In Ramírez andWeglein (2005) and Ramirez (2007), a sub-series is developed to completely eliminate
first-order internal-multiples generated at the shallowest reflector. wilberth and zou.

4 1D analytic example – Internal-multiple prediction in a three-reflector ex-
ample

In the last section, we uses a two-reflector example to analytically analyze the prediction of the
leading-order internal-multiple-attenuation algorithm when the input data contain two primaries
and one internal-multiple, and to find analogies and differences compared with the free-surface case.
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F.S.	
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Figure 3: Comparison between free-surface-multiple prediction and internal-multiple prediction

In this section, we proceed to examination of a more complicated three-reflector example. In this
example, we include one more primary from the third reflector in the input data and assume that
the travel time of the third primary is larger than that of the first-order internal-multiple generated
by the first two reflectors, i.e., (2t2 − t1 < t3); see Figure 4.

t1 
t2 

2t2－t1 
t3 

Figure 4: A three-reflector model with three primaries and one internal multiple.

The input data due to an impulsive incident wave are

D(t) = R1δ(t− t1) +R′2δ(t− t2) +R′4δ(t− (2t2 − t1)) +R′3δ(t− t3) + · · · , (4.1)

where R′2 and R′4 are the same as in equation 3.3, and R′3 = T01R2(−R1)R2T10 is the amplitude of
the third primary.

Given these data, following the same procedure from equation 3.3 to equation 3.7, the leading-order
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prediction (equation 3.2) is:

D3(t) =R1(R′2)2δ(t− (2t2 − t1)) + 2R1R
′
2R
′
3δ(t− (t2 + t3 − t1))

+R1(R′3)2δ(t− (2t3 − t1)) +R2(R′3)2δ(t− (2t3 − t2))

+2R1R
′
2R
′
4δ(t− (3t3 − 2t1)) +R′2(R′4)2δ(t− (3t3 − 2t2))

+2R1R
′
3R
′
4δ(t− (t3 + 2t2 − 2t1)) +R1(R′4)2δ(t− (4t2 − 3t1))

+2R′2R
′
3R
′
4δ(t− (t3 + t2 − t1)) + (R′3)2R′4δ(t− (2t3 − (2t2 − t1))). (4.2)

Similarly to equation 3.7, equation 4.2 predicts first-order internal multiples (blue terms) and alters
the amplitude of higher-order internal multiples (red terms). However, the last term is not either a
primary nor an internal multiple. We name this event a spurious event. Further examination shows
that this spurious event results from the PIP combination (Ma et al., 2011).

Besides a spurious prediction from PIP in a three-reflector model, Liang et al. (2011) shows that
when there are more than three reflectors, PPI can generate a spurious prediction.

Hence, the effects of internal multiples being part of input (i.e., combinations besides PPP in
equation 3.8) include (1) helping to remove higher-order internal multiples, and (2) generating a
spurious prediction when certain conditions are satisfied.

In the same way that there must be a reason for the prediction of higher-order internal multiples in
b3(i.e., that it can be used to remove higher-order internal multiples, as shown in the last section),
there must be a reason for the prediction of spurious events. The fact that there are no real events
to correspond with these spurious events makes us believe there must be new terms in this series
that can be located to cancel such spurious events.

In Ma et al. (2011) and Liang et al. (2011), new higher-order terms from the ISS are found to
address the issue of the spurious events,

bPIP5 =

∫ ∞

−∞
dz1e

ikz1b1(z1)

∫ z1−ε

−∞
dz2e

−ikz2b3(z2)

∫ ∞

z2+ε
dz3e

ikz3b1(z3), (4.3)

bPPI5 =

∫ ∞

−∞
dz1e

ikz1b1(z1)

∫ z1−ε

−∞
dz2e

−ikz2b1(z2)

∫ ∞

z2+ε
dz3e

ikz3b3(z3). (4.4)

where b1(z) is an uncollapsed migration and b3(z) is the first-order attenuator. In appendix B, we
give an argument for choosing (Gd0V

′
1G

d
0V
′

3G
d
0V
′

1G
d
0)m to derive bPIP5 .

Compared with the internal-multiple-removal case, the reason there are no spurious predictions
in the free-surface multiple-removal case is that the downward reflection of free-surface multiples
happens at the free-surface and it only involves phase addition to prediction free-surface multiples.
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5 Tests for the modification of leading-order internal-multiple at-
tenuation algorithm

In the previous section, we showed that in the cases where there are three or more reflectors, the cur-
rent leading-order internal-multiple-attenuation algorithm can produce spurious predictions. Specif-
ically, the spurious prediction can be produced by a “Primary–Internal-multiple–Primary(PIP )”or
a “Primary–Primary–Internal-multiple(PPI)”combination. Therefore, it is straightforward to con-
clude that when the amplitude of an internal-multiple is comparable to the amplitude of a primary,
the spurious predictions are significant and need to be removed. This is the cases where the reser-
voirs are deep with more complex overburdens. Also, in the Middle East and eastern Canada,
there are many strong near-surface internal-multiple generators, and it is necessary to include the
higher-order terms to deal with spurious predictions. In this section, we use a three-reflector model
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Figure 5: Input data (left) and leading-order prediction—b3 (right).
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with a strong internal multiple to test the higher-order term (equation 4.3). The parameters of this
model are

V1 = 1500m/s, ρ1 = 1.0g/cm3, d1 = 500m;

V2 = 1700m/s, ρ2 = 1.8g/cm3, d2 = 900m;

V3 = 1700m/s, ρ3 = 1.1g/cm3, d3 = 1530m;

V4 = 5000m/s, ρ4 = 4.0g/cm3.

The data are generated by convolving the reflectivity with a Ricker wavelet (peak frequency at 15
Hz); see Figure 5. The five events from top to bottom shown in data are P1, P2, I212, P3, and I312,
respectively. The subscripts indicate the reflection location of the primary or internal multiples.

Using these input data, the output of equation 3.2 is shown on the right half of Figure 5. The
four events from top to bottom are I212, I21212, spurious event, and I312, respectively. Notice the
second-order internal multiple I21212 is not shown in the original input data.

The right half of Figure 6 shows the prediction of the introduced higher-order term; an event is
predicted in order to address the spurious prediction. Notice that the polarity of this event is
opposite of the polarity of the spurious event in b3. However, the amplitude of the event shown in
the right half of Figure 6 is much bigger than the spurious event shown in the left half of Figure
6, due to the wavelet issue. As the ISS internal-multiple attenuation algorithm required, the input
data should first be deconvolved. More details are in hong,jinglong.

6 Conclusions

We analyze the one-dimensional prediction of the ISS leading-order internal-multiple-attenuation
algorithm in both two reflector and three-reflector models. We found and analyzed the similarities
and differences between the effects of including free-surface multiples as part of input data in a free-
surface multiple removal algorithm and the effects of including internal multiples as part of input
data in a leading-order internal-multiple-attenuation algorithm. These similarities and differences
demonstrate that the limitation of current leading-order algorithm is fully anticipated and those
limitations are resolvable by inverse series. We also provide detailed derivation of locating specific
higher-order term to address that spurious prediction.
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Figure 6: Leading-order prediction—b3 (left) and higher-order modification—bPIP5 (right)
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Appendix A

In Ma et al. (2011), we stated that the higher-order terms addressing spurious prediction
can be derived from a portion of a fifth-order term in the inverse series; see equation .1. In this
appendix, we give an argument on why other portions of the fifth-order term cannot be employed
for that purpose.
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First, we show that there are differences between different terms in equation .1; i.e., there exists no
reduction in type III terms. To prove that, we first review the reduction case in type I terms.

• Type I

• Begin with equation (11′) in Weglein et al. (2003):

D′1 = (Gd0V1G
d
0)m, (.2)

which is

D(xg, zg, xs, zs, ω) =

∫ ∞

−∞
dx′
∫ ∞

−∞
dz′
∫ ∞

−∞
dx′′

∫ ∞

−∞
dz′′ (.3)

×Gd0(xg, zg, x
′, z′, ω)V1(x′, z′, x′′, z′′, ω)Gd0(x′′, z′′, xs, zs, ω).

For the marine case, by first substituting the bilinear form of reference Gd0 (DeSanto, 1992)

Gd0(xg, zg, x
′, z′, ω) =

∫ ∞

−∞
dk′x

∫ ∞

−∞
dk′z

eik
′
x(xg−x′)eik

′
z(zg−z′)

−k′2x − k′2z + k2
(.4)

and

Gd0(x′′, z′′, xs, zs, ω) =
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dk′′z

eik
′′
x(x′′−xs)eik

′′
z (z′′−zs)

−k′′2x − k′′2z + k2
(.5)

into equation .3, and then Fourier transforming on both sides of the resulting equation on xg and
xs, the RHS becomes

RHS =

∫ ∞

−∞
dx′
∫ ∞

−∞
dz′
∫ ∞
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147



Multiple attenuation part II M-OSRP12

×
∫ ∞
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.

Notice we use the convention mentioned on page R54 in Weglein et al. (2003), i.e.,

V1(k1,−k2, ω) =

∫
e−ik1·r1V1(r1, r2;ω)eik2·r2dr1dr2 (.7)

where k1 ≡ (kg,−qg) and k2 ≡ (ks, qs).

Combining the terms xg and xs in equation .6, we have
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s , the RHS becomes,
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where, in the last step, we use (see e.g., DeSanto (1992))
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and similarly ∫ ∞
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=
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Because the perturbation is below the measurement surface (i.e., z′ > zg and z′′ > zs), we can
remove the absolute value as follows

RHS =

∫ ∞
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dx′
∫ ∞
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Then, for the first-order term in type I, we have,
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• Equation (12′) in Weglein et al. (2003) is
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The RHS is
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Inserting the bilinear forms of Gd0 and Gfs0 ,
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into the above equation and Fourier transform on xg and xs, gives
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Recalling the definitions of −k2
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Considering the integral on x′, z′, x′′′′, z′′′′ and x′′, x′′′ as a Fourier transform based on the convention
(equation .7), we have
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Similarly, defining −k′′2x + k2 ≡ q′′2x , we have
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∫ ∞
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Notice that the + sign in eiq
′′
x |z′′+z′′′|
−2ig′′x

enables us to remove the absolute value.

The LHS of equation .14 is

LHS =
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2iqg

e−iqszs

2iqs
V2(kg,−qg, ks, qs, ω) (.23)

Comparing equation .23 and equation .22, we have
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−∞
dkV1(kg,−qg, k, q, ω)

1

2ig
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• Equation (13′) in Weglein et al. (2003)
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fs
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fs
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d
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d
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Following the procedures from equation .14 through equation .22, the first term in .25 becomes

−
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1

2ig

∫ ∞

−∞
dk′V1(k,−q, k′, q′, ω)

1
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and the second term becomes

−
∫ ∞

−∞
dkV1(kg,−qg, k, q, ω)

1
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Substituting V2(kg,−qg, k, q, ω) (equation .24) into equation .27, we have
∫ ∞

−∞
dkV1(kg,−qg, k, q, ω)

1

2ig

∫ ∞

−∞
dk′V1(k,−q, k′, q′, ω)

1

2ig′
V1(k′,−q′, ks, qs, ω) (.28)

Therefore, equation .28 cancels out equation .26, and a reduction occurs.

• Type II terms

• Equation (11′′) in Weglein et al. (2003) is

D′ = (Gd0V
′

1G
d
0)m, (.29)

which is

D′(kg, zg, ks, zs, ω) =
e−iggzg

2iqg

e−iqszs

2iqs
V ′1(kg,−qg, ks, qs, ω). (.30)

Notice the LHS of equation .30 and .13 are different: D′1 is data with the free-surface multiples
and D′ is data without free-surface multiples.

• Equation (12′′) in Weglein et al. (2003) is

(Gd0V
′

2G
d
0)m = −(Gd0V

′
1G

d
0V
′

1G
d
0)m. (.31)

We derive the RHS of equation .31 following the same produce as we derive the RHS of equation
.14. The difference resides the middle reference Green’s function. With the middle reference
Green’s function being Gd0, instead of Gfs0 , we cannot lift the absolute value in equation .22 without
specifying the relationship between z′ and z′′. In other words, without specifying the relationship
between z′ and z′′, the RHS of equation .31 is not computable from our data on the measurement
surface. Hence, each type III term is different and not reducible. The same argument explains the
differences in higher-order terms in type III.

Appendix B

In appendix A, we show that each part in a type III term is different, therefore we need to
choose which part of the fifth-order term can be used to address spurious predictions. In appendix
B, we show what specific differences/characters between the different terms allow us to make that
choice.

First, we examine the difference between the third-order terms, which is

(Gd0V
′

3G
d
0)m = −(Gd0V

′
1G

d
0V
′

1G
d
0V
′

1G
d
0)m − (Gd0V

′
1G

d
0V
′

2G
d
0)m − (Gd0V

′
2G

d
0V
′

1G
d
0)m. (.32)
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The third-order terms can be written as (Araújo, 1994)

V ′33 = − 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dk1dz1e

iqgz1V1(kg,−k1, z1)

∫ ∞

−∞

∫ ∞

−∞
dk2dz3

eiq1|z1−z3|

−2iq1
V1(k1,−k2, z3) (.33)

×
∫ ∞

−∞
dz5

eiq2|z3−z5|

−2iq2
V1(k2,−ks, z5)eiqsz5

V ′33 =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

dk1dk2

4q1q2

∫ ∞

−∞
dz1e

1(qg−q1)z1V1(kg,−k1, z1)

∫ ∞

z1

dz3e
i(q1−q2)z3V1(k1,−k2, z3)

×
∫ ∞

z3

dz5e
i(q2+qs)z5V1(k2,−ks, z5)

+
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

dk1dk2

4q1q2

∫ ∞

−∞
dz1e

1(qg−q1)z1V1(kg,−k1, z1)

∫ ∞

z1

dz3e
i(q1+q2)z3V1(k1,−k2, z3)

×
∫ z3

−∞
dz5e

i(−q2+qs)z5V1(k2,−ks, z5)

+
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

dk1dk2

4q1q2

∫ ∞

−∞
dz1e

i(qg+q1)z1V1(kg,−k1, z1)

∫ z1

−∞
dz3e

i(−q1−q2)z3V1(k1,−k2, z3)

×
∫ ∞

z3

dz5e
i(q2+qs)z5V1(k2,−ks, z5)

+
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

dk1dk2

4q1q2

∫ ∞

−∞
dz1e

1(qg+q1)z1V1(kg,−k1, z1)

∫ z1

−∞
dz3e

i(−q1+q2)z3V1(k1,−k2, z3)

×
∫ z3

−∞
dz5e

i(−q2+qs)z5V1(k2,−ks, z5)

The third part in the above separation is chosen for the attenuation of first-order internal multiples
because the relation between z′, z′′ and z′′′ (z′ > z′′; z′′ < z′′′) resembles the “lower-higher-lower
”configuration of the first-order internal-multiples. With the model-type independent argument,
the on-shell projection of V′1(kg,ks, ω), which is directly computable from measured data, can be
used for internal-multiple attenuation. The internal-multiple-attenuation algorithm is developed
using the on-shell projection of V′1(kg,ks, ω),
∫ ∞

−∞

∫ ∞

−∞
dk1dk2V

′
1(kg,−k1, qg + q1)

1

2q1
V ′1(k1,−k2,−q1− q2)

1

2q2
V ′1(k2,−ks, q2 + qs) +

∑
residues.

(.34)
For comparison, other separations of the third-order term have no such capability.

For the (Gd0V
′

1G
d
0V
′

1G
d
0V
′

1G
d
0V
′

1G
d
0V
′

1G
d
0)m, following the same procedure, we can have

1

(2π)4

∫ ∞

−∞

∫ ∞

−∞
dk1dz1e

iqgz1V ′1(kg, k1, z1)

∫ ∞

−∞
dk2dz3

eiq1|z1−z3|

−2iq1
V ′1(k1,−k2, z3)

×
∫ ∞

−∞
dz3dz5

eiq2|z3−z5|

−2iq2
V ′1(k2,−k3, z5)

∫ ∞

−∞
dz4dz7

eiq3|z5−z7|

−2iq3
V ′1(k3,−k4, z7)
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×
∫ ∞

−∞
dz9

eiq4|z7−z9|

−2iq4
V ′1(k4,−ks, z9)

Only the separation z1 > z3, z3 < z5, z5 > z7 and z7 < z9 gives
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dk1dk2dk3dk4V

′
1(kg,−k1, qg + q1)

1

2iq1
V ′1(k1,−k2,−q1 − q2) (.35)

× 1

2iq2
V ′1(k2,−k3, q2 + q3)

1

−2iq3
V ′1(k3,−k4,−q3 − q4)

1

2iq4
V ′1(k4,−ks, q4 + qs) +

∑
residues.

Using that separation (i.e., z1 > z3, z3 < z5, z5 > z7, and z7 < z9, which resemble the configuration
of a second-order internal multiple) will predict second-order internal multiples, rather than the
prediction of the negative spurious events.

For (Gd0V
′

1G
d
0V
′

3G
d
0V
′

1G
d
0)m, we have,

− 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dk1dz1e

iqgz1V ′1(kg,−k1, z1)

∫ ∞

−∞

∫ ∞

−∞
dk2dz3

eiq1|z1−z3|

−2iq1
(.36)

× V ′3(k1,−k2, z3)

∫ ∞

−∞
dz5

eiq2|z3−z5|

−2iq2
V ′1(k2,−ks, z5)eiqsz5

Choosing z1 > z3 and z3 < z5, we have
∫ ∞

−∞

∫ ∞

−∞
dk1dk2V

′
1(kg,−k1, qg + q1)

1

2q1
V ′3(k1,−k2,−q1− q2)

1

2q2
V ′1(k2,−ks, q2 + qs) +

∑
residues.

(.37)
where the outer two V1 terms can be computed by the data, and the middle V3 term can also be
computed indirectly by computing predicted first-order internal multiples by using equation .34.

In equation .36, z3 is the effective pseudo-depth of the predicted internal multiple (i.e., z3 = z′1 −
z′3 + z′5).
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Abstract

The inverse scattering series (ISS) internal-multiple-attenuation method predicts internal
multiples directly and without any subsurface information. The ISS leading-order attenuator of
first-order internal multiples is the leading-order term in the subseries that contributes to the
removal of first-order internal multiples. The basic idea behind the leading-order attenuator is
that all the events in the data are treated as subevents and combined nonlinearly (three data
sets are involved), and among all the combinations first-order internal multiples can be predicted
by the combination that has all subevents correspond to primaries. While the ISS leading-order
attenuator has demonstrated its capability for internal-multiple prediction/attenuation, it has
strengths and limitations as implied by “leading-order” and “attenuator”. On one hand, the
ISS internal-multiple leading-order attenuator predicts exact time and approximate amplitude,
but it has specific prerequisites such as knowledge of the source wavelet, as well as source
and receiver deghosting, and free-surface-multiple removal. The information omitted from any
prerequisite is left for the adaptive subtraction technique to clean up. On the other hand,
the entire data set, consisting of primaries and internal multiples, is input into the algorithm.
When internal multiples in the data themselves act as subevents, the leading-order attenuator
produces not only first-order internal multiples, but also higher-order internal multiples and,
at times, spurious events, which have been observed in the tests of Fu et al. (2010) and Luo
et al. (2011). Weglein et al. (2011) have also noted this and suggested that the resolution of the
problem would reside in other terms of the ISS. Ma et al. (2012) and Liang et al. (2012) identified
higher-order terms from the ISS that retain the benefits of the leading-order attenuator while
addressing the issues due to spurious events. The higher-order terms require the leading-order
term as an ingredient. This report specifically examines the effects of source wavelet on the
ISS internal-multiple leading-order attenuator and its higher-order modification. By comparing
the internal-multiple and spurious-event prediction results with and without source wavelet
deconvolution, we show how the source wavelet affects the shape and amplitude fidelity of the
prediction of internal multiples and spurious events.
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1 The leading-order ISS internal-multiple-attenuation algorithm

The ISS internal-multiple-attenuation algorithm is a subseries of the inverse scattering series. The
algorithm starts with the deghosted input data from which the reference wavefield and free-surface
multiples have been removed and source wavelet has been deconvolved, D(kg, ks, ω), where kg and
ks are the horizontal wavenumbers corresponding to receiver and source coordinates xg and xs,
respectively, and ω is the temporal frequency.

D(kg, ks, ω) = (−2iqs)
−1b1(kg, ks, ω), (1.1)

where b1(kg, ks, ω) corresponds to an uncollapsed FK migration of effective normal incident spike
plane-wave data (Weglein et al., 2003; Hsu et al., 2011). The second term in the algorithm is the
leading-order attenuator of first-order internal multiples, which predicts the negative of first-order
internal multiples and alters all higher-order internal multiples (the order of an internal multiple is
defined by the total number of downward reflections). The leading-order attenuator in a 2D earth
is given by Araújo et al. (1994) and Weglein et al. (1997)

b3(kg, ks, qg + qs) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dk1e

iq1(zs−zg)dk2e
iq2(zg−zs)

×
∫ ∞

−∞
dz1e

i(qg+q1)z1b1(kg,−k1, z1)

×
∫ z1−ε

−∞
dz2e

i(−q1−q2)z2b1(k1,−k2, z2)

×
∫ ∞

z2+ε
dz3e

i(q2+qs)z3b1(k2,−ks, z3), (1.2)

where c0 is the reference velocity, qg = sgn(ω)
√

( ωc0 )2 − k2
g and qs = sgn(ω)

√
( ωc0 )2 − k2

s are the
vertical wavenumbers, ε is a small positive parameter chosen to ensure that the relations between
pseudo-depths z1 > z2 and z3 > z2 are satisfied, and zg and zs are source and receiver depths,
respectively.

For a 1D earth and a normal incidence, wave equation 1.2 reduces to

b3(k) = bPPP3 =

∫ ∞

−∞
dz1e

ikz1b1(z1)

∫ z1−ε

−∞
dz2e

−ikz2b1(z2)

∫ ∞

z2+ε
dz3e

ikz3b1(z3), (1.3)

where the deghosted data, D(t), for an incident spike wave, satisfy D(ω) = b1(2ω/c0), and where
b1(z) =

∫∞
−∞ e

−ikzb1(k)dk, and k = 2ω/c0 is the vertical wavenumber. Here, we introduce a new
notation, bPPP3 , in which the superscript (“P” represents primary, and “I” represents internal multi-
ple) indicates specific events in the data that are input into each of the three integrals. The events
indicated in this notation are the ones that the algorithm can accommodate in its goal of removing
first-order internal multiples. The data with first-order internal multiples attenuated are

D(t) +D3(t), (1.4)
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Figure 1: A first-order internal multiple constructed by three primary subevents that satisfy the
“lower-higher-lower” pattern in pseudo-depth domain.

whereD3(t) is the inverse Fourier transform ofD3(ω), and whereD3(ω) = b3(k) for an incident spike
wave. Weglein and Matson (1998) showed that this algorithm can be interpreted as the subevents
construction of internal multiples. Figure 1 illustrates the construction of a first-order internal
multiple using three primary subevents. The predicted time of the internal multiple is exact, and
the predicted amplitude approximates the true amplitude (Weglein et al., 2003).

2 The higher-order modification of the ISS internal-multiple leading-order-
attenuation algorithm

Early analysis of the ISS leading-order attenuator focused on the performance of internal multiples
prediction by using subevents that correspond to primaries. However, the input data contain both
primaries and internal multiples and all events in the data will be treated as subevents. Under some
circumstances treating internal multiples as subevents in the first-order internal-multiple algorithm
can lead to spurious events. Ma et al. (2012) and Liang et al. (2012) define the conditions when
that can occur and explain how terms further in the ISS address and remove those spurious events.
For instance, a spurious event may be generated by the leading-order attenuator when an internal
multiple itself is treated as a subevent in the second integral of equation 1.3, as shown in Figure 2. It
is worthing noting that in figure 2, the “lower-higher-lower” relationship between the psudeo-depths
is required by b3, and if it not satisfied this kind of subevent combination will not occur in b3, and
such type of a spurious event would not be produced.

Ma et al. (2012) identify a higher-order term from the inverse scattering series that can generate
the negative of the spurious event.

bPIP5 (k) =

∫ ∞

−∞
dz1e

ikz1b1(z1)

∫ z1−ε

−∞
dz2e

−ikz2b3(z2)

∫ ∞

z2+ε
dz3e

ikz3b1(z3). (2.1)
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Figure 2: Subevent construction of a spurious event when an internal multiple itself is treated as a
subevent in the second integral of the leading-order attenuator (number of reflectors N >= 3, and
2z2 − z1 < z3).

The output of the new ISS internal-multiple algorithm for this three-reflector case is

D(t) +D3(t) +DPIP
5 (t), (2.2)

where DPIP
5 (t) is the inverse Fourier transform of DPIP

5 (ω) and where DPIP
5 (ω) = bPIP5 (k) for

spike data. The original algorithm (see equation 1.4) attenuates the first-order internal multiples
and preserves primaries but can also output spurious events. The new algorithm in equation 2.2
provides the benefit of the original algorithm while addressing issues that are due to spurious events.

When there are more than three reflectors in the earth, other types of spurious events could also
be generated by the leading-order attenuator (Liang et al. (2012)). In this report, we will focus
only on the three-reflector case. Therefore, only the leading-order attenuator (equation 1.3) and the
higher-order term (equation 2.1) will be examined in this report.

3 The source wavelet effects on ISS internal-multiple prediction exemplified
using two examples

In the previous section, the input data are assumed to be source wavelet deconvolved, deghosted,
and with free-surface multiples removed. If the data are generated by using a source wavelet instead
of an incident spike wave in a 1D case, b1(k) is obtained by the following equation:

D(ω) = A(ω)b1(2ω/c0). (3.1)

Then, the internal multiples predicted by the leading-order attenuator (equation 1.3), which has
opposite polarity as the true internal multiples, are obtained by
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D3(ω) = A(ω)b3(ω/c0). (3.2)

When adding equation 3.2 to equation 3.1, all the first-order internal multiples are attenuated, and
higher-order internal multiples are altered. More details on incorporating source wavelet deconvo-
lution into the ISS internal multiple attenuation algorithm can be referred to Yang and Weglein
(2013). Including source wavelet deconvolution in the higher-order term for removing spurious event
require this initial step in the leading-order attenuator. The predicted spurious events (with oppo-
site polarity as the actual spurious event generated by the leading-order attenuator) are obtained
by

DPIP
5 (ω) = A(ω)bPIP5 (ω/c0). (3.3)

Equations 3.1, 3.2, and 3.3 can be easily extended to multi-dimensional cases. In this section, we will
examine the effects of a source wavelet on the prediction of internal multiples and spurious events.
we apply the ISS internal-multiple leading-order attenuator and its higher-order modification with
and without inclusion of source wavelet deconvolution for both 1D normal incidence and 1.5D shot
gather examples, and then compare the results. In this report, we use the spectral division method
to deconvolve the source wavelet from the input data. Other methods (e.g., Wiener filter) could
also be used and more details about source wavelet deconvolution can be referred to Tang et al.
(2012).

3.1 1D normal incidence example

Here we will examine the source wavelet effect on the leading-order attenuator and its higher-order
modification (using the exact source wavelet that are used to generate synthetic data). Figure 3
shows a trace generated by the 1D normal-incidence reflectivity method (Ricker source wavelet with
peak frequency 30Hz, and sampling interval in time dt=4ms). The reflectivity method can be used
to generate primaries and internal multiples separately. In this figure three primaries are shown in
red, and all the internal multiples are shown in blue.

Figure 4 shows the actual internal multiples in the data (top) and the internal multiples predicted
by using the ISS leading-order attenuator (−D3) without source wavelet deconvolution (bottom).
These two results then are normalized by their respective maximum sample value, and plotted
together in Figure 5. From Figures 4 and 5 we can see that the predicted time is exact, but the
amplitude and shape of the predicted internal multiples are not matched with those of actual internal
multiples. From Figure 5 we can also see the spurious event, at time 1.33s (in green circle), that is
generated by the ISS leading-order attenuator. This event does not exist in the original input data
and that’s why it is called a spurious event. Figure 6 shows the comparison of the spurious event
generated by the leading-order attenuator and the spurious event predicted by the higher-order
term (equation 2.1). Both results are obtained without source wavelet deconvolution, and we can
see that again the predicted amplitude and shape do not matched with the real ones.
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Figure 3: An input trace, including three primaries (red) and all internal multiples (blue).

Next we apply the procedures described in equations 3.1, 3.2, and 3.3 to incorporate the source
wavelet deconvolution into internal multiple and spurious event predictions. Figure 7 shows the
true internal multiples in the data (red) and internal multiples predicted by the ISS leading-order
attenuator (−D3) with source wavelet deconvolution (blue). It is shown that with the source wavelet
deconvolution the shape of the internal multiple prediction matches the actual internal multiples
very well. Also, the predicted time is exact and the predicted amplitude is approximate.

Figure 8 shows the comparison of the spurious events in D3 and the spurious event predicted by the
higher-order modification(−DPIP

5 ), and both results are obtained with source wavelet deconvolution.
From the figure we can see that the predicted spurious event matches the one generated by the
leading-order attenuator very well. By adding DPIP

5 to D3 the spurious event is greatly attenuated
and the internal multiple prediction is almost unchanged (compared to Figure 7), as shown in
Figure 9. From Figure 9 we can conclude that the modified internal-multiple-prediction algorithm in
equation 2.2 provides the benefit of original algorithm (equation 1.4) while addressing the limitation
due to spurious events.

3.2 1.5D shot-gather example

In this section, we examine the source wavelet effects on the ISS internal-multiple leading-order
attenuator and its higher-order modification for a 1.5D shot-gather example. The data are generated
by using finite-difference code within the M-OSRP group (code courtesy of Fang Liu and Di Chang,
and the source wavelet is a Ricker wavelet with 25Hz peak frequency). Figure 10 shows the three-
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Figure 4: Top: actual internal multiples in the data; bottom: predicted multiples (−D3) without
source wavelet deconvolution.
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Figure 5: Internal multiples in the data (red) and predicted multiples (−D3) without source wavelet
deconvolution (blue). Both results are normalized by their maximum sample value, respectively.
The green circle shows the spurious event.
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Figure 6: Top is the result of D3 (spurious event at time 1.33s) and bottom is the result of −DPIP
5

(predicted spurious event at time 1.33s). Both results are obtained without source wavelet decon-
volution. Green circles show the spurious events.
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Figure 7: Actual internal multiples in the data (red) and internal multiples predicted by the ISS
leading-order attenuator with source wavelet deconvolution (blue).
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are obtained with source wavelet deconvolution.
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Figure 9: Comparison of actual internal multiples in data (red) and modified prediction represented
by −(D3 + DPIP

5 ) (with source wavelet deconvolution). Green circles correspond to the spurious
events.
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reflector 1D model for data generation. Figures 11a and 11b show the shot gather without and with
source wavelet deconvolution, respectively. The first five events in Figure 11a are: the first primary,
the second primary, the first-order and second-order internal multiples generated between the first
and second reflectors, and the third primary.

We first examine the source wavelet effects on the leading-order attenuator (b3 term). Figures 12a
and 12b show the predicted multiple (−D3) with (right) and without (left) source wavelet decon-
volution. We can see that without source wavelet deconvolution the predicted multiples spread
out, and also the amplitudes of the predicted multiples in the two results are very different. Fig-
ure 13 shows for comparison wiggle plots of the multiple prediction without deconvolution (13a),
the input shot gather (13b), and the multiple prediction with deconvolution (13c). We choose the
time window so that all the events shown in the wiggle plots are internal multiples. The results
show that with the source wavelet deconvolution, the shapes of the predicted internal multiples are
more similar to those of actual internal multiples in the data. Then we compare the amplitudes
of the actual internal multiples with those of the multiples predicted using two different schemes,
respectively. Figure 14a shows the amplitude comparison of the zero-offset traces from the input
shot gather (red) and the multiple predicted without source wavelet deconvolution (blue), and Fig-
ure 14b shows the amplitude comparison of zero-offset traces from the input shot gather (red) and
the multiple predicted with source wavelet deconvolution (blue). In each of these two figures, the
red event at about 1.25s is the third primary and the rest of the events are internal multiples. From
these two figures we can see that by including the source wavelet deconvolution, the amplitudes of
the predicted internal multiples approximate those of the actual internal multiples.

Next we will examine the source wavelet effects on the higher-order term addressing issues due
to spurious events, i.e., the bPIP5 term. Figures 15a and 15b show the results of −D3 and DPIP

5

without source wavelet deconvolution, and Figures 16a and 16b show the corresponding results
with source wavelet deconvolution. We extract the zero traces from each set of two figures and then
compare them in the same plot. Figure 17a shows the comparison of zero-offset traces from −D3

and DPIP
5 , both of which are obtained without source wavelet deconvolution. Figure 17b shows the

comparison of zero-offset traces from −D3 and DPIP
5 obtained with source wavelet deconvolution.

From the results in these two figures, we can see that with the source wavelet deconvolution, both
the amplitude and shape of the predicted spurious event match well those of actual spurious event
generated by the leading-order attenuator.

3.3 Internal multiple prediction using estimated wavelet

In this section we estimated the source wavelet using the Green’s theorem-derived method (Weglein
and Secrest (1990)) and then use this estimated source wavelet to repeat the process in the Section
3.2. Further details about the source wavelet estimation based on Green’s theorem and its appli-
cation can be referred to Mayhan et al. (2012). It is worth noting that in this report the actual
medium is an inhomogeneous acoustic medium with water on the top and the reference medium is
a whole-water medium. Therefore, the total wavefield in the actual medium contains direct wave,
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21Figure 10: 1D model with both velocity and density variations.
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Figure 11: (a) Shot gather without source wavelet deconvolution; (b) shot gather with source wavelet
deconvolution.
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Figure 12: Internal-multiple prediction (−D3) without (a) and with (b) source wavelet deconvolu-
tion.
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Figure 13: Wiggle plots of selected traces: (a) a multiple prediction without source wavelet decon-
volution, (b) an input shot gather, (c) and a multiple prediction with deconvolution.
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Figure 14: (a) Comparison of the zero-offset traces extracted from Figures 11a (red) and 12a (blue);
(b) Comparison of the zero-offset traces extracted from Figures 11a (red) and 12b (blue).

primaries and internal multiples while the reference wavefield in the reference medium contains
direct wave only. The key equation of the source wavelet estimation is as follows,

Ã(ω)G0(r, rs, ω) =

∮

S
[P̃ (r′, rs, ω)∇′G0(r′, r, ω)−G0(r′, r, ω)∇′P̃ (r′, rs, ω)] · ndS , (3.4)

where rs, r′, r represent the locations of source, receiver and prediction points, respectively;
˜P (r′, rs, ω) is the Fourier transform of the pressure field, G0(ri, rj, ω) is the Fourier transform of the

Green’s function in the reference medium. The source wavelet A(ω) can be obtained by averaging
the reference wavefield divided by a Green’s function:

A(ω) =
1

N

N∑

i=1

P̃0(ri, rs, ω)

G0(ri, rs, ω)
. (3.5)

From the equation 3.4 we can see that both the total wavefield and its derivative are needed to
estimate the source wavefield. We calculate the derivative of the wavefield using the measured
wavefield at two different depths:

dP

dz
=
P (205m)− P (200m)

5m
. (3.6)
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Figure 15: Results without source wavelet deconvolution: (a) multiple prediction (−D3) and (b)
spurious-event prediction (DPIP

5 ).
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Figure 16: Results with source wavelet deconvolution: (a) multiple prediction (-D3) and (b) spurious
event prediction (DPIP

5 ).
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Figure 17: (a) Comparison of the zero-offset traces extracted from Figures 15a (red) and 15b (blue);
(b) Comparison of the zero-offset traces extracted from Figures 16a (red) and 16b (blue).

Figure 18a shows that the estimated source wavelet (blue) matches well the actual source wavelet
(red). Figure 18b shows zero-offset traces of predicted internal multiples using actual (red) and
estimated source wavelet (blue), and Figure 18c shows zero-offset traces of predicted spurious event
using actual (red) and estimated source wavelet (blue). We can see that the results by using the
estimated waevlets matches the resutls by using the actual wavelet.

4 Summary and discussion

We examine the source wavelet effects on both the ISS internal-multiple leading-order attenuator
and higher-order term for removing spurious event by comparing the internal-multiple-prediction
results with and without source wavelet deconvolution. From the comparison we can see that by
including the source wavelet deconvolution in the ISS internal-multiple prediction, both the shape
and amplitude of the predicted internal multiples can be improved (made closer to the true internal
multiples). The accuracy of the source wavelet is important for the test results, and we have shown
that the source wavelet can be estimated using Green’s theorem.
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Figure 18: (a) Comparison of actual (red) and estimated (blue) source wavelets; (b) zero-offset traces
of predicted internal multiples using actual (red) and estimated source wavelet (blue) (c) zero-offset
traces of predicted spurious events using actual (red) and estimated source wavelet (blue).
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Abstract

In this work a subseries of the ISS is isolated, with the specific task of removing internal

multiples of first-order, with downward reflection at the shallowest reflector. The algorithm

predicts both the phase and exact amplitude of the internal multiples and does not modify any

primary; therefore the internal multiples are removed surgically. This algorithm may be relevant

and provide added value when one of the internal multiples under discussion is interfering

destructively with (or is proximal to) a primary, and the attenuation of the internal multiple

provided by previous algorithms is not adequate for the clean removal of the multiple and not

touching the primary. To show how the elimination subseries proposed in this work deals with

this challenging situation, an analytic example with three interfaces is included, with one of

the relevant first-order internal multiples interfering destructively with the primary generated

at the third reflector. We show in particular how the interfering internal multiple is eliminated

with no damage to the amplitude or the phase of the primary, as is expected from a method for

surgical removal of internal multiples.

1 Introduction

Today, there are a number of methodologies in the oil industry that are designed to predict internal

multiples. These methods are followed by energy-minimization adaptive subtraction to try to

accommodate all shortcomings in the prediction, as it addresses contributions left outside of the

system by the prediction method. In other words, the energy-minimization adaptive subtraction

deals with issues not included in the physical framework behind the prediction method.

In particular, by using the ISS and the concept of specific-task subseries, a multidimensional al-

gorithm was derived in Araújo (1994), Araújo et al. (1994) and Weglein et al. (1997) to predict

and attenuate internal multiples present in the data. However, there are situations in which the

energy-minimization adaptive-subtraction technique is not suitable anymore, and the attenuation
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of internal multiples is not enough for a correct interpretation of the seismic data. An example

of this challenging situation for the oil industry can arise when an internal multiple is interfering

destructively with (or is proximal to) a primary associated to a target e.g. subsalt targets. This

situation is often present in onshore exploration, but it can also happen offshore. While the energy-

minimization adaptive-subtraction technique is of value for isolated multiples, in this case it might

also affect the primary that is experiencing interference from the internal multiple.

Therefore, it is important to develop new algorithms with enhanced capabilities. In response to this

need, Ramı́rez and Weglein (2005) and Ramı́rez (2007) discuss early ideas for moving attenuation

of internal multiples towards elimination through higher order terms in the ISS. Those ideas and

concepts are here progressed and developed leading to a subseries which surgically removes at the

same time all internal multiples of first-order having their single downward reflection generated at

the shallowest reflector. We refer to this subseries as the leading-order internal multiple elimination

subseries (LOIMES). We also illustrate how to use this subseries in a three-interface analytic model,

to surgically remove the first-order internal multiple with its downward reflection at the shallowest

interface and upward reflections at the second reflector. To highlight the importance of this work,

the parameters of the model are chosen to mimic the situation described in the paragraphs above;

i.e., to allow the internal multiple to interfere destructively with a primary. In particular, the

primary that is experiencing interference corresponds to the third reflector.

The report’s organization is as follows: Section 2 provides a review of the leading-order attenuation

of internal multiples of first order, which is the initial step toward their complete elimination. In

Section 3 we explain how to isolate the LOIMES, with emphasis on the first contribution beyond the

leading-order attenuator; i.e., with full details of the derivation of the second term of the subseries

provided. Section 4 is devoted to application of the LOIMES to the analytic model mentioned in

the paragraph above. Finally, in Section 5 we present final comments and conclusions. There are

two appendices, in which we show the details of the calculations needed to follow the main body

of this paper.

2 Review of the internal multiple attenuation subseries

2.1 The inverse scattering series and seismic physics

The inverse scattering series (ISS) is a direct inversion method which can in principle determine,

in seismic applications, subsurface properties of the earth using only the measured data D in a

seismic experiment, and a Green’s function for a chosen reference medium. The information about
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the earth is contained in the perturbation operator V , which is the difference between the actual

medium (the earth) and the reference medium. Also, the data are the value of the scattered field1

at the measurement surface. The ISS starts with the expansion of the perturbation operator (at

the measurement surface) as

V = V1 + V2 + V3 + ... (1)

where Vi is the portion of V that is ith order in the measured data. Then, at the measurement

surface the ISS takes the form (Weglein et al. 2003)

G0V1G0 = D

G0V2G0 = −G0V1G0V1G0

G0V3G0 = −G0V1G0V1G0V1G0 −G0V1G0V2G0 −G0V2G0V1G0

...

(2)

As D is provided by the seismic experiment, we can solve for V1 in the first equation of (2). Then,

we can substitute V1 into the second equation and solve for V2. Now we can substitute V1 and

V2 into the third equation and solve for V3. Following this procedure we can determine all the

components in the right hand side of (1). However, empirical tests performed in Carvalho (1992)

suggest that with no a priori information, convergence is restricted to small contrasts and short

duration of the perturbation.

A solution for the issue of convergence explained in Weglein et al. (2003) is to split the inversion

into specific tasks:

1. Removal of free-surface multiples.

2. Removal of internal multiples.

3. Location and imaging of reflectors in space.

4. Inversion for earth material properties.

A free-surface multiple is by definition a seismic event with at least one downward reflection at the

air-water interface; the number of downward reflections at the air-water interface is the order of

1The scattered field is defined as ψs ≡ G−G0, where G and G0 are Green’s functions for the actual and reference

medium respectively.
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the free-surface multiple. On the other hand, an internal multiple is by definition a seismic event

with at least one downward reflection, and with all of its downward reflections created at the earth

(Figure 1). The order an the internal multiple is defined as the number of downward reflections it

experiences anywhere during its travel time.

 

Figure 1: First-order internal multiple.

In Figure 1 the direction of increasing Z is downwards, hence Z2 > Z1 and Z3 > Z1. We also

say that, on the basis of the locations where reflections occur, the interfaces generate an internal

multiple of first order are in a “lower-higher-lower” configuration.

The recipe is to isolate distinct subseries from the ISS, with each subseries having as its goal only

one of the specific tasks just listed. It turns out that those specific-task subseries have better

convergence properties than the entire ISS. A fundamental part of this approach, mentioned in

Weglein et al. (2003), is that the four tasks listed above are accomplished sequentially in the order

in which they are mentioned. Each time a task is achieved, the problem is restarted, as if the

task(s) accomplished had not existed before.

With regard to internal multiples, a subseries was isolated in Araújo (1994) and Weglein et al.

(1997). Its task is attenuation of internal multiples of all orders. In particular, first-order internal

multiples are attenuated by the leading-order contribution2 of this subseries, conveniently named

the leading-order attenuator.

2The leading-order contribution in a specific-task subseries refers here to the first term of that subseries that

provides the initial contribution towards the achievement of the specific task.
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2.2 The leading-order attenuator

As we will see in later sections, the LOIMES isolated in this work shares the same leading-order

contribution that the internal multiple attenuation subseries (IMAS) has. Hence, it is important

to first understand how the leading-order attenuator works, and then to move to higher-order

contributions to the LOIMES. In this subsection we will provide a review of the leading-order

attenuator.

A detailed study of the isolation of the IMAS, and in particular of the leading-order attenuator, is

beyond the scope of this work. The interested reader can consult Araújo (1994), Ramı́rez (2007),

and Weglein et al. (2003) for more details. For this work it is enough to say that the leading-

order attenuator is contained in the third equation of the ISS. This is because first-order internal

multiples experience three reflections and therefore they are of third order in data. The leading-

order attenuator is isolated from V1G0V1G0V1 in the references just mentioned.

For the 1D and normal-incidence case, the analytic expression for the leading-order attenuator is

b3(k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
b1(z

′)
∫ ∞

z′+ε
dz′′eikz

′′
b1(z

′′), (3)

where ε is a small and positive parameter introduced to ensure the characteristic “lower-higher-

lower” configuration for first-order internal multiples, which was mentioned in Section 2.1, and to

avoid the configurations that include the contributions of the self-interactions z′′ = z′ and z′ = z.

In the general case, ε is chosen to match the width of the source wavelet, and the consequence is

that thin-bed multiples will not be attenuated (Weglein et al. 2003). However, we will consider 1D

models and spike waves with normal incidence and therefore there is no wavelet to worry about,

that is, there is no restriction on the value of ε other that it must be small and positive3. Also,

k = 2ω
c0

is the vertical wavenumber, and b1(z) is the result of performing Stolt’s migration on the

data of the model using the water speed, denoted c0.

We will consider the 1D model shown in Figure 2, where Zi denotes the depth of the ith reflector

for i = 1, 2, 3.

3In practice, the computational implementation requires a discretization of time. In this case ε = c0∆t
2
, where ∆t

is a time sample interval and usually it has assigned the value of 1ms. Also, c0 is the water speed.
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Figure 2: A 1D earth model, with three interfaces. The first interface, with depth Z1, is the water bottom.

The second interface, with depth Z2, can be identified as the top salt, and the third interface, with depth

Z3, can be identified as the target.

We also consider data composed of primaries and internal multiples, generated by spike waves at

normal incidence:

D(t) = R1δ(t− t1) +R′2δ(t− t2) +R′3δ(t− t3) + IM, (4)

where R′2 = T01R2T10, R
′
3 = T01T12R2T21T10, and ti is the travel time of the primary associated

with the interface at depth Zi. Also, Ri is the reflection coefficient experienced by a wave that is

reflected upward at the interface at depth Zi. Tij represents the transmission coefficient experienced

by a wave traveling from the acoustic medium that has parameters (ci, ρi) to the acoustic medium

that has parameters (cj , ρj).

In this case, the input of the leading-order attenuator, eq. (3), becomes (Appendix A.1):

b1(z) = R1δ(z − z1) +R′2δ(z − z2) +R′3δ(z − z3) + · · · , (5)

where zi = c0ti
2 represents the position of the reflector at depth Zi, after Stolt’s migration. The

zi are usually referred to as pseudodepths, and we say that eq. (5) is in the pseudodepth domain.

Although the input data of the leading-order attenuator, eq. (5), includes primaries and internal

multiples, we only consider the effect of the primaries. Initial steps towards the inclusion of internal

multiples are addressed in Ma and Weglein (2012) and Liang and Weglein (2012).

According to Appendix A.2, in the time domain the result for the evaluation of eq. (3), using eq.

(5), is
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b3(t) = −T01T10 ∗ (IM)j=1 − (T01T10)
2 ∗ T12T21 ∗ (IM)j=2 + · · · , (6)

where (IM)j=1 is the sum of all first-order internal multiples with their downward reflection at the

first (shallowest) reflector of the model, and (IM)j=2 is the first-order internal multiple with its

downward reflection at the second interface of the model. The analytic expressions are

(IM)j=1 = −T01R2R1R2T10δ(t− (2t2 − t1))

−2T01R2R1T21R3T12T10δ(t− (t2 + t3 − t1))− T01T 2
12R3R1R3T

2
21δ(t− (2t3 − t1)). (7)

(IM)j=2 = −T01T12R3R2R3T10T21δ(t− (2t3 − t2)). (8)

In order to see why b3(t) is an attenuator of internal multiples, let’s add it to the data of the model:

b1(t) + b3(t) = primaries+ [1− T01T10](IM)j=1 + [1− (T01T10)
2 ∗ T12T21] ∗ (IM)j=2 + · · · . (9)

As 0 < T01T10 < 1, it becomes evident from (9) that the amplitude contribution of (IM)j=1 i.e.,

the amplitude contribution of the internal multiples generated at the shallowest reflector is reduced

by an amount T01T10 with respect to the contribution of those multiples prior to the addition of

b3(z). T01T10 is referred to as attenuation factor.

An analogous situation is present for the internal multiple with its downward reflection at the second

reflector. In this case, the amplitude contribution is reduced by an amount of (T01T10)
2 ∗ T12T21.

Finally, it is convenient to summarize some features of the leading-order attenuator:

• It is completely data-driven, and no subsurface information is required.

• It predicts the exact time and well understood amplitude of all first-order internal multiples.

• It also predicts the exact time and approximate amplitude for internal multiples with con-

verted waves.
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3 The leading-order internal multiple eliminator subseries (LOIMES)

In Section 2 we illustrated, using the specific model of Figure 2, how the leading-order attenu-

ator decreases the amplitude contribution for first-order internal multiples with their downward

reflection at the shallowest interface, by an amount of T01T10. This means that to promote this

attenuation to an elimination, the contribution of higher-order terms from the elimination subseries

need to move this attenuator factor to the unity: when those higher-order contributions are added

to the initial attenuation provided by b3(t), the predicted amplitude will exactly match (IM)j=1.

Hence, the collective contribution of the terms in the elimination subseries will remove (IM)j=1

from the data.

As the input of the ISS is water-speed migrated data, in order to isolate the terms within the

ISS giving the right contributions, we need to express 1 in terms of reflection coefficients, and in

particular in terms of R1. This can be done by the following geometric series expansion:

1 = T01T10 ∗
(

1

T01T10

)
= T01T10 ∗

1

(1−R2
1)

= T01T10 ∗ (1 +R2
1 +R4

1 +R6
1 +R8

1 + . . .). (10)

Notice that, upon distribution of the product, the first term on the right-hand side of eq. (10) is

the initial attenuation provided by the leading-order attenuator. Therefore, the remaining terms

are the required amplitude contributions from the higher-order terms, in any subseries claiming

to promote the attenuation to elimination. For simplicity, we will focus on isolation of the term

within the ISS that provides the next contribution following the leading-order attenuation; i.e., on

the isolation of the term whose contribution is T01T10 ∗R2
1 on the right-hand side of eq. (10).

The first step towards the isolation of the second term of the LOIMES from the ISS is to notice

that T01T10 ∗ R2
1 is the attenuation provided by the leading-order attenuator, T01T10, times the

square power of R1. As the prediction for first-order multiples of the leading-order attenuator,

eq. (6), is already of third order in the data, the square power of R1 means that to predict

T01T10 ∗ R2
1 ∗ (IM)j=1, the second term of the LOIMES should come from a term that is of fifth

order in the data. That is, it must be somewhere within the fifth term in the ISS:

V5 = −(V1G0V1G0V1G0V1G0V1 + V2G0V1G0V1G0V1 + V1G0V2G0V1G0V1

+V1G0V1G0V2G0V1 + V1G0V1G0V1G0V2 + V3G0V1G0V1 + V1G0V3G0V1
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+V1G0V1G0V3 + V4G0V1 + V1G0V4). (11)

The second step towards isolation of the portion of V5 that contains T01T10 ∗ R2
1 ∗ (IM)j=1, is

to notice that the selected part should match the exact travel time of the true internal multiple.

Using this argument, and upon some inspection of the terms in V5 provided in Ramı́rez (2007), it

is recognized that the correct term within V5 should reside in the lower-higher-lower contribution

of V1G0V3G0V1, and in particular the contribution to V3 coming from V1G0V1G0V1 needs to be

further selected. In other words we are looking for an expression like

bIM5 (k) ≡
∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
F [b1(z

′)]
∫ ∞

z′+ε
dz′′eikz

′′
b1(z

′′), (12)

where, as is common for subseries of the ISS, the integrals have been expressed in terms of water-

speed migrated data; i.e., in terms of b1(z). F [b1(z
′)] is the portion of V1G0V1G0V1, expressed in

terms of b1(z), that provides the two extra contributions R1 we are looking for. As R1 arises in

the data as a result of interactions of the wave with the shallowest interface, to obtain F [b1(z
′)] we

must split V1G0V1G0V1 in a way that these interactions become explicit.

On the other hand, after isolating the model-type independent contribution of the term V1G0V1G0V1,

and expressing the result in terms of the water-speed migrated data, we arrive at the following ex-

pression:

∫ ∞

−∞
dzeikzb1(z)

∫ ∞

−∞
dz′e−ikz

′
b1(z

′)
∫ ∞

−∞
dz′′eikz

′′
b1(z

′′), (13)

which is the same term from which the leading-order attenuator is extracted, when we are working

with V3. The next step is to introduce, in order to extract the desired interactions from eq. (13),

the same parameter ε included in the leading-order attenuator, eq. (3), and then to break the two

right integrals in eq. (13) as

∫ ∞

−∞
dz′ =

∫ z−ε

−∞
dz′ +

∫ z+ε

z−ε
dz′ +

∫ ∞

z+ε
dz′

∫ ∞

−∞
dz′′ =

∫ z′−ε

−∞
dz′′ +

∫ z′+ε

z′−ε
dz′′ +

∫ ∞

z′+ε
dz′′. (14)

By using eq. (14), we arrive at the following expansion of eq. (13):
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∫ ∞

−∞
dzeikzb1(z)

∫ ∞

−∞
dz′e−ikz

′
b1(z

′)
∫ ∞

−∞
dz′′eikz

′′
b1(z

′′) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
b1(z

′)
∫ ∞

z′+ε
dz′′eikz

′′
b1(z

′′)

+

∫ ∞

−∞
dzeikzb1(z)

∫ ∞

z+ε
dz′e−ikz

′
b1(z

′)
∫ z′−ε

−∞
dz′′eikz

′′
b1(z

′′)

+

∫ ∞

−∞
dzeikzb1(z)

∫ ∞

z+ε
dz′e−ikz

′
b1(z

′)
∫ ∞

z′+ε
dz′′eikz

′′
b1(z

′′)

+

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
b1(z

′)
∫ z′−ε

−∞
dz′′eikz

′′
b1(z

′′)

+

∫ ∞

−∞
dzeikzb1(z)

∫ z+ε

z−ε
dz′e−ikz

′
b1(z

′)
∫ z′+ε

z′−ε
dz′′eikz

′′
b1(z

′′)

+

∫ ∞

−∞
dzeikzb1(z)

∫ z+ε

z−ε
dz′e−ikz

′
b1(z

′)
∫ ∞

z′+ε
dz′′eikz

′′
b1(z

′′)

+

∫ ∞

−∞
dzeikzb1(z)

∫ z+ε

z−ε
dz′e−ikz

′
b1(z

′)
∫ z′−ε

−∞
dz′′eikz

′′
b1(z

′′)

+

∫ ∞

−∞
dzeikzb1(z)

∫ ∞

z+ε
dz′e−ikz

′
b1(z

′)
∫ z′+ε

z′−ε
dz′′eikz

′′
b1(z

′′)

+

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
b1(z

′)
∫ z′+ε

z′−ε
dz′′eikz

′′
b1(z

′′) =

B31(k) +B32(k) +B33(k) +B34(k)

+B35(k) +B36(k) +B37(k) +B38(k) +B39(k). (15)

From (15), we further select the fifth term B35(k), as this is the term containing the interactions

with the first reflector: z′′ = z′ and z′ = z. In this way we have isolated the interactions and
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their neighborhood. As this neighborhood is small, we expect we have done enough to reach

our goal of elimination of internal multiples of first order with their downward reflection at the

shallowest interface. It is interesting that the parameter ε is applied in this context to include the

self-interactions, rather than to avoid them, as is the case for the leading-order attenuator.

The last step is to define F [b1(z)] as the inverse Fourier transform of B35(k) :

F [b1(z)] = F−1
[∫ ∞

−∞
dzeikzb1(z)

∫ z+ε

z−ε
dz′e−ikz

′
b1(z

′)
∫ z′+ε

z′−ε
dz′′eikz

′′
b1(z

′′)

]
. (16)

In this way, we arrive at the second contribution towards elimination of internal multiples of first

order with their downward reflection at the shallowest interface:

bIM5 (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
F [b1(z

′)]
∫ ∞

z′+ε
dz′′eikz

′′
b1(z

′′). (17)

In Appendix A.2 we show in detail how to perform the integrals in eq. (17), for the same model as

the one in Figure 2 in Section 2.2. In the time domain the result is

bIM5 (t) = R3
1(R′2)

2δ(t− (2t2 − t1)) + 2R′2R
3
1R
′
3δ(t− (t2 + t3 − t1))+

R′3R
3
1R
′
3δ(t− (2t3 − t1)) + (R′2)

3(R′3)
2δ(t− (2t3 − t2)), (18)

which can be expressed in terms of eqs. (7) and (8) as

bIM5 (t) = −T01T10 ∗R2
1 ∗ (IM)j=1 − (T01T10)

2 ∗ T12T21 ∗ (R′2)
2(IM)j=2. (19)

If we now add eq. (19) to the effect of the leading order attenuator; i.e., to eq. (9), we get

b1(t) + b3(t) + bIM5 (t) = primaries+ [1− T01T10(1 +R2
1)](IM)j=1+

[1− (T01T10)
2 ∗ T12T21 ∗ (1 + (R′2)

2)](IM)j=2 + ... (20)

Let’s restrict our attention to the amplitude of the internal multiples generated at the shallowest

reflector, i.e., to the coefficient of (IM)j=1 in eq. (20). In this case the attenuation factor T01T10

185



is changed to T01T10(1 + R2
1). This new contribution contains the first and second terms of the

geometric series on the right-hand side of eq. (10). Hence, the integral proposed for bIM5 , eq. (17),

correctly reproduces the expected amplitude contribution to take the attenuation of first-order

internal multiples with their downward reflection at the shallowest reflector closer to elimination.

To isolate higher-order contributions of the LOIMES, a process analogous to the isolation of bIM5 (k),

eq. (12), is necessary. For example, the term following bIM5 (k), denoted as bIM7 (k), will be contained

in the seventh term of the ISS. Specifically it will be in V1G0V5G0V1, from which the part of V5

corresponding to V1G0V1G0V1G0V1G0V1 is further selected, followed by an expansion analogous

to eq. (15). The difference is that in this case, there will be four integrals whose intervals of

integration need to split. After computing a few higher-order terms, we can write, upon some

formal definitions, a compact form for bIMLO :

bIMLO (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′×

F−1
(∫ ∞

−∞
dz′eikz

′
b1(z

′)
1

1−
∫ ∫

b1(z′)

)∫ ∞

z′+ε
dz′′eikz

′′
b1(z

′′), (21)

where F−1 means the inverse Fourier transform and

1

1−
∫ ∫

b1(z′)
≡ 1 +

∫ ∫
b1(z

′) +

(∫ ∫
b1(z

′)
)2

+

(∫ ∫
b1(z

′)
)3

+ . . . , (22)

with

(∫ ∫
b1(z

′)
)n
≡
∫ z′+ε

z′−ε
dz1e

−ikz1b1(z1)
∫ z1+ε

z1−ε
dz2e

ikz2b1(z2)×

∫ z2+ε

z2−ε
dz3e

−ikz3b1(z3)
∫ z3+ε

z3−ε
dz4e

ikz4b1(z4) · · · ×

∫ z(2n−2)+ε

z(2n−2)−ε
dz(2n−1)e

−ikz(2n−1)b1(z(2n−1))
∫ z(2n−1)+ε

z(2n−1)−ε
dz2ne

ikz2nb1(z2n), n > 0. (23)

(∫ ∫
b1(z

′)
)n
≡ 1, n = 0. (24)
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Finally, it can also be seen from eq. (20) that bIM5 (t) further attenuates the internal multiple of

first order generated at the second reflector. However, the LOIMES by itself will not match the

amplitude of this event. For that to occur, another subseries needs to be isolated such that, in

cooperation with the LOIMES, the elimination takes place. Earlier work on this direction was also

reported in Ramı́rez (2007).

4 Application of the LOIMES to an analytic model

As was mentioned in the introduction, one motivation for the surgical elimination of internal mul-

tiples is that in some situations current techniques such as the energy-minimization adaptive sub-

traction are no longer suitable and attenuation of internal multiples is not enough. An example of

such a situation is present when an internal multiple is interfering destructively with a primary. On

the other hand, as the LOIMES exactly predicts both the travel time and amplitude of the original

internal multiple, it can be considered to be an example of a method for surgical removal of internal

multiples, because it does not modify any other event. In this section we will use an analytic model

in which an internal multiple of first order is interfering destructively with a primary, and the

attenuation provided by the leading-order attenuator is not enough for correct interpretation of the

primary. We will use this example to show the usefulness of the LOIMES by surgically removing

the internal multiple.

The analytic model is the three-interface model of Figure 2, with the specific values for the pa-

rameters shown in Figure 3. We will use the notation Pi for the primary generated at the reflector

Zi. First-order internal multiples are denoted as IMijk, for i, j, k = 1, 2, 3, with j indicating the

reflector in which the downward reflection is generated; i and k indicate the reflectors in which the

upward reflections are generated.
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 Figure 3: Specific analytic model. This model has the same configuration as that presented in Section 2,

with the specified values for the depths, velocities, and densities.

The interfering events are the primary P3 and the internal multiple IM212, whose common travel

time is 2.2947s. The amplitudes for P3 and IM212 are 0.0045 and -0.1084, respectively. A trace

is shown in Figure 4, from which the amplitude of the combined event P3 + IM212 can be read as

-0.1039: the polarity is opposite that of the primary.

 Figure 4: Data of the model. These data include primaries and the relevant internal multiples of first order.
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The next step would be the application of b3(t) to attenuate internal multiples of first order. The

result is shown in Figure 5, in which a small time window containing the travel time of the interfering

event is shown with an increased scale, in order to make visible the attenuated amplitude. It can

also be seen from the right side of Figure 5 that the primaries P1 and P2 are not affected at all.

From the left side, we can see that the amplitude attenuation is not enough to change the polarity

of the interfering event. This might lead to assignment of the incorrect polarity to the primary.

 Figure 5: Data after the action of the leading-order attenuator, b3(t)

From the above paragraph it is evident that an improvement in the predicted amplitude for IM212

is needed. As was explained in Section 3, this can be done if we include further terms from the

LOIMES. This is shown in Figure 6, in which the effect of the second term, bIM5 (t), has been added

to that of b3(t).
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Figure 6: Data after the action of both the leading-order attenuator and bIM5 (t).

In this case, it can be seen that the primary P3 appears with its original amplitude and polarity,

0.0045, which means that the interfering internal multiple has been removed. This illustrates, at

least for the present model, the high rate of convergence of the LOIMES. However, for more complex

models the convergence can be slower, and more terms might be needed. Also, from Figure 6, it

can be noticed that neither the travel times nor the amplitudes of the primaries P1 and P2 are

influenced or changed, as expected from a method for surgical removal of internal multiples.

5 Discussion and conclusions

In this work we have isolated a subseries whose task is to eliminate first-order internal multiples

with their downward reflections at the shallowest interface. A generic term of this subseries is

given by eqs. (21)-(24). This subseries is called the leading-order internal multiple elimination

subseries (LOIMES). This elimination subseries predicts the phase and the exact amplitude of the

internal multiples and does not modify any primary. Therefore, the surgical removal of such internal

multiples is achieved.
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We have also applied the LOIMES to an analytic example with three interfaces. The configuration

is set up to produce an internal multiple (with downward reflection at the shallowest reflector)

interfering destructively with the primary generated at the third reflector, in a way that the leading-

order attenuator is not enough to let the primary show up in the data with its correct polarity. We

show how the action of the third-order and fifth-order contributions of the algorithm remove the

interfering internal multiple, making the primary to appear in the trace with its original amplitude

and polarity. In practice however, it is not possible to know a priori the number of terms that

are necessary to eliminate the interfering internal multiple. The recipe is to apply to the data one

term at a time until no change is noticed in the primary. Although higher-order terms will imply

an increased computational cost (more integrals need to be calculated), if the interfering primary

is suspected to be the target, then the investment might be worthwhile, as a situation involving a

drilling or no drilling decision might be involved and processing costs pale compared to drilling dry

holes.

Interfering events are common in onshore exploration, but they may also occur offshore. Therefore,

the algorithm in this work may provide added value in those challenging geologic configurations in

which techniques such as the energy-minimization adaptive subtraction fails.

So far, we have assumed that the earth is acoustic. It would be interesting to study the properties

of the LOIMES, with the assumption of the more realistic situation of an elastic earth, in which

the internal multiple can include S-waves.

Further research in this topic includes extending the method beyond the normal incidence assump-

tion of the present work, and to derive the corresponding multidimensional version of the subseries

presented here. Additionally, current challenges in exploration seismology might also require the

removal of other internal multiples of first-order, generated beneath the shallowest reflector. Hence,

a more general research goal is to isolate a subseries, with the specific task of the elimination of

first-order internal multiples generated at all reflectors.

So far, we have assumed that the earth is acoustic. It would be interesting to study the properties

of the LOIMES, with the assumption of the more realistic situation of an elastic earth, in which

the internal multiple can include S-waves.

A Calculation of the leading-order attenuator, b3(t)

Now we will show the key steps involved in calculation of eq. (3). We will use the 1D model with

three interfaces shown in Figure 2, with data generated by a spike wave with normal incidence, i.e.,
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when the input is given by eq. (5). We will follow the procedure described in Weglein et al. (2003),

in which a 1D model with two interfaces is presented.

A.1 Preparing the input for the Leading-order attenuator

The first task is to obtain b1(z) from the data of the model, eq. (4), which for convenience is

repeated here:

D(t) = R1δ(t− t1) +R′2δ(t− t2) +R′3δ(t− t3) + IM,

where R′2, R
′
3 and ti are as in Section 3.

As it was mentioned in the main body of this work, formally b1(z) is obtained by Stolt’s migration

of eq. (4) using the water speed. However the procedure is captured, in this case, by a simple set

of rules:

1. Perform a temporal Fourier transform

D(ω) = R1e
iωt1 +R′2e

iωt2 +R′3e
iωt3 + ...

2. Define the vertical wavenumber and pseudodepths

k = 2
ω

c0
zi =

c0ti
2
.

Now D can be written as

D(k) = R1e
ikz1 +R′2e

ikz2 +R′3e
ikz3 + ...

3. Perform a Fourier transform on k and denote the result as b1(z):

b1(z) ≡ D(z) = R1δ(z − z1) +R′2δ(z − z2) +R′3δ(z − z3) + ...

In the general case, b1(z) is D(z) times an obliquity factor. In our case, this factor is not

needed as we are considering normal incidence of a plane wave; i.e., b1(z) ≡ D(z). The role

of the obliquity factor in more general situations is to produce a plane wave in the Fourier

domain (see Weglein et al. 2003).
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The equation in item 3 is the input for the leading-order attenuator, eq. (3), and it matches exactly

eq. (5) in Section 2.2.

A.2 Explicit calculation of the analytic expression for b3(t)

We will now insert eq. (5) into eq. (3), which for convenience is repeated here:

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
b1(z

′)
∫ ∞

z′+ε
dz′′eikz

′′
b1(z

′′).

We start the evaluation of the above expression with the integral on the right (we only take into

account the primaries):

∫ ∞

z′+ε
dz′′eikz

′′
b1(z) =

∫ ∞

z′+ε
dz′′eikz

′′
[R1δ(z

′′ − z1) +R′2δ(z
′′ − z2) +R′3δ(z

′′ − z2)] =

∫ ∞

−∞
dz′′eikz

′′
[R1δ(z

′′ − z1)H(z′′ − (z′ + ε)) +R′2δ(z
′′ − z2)H(z′′ − (z′ + ε))+

R′3δ(z
′′ − z2)H(z′′ − (z′ + ε))] =

R1e
ikz1H(z1 − (z′ + ε)) +R′2e

ikz2H(z2 − (z′ + ε)) +R′3e
ikz3H(z3 − (z′ + ε)). (25)

As it will be used repeatedly throughout the present and the next appendices, it is worthwhile to

say some words about the procedure to go from the second term to the third one in eq. (25). The

interval of integration is extended from z′− ε to ∞, but Heaviside functions are introduced at each

term of the integrand, with each Heaviside function having the appropriate argument to avoid the

modification the original integral.

Substituting eq. (25) into the second integral of eq. (3) , we get

∫ z−ε

−∞
dz′e−ikz

′
[R1δ(z

′ − z1) +R′2δ(z
′ − z2) +R′3δ(z

′ − z3)]×

[R1e
ikz1H(z1 − (z′ + ε)) +R′2e

ikz2H(z2 − (z′ + ε)) +R′3e
ikz3H(z3 − (z′ + ε))]
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=

∫ z−ε

−∞
dz′e−ikz

′
R1δ(z

′ − z1)R1e
ikz1H(z1 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
R1δ(z

′ − z1)R′2eikz2H(z2 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
R1δ(z

′ − z1)R′3eikz3H(z3 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
R′2δ(z

′ − z2)R1e
ikz1H(z1 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
R′2δ(z

′ − z2)R′2eikz2H(z2 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
R′2δ(z

′ − z2)R′3eikz3H(z3 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
R′3δ(z

′ − z3)R1e
ikz1H(z1 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
R′3δ(z

′ − z3)R′2eikz2H(z2 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
R′3δ(z

′ − z3)R′3eikz3H(z3 − (z′ + ε)) =

I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9. (26)

Evaluating each of the integrals in eq. (26) we get

I1 =

∫ z−ε

−∞
dz′e−ikz

′
R1δ(z

′ − z1)R1e
ikz1H(z1 − (z′ + ε)) = R4

1H(z1 − (z1 + ε))︸ ︷︷ ︸
=0

H((z − ε)− z1) = 0,

I2 =

∫ z−ε

−∞
dz′e−ikz

′
R1δ(z

′ − z1)R′2eikz2H(z2 − (z′ + ε)) =
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R1R
′
2e
ik(z2−z1)H(z2 − (z1 + ε))H((z − ε)− z1),

I3 =

∫ z−ε

−∞
dz′e−ikz

′
R1δ(z

′ − z1)R′3eikz3H(z3 − (z′ + ε)) =

R1R
′
3e
ik(z3−z1)H(z3 − (z1 + ε))H((z − ε)− z1),

I4 =

∫ z−ε

−∞
dz′e−ikz

′
R′2δ(z

′ − z2)R1e
ikz1H(z1 − (z′ + ε)) =

R1R
′
2e
ik(z1−z2)H(z1 − (z2 + ε))︸ ︷︷ ︸

=0

H((z − ε)− z2) = 0,

I5 =

∫ z−ε

−∞
dz′e−ikz

′
R′2δ(z

′ − z2)R′2eikz2H(z2 − (z′ + ε)) =

R′2H(z2 − (z2 + ε))︸ ︷︷ ︸
=0

H((z − ε)− z2) = 0,

I6 =

∫ z−ε

−∞
dz′e−ikz

′
R′2δ(z

′ − z2)R′3eikz3H(z3 − (z′ + ε)) =

R′2R
′
3e
ik(z3−z2)H((z − ε)− z2),

I7 =

∫ z−ε

−∞
dz′e−ikz

′
R′3δ(z

′ − z3)R1e
ikz1H(z1 − (z′ + ε)) =

R1R
′
3e
ik(z1−z3)H(z1 − (z3 + ε))︸ ︷︷ ︸

=0

,

I8 =

∫ z−ε

−∞
dz′e−ikz

′
R′3δ(z

′ − z3)R′2eikz2H(z2 − (z′ + ε)) =

R′2R
′
3e
ik(z2−z3)H(z2 − (z3 + ε))︸ ︷︷ ︸

=0

,
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I9 =

∫ z−ε

−∞
dz′e−ikz

′
R′3δ(z

′ − z3)R′3eikz3H(z3 − (z′ + ε)) =

R′3H(z3 − (z3 + ε))︸ ︷︷ ︸
=0

.

Hence, the result of the second integral in eq. (3) is

I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9

= R1R
′
2e
ik(z2−z1)H((z−ε)−z1)+R1R

′
3e
ik(z3−z1)H((z−ε)−z1)+R′2R

′
3e
ik(z3−z2)H((z−ε)−z2). (27)

Substituting eq. (27), into the last integral of eq. (3), we finally have

b3(k) =

∫ ∞

−∞
dzeikz[R1δ(z − z1) +R′2δ(z − z2) +R′3δ(z − z3)]×

[R1R
′
2e
ik(z2−z1)H((z − ε)− z1) +R1R

′
3e
ik(z3−z1)H((z − ε)− z1) + (R′2)R

′
3e
ik(z3−z2)H((z − ε)− z2)]

=

∫ ∞

−∞
dzeikzR1δ(z − z1)R1R

′
2e
ik(z2−z1)H((z − ε)− z1)+

∫ ∞

−∞
dzeikzR1δ(z − z1)R1R

′
3e
ik(z3−z1)H((z − ε)− z1)+

∫ ∞

−∞
dzeikzR1δ(z − z1)R′2R′3eik(z3−z2)H((z − ε)− z2)+

∫ ∞

−∞
dzeikzR′2δ(z − z2)R1R

′
2e
ik(z2−z1)H((z − ε)− z1)+

∫ ∞

−∞
dzeikzR′2δ(z − z2)R1R

′
3e
ik(z3−z1)H((z − ε)− z1)+
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∫ ∞

−∞
dzeikzR′2δ(z − z2)R′2R′3eik(z3−z2)H((z − ε)− z2)+

∫ ∞

−∞
dzeikzR′3δ(z − z3)R1R

′
2e
ik(z2−z1)H((z − ε)− z1)+

∫ ∞

−∞
dzeikzR′3δ(z − z3)R1R

′
3e
ik(z3−z1)H((z − ε)− z1)+

∫ ∞

−∞
dzeikzR′3δ(z − z3)R′2R′3eik(z3−z2)H((z − ε)− z2) =

I ′1 + I ′2 + I ′3 + I ′4 + I ′5 + I ′6 + I ′7 + I ′8 + I ′9. (28)

Evaluating now the integrals in (28), we get

I ′1 =

∫ ∞

−∞
dzeikzR1δ(z − z1)R1R

′
2e
ik(z2−z1)H((z − ε)− z1) =

R2
1R
′
2e
ik(z2−2z1)H((z1 − ε)− z1)︸ ︷︷ ︸

=0

,

I ′2 =

∫ ∞

−∞
dzeikzR1δ(z − z1)R1R

′
3e
ik(z3−z1)H((z − ε)− z1) =

R2
1R
′
3e
ik(z3−2z1)H((z1 − ε)− z1)︸ ︷︷ ︸

=0

,

I ′3 =

∫ ∞

−∞
dzeikzR1δ(z − z1)R′2R′3eik(z3−z2)H((z − ε)− z2) =

R1R
′
2R
′
3e
ik(z1+z3−z2)H((z1 − ε)− z2)︸ ︷︷ ︸

=0

,

I ′4 =

∫ ∞

−∞
dzeikzR′2δ(z − z2)R1R

′
2e
ik(z2−z1)H((z − ε)− z1)
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R1(R
′
2)

2eik(2z2−z1),

I ′5 =

∫ ∞

−∞
dzeikzR′2δ(z − z2)R1R

′
3e
ik(z3−z1)H((z − ε)− z1) =

R′2R1R
′
3e
ik(z2+z3−z1),

I ′6 =

∫ ∞

−∞
dzeikzR′2δ(z − z2)R′2R′3eik(z3−z2)H((z − ε)− z2) =

R′2R
′
3e
ik(z3−2z2)H((z2 − ε)− z2)︸ ︷︷ ︸

=0

,

I ′7 =

∫ ∞

−∞
dzeikzR′3δ(z − z3)R1R

′
2e
ik(z2−z1)H((z − ε)− z1) =

R′3R1R
′
2e
ik(z3+z2−z1),

I ′8 =

∫ ∞

−∞
dzeikzR′3δ(z − z3)R1R

′
3e
ik(z3−z1)H((z − ε)− z1) =

R′3R
3
1R
′
3e
ik(2z3−z1),

I ′9 =

∫ ∞

−∞
dzeikzR′3δ(z − z3)R′2R′3eik(z3−z2)H((z − ε)− z2) =

R′2(R
′
3)

2eik(2z3−z2).

With the results above, the sum of the integrals in eq. (28) gives

b3(k) = R1(R
′
2)

2eik(2z2−z1) + 2R′2R1R
′
3e
ik(z2+z3−z1)+
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= R1(R
′
2)

2eik(2z2−z1) + 2R′2R1R
′
3e
ik(z2+z3−z1) +R′3R1R

′
3e
ik(2z3−z1) +R′2(R

′
3)

2eik(2z3−z2),

which in the time domain is expressed as

b3(t) = R1(R
′
2)

2δ(t− (2t2 − t1)) + 2R′2R1R
′
3δ(t− (t2 + t3 − t1)) +R′3R1R

′
3δ(t− (2t3 − t1))+

R′2(R
′
3)

2δ(t− (2t3 − t2))

b3(t) = −T01T10 ∗ (IM)j=1 − (T01T10)
2 ∗ T12T21 ∗ (IM)j=2.

The above expression is exactly eq. (6). (IM)j=1 and (IM)j=2 represent the contributions of the

internal multiples (of first order) with their downward reflection originating at the first (shallowest)

and second reflectors, respectively. Their analytic expressions are given by eqs. (7) and (8):

(IM)j=1 = −T01R2R1R2T10δ(t− (2t2 − t1))

−2T01R2R1T21R3T12T10δ(t− (t2 + t3 − t1))− T01T 2
12R3R1R3T

2
21δ(t− (2t3 − t1)).

(IM)j=2 = −T01T12R3R2R3T10T21δ(t− (2t3 − t1)).

B Explicit calculation of the expression for bIM5 (t)

In this appendix we will provide the details of the calculation of bIM5 (k), using the second term of

the LOIMES, which is presented here for convenience:

bIM5 (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
F [b1(z

′)]
∫ ∞

z′+ε
dz′′eikz

′′
b1(z

′′),

where

F [b1(z)] = F−1
[∫ ∞

−∞
dzeikzb1(z)

∫ z+ε

z−ε
dz′e−ikz

′
b1(z

′)
∫ z′+ε

z′−ε
dz′′eikz

′′
b1(z

′′)

]
.
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We start with the evaluation of F [b1(z)]. First we insert eq. (5) into the right integral of F [b1(z)].

Then, by extension of the interval of integration and insertion of the convenient Heaviside functions,

as in Appendix A, we get

∫ z′+ε

z′−ε
dz′′eikz

′′
b1(z

′′) =

∫ z′+ε

z′−ε
dz′′eikz

′′
[R1δ(z

′′ − z1) +R′2δ(z
′′ − z2) +R′3δ(z

′′ − z3)] =

R1e
ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1) +R′2e

ikz2H(z2 − (z′ − ε))H((z′ + ε)− z2)+

R′3e
ikz3H(z3 − (z′ − ε))H((z′ + ε)− z3). (29)

Substituting eq. (29) into the second integral in F [b1(z
′)], we have

∫ z+ε

z−ε
dz′e−ikz

′
b1(z

′)[R1e
ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1)+

R′2e
ikz2H(z2 − (z′ − ε))H((z′ + ε)− z2) +R′3e

ikz3H(z3 − (z′ − ε))H((z′ + ε)− z3)]

=

∫ z+ε

z−ε
dz′e−ikz

′
[R1δ(z

′ − z1) +R′2δ(z
′ − z2) +R′3δ(z

′ − z3)]×

[R1e
ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1) +R′2e

ikz2H(z2 − (z′ − ε))H((z′ + ε)− z2)

+R′3e
ikz3H(z3 − (z′ − ε))H((z′ + ε)− z3)] =

∫ z+ε

z−ε
dz′e−ikz

′
R1δ(z

′ − z1)R1e
ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1)+

∫ z+ε

z−ε
dz′e−ikz

′
R1δ(z

′ − z1)R′2eikz2H(z2 − (z′ − ε))H((z′ + ε)− z2))+

∫ z+ε

z−ε
dz′e−ikz

′
R1δ(z

′ − z1)R′3eikz3H(z3 − (z′ − ε))H((z′ + ε)− z3))+
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∫ z+ε

z−ε
dz′e−ikz

′
R′2δ(z

′ − z2)R1e
ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1)+

∫ z+ε

z−ε
dz′e−ikz

′
R′2δ(z

′ − z2)R′2eikz2H(z2 − (z′ − ε))H((z′ + ε)− z2)+

∫ z+ε

z−ε
dz′e−ikz

′
R′2δ(z

′ − z2)R′3eikz3H(z3 − (z′ − ε))H((z′ + ε)− z3)+

∫ z+ε

z−ε
dz′e−ikz

′
R′3δ(z

′ − z3)R1e
ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1)+

∫ z+ε

z−ε
dz′e−ikz

′
R′3δ(z

′ − z3)R′2eikz2H(z2 − (z′ − ε))H((z′ + ε)− z2)+

∫ z+ε

z−ε
dz′e−ikz

′
R′3δ(z

′ − z3)R′3eikz3H(z3 − (z′ − ε))H((z′ + ε)− z3)

I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9. (30)

The integrals in (30) are evaluated as follows:

I1 =

∫ z+ε

z−ε
dz′e−ikz

′
R1δ(z

′ − z1)R1e
ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1) =

R2
1e
−ikz1eikz1H(z1 − (z − ε))H((z + ε)− z1)H(z1 − (z1 − ε))︸ ︷︷ ︸

=1

H((z1 + ε)− z1)︸ ︷︷ ︸
=1

=

R2
1H(z1 − (z − ε))H((z + ε)− z1),

I2 =

∫ z+ε

z−ε
dz′e−ikz

′
R1δ(z

′ − z1)R′2eikz2H(z2 − (z′ − ε))H((z′ + ε)− z2) =

R1R
′
2e
−ikz1eikz2H(z1 − (z − ε))H((z + ε)− z1)H(z2 − (z1 − ε))H((z1 + ε)− z2)︸ ︷︷ ︸

=0

= 0,
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I3 =

∫ z+ε

z−ε
dz′e−ikz

′
R1δ(z

′ − z1)R′3eikz3H(z3 − (z′ − ε))H((z′ + ε)− z3) =

R1R
′
3e
−ikz1eikz3H(z1 − (z − ε))H((z + ε)− z1)H(z3 − (z1 − ε))H((z1 + ε)− z3)︸ ︷︷ ︸

=0

= 0,

I4 =

∫ z+ε

z−ε
dze−ikz

′
R′2δ(z

′ − z2)R1e
ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1) =

R1R
′
2e
−ikz2eikz1H(z2 − (z − ε))H((z + ε)− z2)H(z1 − (z2 − ε))︸ ︷︷ ︸

=0

H((z2 + ε)− z1) = 0,

I5 =

∫ z+ε

z−ε
dze−ikz

′
R′2δ(z

′ − z2)R′2eikz2H(z2 − (z′ − ε))H((z′ + ε)− z2) =

(R′2)
2e−ikz2eikz2H(z2 − (z − ε))H((z + ε)− z2)H(z2 − (z2 − ε))H((z2 + ε)− z2) =

(R′2)
2H(z2 − (z − ε))H((z + ε)− z2),

I6 =

∫ z+ε

z−ε
dze−ikz

′
R′2δ(z

′ − z2)R′3eikz3H(z3 − (z′ − ε))H((z′ + ε)− z3) =

R′3R
′
2e
−ikz2eikz3H(z2 − (z − ε))H((z + ε)− z2)H(z3 − (z2 − ε))︸ ︷︷ ︸

=0

H((z2 + ε)− z3) = 0,

I7 =

∫ z+ε

z−ε
dze−ikz

′
R′3δ(z

′ − z3)R1e
ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1) =

R1R
′
3e
−ikz3eikz1H(z3 − (z − ε))H((z + ε)− z3)H(z1 − (z3 − ε))︸ ︷︷ ︸

=0

H((z3 + ε)− z1) = 0,

I8 =

∫ z+ε

z−ε
dze−ikz

′
R′3δ(z

′ − z3)R′2eikz2H(z2 − (z′ − ε))H((z′ + ε)− z2) =
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R′3R
′
2e
−ikz3eikz2H(z3 − (z − ε))H((z + ε)− z3)H(z2 − (z3 − ε))︸ ︷︷ ︸

=0

H((z3 + ε)− z2) = 0,

I9 =

∫ z+ε

z−ε
dze−ikz

′
R′3δ(z

′ − z3)R′3eikz3H(z3 − (z′ − ε))H((z′ + ε)− z3) =

(R′3)
2e−ikz3eikz3H(z3 − (z − ε))H((z + ε)− z3)H(z3 − (z3 − ε))H((z3 + ε)− z3) =

(R′3)
2H(z3 − (z − ε))H((z + ε)− z3). (31)

Upon substitution of the integrals just calculated, we get

I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9 =

R2
1H(z1 − (z − ε))H((z + ε)− z1) + (R′2)

2H(z2 − (z − ε))H((z + ε)− z2)+

(R′3)
2H(z3 − (z − ε))H((z + ε)− z3). (32)

Finally, substituting eq. (32) into the third integral in F [b1(z
′)], and using the notation of eq. (15),

we end up with

∫ ∞

−∞
dzeikz[R1δ(z − z1) +R′2δ(z − z2) +R′3δ(z − z3)]×

[R2
1H(z1 − (z − ε))H((z + ε)− z1) + (R′2)

2H(z2 − (z − ε))H((z + ε)− z2)+

(R′3)
2H(z3 − (z − ε))H((z + ε)− z3)] =

∫ ∞

−∞
dzeikzR1δ(z − z1)R2

1H(z1 − (z − ε))H((z + ε)− z1)+
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∫ ∞

−∞
dzeikzR1δ(z − z1)(R′2)2H(z2 − (z − ε))H((z + ε)− z2)+

∫ ∞

−∞
dzeikzR1δ(z − z1)(R′3)2H(z3 − (z − ε))H((z + ε)− z3)+

∫ ∞

−∞
dzeikzR′2δ(z − z2)R2

1H(z1 − (z − ε))H((z + ε)− z1)+

∫ ∞

−∞
dzeikzR′2δ(z − z2)(R′2)2H(z2 − (z − ε))H((z + ε)− z2)+

∫ ∞

−∞
dzeikzR′2δ(z − z2)(R′3)2H(z3 − (z − ε))H((z + ε)− z3)+

∫ ∞

−∞
dzeikzR′3δ(z − z3)R2

1H(z1 − (z − ε))H((z + ε)− z1)+

∫ ∞

−∞
dzeikzR′3δ(z − z3)(R′2)2H(z2 − (z − ε))H((z + ε)− z2)+

∫ ∞

−∞
dzeikzR′3δ(z − z3)(R′3)2H(z3 − (z − ε))H((z + ε)− z3) =

I ′1 + I ′2 + I ′3 + I ′4 + I ′5 + I ′6 + I ′7 + I ′8 + I ′9. (33)

Evaluating the integrals above, we have

I ′1 =

∫ ∞

−∞
dzeikzR1δ(z − z1)R2

1H(z1 − (z − ε))H((z + ε)− z1) =

R3
1e
ikz1H(z1 − (z1 − ε))H((z1 + ε)− z1) = R3

1e
ikz1 ,

I ′2 =

∫ ∞

−∞
dzeikzR1δ(z − z1)(R′2)2H(z2 − (z − ε))H((z + ε)− z2) =
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R1(R
′
2)

2eikz1H(z2 − (z1 − ε))H((z1 + ε)− z2)︸ ︷︷ ︸
=0

= 0,

I ′3 =

∫ ∞

−∞
dzeikzR1δ(z − z1)(R′3)2H(z3 − (z − ε))H((z + ε)− z3) =

R1(R
′
3)

2eikz1H(z3 − (z1 − ε))H((z1 + ε)− z3)︸ ︷︷ ︸
=0

= 0,

I ′4 =

∫ ∞

−∞
dzeikzR′2δ(z − z2)R2

1H(z1 − (z − ε))H((z + ε)− z1) =

R2
1R
′
2e
ikz2 H(z1 − (z2 − ε))︸ ︷︷ ︸

=0

H((z2 + ε)− z1) = 0,

I ′5 =

∫ ∞

−∞
dzeikzR′2δ(z − z2)(R′2)2H(z2 − (z − ε))H((z + ε)− z2) =

(R′2)
3eikz2H(z2 − (z2 − ε))H((z2 + ε)− z2) = (R′2)

3eikz2 , (34)

I ′6 =

∫ ∞

−∞
dzeikzR′2δ(z − z2)(R′3)2H(z3 − (z − ε))H((z + ε)− z3) =

R′2(R
′
3)

2eikz2H(z3 − (z2 − ε))H((z2 + ε)− z3)︸ ︷︷ ︸
=0

= 0,

I ′7 =

∫ ∞

−∞
dzeikzR′3δ(z − z3)R2

1H(z1 − (z − ε))H((z + ε)− z1) =

R2
1R
′
3e
ikz3 H(z1 − (z3 − ε))︸ ︷︷ ︸

=0

H((z3 + ε)− z1) = 0,

I ′8 =

∫ ∞

−∞
dzeikzR′3δ(z − z3)(R′2)2H(z2 − (z − ε))H((z + ε)− z2) =
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(R′2)
2R′3e

ikz3 H(z2 − (z3 − ε))︸ ︷︷ ︸
=0

H((z2 + ε)− z1) = 0,

I ′9 =

∫ ∞

−∞
dzeikzR′3δ(z − z2)(R′3)2H(z3 − (z − ε))H((z + ε)− z3) =

(R′3)
3eikz3H(z3 − (z3 − ε))H((z3 + ε)− z3) = (R′3)

3eikz3 . (35)

Adding the integrals above, we finally have

B35(k) = R3
1e
ikz1 + (R′2)

3eikz2 + (R′3)
3eikz2 , (36)

where notation from eq. (15) has been used. When transformed to the pseudodepth domain, eq.

(36) becomes

F [b1(z)] = R3
1δ(z − z1) + (R′2)

3δ(z − z2) + (R′3)
3δ(z − z3). (37)

Now we will evaluate bIM5 (k),the second term in bIMLO , using eq. (37):

bIM5 (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
F [b1(z

′)]
∫ ∞

z′+ε
dz′′eikz

′′
b1(z). (38)

The 1st integral in the above expression is

∫ ∞

z′+ε
dz′′eikz

′′
b1(z) =

∫ ∞

z′+ε
dz′′eikz

′′
[R1δ(z

′′ − z1) + (R′2)δ(z
′′ − z2)+

(R′3)δ(z
′′ − z3)] =

R1e
ikz1H(z1 − (z′ + ε)) +R′2e

ikz2H(z2 − (z′ + ε)) +R′3e
ikz3H(z3 − (z′ + ε)). (39)

Substituting eq. (39) in the second integral of eq. (38), we get

∫ z−ε

−∞
dz′e−ikz

′
[R3

1δ(z
′ − z1) + (R′2)

3δ(z′ − z2) + (R′3)
3δ(z′ − z3)]×
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[R1e
ikz1H(z1 − (z′ + ε)) +R′2e

ikz2H(z2 − (z′ + ε)) +R′3e
ikz3H(z3 − (z′ + ε))]

=

∫ z−ε

−∞
dz′e−ikz

′
R3

1δ(z
′ − z1)R1e

ikz1H(z1 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
R3

1δ(z
′ − z1)R′2eikz2H(z2 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
R3

1δ(z
′ − z1)R′3eikz3H(z3 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
(R′2)

3δ(z′ − z2)R1e
ikz1H(z1 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
(R′2)

3δ(z′ − z2)R′2eikz2H(z2 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
(R′2)

3δ(z′ − z2)R′3eikz3H(z3 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
(R′3)

3δ(z′ − z3)R1e
ikz1H(z1 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
(R′3)

3δ(z′ − z3)R′2eikz2H(z2 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
(R′3)

3δ(z′ − z3)R′3eikz3H(z3 − (z′ + ε)) =

I ′′1 + I ′′2 + I ′′3 + I ′′4 + I ′′5 + I ′′6 + I ′′7 + I ′′8 + I ′′9 . (40)

Evaluating each of the integrals in eq. (40), we have

I ′′1 =

∫ z−ε

−∞
dz′e−ikz

′
R3

1δ(z
′ − z1)R1e

ikz1H(z1 − (z′ + ε)) = R4
1H(z1 − (z1 + ε))︸ ︷︷ ︸

=0

H((z − ε)− z1) = 0,
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I ′′2 =

∫ z−ε

−∞
dz′e−ikz

′
R3

1δ(z
′ − z1)R′2eikz2H(z2 − (z′ + ε)) =

R3
1R
′
2e
ik(z2−z1)H(z2 − (z1 + ε))H((z − ε)− z1),

I ′′3 =

∫ z−ε

−∞
dz′e−ikz

′
R3

1δ(z
′ − z1)R′3eikz3H(z3 − (z′ + ε)) =

R3
1R
′
3e
ik(z3−z1)H(z3 − (z1 + ε))H((z − ε)− z1),

I ′′4 =

∫ z−ε

−∞
dz′e−ikz

′
(R′2)

3δ(z′ − z2)R1e
ikz1H(z1 − (z′ + ε)) =

R1(R
′
2)

3eik(z1−z2)H(z1 − (z2 + ε))︸ ︷︷ ︸
=0

H((z − ε)− z2) = 0,

I ′′5 =

∫ z−ε

−∞
dz′e−ikz

′
(R′2)

3δ(z′ − z2)R′2eikz2H(z2 − (z′ + ε)) =

(R′2)
4H(z2 − (z2 + ε))︸ ︷︷ ︸

=0

H((z − ε)− z2) = 0,

I ′′6 =

∫ z−ε

−∞
dz′e−ikz

′
(R′2)

3δ(z′ − z2)R′3eikz3H(z3 − (z′ + ε)) =

(R′2)
3R′3e

ik(z3−z2)H((z − ε)− z2),

I ′′7 =

∫ z−ε

−∞
dz′e−ikz

′
(R′3)

3δ(z′ − z3)R1e
ikz1H(z1 − (z′ + ε)) =

R1(R
′
3)

3eik(z1−z3)H(z1 − (z3 + ε))︸ ︷︷ ︸
=0

,

I ′′8 =

∫ z−ε

−∞
dz′e−ikz

′
(R′3)

3δ(z′ − z3)R′2eikz2H(z2 − (z′ + ε)) =
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R′2(R
′
3)

3eik(z2−z3)H(z2 − (z3 + ε))︸ ︷︷ ︸
=0

,

I ′′9 =

∫ z−ε

−∞
dz′e−ikz

′
(R′3)

3δ(z′ − z3)R′3eikz3H(z3 − (z′ + ε)) =

(R′3)
4H(z3 − (z3 + ε))︸ ︷︷ ︸

=0

.

Hence, the value of eq. (40) is

I ′′1 + I ′′2 + I ′′3 + I ′′4 + I ′′5 + I ′′6 + I ′′7 + I ′′8 + I ′′9

= R3
1R
′
2e
ik(z2−z1)H((z− ε)− z1) +R3

1R
′
3e
ik(z3−z1)H((z− ε)− z1) + (R′2)

3R′3e
ik(z3−z2)H((z− ε)− z2).

(41)

Substituting eq. (41) in the last integral of eq. (37), we finally have

bIM5 (k) =

∫ ∞

−∞
dzeikz[R1δ(z − z1) +R′2δ(z − z2) +R′3δ(z − z3)]×

[R3
1R
′
2e
ik(z2−z1)H((z− ε)−z1)+R3

1R
′
3e
ik(z3−z1)H((z− ε)−z1)+(R′2)

3R′3e
ik(z3−z2)H((z− ε)−z2)] =

∫ ∞

−∞
dzeikzR1δ(z − z1)R3

1R
′
2e
ik(z2−z1)H((z − ε)− z1)+

∫ ∞

−∞
dzeikzR1δ(z − z1)R3

1R
′
3e
ik(z3−z1)H((z − ε)− z1)+

∫ ∞

−∞
dzeikzR1δ(z − z1)(R′2)3R′3eik(z3−z2)H((z − ε)− z2)+

∫ ∞

−∞
dzeikzR′2δ(z − z2)R3

1R
′
2e
ik(z2−z1)H((z − ε)− z1)+
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∫ ∞

−∞
dzeikzR′2δ(z − z2)R3

1R
′
3e
ik(z3−z1)H((z − ε)− z1)+

∫ ∞

−∞
dzeikzR′2δ(z − z2)(R′2)3R′3eik(z3−z2)H((z − ε)− z2)+

∫ ∞

−∞
dzeikzR′3δ(z − z3)R3

1R
′
2e
ik(z2−z1)H((z − ε)− z1)+

∫ ∞

−∞
dzeikzR′3δ(z − z3)R3

1R
′
3e
ik(z3−z1)H((z − ε)− z1)+

∫ ∞

−∞
dzeikzR′3δ(z − z3)(R′2)3R′3eik(z3−z2)H((z − ε)− z2) =

I ′′′1 + I ′′′2 + I ′′′3 + I ′′′4 + I ′′′5 + I ′′′6 + I ′′′7 + I ′′′8 + I ′′′9 (42)

The integrals in eq. (42) are calculated as usual:

I ′′′1 =

∫ ∞

−∞
dzeikzR1δ(z − z1)R3

1R
′
2e
ik(z2−z1)H((z − ε)− z1) =

R4
1R
′
2e
ik(z2−2z1)H((z1 − ε)− z1)︸ ︷︷ ︸

=0

.

I ′′′2 =

∫ ∞

−∞
dzeikzR1δ(z − z1)R3

1R
′
3e
ik(z3−z1)H((z − ε)− z1) =

R4
1R
′
3e
ik(z3−2z1)H((z1 − ε)− z1)︸ ︷︷ ︸

=0

.

I ′′′3 =

∫ ∞

−∞
dzeikzR1δ(z − z1)(R′2)3R′3eik(z3−z2)H((z − ε)− z2) =

R1(R
′
2)

3R′3e
ik(z1+z3−z2)H((z1 − ε)− z2)︸ ︷︷ ︸

=0

.
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I ′′′4 =

∫ ∞

−∞
dzeikzR′2δ(z − z2)R3

1R
′
2e
ik(z2−z1)H((z − ε)− z1)

R3
1(R′2)

2eik(2z2−z1).

I ′′′5 =

∫ ∞

−∞
dzeikzR′2δ(z − z2)R3

1R
′
3e
ik(z3−z1)H((z − ε)− z1) =

R′2R
3
1R
′
3e
ik(z2+z3−z1).

I ′′′6 =

∫ ∞

−∞
dzeikzR′2δ(z − z2)(R′2)3R′3eik(z3−z2)H((z − ε)− z2) =

(R′2)
3R′3e

ik(z3−2z2)H((z2 − ε)− z2)︸ ︷︷ ︸= 0,

I ′′′7 =

∫ ∞

−∞
dzeikzR′3δ(z − z3)R3

1R
′
2e
ik(z2−z1)H((z − ε)− z1) =

R′3R
3
1R
′
2e
ik(z3+z2−z1),

I ′′′8 =

∫ ∞

−∞
dzeikzR′3δ(z − z3)R3

1R
′
3e
ik(z3−z1)H((z − ε)− z1) =

R′3R
3
1R
′
3e
ik(2z3−z1),

I ′′′9 =

∫ ∞

−∞
dzeikzR′3δ(z − z3)(R′2)3R′3eik(z3−z2)H((z − ε)− z2) =

(R′2)
3(R′3)

2eik(2z3−z2).

The sum of the integrals above gives
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bIM5 = R3
1(R′2)

2eik(2z2−z1) + 2R′2R
3
1R
′
3e
ik(z2+z3−z1)+

R′3R
3
1R
′
3e
ik(2z3−z1) + (R′2)

3(R′3)
2eik(2z3−z2). (43)

Upon Fourier transformation, eq. (43) becomes:

bIM5 (t) = R3
1(R′2)

2δ(t− (2t2 − t1)) + 2R′2R
3
1R
′
3δ(t− (t2 + t3 − t1))+

R′3R
3
1R
′
3δ(t− (2t3 − t1)) + (R′2)

3(R′3)
2δ(t− (2t3 − t2)),

which is exactly eq. (18) in Section 3.
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A method for the elimination of all first order internal multiples from all
reflectors in a one D medium: theory and examples

Yanglei Zou, Arthur B. Weglein

April 29, 2013

Abstract

In this paper,an amplitude correction equation is derived by using reverse engineering method.
This equation is more advanced than the internal-multiple attenuation equation for an elimina-
tor. Although the amplitude correction equation is derived under 1D normal incidence, the idea
behind this equation is not only valid under 1D normal incidence. The amplitude correction
equation also provides hints for deriving a subseries from an inverse scattering series that can
eliminate all internal multiples.

1 Introduction

In principle, the inverse scattering series(ISS) allows specific seismic processing objectives, such
as free-surface-multiple removal and internal-multiple removal, to be achieved directly in terms of
measured data (effective data), without any subsurface estimation of the earthąŕs properties.

For internal-multiple removal, the Inverse Scattering Series Internal-Multiple Attenuator(ISS-IMA)
can predict correct time and well-understood amplitude for all internal multiples without any sub-
surface information. Given that the ISS-IMA predicts the approximate amplitude and correct time
of internal multiples, the ISS-IMA can remove internal multiples more effectively by using energy
minimization adaptive subtraction(EMAS). However, events may interfere with each other in both
on-shore and off-shore seismic data. In these cases, the EMAS criteria may fail. For example, when
a primary destructively interferes with an internal multiple and the real energy of the primary is
greater than the interfering event, the EMAS will not remove the internal multiples. The EMAS
criteria is obtaining the minimum data energy; however, in this example, the criteria fails as the
real primary has greater energy.

Predicting the correct amplitude of the internal multiples is an effective way of avoiding the limita-
tions of EMAS. Wilberth Herrera and Weglein (2012) has derived a subseries directly from the ISS.
The subseries can eliminate all first order internal multiples generated at the shallowest reflector and
can further attenuate deeper internal multiples. The present work is a step further from the ISS-IMA
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to an eliminator achieved directly in terms of data without any subsurface information. Two differ-
ent types of equation approximation are also presented:(1) The first type of equation approximation
can predict the correct amplitude of all first order internal multiples generated at the shallowest
reflector. (2)The second type of equation approximation can predict the correct amplitude of all
first order internal multiples generated at the shallowest and next shallowest reflectors.

In the Mission-Oriented Seismic Research Program (M-OSRP), tasks are first isolated and each task
assumes the tasks before it are completed. As shown in Figure 1,the tasks before Internal Multiple
Removal are prerequisites including reference wave removal,deghosting, free surface multiple removal
and evaluation of the wavelet. Internal multiple removal is also a prerequisite for later tasks.

Figure 1: Task Isolation

2 Internal Multiple Attenuator(IMA) and Attenuation Factor(AF)

The ISS-IMA is first given by Araújo (1994) Weglein et al. (1997). The 1D normal incidence version
of the ISS-IMA is presented as follows:

bIM3 (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε2

−∞
dz′e−ikz

′
b1(z′)

∫ ∞

z′+ε1
dz′′eikz

′′
b1(z′′). (2.1)

This equation can predict the correct time and well-understood amplitude of all internal multiples.

To demonstrate explicitly the mechanism of the internal multiple attenuation algorithm and to
examine its properties, Weglein et al. (2003) considered the simplest two-layer model that can
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produce an internal multiple. For this model, the reflection data caused by an impulsive incident
wave δ(t− z

c ) is:

D′(t) = R1δ(t− t1) + T01R2T10δ(t− t2) + · · ·
where t1, t2 and R1, R2 are the two way times and reflection coefficients from the two reflec-
tors,respectively; and T01 and T10 are the coefficients of transmission between model layers 0 and 1
and 1 and 0, respectively.

D′(ω) = R1e
iωt1 + T01R2T10e

iωt2 + · · · .
whereD′(ω) is the temporal Fourier transform of D′(t).
Given a 1D medium and a normal incident wave, kz = 2ω

c0
and b(kz) = D(ω) the following is obtained:

b(kz) = R1e
i 2ω
c0

c0t1
2 + T01R2T10e

i 2ω
c0

c0t2
2 + · · ·

The pseudo-depths z1 and z2 in the reference medium are defined as follows:

z1 =
c0t1

2
z2 =

c0t2
2
.

The input data can now be expressed in terms of k = kz, z1 and z2:

b(k) = R1e
ikz1 + T01R2T10e

ikz2 + · · ·
The date is now ready for the internal multiple algorithm.
Substituting b(k) into the algorithm, we derive the prediction:

b3k = R1R
2
2T

2
01T

2
10e

2ikz2e−ikz1

which in the time domain is:

b3t = R1R
2
2T

2
01T

2
10δ(t− (2t2 − t1))

From the example it is easy to compute the actual first order internal multiple precisely:

−R1R
2
2T01T10δ(t− (2t2 − t1))

Therefore, the time prediction is precise, and the amplitude of the prediction has an extra power
of T01T10 which is called the Attenuation Factor(AF), thus defining exactly the difference between
the attenuation represented by b3 and elimination.

To derive a general formula for the amplitude prediction of the algorithm, Ramírez and Weglein
(2005) analyzed a model with n layers and respective velocities Cn, n is an integer. By using the

definitions R1 = R′1, R′N = RN
∏N−1

i=1
(Ti−1,iTi,i−1) and Einsteinąŕs summation, the reflection data

from a normal incident spike wave we obtain the following:

D(t) = R′nδ(t− tn) + internal multiples (2.2)
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The generalized prediction of the attenuator is obtained by the following:

bIM3 (k) = R′iR
′
jR
′
ke
ikzieikzjeikzk (2.3)

which in the time domain becomes

bIM3 (k) = R′iR
′
jR
′
kδ(t− (ti + tk − tj)) (2.4)

By evaluating Equation (3) for different values of i, j and k the amplitude prediction of first order
internal multiples is obtained and can be generalized for any amount of layers in a 1D model. The
generalization of the internal multiple amplitude states that the overabundance of transmission
coefficients depends on the position of the generating reflector (where the downward reflection
took place).Compared with the real amplitude of internal multiples in the data, we can obtain the
AF(Figure 2 shows an example of the Attenuation Factor of a first order internal multiple generated
at the second reflector).

Figure 2: an example of the Attenuation Factor of a first order internal multiple generated at the
second reflector

The attenuation factor, AFj , in the prediction of internal multiples is given by the following:

AFj =




T0,1T1,0 (for j = 1)∏N−1

i=1
(T 2
i−1,iT

2
i,i−1)Tj,j−1Tj−1,j (for 1 < j < J)

(2.5)

The attenuation factor AFj can also be performed by using reflection coefficients:

AFj =

{
1−R2

1 (for j = 1)

(1−R2
1)2(1−R2

2)2 · · · (1−R2
j−1)2(1−R2

j ) (for 1 < j < J)
(2.6)
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The subscript j represents the generating reflector, and J is the total number of interfaces in the
model.The interfaces are numbered starting with the shallowest location. The attenuator bIM3
predicts the first order internal multiples by using three events within the data. The AF is directly
related to the trajectory of the subevent, which forms the prediction of internal multiples.

3 Amplitude Correction Equation for Internal Multiple Attenuator(1D Normal
Incidence)

The discussion above demonstrates that all first order internal multiples generated at the same
reflector have the same AF. Therefore, a new function in the second integral must be developed to
remove the AF and find the eliminator. That is from

bIM3 (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε2

−∞
dz′e−ikz

′
b1(z′)

∫ ∞

z′+ε1
dz′′eikz

′′
b1(z′′) (3.1)

to

bIME (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε2

−∞
dz′e−ikz

′
F [b1(z′)]

∫ ∞

z′+ε1
dz′′eikz

′′
b1(z′′) (3.2)

For the 1D normal incidence, b1(z) is expressed as follows:

b1(z) =R1δ(z − z1) +R′2δ(z − z2) +R′3δ(z − z3) + · · ·+R′nδ(z − zn) + · · · (3.3)

The F function should be written as the following:

F [b1(z′)] =
R1

AFj=1
δ(z′ − z1) +

R′2
AFj=2

δ(z′ − z2) + · · ·+ R′n
AFj=n

δ(z′ − zn) + · · ·

=
R1

1−R2
1

δ(z′ − z1) +
R′2

(1−R2
1)2(1−R2

2)
δ(z′ − z2) + · · ·

+
R′n

(1−R2
1)2(1−R2

2)2 · · · (1−R2
n−1)2(1−R2

n)
δ(z′ − zn) + · · · (3.4)

By using reverse engineering, the F function is discovered (See Appendix A for the equation
derivation):

F [b1(z)] = lim
ε′→0

c(z)×
∫ z+ε
z−ε c(z

′′)dz′′
∫ z+ε
z−ε b1(z′)dz′{1− [

∫ z+ε
z−ε c(z

′′)dz′′]2}+ ε′
(3.5)

c(z) =
b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz

′′c(z′′)
(3.6)

To derive the F function from b1(z), c(z) must first be solved in Equation (12). Thereafter, c(z) is
integrated into Equation (11).
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3.1 First Type of Equation Approximation

Equation (12) is an integral equation:

c(z) =
b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz

′′c(z′′)

Generally, this kind of equation does not have analytical solutions; hence, an approximation must
be made for Equation (6). The simplest approximation is presented as follows:

c(z) =
b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz

′′c(z′′)

≈ b1(z)

1− 0

≈b1(z) (3.7)

It can be shown that the 1st kind approximation can predict correct amplitude for all 1st order
internal multiples generated at the shallowest reflector and can further attenuate deeper internal
multiples.

3.2 Second Type of Equation Approximation

A more accurate approximation is presented as follows::

c(z) =
b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz

′′c(z′′)

≈ b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz

′′b1(z′′)
(3.8)

This type of approximation can predict the correct amplitude for all first order internal multiples
generated at the shallowest and next shallowest reflectors and can further attenuate deeper internal
multiples.

Only primaries are considered as the input in deriving all these equations. However, for these two
types of approximations, the conclusion is still valid when we consider both primaries and internal
multiples as input. By using these approximations to predict the amplitude of internal multiples
generated at the shallowest and next shallowest reflectors, in the F function, only the part of the
data preceding the second primary is used. Considering that the internal multiples do not arrive
prior to the second primary, that part of the data remains the same when only primaries or both
primaries and internal multiples are considered.
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4 Numerical Examples

This section presents a numerical example that shows the result of the original ISS-IMA and the
two types of equation approximation of the amplitude correction equation of ISS-IMA. Figure 3
and 4 show the model used in this study and the 1D normal incidence input data, respectively. In
figure 4, the part in the red rectangular shows the part of data that we do following comparison.

Figure 3: Model

Figure 4: Input data(1D normal incidence)
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The output of ISS-IMA in Figure 5 clearly shows that all multiples are predicted with the correct
time and approximate amplitude. Figure 6, which displays the first type of equation approximation,
shows that all internal multiples with a downward reflection at the shallowest reflector(IM212,IM312

and IM213)are removed. And in Figure 7,we can see all internal multiples generated at the shallowest
and the next shallowest reflectors(IM212,IM312,IM213 and IM323) are removed by the second type
of equation approximation.

In the figure 5,6 and 7:
P3 is the Third primary.
IM212,IM213,IM312 are internal multiples with a downward reflection at the shallowest reflector.The
three numbers in the subscript refer to the historical number of reflectors in the internal multiples.
For example, IM212 is a first order internal multiple with two upward reflection at the second
reflector and a downward reflection at the first(shallowest) reflector.
IM323 is a internal multiples with a downward reflection at the next shallowest reflector.
The spurious event is an false event generated by IM212,P3 and IM212, which exist in every figure.
(A method for removing the spurious events have been discovered by Chao Ma and B.Weglein (2012)
H. Liang and Weglein (2012)).

Figure 5: Output of the ISS-IMA

5 Conclusion

1.An amplitude correction equation for ISS-IMA(1D normal incidence) has been derived. The
second type of approximation of the new equation can eliminate all first order internal multiples
generated at the shallowest and next shallowest reflectors and further attenuate deeper internal
multiples directly in terms of data and without any subsurface information.

2.This equation and its approximations:
(a)not generate any more events than IMA.
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Figure 6: Output of the first type of equation approximation

Figure 7: Output of the second type of equation approximation

(c)not touch primaries.

3.Although the equation is derived under 1D normal incidence, the idea that using data to remove
the extra transmission coefficient in the second integral is not confined to 1D normal incidence. The
equation probably can be expanded to 1D earth data with offset.

4.And this equation and its approximations provides hints for finding a subseries in the ISS that
can remove internal multiples in multi-D earth.
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Appendix

A Derivation of Amplitude Correction Equation for Internal Multiple Atten-
uator(1D normal incidence)

The Amplitude Correction Equation for Internal Multiple Attenuator(1D normal incidence) is given
by:

F [b1(z)] = lim
ε′→0

c(z)×
∫ z+ε
z−ε c(z

′′)dz′′
∫ z+ε
z−ε b1(z′)dz′{1− [

∫ z+ε
z−ε c(z

′′)dz′′]2}+ ε′
(A.1)

c(z) =
b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz

′′c(z′′)
(A.2)

with

b1(z) =R1δ(z − z1) +R′2δ(z − z2) +R′3δ(z − z3) + · · ·+R′nδ(z − zn) + · · · (A.3)
c(z) =R1δ(z − z1) +R2δ(z − z2) +R3δ(z − z3) + · · ·+Rnδ(z − zn) + · · · (A.4)

(
∫ z+ε
z−ε dz

′′c(z′′) is a function of z)

First Let’s calculate
∫ z+ε
z−ε dz

′′c(z′′) for the given c(z):

∫ z+ε

z−ε
dz′′c(z′′) =

∫ z+ε

z−ε
dz′′[R1δ(z

′′ − z1) +R2δ(z
′′ − z2) + · · ·+Rnδ(z

′′ − zn) + · · · ]

=

∫ ∞

−∞
dz′′[R1δ(z

′′ − z1) +R2δ(z
′′ − z2) + · · ·+Rnδ(z

′′ − zn) + · · · ]

×H(z′′ − (z − ε))H((z + ε)− z′′)
=R1H(z1 − (z − ε))H((z + ε)− z1) +R2H(z2 − (z − ε))H((z + ε)− z2)

+ · · ·+RnH(zn − (z − ε))H((z + ε)− zn) + · · ·
=R1H((z1 + ε)− z)H(z − (z1 − ε)) +R2H((z2 + ε)− z)H(z − (z2 − ε))

+ · · ·+RnH((zn + ε)− z)H(z − (zn − ε)) + · · ·

Now we can prove the first part of the equation:

lim
ε′→0

c(z)×
∫ z+ε
z−ε c(z

′′)dz′′
∫ z+ε
z−ε b1(z′)dz′{1− [

∫ z+ε
z−ε c(z

′′)dz′′]2}+ ε′

= lim
ε′→0

[
R2

1

R1(1−R2
1) + ε′

δ(z − z1) +
R2

2

R′2(1−R2
2) + ε′

δ(z − z2) + · · ·
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+
R2
n

R′n(1−R2
n) + ε′

δ(z − zn) + · · · ]

=
R2

1

R1(1−R2
1)
δ(z − z1) +

R2
2

R′2(1−R2
2)
δ(z − z2) + · · ·

+
R2
n

R′n(1−R2
n)
δ(z − zn) + · · ·

=
R1

1−R2
1

δ(z − z1) +
R′2

(1−R2
1)2(1−R2

2)
δ(z − z2) + · · ·

+
R′n

(1−R2
1)2(1−R2

2)2 · · · (1−R2
n−1)2(1−R2

n)
δ(z − zn) + · · ·

=
R1

AFj=1
δ(z − z1) +

R′2
AFj=2

δ(z − z2) + · · ·+ R′n
AFj=n

δ(z − zn) + · · ·

=F [b1(z)]

For the second part of the equation:

c(z) =
b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz

′′c(z′′)
(A.5)

b1(z′)
∫ z′+ε

z′−ε
dz′′c(z′′)

=R2
1δ(z

′ − z1) +R2R
′
2δ(z

′ − z2) +R3R
′
3δ(z

′ − z3) + · · ·+RnR
′
nδ(z

′ − zn) + · · ·

∫ z−ε

−∞
dz′b1(z′)

∫ z′+ε

z′−ε
dz′′c(z′′)

=

∫ z−ε

−∞
dz′[R2

1δ(z
′ − z1) +R2R

′
2δ(z

′ − z2) + · · ·+RnR
′
nδ(z

′ − zn) + · · · ]

=

∫ ∞

−∞
dz′H((z − ε)− z′)[R2

1δ(z
′ − z1) +R2R

′
2δ(z

′ − z2) + · · ·+RnR
′
nδ(z

′ − zn) + · · · ]

=R2
1H((z − ε)− z1) +R2R

′
2H((z − ε)− z2) + · · ·+RnR

′
nH((z − ε)− zn) + · · ·

=R2
1H(z − (z1 + ε)) +R2R

′
2H(z − (z2 + ε)) + · · ·+RnR

′
nH(z − (zn + ε)) + · · ·

b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz

′′c(z′′)
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=R1δ(z − z1) +
R′2

1−R1R1
δ(z − z2) +

R′3
1−R1R1 −R′2R2

δ(z − z3) + · · ·

+
R′n

1−R1R1 −R′2R2 − · · · −R′n−1Rn−1
δ(z − zn)

=R1δ(z − z1) +R2δ(z − z2) +R3δ(z − z3) + · · ·+Rnδ(z − zn) + · · ·
=c(z)

Thus the second equation is proved.

In the derivation we used:Ri =
R′i

1−R1R1−R′2R2−···−R′i−1Ri−1
It can be proved:

Ri =
R′i

(1−R2
1)(1−R2

2) · · · (1−R2
i−2)(1−R2

i−1)

=
R′i

(1−R2
1)(1−R2

2) · · · (1−R2
i−2)− (1−R2

1)(1−R2
2) · · · (1−R2

i−2)R2
i−1

=
R′i

(1−R2
1)(1−R2

2) · · · (1−R2
i−2)− (1−R2

1)(1−R2
2) · · · (1−R2

i−2)Ri−1Ri−1

=
R′i

(1−R2
1)(1−R2

2) · · · (1−R2
i−2)−R′i−1Ri−1

=
R′i

1−R1R1 −R′2R2 − · · · −R′i−1Ri−1

B Test of first type of equation approximation using 1.5D acoustic synthetic
data

The first type of equation approximation is presented as follows:

c(z) =
b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz

′′c(z′′)

≈ b1(z)

1− 0

≈b1(z) (B.1)

Take it into function F:

F [b1(z)]1p =
b1(z)

1− [
∫ z+ε
z−ε dz

′b1(z′)]
(B.2)

And then take fnction F in to the original function, we get first type of equation approximation as
follows:

bIM (k)1p =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε2

−∞
dz′e−ikz

′ b1(z′)

1− [
∫ z′+ε
z′−ε dz

′′′b1(z′′′)]

∫ ∞

z′+ε1
dz′′eikz

′′
b1(z′′) (B.3)
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It has be shown that the 1st kind approximation can predict correct amplitude and time for all
1st order internal multiples generated at the shallowest reflector and can further attenuate deeper
internal multiples in 1D normal incidence.

In this section, we will show the test of the first type of equation approximation using 1.5D synthetic
data. The result is very encouraging—the predicted internal multiples have a shape similar to that
of the multiples in the data, and the first type of equation approximation is trying to correct the
amplitude. As the amplitude issue is very sensitive and complex, we still need further tests using
a better data-modeling method, and we need to be able to remove errors that are generated from
modeling and processing.

To test the performance of the first type of equation approximation, we used a 1.5D model with 2
reflectors and a single shot gather. The model is shown in Figure 8, on the left side, and the data
are shown in Fig 2 on the right.∗

Figure 8: The model is shown on the left and the data is shown on the right.

The model has a constant density ρ = 1g/cm3. The velocity in the first layer is 2000m/s, in the
second layer it is 3200m/s, and in the third layer it is 6100m/s. Also, in the data we can see
clearly the first and second primary and a 1st-order internal multiple generated at the shallowest
reflector. We used a Ricker wavelet to generate the data. First we deconvolved the data and then we
calculated the first type of equation approximation using the deconvolved data. Next we convolved
the first type of equation approximation with the wavelet. Finally we compared the convolved first

∗The data is generated by the finite difference method which may create errors in the data.These errors are not
exist in field data.To get synthetic data without errors in amplitude is an important part in our future plan.
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type of equation approximation with the internal multiples in the original data.

Figure 9: On the left is the predicted internal multiples by IMA, in the middle is the predicted
multiples by first type of equation approximation, on the right is the difference between them.

In Figure 9, we compared the results of the IMA (internal multiple attenuator) and the first type
of equation approximation. On the left are the internal multiples predicted by the IMA, in the
middle are the multiples predicted by the first type of equation approximation, and on the right is
the difference between them.

We can see from these figures that the first type of equation approximation is trying to fix the
amplitude issue. In principle, the algorithm is able to predict the correct amplitude of all 1st
order internal multiples generated at the shallowest reflector, but there are several steps here that
may produce errors. First, the finite-difference method generates errors in the amplitude.† The
deconvolution and convolution steps also generate some errors in the amplitude. Removing all
those errors that arise from modeling and processing will be an important part of our future plan.

This test of the first type of equation approximation on 1.5D data is an important step toward
the elimination of all internal multiples in multi-D. The result is very encouraging: the first type
of equation approximation produces the same shape as does the IMA and is trying to correct the
amplitude of predicted internal multiples. Because the amplitude issue is very sensitive and complex
(errors from modeling and processing are introduced), we still need to do a lot more work to predict
the correct amplitude.

Future plan:
1.Obtain data without errors (remove errors from modeling).
2.Remove the errors from processing (via deconvolution, convolution, and other steps.)

†these errors are from finite difference modeling and not exist in field data. Thus if we test field data, we will not
need to consider these errors.
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3.Test the first type of equation approximation for reflectors with a large reflection coefficient (the
difference between the IMA results and those from the first type of equation approximation is
greater in this situation.)
4.Test the second type of equation approximation in 1.5D.
5.Test these two kinds of equation approximation for multidimensional data.

I would like to thank Dr.Herrera, Hong Liang, Chao Ma, Lin Tang and Jinlong Yang for their help
toward completion of this test and for valuable discussions in this research program.
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Short note: A first step towards a P wave field modeling plan

X. Lin and A. B. Weglein

April 29, 2013

Abstract

In 2D and 3D heterogeneous elastic media, the P- and S-wave equations are coupled. In this
case, the equation result of φp will take all history and intermediate episodes of P- and S-wave
propagation into account. Migration and inversion work, which require accurate P-P events,
give us the motivation to model and predict only P-wave events from an elastic world. In this
short note, we revisit a wave-theory method that is based on Weglein (2012) that can model
both the phase and the amplitude of waves that spend all their history as P-waves. We also
provide a basic implementation for obtaining operators that are related to the uncoupled P- and
S- components.

1 Introduction

As we all know, wave-theory modeling is widely used because of its accuracy and its inclusion of
propagation phenomena. However, the wave-theory method has a limitation in selecting a path
or wave type of interest from all the events. Conventional finite-difference (wave-theory) model-
ing methods coded in Cartesian coordinates face the issue that P- and S-wave events come out
simultaneously in the final record because all displacements are projected in the (x, y, z) domain.
In the 2012 M-OSRP annual report(Weglein, 2012), the formalism of the uncoupled signal-channel
P-wave equation was proposed . As that report pointed out, the wave-theory method that Weglein
proposed can model and predict P-waves (and P-wave events in recorded data) without using the
S-wave field. The P-wave modeling series allows for the selectivity of events that spend all their
history as P-waves in a heterogeneous medium, so that we can select the path of interest on the
basis of wave-type. In this note, we review the formalism of modeling and selecting P-wave events,
and we introduce a basic method for transferring the displacement domain to the P-S domain for
implementation.
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2 Isotropic heterogeneous elastic media

2.1 2D media

We are familiar with the acoustic wave equation, as shown here,
[
∇2 +

ω2

c2

]
φ = ρ

, where c is the wave velocity, ω is the angular frequency and ρ is a source term. In an elastic
medium, the ρ part on the right will turn out to be very complicated. Here, with the help of
the scattering theory, we choose to describe a medium as an isotropic homogeneous whole-space
background plus a perturbation in the properties.The whole-space background and the perturbation
combine to result in the properties in an actual medium. If we can express the perturbation operator
as (Vpp, Vps, Vsp, Vss), then a coupled equation for a P- and S- wave pressure field (φp and φs) can
be written as [

∇2 +
ω2

α2
0

]
φp = Vppφp + Vpsφs + fp (2.1)

[
∇2 +

ω2

β2
0

]
φs = Vssφs + Vspφp + fs (2.2)

, where α0 is the P-wave velocity and β0 is the S-wave velocity. Let us introduce a Green’s function
as Gs, which satisfies [

∇2 +
ω2

β2
0

− Vss
]
Gs = δ. (2.3)

Notice that the G0
s is different from Gs and is defined as

[
∇2 +

ω2

β2
0

]
G0
s = δ. (2.4)

Using the Lippmann-Schwinger equation, Gs can be expressed as a Born series with a shear-wave
Green’s function in the reference medium G0

s, and a shear perturbation operator Vss. In this case,

Gs =

∞∑

k=0

G0
s

(
VssG

0
s

)
.

Similarly, according to equations (2.2) and (2.3), the shear-wave field can be expressed with the
compressional wave field φp, the source term fs and the perturbation operator Vsp, by using the
Lippmann-Schwinger equation, as

φs =

∫
Gs(Vspφp + fs) (2.5)

where Gs is chosen as the causal solution. The final modeling formalism can be expressed as
(Weglein, 2012),

V = Vpp + Vps

∫
GsVsp (2.6)
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f = Vps

∫
Gsfs + fp (2.7)

φ0
p = G0

pf (2.8)

φp = φ0
p +G0

pVφ
0
p +G0

pVG
0
pVφ

0
p + · · · (2.9)

where V and f are notations representing a complicated perturbation and a source term, respectively.
In this equation, the source (fp, fs) is taken into account. If we assume that the source generates
only P-waves, namely, that fs = 0, then f = fp in equation (2.7). In addition, and equation (2.9) is
the modeling equation for P-waves in a 2D heterogeneous elastic medium.

2.2 3D media

In 3D isotropic heterogeneous media, the perturbation of three components (P, SH , SV ) consists of
a matrix. The index of SH represents a shear-horizontal channel, and the index of SV represents a
shear-vertical channel. Similarly as in the 2D case, the source here only generates a P-wave, which
is

−→
f =




fp
0
0


 . (2.10)

Three coupled equations for a three-component wave field are
[
∇2 +

ω2

α2
0

− Vpp
]
φp = VPSHφSH + VPSV φSV + fp

[
∇2 +

ω2

β2
0

− VSHSH
]
φSH = VSHPφP + VSHSV φSV

[
∇2 +

ω2

β2
0

− VSV SV
]
φSV = VSV PφP + VSV SHφSH . (2.11)

After introducing three Green’s functions, G0
p, GSH , and GSV , which are causal solutions of

[
∇2 +

ω2

α2
0

]
G0
p = δ

[
∇2 +

ω2

β2
0

− VSHSH
]
GSH = δ

[
∇2 +

ω2

β2
0

− VSV SV
]
GSV = δ (2.12)

, respectively, we can derive the P-wave field by using a scalar equation,

φp = φ0
p +G0

pVφp (2.13)

V = Vpp + VPSH

( ∞∑

k=0

(GSHVSHSVGSV VSV SV )k

)
GSH (VSHP + VSHSVGSV VSV P ) + VPSVGSV
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×
(
VSV P + VSV SH

( ∞∑

k=0

(GSHVSHSVGSV VSV SV )k

)
GSH (VSHP + VSHSVGSV VSV P )

)
. (2.14)

A Born series provides a modeling formalism for P-wave events(Weglein, 2012),

φp = φ0
p +G0

pVφ
0
p +G0

pVG
0
pVφ

0
p + · · · . (2.15)

Here, we make an assumption that the subsurface is isotropic and has horizontal reflectors without
anisotropic fracturing or a special structure that could convert a P-wave into a SH -wave. Given the
fact that the polarizations of the two shear waves are both perpendicular to the polarization of the
P-wave and that the SH -wave vibration is normal to the incidence plane, the P-wave displacement
cannot project onto the SH vibration direction. Therefore, we only consider P- and SV -wave
conversions. In this situation, the perturbation part can be simplified as,

V = Vpp + VPSVGSV VSV P , (2.16)

where GSV =

∞∑

k=0

G0
SV

(
VSV SVG

0
SV

)
. The case of the 3D isotropic heterogeneous medium P-event

modeling degenerates to a 2D case when the assumption of only P- and SV - conversion is made.
On the other hand, if the complicated term V is replaced by Vpp, the P-events in predicting data
will only have intermediate P-wave episodes in their history; i.e.

φp = φ0
p +G0

pVppφ
0
p +G0

pVppG
0
pVppφ

0
p + · · · (2.17)

3 Basic multi-component elastic-medium method

The operators under the displacement domain are denoted by calligraphic type, such as L, V, that
satisfy

Lu = f

ρω2uim (−→rg ,−→rs , ω) + (Cijklukm,l (
−→rg ,−→rs , ω)),j = −A(ω)δimδ (−→rg −−→rs ) . (3.1)

We have the perturbation under the displacement domain in an isotropic medium, which can be
expressed as (Weglein and Stolt, 1992)

V = −ρ0

[
aρω

2 + α2
0aγ∂

2
x + β2

0∂zaµ∂z
(
α2

0aγ − 2β2
0aµ
)
∂z∂x + β2

0∂zaµ∂x
∂z
(
α2

0aγ − 2β2
0aµ
)
∂x + β2

0aµ∂z∂x aρω
2 + α2

0∂zaγ∂z + β2
0aµ∂

2
x

]
(3.2)

where aρ = ρ/ρ0 − 1, aγ = γ/γ0 − 1, aµ = µ/µ0 − 1 and α0, β0 are P- and S-wave velocity in
reference medium respectively. Here, for convenience in calculation, the perturbation operator can
be transformed to the P-S domain by (Matson, 1997; Clayton and Brown, 1979)

V = ΠVΠ−1Γ−1 (3.3)
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where

Π =

[
∂x ∂z
−∂z ∂x

]
Π−1 =

[
∂x −∂z
∂z ∂x

]
∇−2 Γ−1

0 =

[
1
γ0

0

0 1
µ0

]

In these matrices, γ0 is the P-wave modulus or longitudinal modulus (α0 =
√

γ0
ρ ), and µ0 is the

shear modulus (β0 =
√

µ0
ρ ) in reference medium. In a perturbation term under the P-S domain,

there is an integral operator, ∇−2, which will be discussed in the next section.
At the beginning, the role of V was to scatter the wave displacements as horizontal and vertical
components. After this kind of transformation, the wave can be scattered as P- and S-wave pressure
by the new perturbation operator V . So that the G0

p can be used to propagate the wave in reference
medium as P-wave pressure and then wave can be scattered by V in consistence as shown in Figure
1.

4 Explanation of the ∇−2 operator acting on G0
p

The value of the integral operator 1
∇2 can be determined by the term that it acts on (Zhang, 2006).

For example, we can consider a simple term that is the first term of 2D P-wave-only modeling as

G0
p

1

∇2
G0
p (4.1)

, where G0
p satisfies

(
∇′2 +

ω2

α2
0

)
G0
p

(
x′, z′, x′′, z′′, ω

)
= δ

(
x′ − x′′

)
δ
(
z′ − z′′

)
. (4.2)

Next, we Fourier transform over x′ and z′ to solve for G0
p. After we transform back to the spatial

domain, we can obtain the bilinear form of the Green’s function,

G0
p

(
x′, z′, x′′, z′′, ω

)
= (

1

2π
)2

∫ ∫
eik

I
x(x′−x′′)eik

I
z(z′−z′′)

k2 − kI2x − kI2z
dkIxdk

I
z . (4.3)

The term can be written as

G0
p

1

∇2
G0
p

= (
1

2π
)4

∫ ∫
dx′′dz′′

∫ ∫
eik
′
x(xg−x′′)eik

′
z(zg−z′′)

k2 − k′2x − k′2z
dk′xdk

′
z

× 1

∇′′2
∫ ∫

eik
′′
x(x′′−xs)eik

′′
z (z′′−zs)

k2 − k′′2x − k′′2z
dk′′xdk

′′
z . (4.4)

The outside term of the Green’s function with the integral operator can be expressed as,

1

∇′′2 (−iπ)eiksx
′′ eiqs(z

′′−zs)

qs
=

1

−k2
s − q2

s

(−iπ)eiksx
′′ eiqs(z

′′−zs)

qs
(4.5)
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,( 0)pφ ,( )p sφ φ

Figure 1: Scattering in P- and S-wave pressure domain.

where q2
s = k2− k2

s . In this case, the assumption is that the source location must be shallower than
the scattering point.

5 Conclusions and future plan

In this short note, we conclude that
(a) The formalism for modeling the phase and amplitude of a P-event has been established and is
understood, and by using Born series modeling we can select the events that have only intermediate
P-wave episodes in their histories. Equations (2.9) and (2.15) are forward series on which the
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modeling of all possible P-event histories is based, as shown in Weglein (2012).
(b) The issue of perturbation under the P-S domain can be solved by the transform operator.
However, the differential operators are very complicated even when we only look at Vpp in equation
(2.17). For example, the perturbation term for a 1D earth (i.e., in which properties only vary in z)
can be written as

Vpp = −∇2aγ −
[
k2

0(aρ∂
2
x + ∂zaρ∂z) + 4∂zaµ∂z∂

2
x − 2∂2

zaµ∂
2
x − 2aµ∂

2
z∂

2
x

] 1

∇2

, where k0 = ω
α0
, aµ =

β2
0

α2
0
( µµ0 − 1). In forward modeling, the Born series form can be implemented

because the Green’s function in the reference medium, the perturbation and properties of the source
are known. It is appropriate to examine a single-reflector 1.5D, where the source is a 2D line source
(an oblique incident wave) and the properties vary in 1D at the beginning. The algorithm guarantee
that the incidence will be pure P-wave. This test will allow us to understand how different types of
waves, such as converted and unconverted waves, are constructed by a forward P-wave-only series.
(c) This formalism could be tested further by a modeling project (for example, SEAM) with a
smoothed background associated with a small perturbation, in which the converted-wave always is
treated as noise (Weglein, 2012).
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Abstract

In this report, first steps and results of the implementation of the Convolutional Perfectly
Matched Layer (CPML), for the modeling of the 2D acoustic heterogeneous wave equation
are presented. We also compare the conditions to set to zero, for all angles of incidence, the
reflection coefficient at the interface between two PML media, with the analogous conditions
for the reflection coefficient at an interface between two acoustic media. A side product of the
present work for the M-OSRP is a code to create synthetic data, using Finite-Difference (FD)
methods with PML BCs.

We also provide a short description of the main stages involved in the original Reverse Time
Migration (RTM) algorithm, with focus on the 2D acoustic heterogeneous wave equation. We
include a derivation of the equations of the CPML for the backward propagation of the data,
which is part of the RTM. As far as the authors knowledge, these equations and derivations
have not been reported in the literature. The reason we include the RTM is because the present
report can be considered part of a broader research project whose objective is to compare the
RTM with PML BCs with the Green’s theorem based RTM, developed within the M-OSRP.

1 Introduction

The M-OSRP is a research consortium, whose objective is to provide solutions to current challenges
and problems present in exploration seismology, with the final goal of improving the location of
hydrocarbons, and hence to increase the rate of successful drilling.

A particular challenge in which the M-OSRP is developing direct and impactful response, is in the
inability to locate targets beneath complex media. For this, improved and more efficient modeling
tools, that are capable to handle complex velocity and density profiles, are often necessary. In
particular for the M-OSRP, this is a fundamental requirement as the methods developed in this
consortium are amplitude sensitive.

Another reason for the need of improved modeling tools is provided by RTM, one of the most
successful migration methods for complex media used by the oil industry nowadays. RTM allows
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the imaging of two-way waves −e.g., waves that move down and up either from source to a reflector
or from a reflector to the geophones (Weglein et al. 2011a, Weglein et al. 2011b). The computational
implementation of this method starts with the modeling of the source wavefield, i.e., by extrapolation
of the source wavefield forward in time, using the full two-way wave equation. The extrapolation
of the source wavefield is followed by continuation of reflection data backwards in time, using also
the full two-way wave equation. This is followed by an imaging condition (usually the zero-lag
crosscorrelation between the two extrapolated fields) to find the reflectivity function (Whitmore
1983, Leveille et al. 2011, Stolt and Weglein 2011).

A modeling technique commonly used in exploration seismology is FD. In particular, the contin-
uation (either of source wavefield or reflection data) stages of RTM are implemented using the
time-domain Finite-Difference (TDFD) algorithm. The main advantage of FD methods is their
ability to produce the full wavefield: reflections, refractions, turning waves, prismatic waves, etc.
This capability is inherited by the RTM technique, as it is capable of imaging all the waves just
mentioned, but the imaging condition prevents the algorithm from keeping the true amplitude in-
formation (Leveille et al. 2011). Some modifications to the imaging condition had been proposed
in Zhang et al. (2005), Zhang et al. (2007) and Zhang and Sun (2008), in order to turn RTM into
a true amplitude algorithm.

However, one drawback of the FD is the introduction of artifacts: the method intrinsically requires
truncation of the computational domain in which the wave equation is being solved. Therefore, it
is necessary to feed the computer with the values of the wavefield, at the boundary that results
from truncation. It is also necessary to add some FD grid points beyond this boundary (Figure 1)∗.
The BCs imposed at the boundary of the computational domain are usually either Dirichlet or
Neumann. Unfortunately, in the modeling of wave equations, the magnitude of their oscillatory
solutions cannot be neglected at the location of this boundary. Therefore, truncation of the com-
putational domain with either of the boundary conditions just mentioned will introduce artifacts
in the form of reflections of waves striking its boundary. This is why both Dirichlet and Neumann
boundary conditions are called hard-wall boundary conditions (Johnson 2007). These reflections are
artifacts because they are not present in the original unbounded problem, and their presence in the
computational simulation will clearly introduce noise that can potentially damage the final result
of any process that involves modeling of wave propagation, and in particular the RTM algorithm.
A common approach, to minimize the effects of these artifacts, consists of placing the boundaries
of the computational domain far from the region of interest for the modeling. In this way, the time
window of the simulation does not allow the reflections at the boundary to reach the region of inter-
est, and no interference is produced. However, in practice a big computational domain significantly
increases the cost of the simulation.

∗The specific number of additional grid points is determined by the stencil that results from the FD scheme, that
is chosen for modeling.
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Figure 1: Array of a typical FD simulation in 2D: The computational domain is the region in which
the relevant wave equation is solved, and the FD grid extends a few cells beyond this domain. At
the boundary of the computational domain a Hard wall BC (Dirichlet or Neumann) it is usually
imposed. The cells (or grid points), beyond the computational domain, are required by the stencil
of the particular FD scheme involved in the modeling, and the value of the wavefield on these grid
points are usually set to zero.

Several techniques have been developed in order to deal with the artifacts just mentioned
(Merewether 1971, Bérenger 1977, Engquist and Majda 1977). A particular successful approach
is that based on absorbing boundary conditions (ABCs), which means that waves propagating in
the computational domain and striking the boundary are absorbed without reflection. Unfortu-
nately, existing families of ABC’s are restricted mostly to absorbing waves at normal incidence,
which is not a bad assumption from a theoretical point of view: as the computational domain grows
in size, most of the radiation hitting the boundary can be considered to have normal incidence
(Bérenger 2007). However, as mentioned in the paragraph above, a big computational domain
translates into high computational cost. Another disadvantage is that many ABC’s are formulated
only for homogeneous materials at regions close to the boundaries of the FD domain (Johnson 2007),
while in practice many situations involve some kind of heterogeneities.

A major development towards the solution of this puzzle is presented in Bérenger (1994), concerning
the reflection artifacts produced by truncation of the computational domain. The solution consisted
of placing an absorbing boundary layer adjacent to the boundary of the computational domain.
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The material filling this layer was designed to absorb incident waves without reflection (for all
frequencies and any angle of incidence) at the interface between the propagation medium filling the
computational domain and the domain itself. Such an absorbing boundary layer is called, because
of its non reflective properties, a perfectly matched layer, or PML. This may sound unfamiliar,
as a wave is usually reflected when it goes through an interface. However, Bérenger was able to
show that a material with such non reflective properties can be constructed, at least theoretically.
This method is so effective for the modeling of wave phenomena, that the computational domain
does not need to be enlarged far beyond the region of interest for the simulation, and therefore the
computational cost is not increased significantly with respect to the standard FD.

Although the PML method was originally developed for modeling the propagation of electromagnetic
waves, it has been useful in exploration seismology in order to improve the results of the modeling of
acoustic waves and of the image produced by RTM, and at the same time the PML has contributed to
lower their computational cost. However, the implementation of the PML for RTM differs somewhat
from that for the modeling, because RTM involves backpropagation of the acquisition data with
time, while modeling only involves forward propagation of the source with time.

In a previous report (Herrera et al. 2012), a theoretical discussion of the PML technique for the
modeling of the 2D acoustic wave equation was provided. In particular, both the original split-field
formulation of Bérenger and the complex stretching coordinate approach were explained, and that
was followed by an explanation of the existing relation among them.

In this report the work in Herrera et al. (2012) is further progressed. In particular, we provide
a detailed analysis and comparison of the reflection coefficient between two PML media, with the
reflection coefficient at an interface between two acoustic media. To the awareness of the authors,
this comparison and analysis has not been reported elsewhere. We also present the Convolutional
Perfectly Matched Layer (CPML) introduced in Roden and Gedney (2000) and Komatitsch and
Martin (2007) and we show some examples resulting from the implementation of this technique in
the modeling of the acoustic wavefield (i.e., for the forward propagation of the source wavefield in
time).

In addition to the improvement of modeling tools within the M-OSRP and the results of RTM,
our interest in the PML technique arises also from two recent papers Weglein et al. (2011a) and
Weglein et al. (2011b). In these references a novel approach to RTM, using Green’s theorem, is
addressed. This new RTM might provide an alternative to the PML technique in RTM by placing
the BCs on a Green’s function rather than in the wavefield. This new RTM might also reduce the
characteristically high computational cost of the standard RTM. This report can be considered as
part of a broader research project, whose objective is to compare the effectiveness of this new Green’s
theorem approach with respect to the PML-based RTM. Hence, we include a short description of the
original RTM algorithm as presented in Whitmore (1983), Baysal et al. (1983) and Stolt and Weglein
(2011). We also provide a derivation for the equations of the CPML for the backward propagation
of data. As far as the authors knowledge this derivation has not been reported previously in the
literature.

The organization in the present report is as follows: starting with Section 2 we will provide, as
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a motivation for the study and implementation of the PML, a brief discussion of the RTM using
a velocity-stress formulation of the wave equation, i.e., the wave equation is written as a system
of two coupled first-order partial differential equations. In Section 3 we will give a general and
qualitative overview of the PML method as implemented for the modeling of wave propagation,
appealing to a typical seismic experiment. We will also compare the reflection coefficient for an
interface between two PML media with that of the interface between two acoustic media, in order
to stress the differences between them and demonstrate why non reflective PML-PML interfaces
are allowed. In Section 4 we briefly review the complex coordinate stretching approach for PML,
and we follow that by a detailed discussion of the CPML for modeling i.e. forward propagation
with time. Section 5 is devoted to a theoretical discussion and derivation of the equations for the
implementation of the CPML for RTM i.e. for the backward propagation of the data with time.
Two appendices are included: in the first one we describe the basics of FD methods on staggered
grids, while in the second one we provide the relevant calculations of the CPML.

2 Reverse time migration

Reverse time migration was introduced in the early 1980s (Whitmore 1983 and Baysal et al. 1983)
and consists, as does any other imaging algorithm, of three basic stages:

• Forward propagation of the source wavefield (modeling) in time.

• Backward propagation of the recorded data in time

• Application of an imaging condition to construct the image function.

As was mentioned in the introduction, RTM has the ability to image two-way wave equations,
reflections, refractions, turning waves, prismatic waves, etc. In this section we will describe the
RTM method. In the process we will also see why it can image all kinds of waves and hence why
it is useful for complex geological environments. We will also point out the reason for the high
computational cost of the algorithm. Further, in this work we will focus exclusively on 2D, but all
the results can be trivially extended to 3D.

2.1 Forward propagation in time (or modeling)

In the modeling stage, the source wavefield is propagated from an initial time t = 0 corresponding
to the ignition of the source, to the maximum recording time t = Tmax of the geophones. This
propagation is typically performed by applying a suitable FD scheme, using an initial velocity and
density model, to the full wave equation. In this way a wavefield sP (x, z, t) is created.

On the other hand, the acoustic (source-free) wave equation for a generic pressure wavefield P (x, t)
is:
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∇ · (a∇P ) =
1

b

∂2P

∂t2
, (2.1)

where x = (x, z) is a generic point in a 2D earth with z increasing in the downward direction and
c =
√
ab is the phase (or propagation) velocity of the wave, for parameters a(x) and b(x) of the

medium. Notice that equation (2.1) does not require a(x) and b(x) to be constant, and hence it is
valid for both homogeneous and heterogeneous media. For seismic applications, a(x) is the inverse
of the density:

a(x) =
1

ρ(x)
. (2.2)

As was explained in Johnson (2007) (and reviewed in Herrera et al. 2012) it is convenient for its
PML implementation, to write equation (2.1) as an equivalent system of two coupled first-order
differential equations:

∂v

∂t
= −a∇P ∂P

∂t
= −b∇ · v, (2.3)

where v(x, t) ≡ xv(x, t)x̂+ zv(x, t)ẑ is a new auxiliary vector field that represents the velocity of
the particles in the medium creating the field. For this reason v(x, t) is called the velocity field.

It is easy to show the equivalence of equation (2.1) with equations (2.3): upon multiplication by
b−1 and differentiation, with time, of the second of equations (2.3), we have

1

b

∂2P

∂t2
= −∇ ·

(
∂v

∂t

)
= ∇ · (a∇P ). (2.4)

For the modeling of a system like (2.3) it is convenient to implement an FD scheme using a staggered
grid, as it has a high degree of accuracy (Graves 1996) and in general is more accurate than the usual
nonstaggered grid (Gilles et al. 2000). Using a second-order approximation for time derivatives and a
fourth-order approximation for space derivatives in a 2D model, the discretization of equations (2.3)
in a staggered grid leads to (See Appendix A for an elementary introduction to finite difference on
staggered grids, and for the derivation of the following expressions)

Pn+1
i,j = Pni,j − bi,j ∆t

∆x
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(2.5)
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2
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2
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(2.6)
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zv
n+ 1

2

i+ 1
2
,j
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2
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2
,j
− ai,j+ 1
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∆t

∆z

[
9

8

(
Pni,j+1 − Pni,j

)
− 1

24

(
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)]
(2.7)

where Pni,j ≡ P (i∆x, j∆z, n∆t), xv
n+ 1

2

i+ 1
2
,j
≡ xv((i + 1/2)∆x, j∆z, (n + 1/2)∆t)) and zv

n+ 1
2

i,j+ 1
2

≡
zv(i∆x, (j+1/2)∆z, (n+1/2)∆t)), bi,j ≡ b(i∆x, j∆z), ai+1/2,j ≡ a((i+1/2)∆x, j∆z) and ai,j+1/2 ≡
a(i∆x, (j+1/2)∆z). Notice the evaluations at halfway points in the grid, characteristic of staggered
FD schemes.

Usually Dirichlet BCs are imposed on the pressure field P and on both components of the velocity
field. The initial condition of the pressure field is the field created by the source after a single
propagation step ∆t. With regard to the velocity field, the initial conditions are set to zero for both
components.

The modeling process for RTM consists of applying equations (2.5)-(2.7) to the source wavefield
sP (x, z, t) : we start with equations (2.6) and (2.7) to update the components of the velocity field,
using the initial values of the fields in their right-hand side. These updated values are then injected
on the right hand side of equation (2.5) to update of the source field. Now, the updated value of
the source field is reinjected into equations (2.6) and (2.7) for the second updating. This process
continues until the time Tmax is reached.

Figure 2 shows a snapshot of the modeling of a wavefield propagating in a homogeneous medium,
using equations (2.5)-(2.7), with the initial and boundary conditions as described in the paragraph
above. Note the strong reflections at the boundaries of the computational domain; they are a
consequence of the imposed Dirichlet BCs on the fields. As was mentioned in the introduction,
these reflections are not present in the real world and they are considered to be noise. Therefore
they need to be at least minimized.

245



RTM M-OSRP12

 

Figure 2: Snapshot of the propagation of an acoustic wave in an inhomogeneous medium, using
a square FD grid with 1500 grid points at each direction, and Dirichlet BCs at all boundaries of
the computational domain. The arrows show the reflections produced at the boundaries of the
computational domain by the Dirichlet BCs.

In Figure 2 a square grid with 1500 grid points in each direction is assumed, with a spacing of
5m between each grid point at any direction; i.e., the simulation covers an area of 7500× 7500m2,
and ∆x = ∆z = 5m in equations (2.5)-(2.7). The time step is chosen as ∆t = 0.0005s and the
propagation velocity is the speed of sound in water, c = 1500m/s. With these values it can be seen
that the Courant-Friedrichs-Lewy (CFS) condition, equation (A.14), is satisfied. The wavelet of the
source is the Gaussian’s derivative, with a dominant frequency f0 = 0.8926Hz.

2.2 Backward propagation in time

The second stage consists of backward propagation of the recorded dataD(x, z = 0, t) from t = Tmax
to t = 0. This backward propagation is carried out using the same wave equation, the same FD
scheme (but solving for the fields at a previous time in terms of the fields at later times), and the
same velocity and density model as was used for the modeling. The data are imposed as a time-
varying boundary condition for the upper boundary of the computational domain: we start with
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the data D(x, z = 0, t = Tmax) and we propagate these data back into the earth by a time length
∆t. Next, the boundary condition is replaced by the data D(x, z = 0, t = Tmax−∆t) followed by a
further propagation by a length ∆t. This cycle is continued until the time t = 0 is reached. In this
way a wavefield rP (x, z, t) is created.

On the other hand, following the discretization for the modeling described in Appendix A, but
solving for fields at earlier times, we get the following equations:

Pn−1
i,j = Pni,j + bi,j

∆t
∆x

[
9
8

(
xv
n− 1

2

i+ 1
2
,j
− xv

n− 1
2

i− 1
2
,j

)
− 1

24

(
xv
n− 1

2

i+ 3
2
,j
− xv

n− 1
2

i− 3
2
,j

)]
+

bi,j
∆t

∆z

[
9

8

(
zv
n− 1

2

i,j+ 1
2

− zv
n− 1

2

i,j− 1
2

)
− 1

24

(
zv
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2

i,j+ 3
2

− zv
n− 1

2

i,j− 3
2

)]
(2.8)

xv
n− 1
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2
,j

= xv
n+ 1

2

i+ 1
2
,j

+ ai+ 1
2
,j

∆t

∆x

[
9

8

(
Pni+1,j − Pni,j

)
− 1

24

(
Pni+2,j − Pni−1,j

)]
(2.9)

zv
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i,j+ 1
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= zv
n+ 1

2

i+ 1
2
,j

+ ai,j+ 1
2

∆t

∆z

[
9

8

(
Pni,j+1 − Pni,j

)
− 1

24

(
Pni,j+2 − Pni,j−1

)]
(2.10)

Hence, the backward propagation in time consists of applying the discretized equations (2.8)-(2.10)
to rP (x, z, t), with the data as a boundary condition at the top of the computational domain (i.e.
at z = 0). It is important to highlight that in this case, unlike in the modeling, the boundary
condition for rP (x, z, t) at the top of the computational domain is time-varying, while at other
boundaries Dirichlet BCs are kept at all times. For the velocity field, as for modeling, Dirichlet BCs
are imposed at all boundaries and at all times. With regard to initial conditions for the velocity
field, as for the modeling, zero initial conditions are set up.

As for the modeling, Dirichlet BCs will produce reflections at the end of the computational domain.
Although we cannot argue in this case that these boundary reflections are not in the real world
(actually, the whole backward propagation concept is not in the real world, as time naturally flows
forward), they still need to be removed in order to prevent noise which can potentially damage the
effectiveness of the algorithm.

2.3 Imaging condition (zero-lag crosscorrelation)

In the final stage an imaging condition involving sP (x, z, t) and rP (x, z, t), the wavefields created
at the two previous stages is applied. The most common imaging condition is the so-called zero-lag
crosscorrelation:

R(x, z) = Σshots

∫ Tmax

0
sP (x, z, t) rP (x, z, t)dt, (2.11)
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where R(x, z) is the image (or reflectivity) function. This is when unwanted boundary reflections
from previous stages can reduce the effectiveness of the algorithm, as they will be included in the
image.

Notice that in equation (2.11) the two wavefields are needed at the same time. However, because
both of them are propagated in opposite directions of time, it is not possible to write a code gen-
erating both of them at an specific cycle in time i.e., for a given time t0 we can access sP (x, z, t0)
but we can only access Pr(x, z, Tmax − t0). The solution is to store in memory either sP (x, z, t) or
rP (x, z, t). Usually sP (x, z, t) is the one selected for storage. In this way, as rP (x, z, t) is backprop-
agated with time, the corresponding sP (x, z, t) needed for the imaging condition, equation (2.1), is
extracted from memory.

The storage of sP (x, z, t) (or maybe rP (x, z, t)) at all times is the reason for the high memory
requirement (and hence for the expensive computational cost) of RTM, and much of the current
research is devoted to lowering this memory requirement (Symes 2007, Clapp 2009, McGarry et al.
2010).

The usage of the full wave equation (rather than some sort of approximation) is what endows
RTM with the capability to succeed in areas with complex geological structure. All wave types
created in complex environments are solutions of the wave equation, and because RTM uses the
wave equation it therefore can handle all waves from complex environments. In other words, when
an approximation is imposed on the wave equation in order to simplify the imaging process, the set
of solutions of the resulting wave equation is only a subset of the solutions of the full wave equation,
and as a result the imaging process can only deal with this subset. A common restriction on the
subset of solutions of an approximated wave equation is a maximum incident angle of the waves
that can be included in the imaging process.

It is worthwhile to mention that the imaging condition in equation (2.11) is not only valid for RTM,
and it can be useful in different migration schemes. Finally, different imaging conditions have been
applied in order to improve the results of RTM (Liu et al. 2011, Leveille et al. 2011).

3 PML and finite difference

We will start this section with a qualitative description of the PML method. On the other hand, in
Herrera et al. (2012) the original split-field formulation for the acoustic wave equation was discussed
in detail. In particular the mathematical definition of a PML medium was provided and how to
obtain a zero reflection coefficient at the interface between the propagation (acoustic) media and
the PML media was explained. In that work the complex stretching coordinate approach to PML
was also presented.

In the present section we will also progress the discussion in Herrera et al. (2012). In particular we
will analyze with more detail the reflection coefficient between two PML media, by direct comparison
with the reflection coefficient between two ordinary acoustic media. The reason for this is to stress
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out the differences between a PML medium and an acoustic medium, which is a very special PML
medium.

Strictly speaking, we will focus on the forward modeling step of RTM; i.e., on the extrapolation
of the source wavefield. This assumption is implicit in the fact that we will be dealing with waves
propagating forward in time. However, in Section 5 we will discuss briefly the modifications for
the backward propagation of the recorded data in time , and we will provide the corresponding FD
equations.

3.1 A general overview of PML

In this subsection we will explain in general what the PML technique is about. First of all, it is
a computational technique developed for the simulation of unbounded wave phenomena, using the
FD method in the time domain. We will assume a single line of geophones i.e.; we will rely on a
2D seismic experiment to explain the technique.

It is useful for the implementation of the PML technique to split the space of a seismic experiment
into two different zones or regions: first we have the interest region, which is where the entire seismic
experiment is performed, and of course it is also where we want to see the results of the RTM. In
this region we have the sources, the geophones, the reflectors and a portion of the radiation pattern,
which includes of course the waves scattered towards the geophones (i.e., the data). Second, we
have the radiation region, consisting of all the space not included in the interest region. This region
is the place where the waves produced in the seismic experiment propagate at late times. Because
the space in a seismic experiment is unbounded, this region is infinite and therefore it is also called
the infinite region (Figure 3).
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Figure 3: Array of a typical seismic experiment in 2D: The blue-colored components (including the
source, geophones, reflectors and recorded waves) constitute the region of interest for the compu-
tational implementation of the PML technique. The red-colored components (the scattered waves
not recorded by the geophones) are part of the radiation pattern that eventually propagates to the
radiation zone.

To ensure that all interesting phenomena in the seismic experiment are included in the computational
implementation of RTM, we place the edges of the computational domain outside the region of
interest. The objective is to at least attenuate the reflections created by both of the first two steps
in the RTM technique (extrapolation of the source wavefield and continuation of the reflection data)
due to the hard-wall B.C’s imposed at the boundary of the FD domain. As was mentioned in the
introduction, the PML technique is designed for this task, and the idea is to cover the edges of the
computational domain with a layer made of a very special material called PML medium. This layer
extends in the direction opposite to that of the FD boundary i.e. it is positioned in the interior of
the computational domain.

The PML medium is engineered to absorb, without reflection, any radiating wave escaping from the
region of interest of the seismic experiment, and incident at the interface between the computational
domain and the PML layer †. Once in the PML medium, such an incident wave is attenuated until
it strikes the boundary of the FD domain, where it is reflected due to the hard-wall boundary
conditions. The reflected wave keeps being attenuated as long as it remains in the interior of the

†The definition of a PML medium only involves a set of equations governing the propagation of waves in its
interior, and it is allowed to have an arbitrary shape. When the shape of the PML medium is a layer, then it is
usually called, by abuse of language, just PML instead of PML layer.
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PML medium, but this attenuation stops when the reflected wave returns to the region of the
computational domain filled with the original propagation medium. However, at this stage, the
amplitude of the wave is so attenuated by the PML medium that even if it travels inside the region
of interest, its effects can be neglected (Figure 4).

 Figure 4: Finite-difference implementation of the PML technique in 2D: The scattered waves
escaping from the interest zone (red colored) eventually strike the radiation zone-PML interface
and are transmitted without reflection. Once in the PML medium, the transmitted waves keep
being attenuated before and after they are reflected at the boundary of the FD domain, as long as
they remain in the interior of the PML zone. In this way, once the waves have exited the PML
zone, they are so well attenuated that their effects in the region of interest can be neglected.

3.2 The reflection coefficient

For completeness, we start with the definition of a PML medium according to the split-field for-
mulation as reviewed in Herrera et al. (2012). For simplicity we will focus on the same situation
discussed in the reference just mentioned, namely on the 2D version of the acoustic wave equation,
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written as in equations (2.3). Making the derivatives and the components of the vector field v
explicit, equations (2.3) are equivalent to the following set of equations:

∂ xv

∂t
= −a∂P

∂x

∂ zv

∂t
= −a∂P

∂z

∂P

∂t
= −b

(
∂ xv

∂x
+
∂ zv

∂z

)
. (3.1)

Now we are ready to define a general heterogeneous acoustic-PML medium. Assuming an artificial
splitting of the pressure field into two nonphysical subcomponents

P = Px + Pz, (3.2)

and the introduction of four positive and nonphysical constants (qx, q
∗
x, qz, q

∗
z), called PML param-

eters, the definition of the 2D acoustic PML media is given by the following set of equations:

∂ xv

∂t
+ qx xv = −a ∂

∂x
(Px + Pz), (3.3)

∂ zv

∂t
+ qz zv = −a ∂

∂y
(Px + Pz), (3.4)

∂Px
∂t

+ q∗xPx = −b∂ xv

∂x
, (3.5)

∂Pz
∂t

+ q∗zPz = −b∂ zv

∂z
. (3.6)

Notice that if

qx = q∗x = qz = q∗z = 0, (3.7)

the acoustic PML medium reduces to the original acoustic medium of equations (3.1). For this
reason the medium defined by equations (3.1) is called the acoustic host medium.

Notice from equations (3.3)-(3.6) that this formalism is defined in the time domain. This is in
contrast with the complex stretching coordinate approach to be reviewed later on this section, which
is defined in the frequency domain.

In Herrera et al. (2012) the reflection coefficient at a vertical interface between two PML media
(Figure 5) was calculated as
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Figure 5: Two semi-infinite PML media defined by two sets of parameters (qx1, q
∗
x1, qz1, q

∗
z1) and

(qx2, q
∗
x2, qz2, q

∗
z2) for x < 0 and x > 0, respectively, are placed adjacent to each other with the

interface at x = 0. An incident wave P1 is striking the interface at an angle φ1, resulting in a
transmitted wave P2 with refraction angle φ2 and a reflected wave Pr with reflection angle φr.

rPML =

√
s∗x1
sx1

cosφ1 −
√

s∗x2
sx2

cosφ2√
s∗x1
sx1

cosφ1 +
√

s∗x2
sx2

cosφ2

, (3.8)

where φ1 and φ2 are the incidence and transmission angles, respectively, and

sx =

(
1 +

i

ω
qx

)
(3.9)

sz =

(
1 +

i

ω
qz

)
(3.10)

s∗x =

(
1 +

i

ω
q∗x

)
(3.11)

s∗z =

(
1 +

i

ω
q∗z

)
. (3.12)
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In the above equations sx, sz, s∗x, s∗z are called stretching factors.

On the other hand, for two acoustic media described by pairs (ρ1, c1) and (ρ2, c2), with a vertical
(or any orientation) interface between them, the reflection coefficient is

rac =
ρ2c2cosφ1 − ρ1c1cosφ2

ρ2c2cosφ1 + ρ1c1cosφ2
, (3.13)

where φ1 and φ2 are the incidence and transmission angles, respectively. Next we will derive
simultaneously the conditions to set both rpml and rac equal to zero for all angles of incidence. This
is clarify the difference between the physics of PML and acoustic media, and to understand why
PML interfaces allow for total transmission.

Let us start by imposing the impedance matching condition in the two acoustic media:

c1ρ1 = ρ2c2. (3.14)

In this case rac becomes

rac =
cosφ1 − cosφ2

cosφ1 + cosφ2
. (3.15)

Equation (3.15) is distinguished by the fact that it only depends on the incident and transmission
angles. A similar expression for rPML is obtained by imposing the matching condition‡ on the pairs
(sx1, s

∗
x1) and (sx2, s

∗
x2) :

sx1 = s∗x1, sx2 = s∗x2. (3.16)

With (3.16) we end up with:

rPML =
cosφ1 − cosφ2

cosφ1 + cosφ2
. (3.17)

The next step is to impose a further condition on (3.15) and (3.17) to make them zero. For (3.15)
Snell’s Law for acoustic media is needed:

sinφ1

c1
=
sinφ2

c2
. (3.18)

‡Do not confuse This matching condition for PML media with the impedance matching condition for acoustic
media, equation 3.14
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From (3.18) it is evident that c1 = c2 implies φ1 = φ2, which upon insertion into (3.15) results in
rac = 0 at any angle of incidence. For (3.17) Snell’s Law for PML media is necessary (Herrera et al.
2012):

√
sz1s∗z1 sin φ1 =

√
sz2s∗z2 sin φ2. (3.19)

In this case the conditions

sz1 = sz2, s∗z1 = s∗z2 (3.20)

together with (3.19) imply φ1 = φ2 and therefore rPML = 0 independently of the angle of incidence.
Let us analyze all these conditions now for both rac and rPML.

For the acoustic case, the two conditions to set rac = 0 (equation (3.14) together with c1 = c2)
imply

ρ1 = ρ2. (3.21)

The physical interpretation of (3.21) together with c1 = c2 is that the only way to have zero
reflectivity (at all angles of incidence) at an interface between two acoustic media is if the two
acoustic media are exactly the same material; i.e., if there is no interface. This is the reason we
are so familiar with the fact that whenever an interface interferes with the trajectory of a wave, a
reflected wave is created.

On the other hand, PML media behave dramatically differently at an interface. To see that notice
that in this case the conditions to set rPML = 0, equations (3.16) and (3.20), act on disjoint sets
of the PML parameters. In particular equation (3.16) does not include -unlike the acoustic case-
any expression containing PML parameters from both sides of the interface. Equation (3.16) can
be thought of as being analogous to the impedance matching condition for PML media, because its
effect on rPML is identical to the effect of the impedance matching condition on rac. This gives the
freedom to set rPML = 0 but keeping different values of the PML parameters on both sides of the
interface, which by definition implies two different PML media.

Upon imposition of the conditions to set rPML = 0, the configuration in Figure 5 becomes

PML 1 : (qx1, qx1, qz, q
∗
z) PML 2 : (qx2, qx2, qz, q

∗
z), (3.22)

and this is true for all frequencies and all angles of incidence. Also, the non-reflective property
remains true for a wave going from medium PML 2 to medium PML 1. Therefore, when one of
the two PML media is the acoustic host medium, equation (3.22) takes the form

PML 1 : (0, 0, 0, 0) PML 2 : (qx, qx, 0, 0), (3.23)
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or

PML 1 : (qx, qx, 0, 0) PML 2 : (0, 0, 0, 0). (3.24)

The same discussion can be held if the interface between the two PML media is now parallel to the
x direction. In this case the non-reflective property arises if the parameters satisfy

PML 1 : (qx, q
∗
x, qz1, qz1) PML 2 : (qx, q

∗
x, qz2, qz2), (3.25)

for z < 0 and z > 0 respectively, independently of the direction of the incident wave. Moreover if
PML 1 is the acoustic host medium (3.22) reduces to

PML 1 : (0, 0, 0, 0) PML 2 : (0, 0, qz, qz), (3.26)

and if PML 2 is the acoustic host medium (3.22) reduces to

PML 1 : (0, 0, qz, qz) PML 2 : (0, 0, 0, 0). (3.27)

Using the non-reflective configurations of equations (3.22)-(3.27), we arrive at the array of PML
layers shown in Figure 6 for the modeling of wave propagation phenomena in FD, where L is the
thickness of the PML layer.
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Figure 6: FD grid with PML layers. Appropriate values of the PML parameters are assigned to each
PML region, in order to have non-reflective properties at any of the acoustic-PML or PML-PML
interfaces.

4 Convolutional Perfectly Matched Layer

After the previous section’s brief review and the analysis of the reflection coefficient between two
PML media, we now will focus on the so-called Convolutional Perfectly Matched Layer (CPML)
described in Roden and Gedney (2000) and Komatitsch and Martin (2007). This is a formulation of
a PML in the time domain, which offers several improvements with respect to the original split-field
formulation of Bérenguer.

As in the previous section, we will focus on forward propagation in time, leaving the discussion of
the CPML, for backward propagation in time for the next section.

4.1 Complex Coordinate Stretching approach to PML

To begin, we will review the complex coordinate stretching approach, from which the CPML is
naturally derived. Let us start by writing the acoustic wave equation, expression (2.3), in the
frequency domain:
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iωv = −a∇P iωP = −b∇ · v. (4.1)

By definition, in the complex coordinate stretching approach the PML equations are obtained upon
replacement of the equations in (4.1) by the following expressions:

iωv = −a∇′P iωP = −b∇∗ · v, (4.2)

with

∇′ = 1

sx(x)

∂

∂x
x̂+

1

sz(z)

∂

∂z
ẑ ∇∗ =

1

s∗x(x)

∂

∂x
x̂+

1

s∗z(z)
∂

∂z
ẑ, (4.3)

where the stretching functions §, sx(x), sz(z), s∗x(x) and s∗z(z) are complex-valued analytic functions
of their corresponding argument. Note that if the stretching functions are set to 1, then we end
with the original acoustic media defined by equation (2.3); i.e., in this formalism the acoustic host
medium is a PML medium with stretching functions set to 1.

Now we introduce the complex stretched coordinates

dx′ = sx(x)dx dz′ = sz(z)dz dx∗ = s∗x(x)dx dz∗ = s∗z(z)dz, (4.4)

From equation (4.3) we have the following results:

∂

∂x′
=

1

sx(x)

∂

∂x

∂

∂z′
=

1

sz(z)

∂

∂z

∂

∂x∗
=

1

s∗x(x)

∂

∂x

∂

∂z′
=

1

s∗z(z)
∂

∂z
. (4.5)

The proofs of the above expressions are all similar and hence we show explicitly the steps leading
only to the first relation in equation (4.5):

∂g

∂x′
=
∂g

∂x

∂x

∂x′
=

1

sx(x)

∂g

∂x
, (4.6)

where the first expression in equation (4.4) has been used. Then, using equation (4.5), we can write
equation (4.3) as

∇′ = ∂

∂x′
x̂+

∂

∂z′
ẑ ∇∗ =

∂

∂x∗
x̂+

∂

∂z∗
ẑ, (4.7)

§Usually sx(x), sz(z), s∗x(x) and s∗z(z) are called stretching factors. We choose to call them stretching functions
to highlight their dependence on either x or z, and also to avoid confusion with the constant stretching factors defined
in subsection 3.2 in the split-field formulation.
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and hence we use the name complex coordinate stretching : equations (4.7) imply that equations (4.2)
are defined in coordinate systems (x′, z′) and (x∗, z∗), which are the original coordinate system (x, z)
stretched by the complex stretching functions.

In Herrera et al. (2012) it was explained that the expressions in equations (4.2) are equivalent to
equations (3.3)-(3.6) (the defining equations of the split-field formulation of Bérenger) when written
in the Fourier domain.

4.2 Mathematical Formulation of the Convolutional Perfectly Matched Layer

We are now ready to explain the CPML. We start by writing the expressions in (4.2) in the time
domain. Upon an Inverse Fourier Transform we get the following equations:

∂ xv

∂t
= F−1

{
− a

sx

∂P

∂x

}
∂ zv

∂t
= F−1

{
− a

sz

∂P

∂z

}
(4.8)

∂P

∂t
= −b

(
F−1

{
1

s∗x

∂ xv

∂x

}
+ F−1

{
1

s∗z

∂ zv

∂z

})
, (4.9)

where equations (4.8) are the components of the vector equation in (4.2).

By using the convolution theorem in time,

F [f1(t) ∗ f2(t)] = F1(ω)F2(ω), (4.10)

equations (4.9) and (4.10) can be expressed respectively as

F−1

{
− a

sx

∂P

∂x

}
= F−1

{
− a

sx

}
∗ ∂P
∂x

F−1

{
− a

sz

∂P

∂z

}
= F−1

{
− a

sz

}
∗ ∂P
∂z

(4.11)

and

∂P

∂t
= b

(
F−1

{
− 1

sx

}
∗ ∂ zv

∂x
+

{
− 1

sz

}
∗ ∂ zv

∂z

)
. (4.12)

The presence of the convolution operation in equations (4.11) and (4.12) is why this approach to
the Perfectly Matched Layer is called the Convolutional Perfectly Matched Layer or CPML. The
next step is to provide expressions for the above convolutions, which are ready for Finite-Difference
schemes in staggered grids. This is done in Appendix B, where the following results are shown:

∂ xv

∂t
= −a

{
∂P (t)

∂x
+ ξx(t) ∗ ∂P

∂x

}
ξx(t) = −qxu(t)e−qxt (4.13)
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∂ zv

∂t
= −a

{
∂P (t)

∂z
+ ξz(t) ∗

∂P

∂z

}
ξz(t) = −qzu(t)e−qzt (4.14)

∂P

∂t
= −b

{
∂

∂x
+ ξ∗x(t) ∗ ∂

∂x

}
xv − b

{
∂

∂z
+ ξ∗z (t) ∗ ∂

∂z

}
zv, (4.15)

where

ξ∗x(t) = −q∗xu(t)e−q
∗
xt ξ∗z (t) = −q∗zu(t)e−q

∗
z t, (4.16)

and u(t) is the Heaviside function. As we will restrict ourselves to configurations with rPML = 0,
it is enough, from Figure 6, to consider qk = q∗k for k = x, z; i.e.,

ξ∗x(t) = ξx(t) ξ∗z (t) = ξz(t). (4.17)

Equations (4.13)-(4.15), together with the following recursive relations, also proved in Appendix B,

( pkψ)n = e−qk∆t( pkψ)n−1 + (e−qk∆t − 1)(∂kP )n k = x, z, (4.18)

( vkψ)n = e−qk∆t( vkψ)n−1 + (e−qk∆t − 1)(∂k kv)n k = x, z, (4.19)

constitute the basic sets of equations of the CPML, where

pkψ(t) ≡ (ξk ∗ ∂kP )(t) =

∫ ∞

−∞
ξk(τ)∂kP (t− τ)dτ =

∫ t

0
ξk(τ)∂kP (t− τ)dτ k = x, z, (4.20)

vkψ(t) ≡ (ξk ∗ ∂k kv)(t) =

∫ ∞

−∞
ξk(τ)∂k kv(t− τ)dτ =

∫ t

0
ξk(τ)∂k kv(t− τ)dτ k = x, z, (4.21)

are the convolutions and

( pkψ)n ≡ ( pkψ)(n∆t) (4.22)

( vkψ)n ≡ ( vkψ)(n∆t) (4.23)
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are the usual notations for evaluation at a discrete time. Using the notation defined in equa-
tions (4.20)-(4.21), equations (4.13)-(4.15) can be written as

∂ xv

∂t
= −a∂P

∂x
− a pxψ(t) (4.24)

∂ zv

∂t
= −a∂P

∂z
− a pzψ(t) (4.25)

∂P

∂t
= −b

(
∂ xv

∂x
+
∂ zv

∂z

)
− b( vxψ(t) + vzψ(t)), (4.26)

The discretized expressions for equations (4.24)-(4.26) are

∂ xv

∂t

n

i+ 1
2
,j

=
xv
n+ 1

2

i+ 1
2
,j
−x v

n− 1
2

i+ 1
2
,j

∆t
=

− ai+ 1
2
,j

1

∆x

[
9

8

(
Pni+1,j − Pni,j

)
− 1

24

(
Pni+2,j − Pni−1,j

)]
− ai+ 1

2
,j (pxψ

n
i+ 1

2
,j

) (4.27)

∂ zv

∂t

n

i,j+ 1
2

=
zv
n+ 1

2

i,j+ 1
2

−z v
n− 1

2

i,j+ 1
2

∆t
=

− ai,j+ 1
2

1

∆z

[
9

8

(
Pni,j+1 − Pni,j

)
− 1

24

(
Pni,j+2 − Pni,j−1

)]
− ai,j+ 1

2
(pzψ

n
i,j+ 1

2

) (4.28)

∂P

∂t

n+ 1
2

i,j
=
Pn+1
i,j − Pni,j

∆t
= −bi,j

1

∆x

[
9

8

(
xv
n+ 1

2

i+ 1
2
,j
− xv

n+ 1
2

i− 1
2
,j

)
− 1

24

(
xv
n+ 1

2

i+ 3
2
,j
− xv

n+ 1
2

i− 3
2
,j

)]

− bi,j
1

∆z

[
9

8

(
zv
n+ 1

2

i,j+ 1
2

− zv
n+ 1

2

i,j− 1
2

)
− 1

24

(
zv
n+ 1

2

i,j+ 3
2

− zv
n+ 1

2

i,j− 3
2

)]
− bi,j( vxψ

n+ 1
2

i,j + vzψ
n+ 1

2
i,j ) (4.29)

respectively. From equations (4.27)-(4.29) we get

xv
n+ 1

2

i+ 1
2
,j

= xv
n− 1

2

i+ 1
2
,j
− ai+ 1

2
,j

∆t

∆x

[
9

8

(
Pni+1,j − Pni,j

)
− 1

24

(
Pni+2,j − Pni−1,j

)]
− ai+ 1

2
,j ∆t (pxψ

n
i+ 1

2
,j

)

(4.30)
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zv
n+ 1

2

i,j+ 1
2

= zv
n− 1

2

i+ 1
2
,j
− ai,j+ 1

2

∆t

∆z

[
9

8

(
Pni,j+1 − Pni,j

)
− 1

24

(
Pni,j+2 − Pni,j−1

)]
− ai,j+ 1

2
∆t (pzψ

n
i,j+ 1

2

)

(4.31)

Pn+1
i,j = Pni,j − bi,j

∆t

∆x

[
9

8

(
xv
n+ 1

2

i+ 1
2
,j
− xv

n+ 1
2

i− 1
2
,j

)
− 1

24

(
xv
n+ 1

2

i+ 3
2
,j
− xv

n+ 1
2

i− 3
2
,j

)]

−bi,j
∆t

∆z

[
9

8

(
zv
n+ 1

2

i,j+ 1
2

− zv
n+ 1

2

i,j− 1
2

)
− 1

24

(
zv
n+ 1

2

i,j+ 3
2

− zv
n+ 1

2

i,j− 3
2

)]
−bi,j ∆t ( vxψ

n+ 1
2

i,j + vzψ
n+ 1

2
i,j ), (4.32)

where the discretizations for vxψ
n+ 1

2
i,j , vzψ

n+ 1
2

i,j , pxψni+ 1
2
,j
and pzψ

n
i,j+ 1

2

are

vxψ
n+ 1

2
i,j = xai vxψ

n− 1
2

i,j + xbi
1

∆x

[
9

8

(
xv
n+ 1

2

i+ 1
2
,j
− xv

n+ 1
2

i− 1
2
,j

)
− 1

24

(
xv
n+ 1

2

i+ 3
2
,j
− xv

n+ 1
2

i− 3
2
,j

)]
, (4.33)

vzψ
n+ 1

2
i,j = zaj vzψ

n− 1
2

i,j + zbj
1

∆z

[
9

8

(
zv
n+ 1

2

i,j+ 1
2

− zv
n+ 1

2

i,j− 1
2

)
− 1

24

(
zv
n+ 1

2

i,j+ 3
2

− zv
n+ 1

2

i,j− 3
2

)]
, (4.34)

pxψ
n
i+ 1

2
,j

= xai+ 1
2
pxψ

n−1
i+ 1

2
,j

+ xbi+ 1
2

1

∆x

[
9

8

(
Pni+1,j − Pni,j

)
− 1

24

(
Pni+2,j − Pni−1,j

)]
, (4.35)

and

pzψ
n
i,j+ 1

2

= zaj+ 1
2
pzψ

n−1
i,j+ 1

2

+ zbj+ 1
2

1

∆z

[
9

8

(
Pni,j+1 − Pni,j

)
− 1

24

(
Pni,j+2 − Pni,j−1

)]
, (4.36)

where the recursion relations, equations (4.18) and (4.19), and the fourth-order approximation for
spatial derivatives, equation (A.13), have been used and the following notation has been introduced:

kb = eqk∆t k = x, z, (4.37)

ka = eqk∆t k = x, z, (4.38)

in agreement with equations (4.18) and (4.19).
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Notice that equations (4.27)-(4.29) are essentially (2.5)-(2.7) with additional convolutional terms.
This is an advantage of the CMPL over the original split-field formulation: the computational code
for a standard (velocity-stress) Finite-Difference scheme in a staggered grid can be used, and then
updated with the convolutional terms, which are non zero only within the PML region.

On the other hand, several improvements have been incorporated into the PML and in particular
into the CPML. We will now explain some of these improvements, which will be included in the
examples shown below.

First of all, note that if we can modify the stretching factors without modifying equations (3.16)
and (3.20), the reflection coefficient rPML is still zero. Using this freedom, a modification of the
stretching factors, equations (3.9)-(3.12), was proposed in Kuzuoglu and Mittra (2003) and included
in Komatitsch and Martin (2007):

sx =

(
1 +

i

αx + ω
qx

)
(4.39)

sz =

(
1 +

i

αz + ω
qz

)
(4.40)

s∗x =

(
1 +

i

αx + ω
q∗x

)
(4.41)

s∗z =

(
1 +

i

αz + ω
q∗z

)
, (4.42)

where αx, αz ≥ 0. Applying the PML factors given by the configuration with rPML = 0, equa-
tion (3.22), to the modified stretching factors, equations (4.39)-(4.42), it is easy to see that equa-
tions (3.16) and (3.20) remain unchanged and hence the condition rPML = 0 remains unchanged¶.

The purpose of αx, αz is to improve the absorbtion of already evanescent waves, whose attenuation
rate is low enough so that their reflections at the boundary cannot be neglected. Also, experience
and empirical tests have shown that an optimum value for these constants is πf0, where f0 is the
dominant frequency of the source wavelet (Komatitsch and Martin 2007).

All derivations in Appendix B can be repeated with minor changes for the modified stretching
factors just introduced through equations (4.39)-(4.42). The only changes to the basic equations of
the CPML are as follows:

ξx(t) = −qxu(t)e−(qx+αx)t, (4.43)
¶ There is at least another modification that is relevant for waves at grazing incidence, but it seems that this

modification plays no role for the acoustic and elastic equation (Komatitsch and Martin 2007). Such a claim is
supported by the results described below in this report.
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ξz(t) = −qzu(t)e−(qz+αz)t, (4.44)

ξ∗x(t) = −q∗xu(t)e−(q∗x+αz)t ξ∗z (t) = −q∗zu(t)e−(q∗z+αz)t, (4.45)

and

(ψkP )n = kb(ψkP )n−1 + ka(∂kP )n−1 k = x, z, (4.46)

where

kb = e−(qk+αk))∆t k = x, z, (4.47)

ka =
qk

qk + αk
(kb− 1) k = x, z. (4.48)

Other modifications to the CPML involve the stretching factors equations (4.39)-(4.42), and the
process of discretization for FD. In particular we will explain how to minimize the discretization
error in the reflection coefficient rPML and the so-called late-time (low-frequency) reflections.

In Taflove and Hagness (2005) it is explained that after discretization, even if equations (3.16)
and (3.20) are satisfied, the theoretical reflection coefficient rPML is not zero anymore. This is
because the discretization process intrinsically produces reflections. The modification to reduce
these reflections consists of smoothly varying the value of the PML factors, from zero at the interface
with the acoustic medium to a maximum value qmaxk at the end on the computational domain (the
outer side of the PML). Usually the following polynomial variation is chosen

qk(d) = qmaxk

(
dk
Lk

)N
k = x, z, (4.49)

where Lk is the width of the PML layer, dk is the distance to the corresponding acoustic-PML
interface, and it has been shown that N = 3 or 4 for optimal performance (see Taflove and Hagness
2005 and references therein). The remaining question is how to choose qmaxk in (4.49). To answer
this question we need first to remember that the attenuation factor for a wave, after its two-way
propagation inside the PML layer, is (assuming the wave is far from the corners where more than
a single reflection at the end of the computational domain can occur)

R(φ1) = e−2
qk
c
cosφ1Lk k = x, z (4.50)
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where qk are constant PML factors. A proof for equation (4.50) can be found in Herrera et al.
(2012). When the PML factors are position-dependent, the generalization of (4.50) is straightfor-
ward (Komatitsch and Martin 2007, Taflove and Hagness 2005, Bérenger 2007):

R(φ1) = e−
2
c
cosφ1

∫ Lk
0 qk(k)dk k = x, z, (4.51)

where the integral forms of expressions in equation (4.4) are useful.

Upon insertion of the polynomial grading, equation (4.49), into equation (4.51), we get for space-
varying PML parameters the following attenuation factor:

R(φ1) = e−
2
c
cosφ1Lk/(N+1) k = x, z, (4.52)

where we are restricting our calculations to Lk = L for k = x, z. Assuming that N, Lk, and the
reflection error at normal incidence, R(0), are set up, then from equation (4.52) we get

qmaxk = −(N + 1) c ln[R(0)]

2Lk
k = x, z. (4.53)

For inhomogeneous media, the generalization of (4.53) is

qmaxk = −(N + 1) ceff ln[R(0)]

2Lk
k = x, z, (4.54)

where ceff is a mean value of the velocities.

A further modification to the stretching factors involves the constants αx and αz just introduced in
equations (4.45)-(4.48). As with the PML parameters, the discretization process spoils the optimum
performance of these constants, and hence that of the PML. The solution is analogous to the solution
with the PML parameters, allow the constants to vary spatially. Assuming that the acoustic PML
boundary is at k = 0 for k = x, z, and also that the PML fills the space 0 < k < Lk, the variation
is as follows (Bérenger 2007, Taflove and Hagness 2005):

αk(k) = αmaxk

(
Lk − k
Lk

)ma
, 0 ≤ k ≤ L for k = x, z, (4.55)

where ma is a positive integer called the scaling order. The key property of equation (4.55) is that
it has its maximum value αmaxk at the front interface x = 0 and it decays to zero within the PML.
The value of αmaxk is the recommended optimum value mentioned above; i.e., πf0. If the PML is
placed at a position different from k = 0 for k = x, z, a translation of equation (4.55) is necessary
in order to preserve the property just explained.
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In Figure 7 we show the modeling example of Figure 2 for a homogeneous medium, but with CPML
BCs included. We have chosen a thickness of ten grid points for the PML layer, for all boundaries:
i.e., Lk = 10∆k for k = x, z. The values N = 3 and ma = 1 in equations (4.49) and (4.55) are
selected. Also a theoretical reflection error at normal incidence R(0) = e−16 ≈ 1.125352 × 10−7 is
chosen for (4.53). There is no a priori reason for these values, but experience has shown they are
usually good enough (Taflove and Hagness 2005).

 

Figure 7: Attenuation of the CPML to the reflections at the boundaries of the computational
domain, for the homogeneous medium of Figure 2.

By comparison with Figure 2, we can see in Figure 7 how the inclusion of CPML BCs attenuates
the reflections created at the boundaries of the computational domain.

In Figure 8, we include an example of a heterogeneous medium with a single reflector at 4000m.
The speed on the upper medium is still 1500m/s but in the second layer we have now 3000m/s.
As in the homogeneous example, a theoretical reflection error at normal incidence R(0) = e−16 is
chosen for equation (4.54). On panel (a) we show the result of the standard FD, with Dirichlet
BCs at the end of the computational domain. On panels (b) and (c) we show the same simulation
at two different times, with CPML BCs. Notice in panel (b) that the reflections at the boundaries
in the upper medium are very well attenuated. In panel (c) the attenuation of reflections at the
boundaries in the lower medium can be seen.
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(𝑎) (𝑏) (𝑐) 

Figure 8: CPML implemented in a heterogeneous medium, with a single reflector at 4000m, which
corresponds to grid points in row 800 : (a) A snapshot of the standard FD with Dirichlet BCs,
without CPML. (b) Reflections at the boundaries of the upper medium are very well attenuated by
the CPML. (c) Reflections at the boundaries of the lower medium are very well attenuated by the
CPML.

5 Discussion of using a CPML for backward propagation in time

In the present section we will discuss the theory behind using the CPML for backward propagation
in time, as it is slightly different from the corresponding implementation for modeling. The compu-
tational implementation of the CPML for backward propagation is currently being studied within
the M-OSRP. The key point is that according to the RTM, in backward propagation with time
the data are a time-varying boundary condition at the upper surface of the computational domain.
This forbids the inclusion of a PML wall at this surface, because a PML region would absorb and
thereby modify the data to be propagated to the subsurface. Hence, PML boundaries can only be
incorporated (for a 2D experiment) on the sides and the bottom of the computational domain (see
Figure 9).
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 Array  for backward propagation in time with PML 

Hard-wall B.Cs 

(Dirichlet or Neumann) 

PML region 

PML region PML region 

𝐷(𝑥, 𝑧, 𝑡) 

Figure 9: Array of the computational domain of FD, for backward propagation of the Data in time,
and including PML layers. Note the absence of a PML layer at the top boundary in order prevent
interference of a PML with the back-propagation of the data, since the data are the boundary
condition.

To derive the equations for the backward propagation incorporating the CPML, we will follow the
approach presented in Du Qi-Zhen et al. (2010) where the equations for the backward propagation for
the split-field formulation of the PML were derived. For this, we need to construct fields P̃ (x, z, t̃),

xṽ(x, z, t̃) and z ṽ(x, z, t̃) where

t̃ = Tmax − t, (5.1)

with 0 ≤ t ≤ Tmax being the time variable in the forward propagation and Tmax the maximum
recording time as in the forward propagation. Notice that as t goes backward from tmax to 0, t̃ goes
forward from 0 to Tmax. The next step is to define

P (x, z, t) ≡ P̃ (x, z, Tmax − t) = P̃ (x, z, t̃), (5.2)
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xv(x, z, t) ≡ xṽ(x, z, Tmax − t) = xṽ(x, z, t̃), (5.3)

zv(x, z, t) ≡ z ṽ(x, z, Tmax − t) = z ṽ(x, z, t̃), (5.4)

where P (x, z, t), xv(x, z, t), and zv(x, z, t) are the wavefield and the components of the velocity field
defined in the forward propagation. In this way we have expressed the backward propagation in t
of P, xv, and zv in terms of a usual forward propagation in t̃ of P̃ , xṽ, and z ṽ.

The next step is to determine the differential equations that govern the propagation of the tilde
fields in terms of t̃. Using the chain rule, we have for the wavefield

∂P (x, z, t)

∂t
=
∂P̃ (x, z, t̃)

∂t
=
∂P̃ (x, z, t̃)

∂t̃

∂t̃

∂t
= −∂P̃ (x, z, t̃)

∂t̃
, (5.5)

and analogous expressions for the components of the velocity field:

∂ xv(x, z, t)

∂t
= −∂ xṽ(x, z, t̃)

∂t̃
(5.6)

∂ zv(x, z, t)

∂t
= −∂ z ṽ(x, z, t̃)

∂t̃
. (5.7)

In other words, we have

∂

∂t
= − ∂

∂t̃
. (5.8)

As there are no changes in the space variables, by substitution of equations (5.6)-(5.8) into equa-
tion (3.1) we end with the following set of equations:

∂P̃

∂t̃
= b

(
∂ xṽ

∂x
+
∂ z ṽ

∂z

)
(5.9)

∂ xṽ

∂t̃
= a

∂P̃

∂x
(5.10)

∂ z ṽ

∂t̃
= a

∂P̃

∂z
. (5.11)

Notice that equations (5.9)-(5.11) differ from the expressions in equation (3.1) only by the negative
sign, which is irrelevant as far as the wave equation is concerned: i.e., equations (5.9)-(5.11) are also
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equivalent to the acoustic wave equation. Hence, we have translated the backward propagation (with
respect to t) of the acoustic wave equation, into a forward propagation in t̃ of the wave equation;
i.e., we can apply the process described in section 4 and Appendix B for the implementation of the
CPML. In this way, we arrive at equations that are analogous to equations (4.24)-(4.26):

∂ xṽ

∂t̃
= a

∂P̃

∂x
+ a p̃xψ(t̃) (5.12)

∂ z ṽ

∂t̃
= a

∂P

∂z
+ a p̃zψ̃(t̃) (5.13)

∂P̃

∂t̃
= b

(
∂ xṽ

∂x
+
∂ z ṽ

∂z

)
+ b( ṽxψ̃(t̃) + ṽyψ̃(t̃)), (5.14)

where ∗ψ̃ is the convolution in t̃ satisfying

∗ψ̃ñ = ka ∗ψ̃
ñ−1 + kb ∂

ñ−1
∗ k = x, z. (5.15)

for a generic subindex ∗ in equations (5.12)-(5.14). Also, ñ is the number of iterations in t̃.

The next task is to write equations (5.12)-(5.15) in terms of t and the non-tilded fields, as those are
the ones contained in the imaging condition. The resulting equations are

∂ xv

∂t
= −a

(
∂P

∂x
+ pxψ(t)

)
(5.16)

∂ zv

∂t
= −a

(
∂P

∂z
+ pzψ(t)

)
(5.17)

∂P

∂t
= −b

(
∂ xv

∂x
+
∂ zv

∂z

)
− b( vxψ(t) + vzψ(t)) (5.18)

∗ψn = ka ∗ψ
n+1 + kb ∂

n
∗ k = x, z. (5.19)

Note that a generic convolution ∗ψ now satisfies a recursive relation in which earlier times are
calculated in terms of later times, as needed for a backward propagation. This recursive relation
can be proved by following the procedure described in Appendix B, and expressing t̃ in terms of t.

Upon discretization of equations (5.12)-(5.15) and isolation of fields at earlier times in terms of later
times, we arrive at the equations to be implemented in the backward propagation in time for RTM:
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Pn−1
i,j = Pni,j + bi,j
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(
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24
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bi,j
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[
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(
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24

(
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+ bi,j∆t( vxψ

n− 1
2

i,j + vzψ
n− 1

2
i,j ) (5.20)

zv
n− 1

2

i,j+ 1
2

= zv
n+ 1

2

i+ 1
2
,j

+ ai,j+ 1
2

∆t

∆z

[
9

8

(
Pni,j+1 − Pni,j
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24
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)]
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2
∆t (pzψ

n
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(5.21)

xv
n− 1
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2
,j
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2
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+ ai+ 1
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,j∆t (pxψ
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2
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(5.22)

vxψ
n− 1

2
i,j = xai vxψ

n+ 1
2

i,j + xbi
1

∆x

[
9

8

(
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2
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2
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2
,j

)
− 1

24

(
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n− 1

2

i+ 3
2
,j
− xv

n− 1
2

i− 3
2
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(5.23)

vzψ
n− 1

2
i,j = zaj vzψ

n+ 1
2

i,j + zbj
1

∆z

[
9

8

(
zv
n− 1

2

i,j+ 1
2

− zv
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i,j− 1
2

)
− 1

24

(
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2
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− zv
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(5.24)

pxψ
n
i+ 1

2
,j

= xai+ 1
2
pxψ

n+1
i+ 1

2
,j

+ xbi+ 1
2

1

∆x

[
9

8

(
Pni+1,j − Pni,j

)
− 1

24

(
Pni+2,j − Pni−1,j

)]
(5.25)

pzψ
n
i,j+ 1

2

= zaj+ 1
2
pzψ

n+1
i,j+ 1

2

+ zbj+ 1
2

1

∆z

[
9

8

(
Pni,j+1 − Pni,j

)
− 1

24

(
Pni,j+2 − Pni,j−1

)]
(5.26)

6 Discussion and Conclusions

In this report we have described the first steps, within the M-OSRP, toward implementation of the
Convolutional Perfectly Matched Layer CPML, as presented in Komatitsch and Martin (2007) and
Roden and Gedney (2000). We focus our attention on modeling the 2D acoustic wave equation. In
particular we present an example of the implementation of the CPML for a homogeneous medium.
We also include an example for a heterogeneous medium, with a single reflector, with velocity and
density variations. In both cases it is evident the effectiveness of the CPML in the attenuation
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of the reflections at the boundary of the computational domain, arising as a consequence of the
imposed Dirichlet BCs

For the examples mentioned above, we have used the staggered-grid finite-difference scheme de-
scribed in Appendix A. The reason for the staggered grid is that it is more convenient than the
familiar non-staggered scheme, when the wave equation is formulated as a coupled system of first-
order differential equations; i.e., when it is formulated as in equation (2.3). On the other hand,
the requirement in this report of equation (2.3) comes from the PML technique, which is our main
interest. The reason we focus on the CPML is that, as explained in section 4, it is easy to implement
in the time domain, and it incorporates some improvements over the original split-field formulation.

In order to provide a better understanding of the CPML, we have also included a detailed comparison
of the reflection coefficient at an interface between two PML media, with the reflection coefficient
at an interface between two acoustic media. In particular we have analyzed and compared the
conditions to set up both coefficients to zero for all angles of incidence. The result of this analysis
is a better understanding of the reflection coefficient between two PML media and why, unlike the
acoustic case, two PML media allow (for certain configurations) zero reflection coefficient for all
angles of incidence: equation (3.16), the analogous of the impedance matching condition for PML
media, does not include any expression containing PML parameters from both sides of the interface.
This gives the freedom to set rPML = 0 but keeping different values of the PML parameters on
both sides of the interface, which by definition imply two different PML media.

As is mentioned in the introduction, this report can be considered as part of a broader research
project whose objective is to compare the effectiveness of the new Green’s theorem approach for
RTM, as described in Weglein et al. (2011a) and Weglein et al. (2011b), with the PML-based RTM.
For this reason, we have included a brief discussion of the original approach for RTM, as described
in Whitmore (1983), Baysal et al. (1983) and Stolt and Weglein (2011), with focus on the 2D
acoustic heterogeneous wave equation. We have also derived the equations (both the continuous
and discrete versions) of the CPML for the backward propagation of data, as required by RTM. The
result for the continuous equations is comprised in equations (5.16)-(5.18) and equation (5.19) for
the convolutions. Comparing these equations with the CPML equations for the forward modeling,
equations (4.24)-(4.26) and equations (4.18)-(4.19) for the convolutions, it can be seen that the only
differences are in the convolutions, as for the backward propagation they satisfy a recursive relation
in which earlier times are calculated in terms of later times. As far as the authors knowledge, these
results have not been reported elsewhere.

Although the final goal is the implementation of RTM with PML layers, a side product of this
research project is a code to create synthetic data with PML layers. This code allows for both
velocity and density variation, for an acoustic, 2D earth. However, the code can be easily adapted
to allow a 3D earth. The fact that the code incorporates the CPML technique implies that the
computational domain does not need to be much bigger that the size of the experiment that is to be
simulated: in this case, the noise produced by reflections at the boundary are significantly reduced
by the PML layers. This implies a faster algorithm.

Topics for further research in this research project include the extension of RTM to include processing
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of internal multiples, derivation and implementation of the equations of the RTM with CPML
BCs for TTI anisotropy, and modification of the source-wavefield reconstruction method for RTM,
presented in McGarry et al. (2010) and Bo-Feng et al. (2010), to include PML BCs.
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A A Staggered finite difference

A.1 Second-order and fourth-order approximations to the derivative

In here we will show how to obtain the basic equations for second and fourth order discretizations
of the derivative, needed for the derivation and implementation of the Finite Difference equations
governing the CPML. We will follow the approach described in Garcia (2009) Assume for simplicity
that we have a finite-difference grid with a single dimension x. In a standard finite-difference scheme
we assume that the values of a generic field u(x) are known at the grid points; i.e., we know the
values ui ≡ u(ih), where h is the distance between two adjacent grid points. However, it is useful
for our purposes to assume that we can also access the values of u at half the distance between grid
points; i.e., we can also access ui+1/2 ≡ u((i+ 1/2)h).

What we want to calculate is the derivative of u at x = ih; i.e., we want dui/dx (Figure 10).

 

   𝑖

   

𝑢𝑖  𝑢𝑖−1 𝑢𝑖+1 

𝑢𝑖+1 2  𝑢𝑖−1 2  

𝑢𝑖−2 

𝑢𝑖−3 2  
 

 

  
𝑢𝑖−3 2  𝑢𝑖+5 2  𝑢𝑖−5 2  

𝑢𝑖+2 

𝑑𝑢𝑖 𝑑𝑥   

ℎ 

𝑢𝑖 ≡ 𝑢(ℎ𝑖) 

Figure 10: A 1D grid in which a generic function (or field) is known at the grid points ui for integer
i > 0, and also at points ui+1/2 located half the distance between the grid points.
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For this we need the formula for the Taylor expansion:

f(x+ a) = f(x) + af ′(x) +
a2

2!
f ′′(x) +

a3

3!
f ′′′(x) + · · · (A.1)

Applying equation (A.1) to Taylor expand u(x), we get, for a = h/2 and a = −h/2, the following
expressions:

ui+1/2 = ui +
h

2
u′i +

h2

8
u′′i +

h3

48
u′′′i +

h4

384
u′′′′i + · · · (A.2)

ui−1/2 = ui −
h

2
u′i +

h2

8
u′′i −

h3

48
u′′′i +

h4

384
u′′′′i + · · · (A.3)

Subtracting (A.3) from (A.2) and neglecting terms of second order in h and higher, we obtain the
second-order approximation for dui

dx :

u′i =
ui+1/2 − ui−1/2

h
+O(h2) (A.4)

The goal now is to get a fourth-order approximation for dui
dx . For this we subtract again (A.3) from

(A.2), but we keep terms up to order h3 :

ui+1/2 − ui−1/2 = hu′i +
h3

24
u′′′ +O(h5). (A.5)

Next, we apply equation (A.1) to Taylor expand u(x), for a = 3h/2 and a = −3h/2 :

ui+3/2 = ui +
3h

2
u′i +

9h2

8
u′′i +

27h3

48
u′′′i +

81h4

384
u′′′′i + · · · (A.6)

ui−3/2 = ui −
3h

2
u′i +

9h2

8
u′′i −

27h3

48
u′′′i +

81h4

384
u′′′′i + · · · (A.7)

Subtracting now (A.7) from (A.6) and keeping terms up to order h3, we obtain

ui+3/2 − ui−3/2 = 3hu′i +
9h3

8
u′′′i +O(h5). (A.8)

Suppose now that we want an expression for dui
dx of the form

u′i = A(ui+1/2 − ui−1/2) +B(ui+3/2 − ui−3/2), (A.9)
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with A and B constants to be determined. Inserting the right-hand side of (A.5) and (A.8) into
(A.9) we get

u′i = A(hu′i +
h3

24
u′′′) +B(3hu′i +

9h2

8
u′′′i ) = (Ah+ 3hB)u′i + (A

h3

24
+B

9h3

8
)u′′′i , (A.10)

which gives the following system of equations for A and B :

Ah+ 3hB = 1 A
h3

24
+B

9h3

8
= 0. (A.11)

Solving (A.11) we get

A =
9

8h
B = − 1

24h
, (A.12)

Substitution of (A.12) into (A.9) we end up with the fourth-order approximation we were looking
for:

u′i ≈
1

h

(
9

8
(ui+1/2 − ui−1/2)− 1

24
(ui+3/2 − ui−3/2)

)
. (A.13)

A.2 Staggered grid for finite Difference

Here we will explain the basics of a staggered grid, suitable for systems like equation (2.3), which
we include here for further convenience.

The central feature of a staggered grid is that some quantities are assumed to be known at the
grid points and other at the half-grid points (some quantities may have mixed components at grid
points and half-grid points). To be specific, assume that the pressure field P is known at the
grid points and denote its value at the grid point (i, j, n) as Pni,j ; i.e., Pni,j ≡ P (i∆x, j∆z, n∆t),
where ∆x, ∆z, and ∆t are the distances between two adjacent grid points at the x, z, and t
directions, respectively. Assume also that the x̂ and ẑ components of the velocity field are known at
half-grid points in the corresponding spatial direction and at the grid points in the corresponding
remaining direction. Both components are known at half-grid points in the time direction: xv

n+ 1
2

i+ 1
2
,j
≡

xv((i+1/2)∆x, j∆z, (n+1/2)∆t)) and zv
n+ 1

2

i,j+ 1
2

≡ zv(i∆x, (j+1/2)∆z, (n+1/2)∆t)). See Figure 11,
where for simplicity only the spatial x direction is shown, together with the time direction.
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𝒙 

Figure 11: Projection on the x − t plane of a staggered grid with two spatial directions, in which
the pressure field P is known at the grid (green) points (i, j, n), while the x-component xv of the
auxiliary velocity field is known at points located at half the distance between two adjacent grid
points (yellow points).

For stability of the FD scheme, the time step must be constrained by the Courant-Friedrichs-Lewy
(CFS) condition (Courant et al. 1928):

c∆t

√
1

∆x2
+

1

∆z2
≤ 1. (A.14)

In the following, we will use a second-order approach for time derivatives and a fourth-order ap-
proach for spatial derivatives. The tricky point is to realize the position in the grid, at which each
derivative in (2.3) is to be evaluated in such a way that, upon the application of the corresponding
approximation (second-order for time and fourth-order for space derivatives) we end up with the
fields evaluated at the correct positions; i.e., at the positions where they are assumed to be known.

It turns out that the correct position for evaluation of the derivative of the pressure field P in (2.3)
is (i, j, n+ 1/2) :

∂P
∂t

n+ 1
2

i,j
=

Pn+1
i,j −Pni,j

∆t = −bi,j 1
∆x

[
9
8

(
xv
n+ 1

2

i+ 1
2
,j
− xv

n+ 1
2

i− 1
2
,j

)
− 1

24

(
xv
n+ 1

2

i+ 3
2
,j
− xv

n+ 1
2

i− 3
2
,j

)]

− bi,j
1

∆z

[
9

8

(
zv
n+ 1

2

i,j+ 1
2

− zv
n+ 1

2

i,j− 1
2

)
− 1

24

(
zv
n+ 1

2

i,j+ 3
2

− zv
n+ 1

2

i,j− 3
2

)]
, (A.15)
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where we have applied (A.4) and (A.13) for the time and spatial derivatives, respectively. By close
examination, it can be seen that all fields in (A.15) are evaluated at the right positions.

With regard to the components of the velocity field xv and zv, the correct positions for the
evaluation of their time derivatives in (2.3) are (i+ 1/2, j, n) and (i, j + 1/2, n), respectively:

∂ xv

∂t

n

i+ 1
2
,j

=
xv
n+ 1

2

i+ 1
2
,j
−x v

n− 1
2

i+ 1
2
,j

∆t
= −ai+ 1

2
,j

1

∆x

[
9

8

(
Pni+1,j − Pni,j

)
− 1

24

(
Pni+2,j − Pni−1,j

)]
(A.16)

∂ zv

∂t

n

i,j+ 1
2

=
zv
n+ 1

2

i,j+ 1
2

−z v
n− 1

2

i,j+ 1
2

∆t
= −ai,j+ 1

2

1

∆z

[
9

8

(
Pni,j+1 − Pni,j

)
− 1

24

(
Pni,j+2 − Pni,j−1

)]
. (A.17)

From equations (A.15)-(A.17) we obtain the final expressions for the forward propagation of (2.3)
in time:

Pn+1
i,j = Pni,j − bi,j

∆t

∆x

[
9

8

(
xv
n+ 1

2

i+ 1
2
,j
− xv

n+ 1
2

i− 1
2
,j

)
− 1

24

(
xv
n+ 1

2

i+ 3
2
,j
− xv

n+ 1
2

i− 3
2
,j

)]

− bi,j
∆t

∆z

[
9

8

(
zv
n+ 1

2

i,j+ 1
2

− zv
n+ 1

2

i,j− 1
2

)
− 1

24

(
zv
n+ 1

2

i,j+ 3
2

− zv
n+ 1

2

i,j− 3
2

)]

xv
n+ 1

2

i+ 1
2
,j

= xv
n− 1

2

i+ 1
2
,j
− ai+ 1

2
,j

∆t

∆x

[
9

8

(
Pni+1,j − Pni,j

)
− 1

24

(
Pni+2,j − Pni−1,j

)]

zv
n+ 1

2

i,j+ 1
2

= zv
n− 1

2

i+ 1
2
,j
− ai,j+ 1

2

∆t

∆z

[
9

8

(
Pni,j+1 − Pni,j

)
− 1

24

(
Pni,j+2 − Pni,j−1

)]
, (A.18)

which are equations (2.5), (2.6) and (2.7) of section 2.

B Derivation of the equations of a CPML

In this Appendix we will derive the equations governing the CPML; i.e., equations (4.13)-(4.18).
For this goal let us focus first on the first expression in equation (4.8):

∂ xv

∂t
= F−1

{
− a

sx

∂P

∂x

}
= F−1

{
− a

sx

}
∗ ∂P
∂x

, (B.1)

277



RTM M-OSRP12

where the Inverse Fourier transform of the derivative of the pressure field is denoted by the same
symbol as is used in the Fourier space. Let us now calculate the Inverse Fourier transform of the
inverse of the stretching factor times a:

F−1

{
− a

sx

}
= −aF−1

{
1

sx

}
= −aF−1

{
1

1 + qx
iω

}
= −aF−1

{
iω

qx + iω

}
, (B.2)

On the other hand, applying to (B.2) the following results from Fourier analysis

F(u(t)e−qxt) =
1

qx + iω
F(f ′(t)) = iωF(f(t)) = iωF (ω), (B.3)

where u(t) is the Heaviside function, we get the expression

F
(
∂

∂t
(u(t)e−qxt)

)
= iωF(u(t)e−qxt) =

iω

a+ iω
, (B.4)

Taking the inverse Fourier transform, equation (B.4) can be written as

F−1

{
iω

qx + iω

}
=

∂

∂t
(u(t)e−qxt) = −qxu(t)e−qxt + e−qxtδ(t) (B.5)

which can be further simplified and written as

F−1

{
iω

qx + iω

}
= −qxu(t)e−qxt + δ(t), (B.6)

where we have evaluated the exponential in the second term on the right of (B.5) at t = 0. This is
possible because the Delta function only makes sense within an integral, in which case any function
multiplying the Delta function is evaluated (in this case) at zero. Upon insertion of equation (B.6)
into equation (B.1), we have shown that

∂ xv

∂t
= −a

{
(δ(t) + ξx(t)) ∗ ∂P

∂x

}
ξx(t) ≡ −qxu(t)e−qxt. (B.7)

Using in (B.7) the distribution property of the convolution, and the result

δ(t) ∗ ∂P
∂x

=

∫ ∞

−∞
δ(t− t′)∂P (t′)

∂x
dt′ =

∂P (t)

∂x
, (B.8)

we get exactly equations (4.13):
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∂ xv

∂t
= −a

{
∂P (t)

∂x
+ ξx(t) ∗ ∂P

∂x

}
ξx(t) = −qxu(t)e−qxt.

Applying analogous calculations to the second expression in equation (4.8) allows us to obtain
equation (4.14) and

∂ zv

∂t
= −a

{
∂P (t)

∂z
+ ξz(t) ∗

∂P

∂z

}
ξz(t) = −qzu(t)e−qzt.

Finally, applying the same calculations to the convolutions in equation (4.9), we get equations (4.15)
and (4.16):

∂P

∂t
= −b

{
∂

∂x
+ ξ∗x(t) ∗ ∂

∂x

}
xv − b

{
∂

∂z
+ ξ∗z (t) ∗ ∂

∂z

}
zv,

where

ξ∗x(t) = −q∗xu(t)e−q
∗
xt ξ∗z (t) = −q∗zu(t)e−q

∗
z t.

We will now devote our efforts to calculation of the convolutions present in the equations of the
CPML, equation (4.18). We start with the definition of the convolution for the pressure field P ,
equation (4.20):

( pxψ)(t) = (ξx ∗ ∂xP )(t) =

∫ ∞

−∞
ξx(τ)∂xP (t− τ)dτ =

∫ t

0
ξx(τ)∂xP (t− τ)dτ,

where u(t) is the Heaviside function. As was mentioned in Section 2, the last expression is obtained
because we are assuming the experiment starts at t = 0, so the pressure field and therefore its
derivative are zero for negative arguments.

Evaluating the above expression for a discrete time; i.e., equation (4.22)

( pxψ)n ≡ (ψxP )(n∆t),

we obtain

( pxψ)n = (ξx ∗ ∂xP )n =

∫ n∆t

0
ξx(τ)(∂xP )n∆t−τdτ =

n−1∑

m=0

∫ (m+1)∆t

m∆t
ξx(τ)(∂xP )n∆t−τdτ =

n−1∑

m=0

(∂xP )∆t(n−(m+1/2))

∫ (m+1)∆t

m∆t
ξx(τ)dτ =

n−1∑

m=0

(∂xP )∆t(n−(m+1/2))Zx(m), (B.9)
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where

Zx(m) =

∫ (m+1)∆t

m∆t
ξx(τ)dτ. (B.10)

The fifth expression in equation (B.9) is obtained by evaluating ∂xP at half the distance between
grid points in the time direction; i.e., at τ = (m+1/2)∆t. This can be done because we are working
with a staggered grid.

Now we will calculate (B.10)

Zx(m) =

∫ (m+1)∆t

m∆t
ξx(τ)dτ = −qx

∫ (m+1)∆t

m∆t
e−qxτdτ = e−qxτ

∣∣(m+1)∆t

m∆t
=

e−qx(m+1)∆t − e−qxm∆t = e−qxm∆t(e−qx∆t − 1), (B.11)

which, upon substitution in (B.9), gives us

( pxψ)n = (e−qx∆t − 1)

n−1∑

m=0

(∂xP )∆t(n−(m+1/2))e−qxm∆t. (B.12)

Expressions analogous to (B.12) are also valid for the convolutions in equations (4.14) and (4.15),
upon inclusion of the obvious changes.

We will now focus our efforts on proving equation (4.18), a recursive relation for equation (B.12).
Notice that without a recursive relation the CPML will be too costly, as equation (B.12) requires, at
a given computation time, the values of ∂xP at all earlier times. This “all earlier times" requirement
increases the memory needed and reduces the efficiency of the algorithm.

For convenience we start with the recursive relation in Komatitsch and Martin (2007):

( pxψ)n = e−qx∆t( pxψ)n−1 + (e−qx∆t − 1)(∂xP )n−1/2. (B.13)

The left-hand side of the above equation is written, upon substitution of (B.13) and with some
manipulation, as

e−qx∆t( pxψ)n−1 + (e−qx∆t − 1)( pxψ)n−1/2 =

e−qx∆t

[
(e−qx∆t − 1)

n−2∑

m=0

(∂xP )∆t((n−1)−(m+1/2))e−qxm∆t

]
+ (e−qx∆t − 1)(∂xP )∆t(n−1/2) =
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(e−qx∆t − 1)

[
n−2∑

m=0

(∂xP )∆t(n−(m+1)−1/2)e−qx(m+1)∆t + (∂xP )∆t(n−1/2)

]
. (B.14)

We now change the summation index using

l = m+ 1 m = 0→ l = 1 m = n− 2→ l = n− 1, (B.15)

to write (B.15) as

(e−qx∆t − 1)

[
n−1∑

l=1

(∂xP )∆t(n−l−1/2)e−qxl∆t + (∂xP )∆t(n−1/2)

]
=

(e−qx∆t − 1)

[
n−1∑

l=0

(∂xP )∆t(n−(l+1/2))e−qxl∆t
]
. (B.16)

Comparing equations (B.12) and (B.16) and using equation (B.14), we finally obtain equation (B.13).
Expressions analogous to (B.13) can also be obtained for pzψ, vxψ and vzψ.

By evaluation of ∂xP at locations in the grid other that at half the grid, i.e., at the vertices, we
obtain slight variations of equation (B.13). An example of such expressions, useful for our purposes,
is exactly equation (4.18):

( pkψ)n = e−qk∆t( pkψ)n−1 + (e−qk∆t − 1)(∂kP )n, k = x, z,

with analogous expressions for vxψ and vzψ.
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Courant, R., K. O. Friedrichs, and H. Lewy. “Über die partiellen Differenzengleichungen der math-
ematischen Physic.” Mathematische Annalen 100 (1928): 32–74.

Du Qi-Zhen, Sun Rui-Yan, Qin Tong, Zhu Yi-Tong, and Bi Li-Fei. “A study of perfectly matched
layers for joint multicomponent reverse-time migration.” Applied Geophysics 7 (2010): 166–173.

Engquist, B. and A. Majda. “Absorbing boundary conditions for the numerical simulation of waves..”
Math. Comput. 31 (1977): 629.

Garcia, Jade Rachele S. 3D finite-difference time-domain modeling of acoustic wave propagation
based on domain decomposition. Technical report, CNRS-IRD-UNSA-OCA, 2009.

Gilles, L., S. G. Hagness, and L. Vazquez. “Comparison Between Staggered and Unstaggered Finite-
Difference Time-Domain Grids for Few-Cycle Temporal Optical Soliton Propagation.” Journal of
Computational Physics 161 (2000): 379–400.

Graves, Robert W. “Simulating Seismic Wave Propagation in 3D Elastic Media Using Staggered-
Grid Finite Differences.” Bulletin of Seismological Society of America 86 (August 1996): 1901–
1106.

Herrera, W., J. D. Mayhan, and A. B. Weglein. “A BACKGROUND REVIEW OF THE THE-
ORY OF THE PERFECTLY MATCHED LAYER (PML) METHOD: THE ACOUSTIC WAVE
EQUATION.” M-OSRP 2012 Annual Meeting. 2012, 189–219.

Johnson, Steven G. Notes on Perfectly Matched Layers (PMLs). Technical report, MIT, 2007.
http://math.mit.edu/~stevenj/18.369/pml.pdf.

Komatitsch, Dimitri and Roland Martin. “An unsplit convolutional perfectly matched layer improved
at grazing incidence for the seismic wave equation.” Geophysics 72 (2007): SM155–SM167.

Kuzuoglu, M. and R. Mittra. “Frequency dependence of the constitutive parameters of causal
perfectly matched absorbers.” IEEE Microw. Guid. Wave Letters 50 (2003): 348–350.

Leveille, Jacques P., Ian F. Jones, Zheng-Zheng Zhou, Bin Wang, and Faqi Liu. “Subsalt imaging
for exploration, production, and development: A review.” Geophysics 76 (2011): WB3–WB20.

Liu, F., Guanquan Zhang, Scott A. Morton, and Jacques P. Leveille. “An effective imaging condition
for reverse-time migration using wavefield decomposition.” Geophysics 76 (2011): S29–S39.

McGarry, R. G., J. A. Mahovsky, P. P. Moghaddam, D.S. Foltinek, and D. J. Eaton. “Reverse-Time
depth Migration with reduced memory requirements:.” U.S. Patent 0054082 A1 (2010).

282

http://math.mit.edu/~stevenj/18.369/pml.pdf


RTM M-OSRP12

Merewether, D. IEEE Trans. Electromagn. Comput. 13 (1971): 41.

Roden, J. A. and S. D. Gedney. “Convolutional PML (CPML): An Efficient FDTD Implementation
of the CFS-PML for Arbitrary Media.” Microwave and Optical Technology Letters 27 (2000):
334–339.

Stolt, Robert H. and Arthur B. Weglein. Seismic Imaging and Inversion, Volume 1. Cambridge
University Press, 2011.

Symes, W. W. “Reverse-time migration with optimal checkpinting.” Geophysics 72 (2007): SM213–
SM221.

Taflove, Allen and Susan C. Hagness. computational electrodynamics, THE FINITE-DIFFERENCE
TIME-DOMAIN METHOD. ARTECH HOUSE, 2005.

Weglein, A. B., R. H. Stolt, and J. D. Mayhan. “Reverse-time migration and Green’s theorem:
Part I — The evolution of concepts, and setting the stage for the new RTM method.” Journal of
Seismic Exploration 20 (February 2011): 73–90.

Weglein, A. B., R. H. Stolt, and J. D. Mayhan. “Reverse time migration and Green’s theorem:
Part II — A new and consistent theory that progresses and corrects current RTM concepts and
methods.” Journal of Seismic Exploration 20 (May 2011): 135–159.

Whitmore, D. N. “Iterative depth imaging by back time propagation.” 53rd Annual International
Meeting, SEG, Expanded Abstracts. . Soc. Expl. Geophys., 1983. 382–385.

Zhang, Y., S. Xu, N. Bleistein, and G. Zhang. “True amplitude angle domain common image gathers
from one-way wave equation migrations.” Geophysics 72 (2007): S49–58.

Zhang, Y., G. Zhang, and N. Bleistein. “Theory of true amplitude one-way wave equations and true
amplitude common-shot migrations.” Geophysics 70 (2005): E1–10.

Zhang, Yu and James Sun. “Practical issues of reverse time migration: true-amplitude gathers,
noise removal and harmonic-source encoding.” 70th EAGE Conference and Exhibition. . 2008.

283



The first wave theory RTM, examples with a layered medium, predicting the
source and receiver at depth and then imaging, providing the correct location
and reflection amplitude at every depth location, and where the data includes

primaries and all internal multiples.

Fang Liu and Arthur B. Weglein

April 29, 2013

Abstract

Reverse time migration (RTM) is the cutting-edge imaging method used in seismic explo-
ration. In earlier RTM publications, density was often used to balance a medium with velocity
variation, such that the acoustic impedance − the product of velocity and density − stays
constant. Thus, reflections from sharp boundaries are avoided. In order to be more complete,
consistent, realistic, and predictive, density variation is intentionally included in our study so
that we can test its impact on the Green’s theorem-based wave-theory RTM algorithms.

The major objectives of this article are to advance our understanding and to provide con-
cepts, added imaging capabilities, and new algorithms for RTM. Although our objective of
extracting useful subsurface information from recorded data is not different from that of well-
known previous RTM publications, our approach is different: we use wave theory as much as
possible to maximize the benefit from the Green’s function and Green’s theorem, rather than
use the more popular methodology of running finite-difference modeling backwards in time.

A significant artifact in RTM is caused by the fact that numerous subsurface seismic events
necessary for backward propagation never return to the measurement surface. This unwanted
phenomenon also exists for the wave-field-prediction method formulated from Green’s theorem:
Green’s formula (in its general form, i.e., equation (2.5)), which links the wave field on the
entire outer surface with interior field values, also requires data from everywhere on the surface.
Weglein et al. (2011a) and Weglein et al. (2011b) proposed a special Green’s function with
vanishing Dirichlet and Neumann boundary conditions at the deeper boundary to cope with
that issue. This article provides a natural extension of the two aforementioned papers, into a
medium with density variation and more complicated geological structures.

The major advantage of RTM over many other seismic imaging methods is its additional
ability to handle two-way propagation without assuming that the events in the input data
are only up-going and that all multiples have been removed. This article demonstrates with
numerical examples that both up- and down-going waves can be precisely predicted from the
data (including internal multiples) on the top surface only. In our example, the contribution of
the transmission events that never return to the measurement surface is deliberately eliminated,
and it is not necessary for those events to enter the calculation.
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The Green’s function with vanishing Dirichlet and Neumann boundary conditions at the
deeper boundary demonstrates many remarkable properties. For example, it vanishes if the
receiver is deeper than the source, it violates reciprocity, and its value is not affected by any
heterogeneity outside the region between the source and receiver. The double vanishing bound-
ary condition also leads us to a wave-theory solution for a model that has many reflectors and
lacks internal multiples.

In this paper, two approaches have been used to derive the Green’s function with vanishing
Dirichlet and Neumann boundary conditions at the deeper boundary. The first is an analytical
boundary-matching method in the frequency domain, and the second is the numerical finite-
difference approach identical to many current finite-difference forward-modeling procedures in
the industry. The second method can be extended to multiple dimensions with lateral variation
in the medium properties. We find these two methods agree with each other with regard to the
intrinsic accuracy issue of the finite-difference approximation to differential equations.

In this paper, we also have some very early and very positive news on the first wave theory
RTM imaging tests, with a discontinuous reference medium and images that have the correct
depth and amplitude (that is, producing the reflection coefficient at the correctly located target)
with primaries and multiples in the data. That is an implementation of Weglein et al. (2011a;b)
with creative implementation and testing and analysis.

1 Introduction

One of the major early objectives of Reverse Time Migration (RTM) is to obtain a better image of
salt flanks through diving waves than is obtained by directly imaging through the complex overbur-
den. The key new capability of the RTM method compared with one-way migration algorithms is
to allow two-way wave propagation in the imaging procedure. This article follows closely the idea
established in Weglein et al. (2011a;b): achieving a Green’s function with vanishing Dirichlet and
Neumann boundary conditions at the deeper boundary, to eliminate the need for measurement at
depth.

To achieve the two-way imaging, we study the behavior of our Green’s function in three examples:
(1) a homogeneous model, (2) a single reflector model, and (3) a two-reflector model with internal
multiples. In order to get two-way propagation without complexity and approximation, we study 1D
examples with both up- and down-going wave propagation. We provide the details to demonstrate
the underlying physics.

As stated in Whitmore (1983); Baysal et al. (1983); Luo and Schuster (2004); Fletcher et al. (2006);
Liu et al. (2009) and Vigh et al. (2009), accurate medium properties above the target are required for
the RTM procedure discussed in this article. The major difference is that in most RTM algorithms in
the industry, a smoothed version of the velocity is used in the imaging procedure to avoid reflections
from the velocity model itself, while the exact velocity models (often discontinuous) are used in all
three examples in this article.

To apply the firm footing and math-physics foundation established in Weglein et al. (2011a;b) in
an arbitrary medium, we first study in detail the properties of the Green’s functions with vanishing
boundary conditions at the deeper boundary z′ = B. The understanding of the aforementioned
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properties provides us with a straightforward procedure for constructing a Green’s function with
the double vanishing boundary condition for a 1D medium with arbitrary complexity. We adopt
the notations of the aforementioned articles as much as possible while introducing some minor
modifications to allow smooth expansions into new territories.

One of the remarkable properties of the Green’s function in this article is that, although both the
causal Green’s function G+

0 and the anti-causal Green’s function G−0 vary with the medium below
the source, the Green’s function with both vanishing Dirichlet and Neumann boundary conditions
does not. The implications are that if we want to predict the wave field at depth z, the medium’s
properties deeper than z are not required. Such a property is very difficult to visualize if G+

0 or G−0
is used to make the prediction, since both of them will change with the medium’s properties deeper
than z. It is worthwhile to note that this property of the Green’s function with vanishing boundary
conditions is also demonstrated by the WKBJ Green’s function used in the derivation of FK and
phase-shift migrations. While the WKBJ Green’s function is an approximate solution for a medium
with smooth variations, and the Green’s function with double vanishing boundary conditions in
this report is exact and for a discontinuous medium, nevertheless we find their similarity worth
reporting.

The property that allows an easy iterative procedure for constructing a Green’s function with double
vanishing boundary conditions is the following: the field values of the Green’s function vanishing
at the deeper surface are not affected by heterogeneity beyond the region between the field point
and the source. Consequently, we can start the calculation from a field location sufficiently close
to the source that the medium in between is homogeneous. In this case, the initial field value
(for all time and frequency values) can be calculated from a much simpler medium obtained by
extending the homogeneity to the entire space∗. This initial field value contains two parts: the
first part† is the out-going G+

0 and is produced by the actual source, and the second term is the
downward propagation portion‡ that will cancel with the downward propagation energy of G+

0 .
Consequently, it will give a solution that vanishes completely below the source, satisfying both
Dirichlet and Neumann boundary conditions. For the solution of the wave field above the initial
field, standard analytic boundary-matching methods or discrete finite-difference procedures can be
used to iteratively extrapolate the function values to locations further and further away from the
source location.

Another property of the Green’s function with both Dirichlet and Neumann boundary conditions
vanishing is that it contains no multiples or reflections from the energy produced by the source,
even for models with an arbitrary number of reflectors. This property, derived from precise Green’s
theory, agrees with many methodologies in the current seismic imaging procedures (which are often
derived with some approximation to the wave equation): a smooth model is preferred, in order to
exclude reflections and multiples caused by the velocity model.

The major contributions of this article are:
∗For example, equation (14) of Weglein et al. (2011b) or equation (3.1) in this paper.
†The second term of equation (14) of Weglein et al. (2011b).
‡The first term of equation (14) of Weglein et al. (2011b).
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• It provides two methods to calculate the Green’s function with vanishing Dirichlet and Neu-
mann boundary conditions for arbitrary 1D medium.

• It incorporates the density variation for Green’s theorem RTM.

• It provides the finite-difference scheme for calculating the Green’s function that vanishes at
the deeper boundary.

• It provides a two-way propagation and downward continuation of wave fields, by using Green’s
function with double vanishing boundary conditions.

• It demonstrates remarkable properties of the precise analytical Green’s function that coincide
with many existing seismic imaging ideas derived with different degrees of approximation.

The following notations are worth mentioning at the beginning: G+
0 and G−0 are used to denote

causal and anti-causal Green’s functions, respectively. GDN0 is used to denote the Green’s function
with vanishing Dirichlet and Neumann boundary conditions at the deeper boundary. k = ω/c0

where c0 is the constant velocity of the reference medium, and ω is the angular frequency.

Although Green’s theorem and Green’s functions are more often discussed in the frequency domain,
in this paper the Green’s functions and wave field prediction examples are always graphed in the
time domain since this domain is more easily accessible (without expressing the values in complex
numbers). A very straightforward Fourier transform is sufficient to make the domain change:

f(t) =
1

2π

∞∫

−∞

f̃(ω)e−iωtdω. (1.1)

The Green’s function, resulting from an ideal impulsive source, contains frequency information of
an arbitrary frequency. For display, we convolve it with a band-limited wavelet (the first derivative
of a Gaussian function§) to avoid aliasing beyond the Nyquist frequency.

2 Green’s theorem wave-field prediction with density variation

In many migration methods, density variation is often left out of the acoustic wave equation since it
does not affect the travel time. In reverse time migration, however, density serves a very important
role even in the early stage: in order to have a reflectionless medium with velocity variations, a
counterbalancing density variation is introduced to make sure the acoustic impedance is constant.
Therefore in our derivation of Green’s theorem-based RTM, we explicitly incorporate the density
variations in the acoustic medium. First, let us assume the wave propagation problem in a volume
V bounded by a shallower depth A and deeper depth B:

§The wavelet is iωe−ω
2/β in the frequency domain or 1

2

√
β
π
e−βt

2/4 in the time domain, where β = (20π)2
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{
∂

∂z′
1

ρ(z′)
∂

∂z′
+

ω2

ρ(z′)c2(z′)

}
P (z′, ω) = 0 , A < z′ < B, (2.1)

where z′ is the depth, and ρ(z′) and c(z′) are the density and velocity fields, respectively. In
exploration seismology, we let the shallower depth A be the measurement surface where the seismic
acquisition can be accomplished economically. The volume V is the finite volume defined in the
“finite volume model” for migration, the details of which can be found in Weglein et al. (2011a). We
measure P at the measurement surface z′ = A, and the objective is to predict P anywhere between
the shallower surface and another surface with greater depth, z′ = B. This can be achieved via the
solution of the wave-propagation equation in the same medium by an idealized impulsive source or
Green’s function:

{
∂

∂z′
1

ρ(z′)
∂

∂z′
+

ω2

ρ(z′)c2(z′)

}
G0(z, z′, ω) = δ(z − z′) , A < z′ < B, (2.2)

where z is the location of the source, and z′ and z increase in a downward direction. It can be
achieved as follows:

• Multiply equation (2.2) by P (z′, ω).

• Multiply equation (2.1) by G0(z, z′, ω).

• Integrate the difference of the two aforementioned products (both are functions of z′) over the
variable z′ from A to B.

The right-hand side of the operation above is:

B∫

A

P (z′, ω)δ(z − z′)dz′ = P (z, ω), (2.3)

where in the derivation above we assume z is inside the volume V (i.e., A < z < B). Omitting the
arguments of the following functions: P (z′, ω), G0(z, z′, ω), c(z′) and ρ(z′), since their arguments
will not be changed in the derivation process, the left-hand side of the operation above is:
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B∫

A

[
P
∂

∂z′

{
1

ρ

∂G0

∂z′

}
+
ω2PG0

ρc2
−G0

∂

∂z′

{
1

ρ

∂P

∂z′

}
− ω2PG0

ρc2

]
dz′

=

B∫

A

[
P
∂

∂z′

{
1

ρ

∂G0

∂z′

}
−G0

∂

∂z′

{
1

ρ

∂P

∂z′

}]
dz′

=

B∫

A

[
P
∂

∂z′

{
1

ρ

∂G0

∂z′

}
+
∂P

∂z′
1

ρ

∂G0

∂z′
−G0

∂

∂z′

{
1

ρ

∂P

∂z′

}
− ∂G0

∂z′
1

ρ

∂P

∂z′

]
dz′

=

B∫

A

[
∂

∂z′

{
P

ρ

∂G0

∂z′

}
− ∂

∂z′

{
G0

ρ

∂P

∂z′

}]
dz′ =

B∫

A

∂

∂z′

{
P

ρ

∂G0

∂z′
− G0

ρ

∂P

∂z′

}
dz′

=

B∫

A

∂

∂z′

{
1

ρ

[
P
∂G0

∂z′
−G0

∂P

∂z′

]}
dz′

=
1

ρ

{
P
∂G0

∂z′
−G0

∂P

∂z′

}∣∣∣∣
z′=B

z′=A
.

(2.4)

Equating the results obtained by the left- and right-hand-side operations, and restoring the specific
arguments of each function, we have:

P (z, ω) =
1

ρ(z′)

{
P (z′, ω)

∂G0(z, z′, ω)

∂z′
−G0(z, z′, ω)

∂P (z′, ω)

∂z′

}∣∣∣∣
z′=B

z′=A
, (2.5)

where A and B are the shallower and deeper boundaries, respectively, of the volume to which the
Green’s theorem is applied. It is identical to equation (43) of Weglein et al. (2011a), except for the
additional density contribution to the Green’s theorem. Similar density contributions can be found
in many seismic imaging procedures, such as equation (21) of Clayton and Stolt (1981).

In the arguments of G0, z is the location of the source, and z′ is the location of the receiver. The
Green’s theorem given in equation (2.5) predicts the data P (z, ω) in an arbitrary location using the
data P (z′, ω) at the measurement surface. In this specific application, z is the depth at which the
wave-field prediction is carried out.

Note that in equation (2.5), the field values at the surface of the volume V are necessary for
predicting the field value inside V . The surface of V contains two parts: the shallower portion
z′ = A and the deeper portion z′ = B. In seismic exploration, the need for data at z′ = B is often
the issue. For example, one of the significant artifacts of the current RTM procedures is caused by
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Figure 1: Green’s theorem predicts the wave field at an arbitrary depth z between the shallower
depth A and deeper depth B.

this phenomenon: there are events necessary for accurate wave-field prediction that reach z′ = B
but never return to z′ = A, as is demonstrated in Figure 1. The solution, based on Green’s theorem
without any approximation, was first published in Weglein et al. (2011a) and Weglein et al. (2011b),
the basic idea can be summarized as the following.

Since the wave equation is a second-order differential equation, its solution is not unique. In other
words, for a wave equation with a specific medium property, there are an infinite number of solutions.
This freedom in choosing the Green’s function has been taken advantage of in many seismic-imaging
procedures. For example, the most popular choice in wave-field prediction is the physical solution
G+

0 . In downward continuing an up-going wave field to a subsurface, the anti-causal solution G−0 is
often used.

If both G0 and ∂G0/∂z
′ vanish at the deeper boundary z′ = B, where measurement is often much

more expensive than acquiring data at the shallower boundary z′ = A, then only the data at the
shallower surface (i.e., the actual measurement surface) is needed in the calculation. We use GDN0
to denote the Green’s function with vanishing Dirichlet and Neumann boundary conditions at the
deeper boundary.

3 The vanishing property of GDN
0 and its independence of the medium’s prop-

erties below the source

First, let us look at some properties of the Green’s function detailed in equation (14) of Weglein
et al. (2011b):

GDN0 (z, z′, ω) =
−1

2ik

(
e−ik(z−z′) − eik|z−z′|

)
, (3.1)

where k = ω/c0 and the quantity c0 is the unchanged homogeneous velocity in the entire space,
and z and z′ are the locations of the source and receiver, respectively. This Green’s function is
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Figure 2: The construction of GDN0 for a homogeneous medium with constant velocity 1500m/s.
The source depth is 500m. The left panel is the causal solution (if we denote k = ω/c0 and H is
the Heaviside function, the causal Green’s function is G+

0 (z, z′, ω) = eik|z−z
′|/(2ik) in the frequency

domain or G+
0 (z, z′, t) = −c0

2 H(t − |z − z′|/c0) in the time domain). The middle panel shows the
homogeneous solution (−eik(z′−z)/(2ik) in the frequency domain or c0

2 H(t− (z′− z)/c0) in the time
domain) that cancels with the left panel below the source. The right panel results from summing the
two panels on its left and is the desired Green’s function with double vanishing boundary conditions.
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for a whole-space homogeneous medium with c0 as its velocity. It also satisfies the Dirichlet and
Neumann boundary conditions at the deeper boundary B:

GDN0 (z, z′, ω)
∣∣
z′=B = 0,

∂GDN0 (z, z′, ω)

∂z′

∣∣∣∣
z′=B

= 0.

The construction of equation (3.1) (i.e., GDN0 in a homogeneous medium) is detailed in Weglein et al.
(2011b); we only provide its graphic version in this article in Figure 2.

In equation (3.1), the second term is the causal solution for the same homogeneous medium, and
the first term is a specific solution to the homogeneous¶ wave equation, introduced to perfectly
cancel the causal solution at the deeper boundary. The major objective of this Green’s function is
to eliminate the need for measurement at the deeper surface: z′ = B.
According to equation (2.5), for arbitrary values of the wave field P (z′, ω), this objective implies
G0(z, z′, ω)|z′=B = ∂G0(z,z′,ω)

∂z′

∣∣∣
z′=B

= 0, since normally the data are available only at the measure-
ment surface: z′ = A. The variable z is used to denote the depth to which we want to continue the
wave field downward. It is obvious that A < z′ < B. First, if z < z′, this Green’s operator vanishes,
since

GDN0 (z, z′, ω) =
−1

2ik

(
e−ik(z−z′) − eik|z−z′|

)

z<z′
=
−1

2ik

(
eik(z′−z) − eik(z′−z)

)

≡ 0.

(3.2)

According to equation (3.2), this Green’s function vanishes not only for the isolated location at B,
but also in the extended entire half-space below the source, which include z′ = B.
Obviously this Green’s function satisfies the wave equation of the whole-space homogeneous medium
(i.e., equation (7) of Weglein et al. (2011b)):

(
d2

dz′2
+
ω2

c2
0

)
GDN0 (z, z′, ω) = δ(z − z′). (3.3)

If we have an inhomogeneous medium c(z′) such that c(z′) = c0 when z′ < z, the Helmholtz equation
for this inhomogeneous medium is
¶In this article the adjective homogeneous has different meaning when it acts on medium or equation. In the first

case it means medium with constant acoustic property in the entire space, while in the second case it means a wave
equation without the source term.
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Figure 3: The construction of GDN0 for a medium with one reflector (the velocities above and below
the reflector are 1500m/s and 2700m/s, respectively). The source depth is 500m and is above the
single reflector at 700m. The left panel is the causal solution G+

0 , and the middle panel shows the
homogeneous solution that cancels with the left panel below the source. The right panel results
from summing the two panels on its left and is the desired Green’s function with double vanishing
boundary conditions.

(
d2

dz′2
+

ω2

c2(z′)

)
G0(z, z′, ω) = δ(z − z′). (3.4)

When z′ < z, wave equation (3.4) is satisfied by Green’s function (3.1) since it satisfies the homo-
geneous wave equation (3.3), which is identical to the inhomogeneous equation (3.4) when z′ < z.

For the other possibility, that z′ > z, wave equation (3.4) is also satisfied by Green’s function (3.1)
since it completely vanishes in this region. If we substituteGDN0 for G0, left-hand side of equation (3.4)
vanishes since the spatial partial derivative is zero, while the right-hand side vanishes due to the fact
that the source z is located outside the region of interest. Consequently, equation (3.4) is satisfied
by the Green’s function in equation (3.3).

As an example, introducing a single reflector below the source for the Green’s function in equa-
tion (16) of Weglein et al. (2011b) will not change the value of the Green’s function. The construc-
tion of GDN0 with its source located above the single reflector is detailed in Weglein et al. (2011b);
here we provide its graphical version in Figure 3. The equivalence of the Green’s function (3.1) to
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equation (39) in Weglein et al. (2011b) can be demonstrated as follows. Since a is the depth of
the reflector, and we consider the case in which the source is above the reflector, we have z < a
and sgn(a − z) = 1. According to Appendix B of Weglein et al. (2011b), we have: D1 = 0,
C1 = − T

2ike
ik|a−z|e−ik1a = − T

2ike
ik(a−z)e−ik1a. Thus, the wave field below the reflector (i.e., z′ > a,

the transmitted wave) can be simplified as:

T

2ik
eik|a−z|eik1(z′−a) + C1e

ik1z′ +D1e
−ik1z′

=
T

2ik
eik|a−z|eik1(z′−a) − T

2ik
eik|a−z|e

−ik1a
eik1z

′
+ 0× e−ik1z′

=
T

2ik
eik|a−z|eik1(z′−a) − T

2ik
eik|a−z|eik1(z′−a) ≡ 0.

(3.5)

Obviously, this Green’s function vanishes if z′ > a (is deeper than the reflector). The same vanishing
property is also displayed for GDN0 without the single reflector below the source; the details can be
found in equation (3.2).

Since A1 = −1
2ike

−ikz, and B1 = −R
2ik e

ik(2a−z), and if z′ < a is above the reflector, the reflected wave
in equation (39) of Weglein et al. (2011b) can be simplified as follows:

eik|z
′−z|

2ik
+R

e−ik(z′−a)

2ik
eik(a−z) +A1e

ikz′ +B1e
−ikz′

=
eik|z

′−z|

2ik
+R

eik(2a−z′−z)

2ik
+A1e

ikz′ +B1e
−ikz′

=
eik|z

′−z|

2ik
+R

eik(2a−z′−z)

2ik
− eik(z′−z)

2ik
− R

2ik
eik(2a−z)e−ikz

′

=
eik|z

′−z|

2ik
+R

eik(2a−z′−z)

2ik
− eik(z′−z)

2ik
−Re

ik(2a−z′−z)

2ik

=
eik|z

′−z|

2ik
− eik(z′−z)

2ik
=
−1

2ik

(
eik(z′−z) − eik|z′−z|

)
.

(3.6)

Consequently, it is identical to the Green’s function (3.1) for z′ < a (i.e., to equation (14) of Weglein
et al. (2011b), the Green’s function with the same vanishing Dirichlet and Neumann boundary
conditions at the deeper boundary for a whole-space homogeneous medium). In other words, the
reflector below the source will not change the values of the Green’s function with vanishing Dirichlet
and Neumann boundary conditions at the deeper boundary.
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Figure 4: The configuration of the experiment with the source below a single reflector.

4 GDN
0 for a model with a single reflector

4.1 Case I: source above the reflector

This case had been derived and documented in detail in Weglein et al. (2011b). The only additional
contribution we have in this article is the density term in the amplitude of the Green’s function:

GDN0 (z, z′, ω) =
ρ0

2ik

(
eik|z−z

′| − e−ik(z−z′)
)
. (4.1)

In the equation above, the density at the source location is the extra contribution in extending the
Green’s function in equation (39) of Weglein et al. (2011b). A similar density term can be found in
the Green’s function of Clayton and Stolt (1981).

We can also Fourier transform equation (4.1) to the time domain to have:

GDN0 (z, z′, t) =
ρ0c0

2

(
H

[
t− z′ − z

c0

]
−H

[
t− |z

′ − z|
c0

])
. (4.2)

4.2 Case II: source below the reflector

From the previous section, if z < a, the solution is trivial since GDN0 (z, z′, ω) = GDN0 (z, z′, ω). It
is critical to derive GDN0 for z > a. The physical experiment is the following (see Figure 4): The
locations of the measurement surface and the deeper surface are A and B, respectively. The depth
of the single reflector and source are a and z, respectively. The causal Green’s function with the
source located at depth z and receiver at depth z′ is denoted as G+

0 (z, z′, ω).

If the impulsive source is below the reflector, it will produce an out-going wave ρ1eik1|z
′−z|

2ik1
in the

second medium; i.e., the Green’s function with homogeneous properties (ρ1, c1). After the out-going
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field is obtained, the reflection in the second medium and the transmission in the first medium can
be solved as a classical reflection problem, as is presented in equations (12.5) and (12.8), and the
final result is:

1

ρ1
G+

0 (z, z′, ω) =

{
1−R
2ik1

eik1(z−a)eik(a−z′) if (z′ < a)
1

2ik1

(
eik1|z

′−z| −Reik1(z′+z−2a)
)

if (z′ > a)
, (4.3)

where R = ρ1c1−ρ0c0
ρ1c1+ρ0c0

is the reflection coefficient of a plane wave incident from above. Since B is the
depth of the deeper surface, for our wave-field prediction purpose we have A < z < B. Consequently,
G+

0 will produce two packets of down-going waves at the deeper surface B: ρ1eik1(B−z)
2ik1

(the direct
wave or the homogeneous propagation as if the entire space is filled with the second medium) and
−Rρ1eik1(B+z−2a)

2ik1
(the reflection wave‖).

For z′ > z, G+
0 can be expressed as:

eik1|z
′−z| −Reik1(z′+z−2a)

2ik1/ρ1
=
eik1(z′−z) −Reik1(z′+z−2a)

2ik1/ρ1
=
e−ik1z −Reik1(z−2a)

2ik1/ρ1
eik1z

′
.

In order to have a Green’s function that vanishes at the deeper boundary z′ = B, we can introduce
a homogeneous solution that cancels with the causal solution. As a result, the desired homogeneous
solution, denoted as φ(z, z′, ω), must be

φ(z, z′, ω) =
Reik1(z−2a) − e−ik1z

2ik1/ρ1
eik1z

′
if (z′ > z). (4.4)

We denote the amplitude factor of the down-going wave eik1z′ as F1(z, ω) = e−ik1z−Reik1(z−2a)

2ik1/ρ1
. Our

objective is to produce a homogeneous propagation that will produce −F1(z, ω)eik1z
′ for z′ > z that

cancels G+
0 at the deeper boundary z′ = B. Since the actual medium has a single invariant velocity

c1 for z′ > a and there is no velocity change at the source location, z′ = z, this implies that it is
also the solution for a broader region (i.e., z′ > a):

φ(z, z′, ω) =
Reik1(z−2a) − e−ik1z

2ik1/ρ1
eik1z

′
if (z′ > a). (4.5)

With the solution for z′ > a, the wave propagation for z′ < a can be unambiguously solved via
boundary conditions detailed in Appendix A. The medium’s properties are listed in Table 1, and R is
used to denote the reflection coefficient of this model when the incident wave is coming from above:
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Depth Range Velocity Density
(−∞, a) c0 ρ0

(a,∞) c1 ρ1

Table 1: The properties of an acoustic medium with a single reflector at depth a.

R = ρ1c1−ρ0c0
ρ1c1+ρ0c0

; other coefficients such as the reflection coefficient from below, and the transmission
coefficients, can all be easily expressed as a simple function∗∗ of R.

According to the classical reflection problem listed in Appendix A, the incident wave (i.e., for
z′ < a) intended to produce the transmission packet in equation (4.5) for the purpose of canceling
the boundary values of G+

0 at the deeper boundary z′ = B is:

−F1

1 +R
eik1aeik(z′−a) =

Reik1(z−a) − eik1(a−z)

2ik1(1 +R)/ρ1
eik(z′−a). (4.6)

However, the above incident wave will produce a corresponding reflection wave in the upper medium
(i.e., z′ < a) as a byproduct:

−F1R

1 +R
eik1aeik(a−z′) =

R2eik1(z−a) −Reik1(a−z)

2ik1(1 +R)/ρ1
eik(a−z′). (4.7)

We can summarize the solution below the reflector in equation (4.5) and the solution above the
reflector in equations (4.6) and (4.7) to have:

φ(z, z′, ω) =

{
Reik1(z−a)−eik1(a−z)

2ik1(1+R)/ρ1
eik(z′−a) + R2eik1(z−a)−Reik1(a−z)

2ik1(1+R)/ρ1
eik(a−z′) if (z′ < a)

Reik1(z−2a)−e−ik1z
2ik1/ρ1

eik1z
′

if (z′ > a)
. (4.8)

Combining equations (4.3) and (4.8), the Green’s function that satisfies the Dirichlet and Neumann
boundary conditions at the deeper boundary z′ = B is:

1

ρ1
GDN0 (z, z′, ω) =

G+
0 (z, z′, ω) + φ(z, z′, ω)

ρ1
=





1−R
2ik1

eik1(z−a)eik(a−z′)+
Reik1(z−a)−eik1(a−z)

2ik1(1+R) eik(z′−a) + R2eik1(z−a)−Reik1(a−z)
2ik1(1+R) eik(a−z′) if (z′ < a)

eik1|z′−z|−Reik1(z′+z−2a)

2ik1
+ Reik1(z−2a)−e−ik1z

2ik1
eik1z

′
if (z′ > a)

.

(4.9)

‖The amplitude factor is −R instead of R since the incident wave comes from the second medium (below) rather
than the first medium (above).
∗∗For example, the reflection coefficient from below is −R, and the transmission coefficients from above and below

are 1 +R and 1−R, respectively.
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The above expression can be simplified as:

GDN0 (z, z′, ω) =





Reik1(z−a)−eik1(a−z)
2ik1(1+R)/ρ1

eik(z′−a) + eik1(z−a)−Reik1(a−z)
2ik1(1+R)/ρ1

eik(a−z′) if (z′ < a)

eik1|z′−z|−eik1(z′−z)
2ik1/ρ1

if (z′ > a)
. (4.10)

The procedure above is shown in Figure 5 in the time domain.

Let us study the vanishing property of GDN0 with the source location z below a reflector. If z′ > z
(which automatically implies the solution in equation (4.10), since the source is located below the
reflector: z > a), we have:

GDN0 (z, z′, ω) =
eik1|z

′−z| − eik1(z′−z)

2ik1/ρ1
=
eik1(z′−z) − eik1(z′−z)

2ik1/ρ1
≡ 0 (4.11)

According to equation (4.11), GDN0 for z > a also vanishes in the half-space below the source, which
includes z′ = B, a behavior demonstrated by GDN0 for z < a as well.

Following the argument for GDN0 for z < a, it is obvious that any variations of c(z′) below the
source location z will not change the value of the Green’s function with double vanishing boundary
conditions. A very important consequence is that any heterogeneity below the prediction point
(i.e., the source depth z) will not have any impact on GDN0 and consequently will not affect the
imaging result at z. It is worthwhile to remind the reader that this fact had already been in many
publications − for example in “Finite Volume Model for Migration” from Weglein et al. (2011a).

In summary, combining equations (4.1) and (4.10), the frequency domain solution for GDN0 with a
single reflector located at depth a is:

GDN0 (z, z′, ω) =





ρ0
2ik

(
eik|z−z

′| − eik(z′−z)
)

if (z < a),

ρ1
2ik1

(
eik1|z

′−z| − eik1(z′−z)
)

if (a < z′ and a < z),

Reik1(z−a)−eik1(a−z)
2ik1(1+R)/ρ1

eik(z′−a)+
eik1(z−a)−Reik1(a−z)

2ik1(1+R)/ρ1
eik(a−z′) if (z′ < a and a < z).

(4.12)

It can be transformed into the time domain via equation (1.1) to have:
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GDN0 (z, z′, t) =





ρ0c0
2

(
H
[
t+ z−z′

c0

]
−H

[
t− |z−z′|c0

])
if (z < a),

ρ1c1
2

(
H
[
t+ z−z′

c1

]
−H

[
t− |z−z′|c1

])
if (a < z′ and a < z),

ρ1c1
2(1+R)





H
(
t+ z′−a

c0
+ z−a

c1

)

−H
(
t− z′−a

c0
− z−a

c1

)

+RH
(
t+ z′−a

c0
− z−a

c1

)

−RH
(
t− z′−a

c0
+ z−a

c1

)





if (z′ < a and a < z).

(4.13)

Another important property of GDN0 for a model with a single reflector is that, from both equa-
tions (4.12) and (4.13), GDN0 for a < z and for a < z′ is the same even if the single reflector does not
exist††. Note that in this case the additional heterogeneity (i.e., the single reflector) is outside the
interval (z′, z), and it is obvious that the geologic complexity beyond the (z′, z) zone will not affect
the value of GDN0 .

The independence of GDN0 from the heterogeneity outside the interval (z′, z) agrees with the WKBJ
Green’s function. The WKBJ Green’s function is derived as an approximate solution for a smoothed
medium and is not a function of any heterogeneity outside (z′, z).

In the procedure to construct GDN0 , we start from the causal solution in equation (4.3). Here the
last term is a reflection resulting from the up-going wave produced by the source. Note that this
term is canceled after adding the homogeneous solution φ in equation (4.8). Consequently, their
sum GDN0 contains no reflection generated from the source.

It is well-known that reflections are omitted in both the WKBJ approximation and in many cur-
rent seismic imaging procedures that prefer a smooth and reflectionless velocity model. In many
current imaging algorithms, the velocity field is smoothed to minimize the reflections caused by
the velocity, whereas in the logic for Green’s function with double vanishing boundary conditions,
the discontinuous model is kept intact. Nevertheless, both approaches yield the same reflectionless
conclusion.

The procedure in this section to calculate GDN0 for a simple single-reflector model is already very
tedious. The major difficulty is to find a homogeneous solution φ that will cancel both the downward
reflection originating from the source and the downward propagation of the source below the source
location. For more complicated geological models, the procedure will be much more demanding.

Fortunately, a much simpler procedure, easily generalizable to more complicated models, can be
derived from the fact that the values of GDN0 are not affected by any heterogeneity outside the
interval (z′, z).
††This solution is the same as in equation (3.1) if (1) c0 is replaced by c1, and (2) the trivial density contribution

at the source ρ1 is added. And consequently this solution is equivalent with GDN0 with a homogeneous velocity c1 and
constant density ρ1 that contains no reflector.
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Figure 5: The construction of GDN0 for a medium with one reflector (the velocities above and below
the reflector are 1500m/s and 2700m/s, respectively). The source depth is 700m and is below the
single reflector at 500m. The left panel is the causal solution G+

0 , and the middle panel shows the
homogeneous solution that cancels with the left panel below the source. The right panel results
from summing the two panels on its left and is the desired Green’s function with double vanishing
boundary conditions.
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Figure 6: The diagram for upward continuation. A reflector is located at depth a, the medium
properties above and below the reflector are (ρ1, c1) and (ρ2, c2), respectively. In this case we
assume that the wave below the reflector A2e

ik2z′ +B2e
−ik2z′ is known, the objective is to compute

the wave above the reflector A1e
ik1z′ +B1e

−ik1z′ .

5 Upward continuation procedure: wave-theory approach

In the process of calculating GDN0 with the source below many reflectors, we start from the wave
field of the layer that contains the source. The wave field in this layer can be calculated through
equation (4.1), and can be expressed as:

Ane
iknz′ +Bne

−iknz′ ,

where the source is assumed to be in the nth-layer (with velocity cn and density ρn, respectively),
kn = ω

cn
, An = − ρn

2ikn
e−iz, Bn = ρn

2ikn
eiz. The objective is to find the wave field at the (n−1)th layer:

An−1e
ikn−1z′ + Bn−1e

−ikn−1z′ , as shown in Figure 6. The theory is listed below. The continuity of
the wave field and its derivatives requires:

A1e
ik1a +B1e

−ik1a = A2e
ik2a +B2e

−ik2a,

ik1

ρ1

(
A1e

ik1a −B1e
−ik1a

)
=
ik2

ρ2

(
A2e

ik2a −B2e
−ik2a

)
.

(5.1)

If we define: γ = ρ1k2
ρ2k1

= ρ1c1
ρ2c2

, equation (5.1) can be written in matrix form:

(
eik1a −e−ik1a
eik1a e−ik1a

)(
A1

B1

)
=

(
γ 0
0 1

)(
eik2a −e−ik2a
eik2a e−ik2a

)(
A2

B2

)
, (5.2)

with the solution:
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(
A1

B1

)
=

1

2

(
e−ik1a e−ik1a

−eik1a eik1a

)(
γ 0
0 1

)(
eik2a −e−ik2a
eik2a e−ik2a

)(
A2

B2

)

=
1

2

(
γe−ik1a e−ik1a

−γeik1a eik1a

)(
eik2a −e−ik2a
eik2a e−ik2a

)(
A2

B2

)

=
1

2

(
(1 + γ)ei(k2−k1)a (1− γ)e−i(k1+k2)a

(1− γ)ei(k1+k2)a (1 + γ)ei(k1−k2)a

)(
A2

B2
.

) (5.3)

Since 1+γ
2 = 1

2 + ρ1c1
2ρ2c2

= ρ2c2+ρ1c1
2ρ2c2

= 1
1+R , and

1−γ
2 = 1

2 −
ρ1c1
2ρ2c2

= ρ2c2−ρ1c1
2ρ2c2

= R
1+R , the above results

can be rewritten as:

(
A1

B1

)
=

1

1 +R

(
ei(k2−k1)a Re−i(k1+k2)a

Rei(k1+k2)a ei(k1−k2)a

)(
A2

B2

)
.

(5.4)

For example, for GDN0 with z > a, the wave field immediately below the single reflector is
ρ1

2ik1

(
−eik1(z′−z) + eik1(z−z′)

)
. If it is expressed in the form A2e

ik1z′ + B2e
−ik1z′ , we have A2 =

−ρ1e−ik1z
2ik1

, B2 = ρ1eik1z

2ik1
and consequently we have:

(
A1

B1

)
=

1

1 +R

(
ei(k1−k)a Re−i(k+k1)a

Rei(k+k1)a ei(k−k1)a

)
ρ1

2ik1

(
−e−ik1z
eik1z

)

=
ρ1

2ik1

1

1 +R

( {
Reik1(z−a) − eik1(a−z)} e−ika{
eik1(z−a) −Reik1(a−z)} eika

)
.

(5.5)

From equation (5.5), we can easily produce the wave field above the reflector: A1e
ikz′ +B1e

−ikz′ =

ρ1
2ik1

{Reik1(z−a)−eik1(a−z)}eik(z′−a)+{eik1(z−a)−Reik1(a−z)}eik(a−z′)
1+R .

Compared with the previous section, the example above is a much simpler derivation of GDN0 with
a single reflector above the source.

For example, for GDN0 in a two-reflector model, the wave field immediately below the second reflector
is A3e

ik2z′+B3e
−ik2z′ = ρ2

2ik2

(
−eik2(z′−z) + eik2(z−z′)

)
. It is obvious that in this case A3 = −ρ2e−ik2z

2ik2
,

B2 = ρ2eik2z

2ik2
and consequently, we have:
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(
A2

B2

)
=

1

1 +R2

(
ei(k2−k1)a2 R2e

−i(k1+k2)a2

R2e
i(k1+k2)a2 ei(k1−k2)a2

)
ρ2

2ik2

(
−e−ik2z
eik2z

)

=
ρ2

2ik2

1

1 +R2

( {
R2e

ik2(z−a2) − eik2(a2−z)} e−ik1a2{
eik2(z−a2) −R2e

ik2(a2−z)} eik1a2
)
.

(5.6)

Renaming R = R1, and a = a1, the combination of equations (5.4) and (5.6) gives:

(
A1

B1

)
=

1

1 +R1

(
ei(k1−k)a1 R1e

−i(k+k1)a1

R1e
i(k+k1)a1 ei(k−k1)a1

)(
A2

B2

)

=
ρ2/(1 +R2)

2ik2(1 +R1)

(
ei(k1−k)a1 R1e

−i(k+k1)a1

R1e
i(k+k1)a1 ei(k−k1)a1

)( {
R2e

ik2(z−a2) − eik2(a2−z)} e−ik1a2{
eik2(z−a2) −R2e

ik2(a2−z)} eik1a2
)

=
ρ2

2ik2(1 +R1)(1 +R2)
×

( [
eik1(a1−a2)

{
R2e

ik2(z−a2) − eik2(a2−z)}+ eik1(a2−a1)
{
R1e

ik2(z−a2) −R1R2e
ik2(a2−z)}] e−ika1[

eik1(a1−a2)
{
R1R2e

ik2(z−a2) −R1e
ik2(a2−z)}+ eik1(a2−a1)

{
eik2(z−a2) −R2e

ik2(a2−z)}] eika1
)
.

(5.7)

If we define: λ ≡ eik2(z−a2), µ ≡ eik(z′−a1) and ν ≡ eik1(a2−a1), the Green’s function can be expressed
as:

[
ν−1(R2λ− λ−1) +R1ν(λ−R2λ

−1)
]
µ+

[
R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)
]
µ−1

2ik2(1 +R1)(1 +R2)/ρ2
(5.8)

6 Upward continuation: finite-difference approach

In order to demonstrate the general philosophy of our method, we study wave propagation in an
arbitrary acoustic medium c(z) (with only velocity variation). It can be extended to a medium with
density variation as well. First we have the equation for the causal Green’s function with source
located at depth zs:

(
∂2

∂z2
− 1

c2(z)

∂2

∂t2

)
G+

0 (z, zs, t) = δ(z − zs)δ(t). (6.1)

We then consider a homogeneous equation (without the source) in the same velocity field c(z):
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(
∂2

∂z2
− 1

c2(z)

∂2

∂t2

)
φ(z, t) = 0. (6.2)

Note that for a small positive number ε, and for z > zs + ε, the source term of equation (6.1)
vanishes: δ(z − zs)δ(t) = 0. Consequently, equation (6.1) is a homogeneous wave equation for
z > zs + ε, i.e., identical to equation (6.2).

In the aforementioned source-free region, the difference scheme (with second-order accuracy in both
space and time) is:

φm+1,n + φm−1,n − 2φm,n
(∆z)2

− 1

c2

φm,n+1 + φm,n−1 − 2φm,n
(∆t)2

= 0, (6.3)

where in the subscript, the variable m denotes the index for depth z, and the variable n denotes
the index for time t: φm,n = φ(m∆z, n∆t). If we define p∆

= c∆t
∆z , we have:

φm,n+1 = (2− 2p2)φm,n − φm,n−1 + p2(φm+1,n + φm−1,n), (6.4)

for forward marching in time, and

φm−1,n = (2− 2p−2)φm,n − φm+1,n + p−2(φm,n+1 + φm,n−1), (6.5)

for upward marching in depth. Since both difference schemes with second-order accuracy in equa-
tions (6.4) and (6.5) are of the same type, according to the analysis in Alford et al. (1974), equa-
tion (6.4) is stable for c∆t

∆z ≤
√

0.5, and equation (6.5) is stable for c∆t
∆z ≥

√
2.

Since the value of GDN0 (z, z′) is completely determined by the medium in the interval (z′, z), if the
medium between z′ and z is homogeneous, we can extend the local homogeneous medium to the
entire space and we have a much simpler problem already solved in equation (14) of Weglein et al.
(2011b). In equation (6.5), the initial values are listed on the right-hand side of the formula, with
depth levels that have indices m and m+ 1, respectively. The field values for the depth level with
index m − 1 can be straightforwardly computed by using equation (6.5), and by using the values
at depth indices m − 1 and m, the field at depth index m − 2 can be likewise calculated. That
procedure is very similar to the scheme popularly implemented in finite-difference forward-modeling
algorithms that march forward in time.

The two levels of initial field values are from equation (14) of Weglein et al. (2011b), which satisfies
the double vanishing Green’s function at the lower boundary. These initial field values will not be
changed by the scheme in equation (6.5); all the complexity to match the boundary conditions at
the current level is carried on to the next depth level with index m − 1. It guarantees that both
Dirichlet and Neumann boundary conditions at z′ = B are satisfied.

Note that in equation (6.5), the velocity field c is a function of depth and can be arbitrary, enabling
the flexibility of the scheme for a medium with any spatially varying velocities.
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Figure 7: GDN0 (z = 1100m, z′, t) for a homogeneous medium with velocity 1500m/s. The left panel
is generated through the finite-difference scheme from equation (6.5). The middle panel is computed
from the analytic method and is presented in equation (4.1). The difference between the left and
middle panels is shown in the right panel.

7 GDN
0 for a model with two reflectors

The GDN0 in this case is for the medium listed in Table 2. The final result is:

GDN0 (z, z′, ω) =





ρ0
2ik

(
eik|z−z

′| − eik(z′−z)
)

if (z < a1)

ρ1
2ik1

(
eik1|z

′−z| − eik1(z′−z)
)

if (z′ > a1 and a1 < z < a2)

R1eik1(z−a1)−eik1(a1−z)
2ik1(1+R1)/ρ1

eik1(z′−a1)+
eik1(z−a1)−R1eik1(a1−z)

2ik1(1+R1)/ρ1
eik1(a1−z′) if (z′ < a1 and a1 < z < a2),

ρ2
2ik2

(
eik2|z−z

′| − eik2(z′−z)
)

if (a2 < z′ and a2 < z),

R2eik2(z−a2)−eik2(a2−z)
2ik1(1+R2)/ρ2

eik1(z′−a2)+
eik2(z−a2)−R2eik2(a2−z)

2ik1(1+R2)/ρ2
eik1(a2−z′) if (a1 < z′ < a2 and a2 < z),

ρ2
2i(1+R1)(1+R2)





ν−1(R2λ− λ−1)µ
+R1ν(λ−R2λ

−1)µ
+R1ν

−1(R2λ− λ−1)µ−1

+ν(λ−R2λ
−1)µ−1





if (a2 < z and z′ < a1).

(7.1)
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Figure 8: GDN0 (z = 1100m, z′, t) for a medium with a reflector at a depth of 600m. The velocities
above and below the reflector are 1500m/s and 2700m/s, respectively. The left panel is generated
through the finite-difference scheme from equation (6.5). The middle panel is computed from the
analytic method and is presented in equation (4.10). The difference between the left and middle
panels is shown in the right panel.
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Figure 9: GDN0 (z = 1100m, z′, t) for a medium with two reflectors, located at depths of 300m
and 600m, respectively. The medium velocities are (from top to bottom) 1500m/s, 2700m/s, and
1500m/s. The left panel is generated through the finite-difference scheme from equation (6.5).
The middle panel is computed from the analytic method and is presented in equation (7.1). The
difference between the left and middle panels is shown in the right panel.
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In the equation above: λ ≡ eik2(z−a2), µ ≡ eik(z′−a1), and ν ≡ eik1(a2−a1). The details of the above
result are listed below:

• Case 1, the source is above the first reflector (i.e., z < a1): the solution in this case is essentially
for a whole-space homogeneous medium with velocity c0 and density ρ0. The Green’s function
in this case is the simplest (identical to that for equation (4.1)) and has only two events.

• Case 2, the source is between the first and second reflectors and the receiver is below the first
reflector (i.e., a1 < z < a2 and a1 < z′): the solution in this case is exactly the same as that
for a simpler medium that lacks the shallower reflector. It is obtained from equation (4.1),
with (c0, ρ0) being replaced by (c1, ρ1), or the second case of equation (4.10). The GDN0 in this
case has two events.

• Case 3, the source is between the first and second reflectors and the receiver is above the first
reflector (i.e., a1 < z < a2 and z′a1. It is the first case of equation (4.10). The GDN0 in this
case has four events).

• Case 4, the source and receiver are both below the second reflector (i.e., a2 < z and a2 < z′):
the solution in this case is exactly the same as that for a simpler medium that lacks the
shallower reflectors. It is obtained from equation (4.1), with (c0, ρ0) being replaced by (c2, ρ2).

• Case 5, the source is below the second reflector and the receiver is between the first and second
reflectors (i.e., a2 < z and a1 < z′ < a2). It is obtained from equation (4.10) with (c1, ρ1)
being replaced by (c2, ρ2) and with (c0, ρ0) being replaced by (c1, ρ1). There are four events
in this situation.

• Case 6, the source is below the second reflector and the receiver is above the first reflector
(i.e., a2 < z and z′ < a1): this is the most complicated situation and contains eight events. It
is calculated by using equation (5.7).

8 Wave-field prediction with the RTM Green’s function

In this section, we demonstrate the behavior of the Green’s function that satisfies both Dirichlet
and Neumann boundary conditions at the deeper boundary. The study consists of three geological
models with progressive complexity.

8.1 Example I: homogeneous case

This example had already been documented in Appendix A of Weglein et al. (2011b) for an acoustic
medium without density variation; it is given here to make a smooth transition into more compli-
cated examples and to demonstrate the impact of density in the algorithms. With k = ω/c0, the
general solution of a wave propagating in the whole space homogeneous medium with velocity c0 is:

308



RTM M-OSRP12

P (z′, ω) = αeikz
′
+ βe−ikz

′
, (8.1)

where α and β can be any value. At the measurement surface z′ = A, we will detect the wave field
and its partial derivative over z′ as follows:

P (z′)
∣∣
z′=A = αeikA + βe−ikA,

∂P (z′, ω)

∂z′

∣∣∣∣
z′=A

= ik
(
αeikA − βe−ikA

)
.

(8.2)

From equation (4.1), the values of the Green’s function needed on the boundary z′ = A are:

GDN0 (z, z′, ω)
∣∣
z′=A =

ρ(z)

2ik

[
eik|z−z

′| − eik(z′−z)
]
z′=A

=
ρ0

2ik

[
eik|z−A| − eik(A−z)

]
,

∂

∂z′
GDN0 (z, z′, ω)

∣∣∣∣
z′=A

=
ρ(z)

2

[
sgn(z′ − z)eik|z−z′| − eik(z′−z)

]
z′=A

=
ρ0

2

[
sgn(A− z)eik|z−A| − eik(A−z)

]
.

(8.3)

Using the boundary values of the wave field P and Green’s operator GDN0 at the boundary z′ = A
(in equations (8.2) and (8.3)), we can predict the wave field as follows,

P (z, ω) =
1

ρ(z′)

[
P (z′, ω)

∂GDN0 (z, z′, ω)

∂z′
−GDN0 (z, z′, ω)

∂P (z′, ω)

∂z′

]z′=B

z′=A

= − 1

ρ0

[
P (z′, ω)

∂GDN0 (z, z′, ω)

∂z′
−GDN0 (z, z′, ω)

∂P (z′, ω)

∂z′

]

z′=A

= −αe
ikA + βe−ikA

2

[
sgn(A− z)eik|z−A| − eik(A−z)

]

+
αeikA − βe−ikA

2

[
eik|z−A| − eik(A−z)

]
.

(8.4)

For the purpose of predicting the wave field below the measurement surface z′ = A, we obviously
have the situation z > A. Consequently, the equation above can be simplified as,

P (z, ω) =
αeikA + βe−ikA

2

[
eik(z−A) + eik(A−z)

]
+
αeikA − βe−ikA

2

[
eik(z−A) − eik(A−z)

]

=αeikAeik(z−A) + βe−ikAeik(A−z)

=αeikz + βe−ikz.

(8.5)
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Figure 10: The incident, reflection, and transmission waves in example II. Here k = ω/c0, k1 = ω/c1,
and a is the depth of the single reflector. R = (ρ1c1−ρ0c0)/(ρ1c1 +ρ0c0) is the reflection coefficient
for a down-going incident plane wave. eikz′ is the incident wave. Reik(2a−z′) is the reflection data.
(1 +R)eikaeik1(z′−a) is the transmission wave.

The above expression is exactly the actual wave field that we assumed in equation (8.1). In other
words, the original wave field, with both up-going and down-going waves, is perfectly reconstructed
at an arbitrary depth.

It would sound irrational that we can also perfectly predict the wave field if there are reflectors
below z. However, according to d’Alembert’s formula for a 1D wave equation for any interval,
the introduction of additional reflectors into the homogeneous reference medium below z will not
alter the possible type of waves between a and z, which remains homogeneous: αeikz + βe−ikz,
where α and β are arbitrary numbers. The examples of using this Green’s function derived from
homogeneous media for nonhomogeneous velocity models can be found in Examples II and III.

8.2 Example II: a single reflector

With the models listed in Table 1, an incident plane wave eikz′ will produce various waves, as shown
in Figure 10. Obviously the wave at the measurement surface is:

P (z′ = A, ω) = eikA +Reik(2a−A),

P (z′ = A, ω)

∂z′

∣∣∣∣
z′=A

= ik
(
eikA −Reik(2a−A)

)
.

(8.6)

First let us consider the simpler situation, predicting the wave field above the reflector: P (z, ω)
where z < a. The Green’s function can be found in equation (4.1). Note that in this case, we use a
reflectionless Green’s function to downward continue a reflection.
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GDN0 (z, z′, ω)
∣∣
z′=A =

ρ(z)

2ik

[
eik|z−z

′| − eik(z′−z)
]
z′=A

=
ρ0

2ik

[
eik(z−A) − eik(A−z)

]
,

∂

∂z′
GDN0 (z, z′, ω)

∣∣∣∣
z′=A

=
ρ0

2

[
−eik(z−A) − eik(A−z)

]
.

(8.7)

In the equation above, we take advantage of the fact that sgn(A − z) = −1. With the boundary
values from equations (8.6) and (8.7), we can predict the wave field at arbitrary location z using
equation (2.5):

P (z, ω) =
eikA +Reik(2a−A)

2

[
eik(z−A) + eik(A−z)

]
+
eikA −Reik(2a−A)

2

[
eik(z−A) − eik(A−z)

]

=eikAeik(z−A) +Reik(2a−A)eik(A−z)

=eikz +Reik(2a−z).

(8.8)

Next let us predict the wave field below the reflector: P (z, ω), where z > a. The value of Green’s
function at the measurement surface, needed in equation (2.5), can be found in equation (4.10) and
is given as:

GDN0 (z, z′, ω)
∣∣
z′=A =

ρ1

2ik1

{
Rλ− λ−1

1 +R
µ+

λ−Rλ−1

1 +R
µ−1

}
,

∂

∂z′
GDN0 (z, z′, ω)

∣∣∣∣
z′=A

=
ρ1k

2k1

{
Rλ− λ−1

1 +R
µ− λ−Rλ−1

1 +R
µ−1

}
,

(8.9)

where λ ≡ eik1(z−a) and µ ≡ eik(A−a). With all the terms in equations (8.6) and (8.9), we can
predict the wave field below the reflector using equation (2.5):
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Depth Range Velocity Density
(−∞, a1) c0 ρ0

(a1, a2) c1 ρ1

(a2,∞) c1 ρ1

Table 2: The properties of an acoustic medium with two reflectors, at depth a1 and a2.

P (z, ω) =
1

ρ(z′)

{
P (z′, ω)

∂GDN0 (z, z′, ω)

∂z′
−GDN0 (z, z′, ω)

∂P (z′, ω)

∂z′

}∣∣∣∣
z′=B

z′=A

=
1

ρ(z′)

[
GDN0 (z, z′, ω)

∂P (z′, ω)

∂z′
− P (z′, ω)

∂GDN0 (z, z′, ω)

∂z′

]

z′=A

=
ρ1k

ρ0k1

{
λ−Rλ−1

1 +R
µ−1eikA − Rλ− λ−1

1 +R
µReik(2a−A)

}

=
ρ1k

ρ0k1
eika

{
λ−Rλ−1

1 +R
− R2λ−Rλ−1

1 +R

}

=
ρ1c1

ρ0c0(1 +R)
eika

{[
1−R2

]
λ+ [R−R]λ−1

}

=
ρ1c1

ρ0c0
(1−R)λeika =

ρ1c1

ρ0c0

2ρ0c0

ρ1c1 + ρ0c0
λeika =

2ρ1c1

ρ1c1 + ρ0c0
λeika

= (R+ 1)λeika = (1 +R)eikaeik1(z−a).

(8.10)

In the derivation above, we take advantage of the fact that µ · eik(2a−A) = µ−1eikA = eika. The
final result above is exactly the transmission wave in the second medium illustrated in Figure 10.
Note that the down-going incident wave and the up-going reflection data act together to produce
the down-going transmission data in the second medium, with correct amplitude and phase.

In the GDN0 expression in equation (8.9), the λ terms are for the down-going wave, and the λ−1 terms
are for the up-going wave. In other words, both down-going and up-going energy is present in the
formalism. However, the action of the data cancels the up-going terms (i.e., the terms containing
λ−1) in the second medium, as it should.

8.3 Example III: a model with two reflectors: reconstruction of internal multi-
ples in the subsurface

As was chosen in Example II, the incident wave here is eikz′ , and the reflection data contain two
primaries, corresponding to each reflector, and an infinite number of internal multiples. The mea-
surement at z′ = A is:
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P (z′ = A, ω) = eikA +R1e
ik(2a1−A)

+
(
1−R2

1

)
eik(2a1−A)

∞∑

n=0

(−1)nRn1R
n+1
2 eik1(2n+2)[a2−a1],

1

ik

P (z′ = A, ω)

∂z′

∣∣∣∣
z′=A

= eikA −R1e
ik(2a1−A)

−
(
1−R2

1

)
eik(2a1−A)

∞∑

n=0

(−1)nRn1R
n+1
2 eik1(2n+2)[a2−a1],

(8.11)

where R1 = ρ1c1−ρ0c0
ρ1c1+ρ0c0

and R2 = ρ2c2−ρ1c1
ρ2c2+ρ1c1

are the reflection coefficients for the first and second
reflectors, respectively. Since 1 + R1 and 1− R1 are the transmission coefficients for a down-going
and an up-going wave through the first reflector, respectively, 1−R2

1 = (1 +R1)(1−R1) is the total
transmission loss for seismic energy passing through the first reflector. To predict the wave field in
the second medium (i.e., a1 < z′ < a2), the Green’s function can be found in equation (4.12) and
is:

GDN0 (z, z′, ω)
∣∣
z′=A =

ρ1

2ik1

{
R1λ− λ−1

1 +R1
µ+

λ−R1λ
−1

1 +R1
µ−1

}
,

∂

∂z′
GDN0 (z, z′, ω)

∣∣∣∣
z′=A

=
ρ1k

2k1

{
R1λ− λ−1

1 +R1
µ− λ−R1λ

−1

1 +R1
µ−1

}
,

(8.12)

where in the equation above λ ≡ eik1(z−a1) and µ ≡ eik(A−a1). With all the terms in equations (8.11)
and (9.34), we can predict the wave field below the reflector using equation (2.5):
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P (z, ω) =
1

ρ(z′)

{
P (z′, ω)

∂GDN0 (z, z′, ω)

∂z′
−GDN0 (z, z′, ω)

∂P (z′, ω)

∂z′

}∣∣∣∣
z′=B

z′=A

=
1

ρ(z′)

[
GDN0 (z, z′, ω)

∂P (z′, ω)

∂z′
− P (z′, ω)

∂GDN0 (z, z′, ω)

∂z′

]

z′=A

=
ρ1k

ρ0k1

{
λ−R1λ

−1

1 +R1
µ−1eikA − R1λ− λ−1

1 +R1
µR1e

ik(2a1−A)

}

− ρ1k

ρ0k1

{
R1λ− λ−1

1 +R1
µ
(
1−R2

1

)
eik(2a1−A)

∞∑

n=0

(−1)nRn1R
n+1
2 eik1(2n+2)[a2−a1]

}

=
ρ1k

ρ0k1
eika1

{
λ−R1λ

−1

1 +R1
− R2

1λ−R1λ
−1

1 +R1

}

− eika1 ρ1k

ρ0k1
(1−R1)

{
R1λ− λ−1

} ∞∑

n=0

(−1)nRn1R
n+1
2 eik1(2n+2)[a2−a1]

=
ρ1c1

ρ0c0(1 +R1)
eika1

{[
1−R2

1

]
λ+ [R1 −R1]λ−1

}

+ eika1
ρ1k

ρ0k1
(1−R1)

{
eik1(a1−z) −R1e

ik1(z−a1)
} ∞∑

n=0

(−1)nRn1R
n+1
2 eik1(2n+2)[a2−a1].

=
ρ1c1

ρ0c0
(1−R1)λeika1

+ eika1
ρ1k

ρ0k1
(1−R1)

{
eik1(a1−z) −R1e

ik1(z−a1)
} ∞∑

n=0

(−1)nRn1R
n+1
2 eik1(2n+2)[a2−a1].

= (1 +R1)eika1eik1(z−a1)

+ eika1
ρ1k

ρ0k1
(1−R1)

{
eik1(a1−z) −R1e

ik1(z−a1)
} ∞∑

n=0

(−1)nRn1R
n+1
2 eik1(2n+2)[a2−a1].

(8.13)

In the derivation above we take advantage of the fact that µeik(2a1−A) = eika1 . Also, many simplifi-
cations are detailed in the process of deriving equation (8.10). Since ρ1k

ρ0k1
(1−R1) = ρ1c1

ρ0c0
2ρ0c0

ρ1c1+ρ0c0
=

2ρ1c1
ρ1c1+ρ0c0

= 1 +R1, the expression above can be simplified as:

P (z, ω) = (1 +R1)eika1eik1(z−a1)

+ eika1(1 +R1)
∞∑

n=0

(−1)nRn1R
n+1
2 eik1[(2n+2)a2−(2n+1)a1−z]

+ eika1(1 +R1)

∞∑

n=0

(−1)n+1Rn+1
1 Rn+1

2 eik1[z+(2n+2)a2−(2n+3)a1].

(8.14)
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It is very interesting to look each term of the expression above.

• (1 +R1)eika1eik1(z−a1) is the down-going wave straight from the source.

• For the simplest case, n = 0, the results are:

eika1(1 +R1)R2e
ik1(2a2−a1−z) − eika1(1 +R1)R1R2e

ik1(z+2a2−3a1),

where the first term is the up-going primary reflected from the second reflector, and the second
term is the down-going leg of the first-order internal multiple.

• For the case n = 1, we have:

−eika1(1 +R1)R1R
2
2e
ik1(4a2−3a1−z) + eika1(1 +R1)R2

1R
2
2e
ik1(z+4a2−5a1),

where the first term is the up-going leg of the first-order internal multiple, and the second
term is the down-going leg of the second-order internal multiple.

The details to predict the wave field below the second reflector are as follows:

GDN0 (z, z′, ω)
∣∣
z′=A =

[
ν−1(R2λ− λ−1) +R1ν(λ−R2λ

−1)
]
µ+

[
R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)
]
µ−1

2ik2(1 +R1)(1 +R2)/ρ2
,

∂

∂z′
GDN0 (z, z′, ω)

∣∣∣∣
z′=A

=

[
ν−1(R2λ− λ−1) +R1ν(λ−R2λ

−1)
]
µ−

[
R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)
]
µ−1

2k2(1 +R1)(1 +R2)/(kρ2)
,

(8.15)

where λ ≡ eik2(z−a2), µ ≡ eik(A−a1), and ν ≡ eik1(a2−a1). The wave field from Example III (i.e.,
equation (8.11)) can be rewritten as:

P (z′ = A, ω) = eikA +R1e
ik(2a1−A)

+
(
1−R2

1

)
eik(2a1−A)

∞∑

n=0

(−1)nRn1R
n+1
2 ν2n+2,

1

ik

P (z′ = A, ω)

∂z′

∣∣∣∣
z′=A

= eikA −R1e
ik(2a1−A)

−
(
1−R2

1

)
eik(2a1−A)

∞∑

n=0

(−1)nRn1R
n+1
2 ν2n+2.

(8.16)

After obtaining the values of the Green’s function and wave field at the shallower boundary, we can
use the Green’s theorem of equation (2.5), with input from equations (8.15) and (8.16), to predict
the wave field below the second reflector:
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P (z, ω) =
1

ρ(z′)

{
P (z′, ω)

∂GDN0 (z, z′, ω)

∂z′
−GDN0 (z, z′, ω)

∂P (z′, ω)

∂z′

}∣∣∣∣
z′=B

z′=A

=
1

ρ(z′)

[
GDN0 (z, z′, ω)

∂P (z′, ω)

∂z′
− P (z′, ω)

∂GDN0 (z, z′, ω)

∂z′

]

z′=A

=
ρ2k

ρ0k2
eika1

R1ν
−1(R2λ− λ−1) + ν(λ−R2λ

−1)

(1 +R1)(1 +R2)

− ρ2k

ρ0k2
eika1R1

ν−1(R2λ− λ−1) +R1ν(λ−R2λ
−1)

(1 +R1)(1 +R2)

− ρ2k

ρ0k2
eika1(1−R2

1)
∞∑

n=0

(−1)nRn1R
n+1
2 ν2n+2 ν

−1(R2λ− λ−1) +R1ν(λ−R2λ
−1)

(1 +R1)(1 +R2)
.

(8.17)

Since ρ2k
ρ0k2

= ρ2c2
ρ0c0

= ρ1c1
ρ0c0

ρ2c2
ρ1c1

= 1+R1
1−R1

1+R2
1−R2

, the equation above can be simplified as:

P (z, ω) =
eika1

(1−R1)(1−R2)




[
R1R2ν

−1 + ν
]
λ −

[
R1ν

−1 +R2ν
]
λ−1

−
[
R1R2ν

−1 +R2
1ν
]
λ +

[
R1ν

−1 +R2
1R2ν

]
λ−1

− (1−R2
1)λ

∞∑

n=0

(−1)n
[
Rn1R

n+2
2 ν2n+1 +Rn+1

1 Rn+1
2 ν2n+3

]

+ (1−R2
1)λ−1

∞∑

n=0

(−1)n
[
Rn1R

n+1
2 ν2n+1 +Rn+1

1 Rn+2
2 ν2n+3

]
.




(8.18)

Since
∞∑

n=0

(−1)n
[
Rn1R

n+2
2 ν2n+1 +Rn+1

1 Rn+1
2 ν2n+3

]
= R2

2ν + (1−R2
2)

∞∑

n=0

(−1)nRn+1
1 Rn+1

2 ν2n+3, (8.19)

and

∞∑

n=0

(−1)n
[
Rn1R

n+1
2 ν2n+1 +Rn+1

1 Rn+2
2 ν2n+3

]
= R2ν, (8.20)

equation (9.31) can be simplified as follows:
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P (z, ω) =
eika1(1−R2

1)ν

(1−R1)(1−R2)

(
λ−R2λ

−1 −R2
2λ+R2λ

−1 − (1−R2
2)λ

∞∑

n=0

(−1)nRn+1
1 Rn+1

2 ν2n+2

)

=
eika1(1−R2

1)(1−R2
2)

(1−R1)(1−R2)
λ

∞∑

n=0

(−1)nRn1R
n
2ν

2n+1

= (1 +R1)(1 +R2)eika1eik2(z−a2)
∞∑

n=0

(−1)nRn1R
n
2e
ik1(2n+1)(a2−a1).

In the derivation above, we rewrite the trivial quantity 1 as the special case of (−1)nRn1R
n
2ν

2n with
n = 0. The expression above is exactly the wave field in the deepest layer: only the down-going
wave is present with correct amplitude; the up-going waves cancel each other, as actually happened
in the subsurface.

9 Downward continuation of both source and receiver

The original Green’s theorem in this report is derived to downward continue the wave field (i.e.,
receivers) to the subsurface over a source-free region. It can also be used to downward continue the
sources down to the subsurface by taking advantage of reciprocity: the recording is the same after
the source and receiver locations are exchanged.

Assuming we have data on the measurement surface: D(zg, zs) (its ω dependency is ignored), we
can use GDN0 (z, zg) to downward continue it from zg to the target depth z:

D (z, zs) =
1

ρ(zg)

{
∂D (zg, zs)

∂zg
GDN0 (z, zg)−D (zg, zs)

∂GDN0 (z, zg)

∂zg

}
. (9.1)

Taking the ∂
∂zs

operation on equation (9.1), we have a similar procedure to downward continue
D(zg ,zs)
∂zs

to the subsurface:

∂D (z, zs)

∂zs
=

1

ρ(zg)

{
∂2D (zg, zs)

∂zg∂zs
GDN0 (z, zg)−

∂D (zg, zs)

∂zs

∂GDN0 (z, zg)

∂zg

}
. (9.2)

With equations (9.1) and (9.2), we downward continue the data D and its partial derivative over
zs to the subsurface location z. According to reciprocity, D (z, zs) = E (zs, z), where E (zs, z) is
resulted from exchanging the source and receiver locations in the experiment to generate D at the
subsurface. The imaginary data E (zs, z) can be considered as the recording of receiver at zs for a
source located at z.
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For this imaginary experiment, the source is located at depth z, according to the Green’s theorem
which is derived for a source-free region, we can downward continue the recording at zs to any depth
Z ≤ z.
In seismic migration, we downward continue E (zs, z) to the same subsurface depth z withGDN0 (z, zs)
to have an experiment with coincident source and receiver:

E (z, z) =
1

ρ(zs)

{
∂E (zs, z)

∂zs
GDN0 (z, zs)− E (zs, z)

∂GDN0 (z, zs)

∂zs

}
,

=
1

ρ(zs)

{
∂D (z, zs)

∂zs
GDN0 (z, zs)−D (z, zs)

∂GDN0 (z, zs)

∂zs

}
.

(9.3)

With the value of D (z, zs) and ∂D(z,zs)
∂zs

in equations (9.2) and (9.1), we can simplify equation (9.3)
as follows:

ρ(zg)ρ(zs)E (z, z) = D (zg, zs)
∂GDN0 (z, zg)

∂zg

∂GDN0 (z, zs)

∂zs
− ∂D (zg, zs)

∂zs

∂GDN0 (z, zg)

∂zg
GDN0 (z, zs)

+
∂2D (zg, zs)

∂zg∂zs
GDN0 (z, zg)G

DN
0 (z, zs)−

∂D (zg, zs)

∂zg

∂GDN0 (z, zs)

∂zs
GDN0 (z, zg) .

(9.4)

If the zs < zg and there is no heterogeneity above zs, the ∂
∂zs

operation on D(zg, zs) is equivalent
to multiplying −ik, in this case, equation (9.5) can be simplified further:

E (z, z) = −
∂GDN0 (z,zs)

∂zs
+ ikGDN0 (z, zs)

ρ(zs)
D(z, zs).

As an example, the data in a 2-reflector model (with an ideal impulsive source located at zs, the
depth of receiver is zg > zs, the depth of reflector are a1 and a2, respectively) can be expressed as:

D(zg, zs) =
ρ0

2ik

{
eik(zg−zs) +R1e

ik(2a1−zg−zs)
}

+
ρ0

2ik

{
(
1−R2

1

)
eik(2a1−zg−zs)

∞∑

n=0

(−1)nRn1R
n+1
2 eik1(2n+2)[a2−a1]

}
.

(9.5)
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Figure 11: The history of various events in equation (9.5).

If we define x = eikzs , y = eikzg , σ = eikz, β =
∞∑
n=0

(−1)nRn1R
n+1
2 eik1(2n+2)[a2−a1], and α =

eik(2a1)
(
R1 + (1−R2

1)β
)
, the data can be expressed as:

D(zg, zs) =
ρ0x
−1

2ik

{
y + αy−1

}
,

∂D(zg, zs)

∂zg
=
ρ0

2
x−1

{
y − αy−1

}
,

∂D(zg, zs)

∂zs
= −ρ0

2
x−1

{
y + αy−1

}
,

∂2D(zg, zs)

∂zg∂zs
=
ρ0k

2i
x−1

{
y − αy−1

}
.

(9.6)

9.1 Above the first reflector

For z < a1, the boundary values of the Green’s function are:
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GDN0 (z, zg) = ρ0
eik(z−zg)−eik(zg−z)

2ik = ρ0
σy−1−σ−1y

2ik ,

GDN0 (z, zs) = ρ0
σx−1−σ−1x

2ik ,
∂GDN0 (z,zs)

∂zg
= ρ0

σy−1+σ−1y
−2 ,

∂GDN0 (z,zs)
∂zs

= ρ0
σx−1+σ−1x

−2 .

(9.7)

We have:

D(z, zs) =
GDN0 (z, zg)

∂D(zg ,zs)
∂zg

− ∂GDN0 (z,zg)
∂zg

D (zg, zs)

ρ(zg)

=
ρ0x
−1

4ik

(
σ + ασ−1 − σ−1y2 − ασy−2

)
+
ρ0x
−1

4ik

(
σ + ασ−1 + σ−1y2 + ασy−2

)

=
ρ0x
−1

2ik

(
σ + ασ−1

)
,

(9.8)

and,

−1

ρ(zs)

(
∂GDN0 (z, zs)

∂zs
+ ikGDN0 (z, zs)

)
=
σx−1 + σ−1x

2
− σx−1 + σ−1x

2
= σ−1x. (9.9)

And consequently, we have:

E(z, z) = − 1

ρ(s)

(
∂GDN0 (z, zs)

∂zs
+ ikGDN0 (z, zs)

)
D(z, zs) =

1 + ασ−2

2ik/ρ0

=
ρ0

2ik

{
1 + eik(2a1−2z)

(
R1 + (1−R2

1)

∞∑

n=0

(−1)nRn1R
n+1
2 eik1(2n+2)[a2−a1]

)}
.

(9.10)

The result above can be Fourier transformed into the time domain to have:

E(z, z, t) = −ρ0c0

2





H(t) +R1H
(
t− 2a1−2z

c0

)

+(1−R2
1)
∞∑
n=0

(−1)nRn1R
n+1
2 H

(
t− 2a1−2z

c0
− (2n+2)(a2−a1)

c1

)




. (9.11)

The terms in the expression above can be interpreted as follows:

• The overall factor −ρ0c0
2 is the amplitude of G+

0 in the first medium.
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Figure 12: The history of various events in equation (9.10).

• The first term H(t) = H
(
t− z−z

c0

)
is propagation phase for the direct wave traveling from

the source at z to a receiver coincide with the source at z. This term should be removed
before applying the imaging condition.

• The second term R1H
(
t− 2a1−2z

c0

)
is the first primary.

• The third term (1−R2
1)
∞∑
n=0

(−1)nRn1R
n+1
2 H

(
t− 2a1−2z

c0
− (2n+2)[a2−a1]

c1

)
incorporate the sec-

ond primary and all the internal multiples.

Balancing out the −ρ0c0
2 factor, the data after removing the direct wave is denoted as

D(z, t)
∆
= −2
ρ0c0

E(z, z, t)−H(t):

D(z, t) = R1H

(
t− 2a1 − 2z

c0

)
+(1−R2

1)

∞∑

n=0

(−1)nRn1R
n+1
2 H

(
t− 2a1 − 2z

c0
− (2n+ 2)(a2 − a1)

c1

)
.

(9.12)

If we use the t = 0 imaging condition, we have:

D(z, t) =

{
0 if (z < a1)
R1 if (z = a1)

(9.13)

In other words, we obtained the image of the first reflector at its actual depth a1 with its correct
reflection coefficient as amplitude.
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9.2 Between the first and second reflectors

For a1 < z < a2, we have:

GDN0 (z, zg) =
ρ1

2ik1

1

1 +R1

(
(R1λ− λ−1)µ+ (λ−R1λ

−1)µ−1
)
,

∂GDN0 (z, zg)

∂zg
=
ρ1k

2k1

1

1 +R1

(
(R1λ− λ−1)µ− (λ−R1λ

−1)µ−1
)
,

(9.14)

where λ = eik1(z−a1), µ = eik(zg−a1). Using equations (9.14) and (9.6), we have:

D(z, zs) =
1

ρ(zg)

(
GDN0 (z, zg)

∂D (zg, zs)

∂zg
− ∂GDN0 (z, zg)

∂zg
D (zg, zs)

)

=
ρ0

2ik

ρ1kx
−1

ρ0k1(1 +R1)

{
(λ−R1λ

−1)µ−1y − (R1λ− λ−1)µαy−1
}

=
ρ1x
−1

2ik1(1 +R1)

{
(λ−R1λ

−1)eika1 − (R1λ− λ−1)αe−ika1
}

(9.15)

If we define: β =
∞∑
n=0

(−1)nRn1R
n+1
2 ei(2n+2)[a2−a1], we have: α = e2ika1

(
R1 + (1−R2

1)β
)
, and the

equation above can be simplified as:

D(z, zs) =
ρ1x
−1eika1

2ik1(1 +R1)

{
(λ−R1λ

−1)− (R1λ− λ−1)
(
R1 + (1−R2

1)β
)}

=
ρ1x
−1eika1

2ik1

1−R2
1

1 +R1

{
λ− (R1λ− λ−1)β

}

=
ρ1x
−1eika1

2ik1
(1−R1)

{
λ+ (λ−1 −R1λ)β

}

=
ρ0

2ik
x−1eika1(1 +R1)

{
λ+ (λ−1 −R1λ)β

}

(9.16)

If we define: γ = 1−R1β =
∞∑
n=0

(−1)nRn1R
n
2e
ik1(2n)(a2−a1), the expression above can be rewritten as:

D(z, zs) =
ρ0

2ik
(1 +R1)eik(a1−z) {λ−1β + λγ

}
. (9.17)
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The expression above can be verified as the following. The overall factor ρ0
2ik is the amplitude of the

G+
0 at the source. eik(a1−z) is the propagation from the source to the first reflector. 1 + R1 is the

transmission coefficient through the first reflector. The first term λ−1β can be expanded as:

λ−1β = eik1(a1−z)
∞∑

n=0

(−1)nRn1R
n+1
2 eik1(2n+2)(a2−a1)

= R2e
ik1(2a2−a1−z) −R1R

2
2e
ik1(4a2−3a1−z) + · · · ,

(9.18)

and incorporate all the up-going events. The second term λγ can be expanded as:

λγ = eik1(z−a1)
∞∑

n=0

(−1)nRn1R
n
2e
ik1(2n)(a2−a1)

= eik1(z−a1) −R1R2e
ik1(z+2a2−3a1) +R2

1R
2
2e
ik1(z+4a2−5a1) + · · · ,

(9.19)

and incorporate all the down-going events. And,

GDN0 (z, zs) =
ρ1

2ik1

1

1 +R1

(
(R1λ− λ−1)ξ + (λ−R1λ

−1)ξ−1
)
,

∂GDN0 (z, zs)

∂zs
=
ρ1k

2k1

1

1 +R1

(
(R1λ− λ−1)ξ − (λ−R1λ

−1)ξ−1
)
,

(9.20)

where λ = eik1(z−a1), ξ = eik(zs−a1).

− 1

ρ(zs)

(
∂GDN0 (z, zs)

∂zs
+ ikGDN0 (z, zs)

)
=

kρ1

2k1ρ0

(λ−1 −R1λ)ξ + (R1λ
−1 − λ)ξ−1

1 +R1

+
kρ1

2k1ρ0

(λ−1 −R1λ)ξ − (R1λ
−1 − λ)ξ−1

1 +R1

=
kρ1

k1ρ0

(λ−1 −R1λ)ξ

1 +R1

(9.21)

We have:

− 1

ρ(zs)

(
∂GDN0 (z, zs)

∂zs
+ ikGDN0 (z, zs)

)
D(z, zs) =

ρ1

2ik1

{
λ−1β + λγ

}{
λ−1 −R1λ

}

=
ρ1

2ik1

{
βλ−2 −R1γλ

2 + γ − βR1

} (9.22)
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Let’s check the physical meaning of the terms above. The first term:

βλ−2 =

[ ∞∑

n=0

(−1)nRn1R
n+1
2 eik1(2n+2)(a2−a1)

]
eik1(2a1−2z)

= R2e
ik1(2a2−2z) −R1R

2
2e
ik1(4a2−2a1−2z) +R2

1R
3
2e
ik1(6a2−4a1−2z) + · · ·

(9.23)

incorporates the upward reflections (from the second reflector) towards depth z from below (labeled
as event 2, 6, 10, · · · in Figure 13). And the second term :

−R1γλ
2 = −R1

[ ∞∑

n=0

(−1)nRn1R
n
2e
ik1(2n)(a2−a1)

]
eik1(2z−2a1)

= −R1e
ik1(2z−2a1) +R2

1R2e
ik1(2z+2a2−4a1) −R3

1R
2
2e
ik1(2z+4a2−6z1) + · · ·

(9.24)

incorporate the downward reflections (from the first reflector) towards depth z from above (labeled
as event 1, 5, 9, · · · in Figure 13). The rest of events can be interpreted as follows:

γ − βR1 = 1− 2βR1 = 1− 2R1

∞∑

n=0

(−1)nRn1R
n+1
2 eik(2n+2)(a2−a1)

= 1 + 2
[
−R1R2e

ik1(2a2−2a1)
]1

+ 2
[
−R1R2e

ik1(2a2−2a1)
]2

+ 2
[
−R1R2e

ik1(2a2−2a1)
]3

+ · · ·
(9.25)

where in the final expression above, the first term 1 is the propagation phase for the direct arrival
from the source (this term is a unit since the source and receiver coincide). The second term
2
[
−R1R2e

ik(2a2−2a1)
]1 represents two separate propagations labeled as event 3 and 4 in Figure 13,

both events with distinct propagation history share the same propagation time. The third term
2
[
−R1R2e

ik(2a2−2a1)
]2 represents two separate propagations labeled as event 7 and 8 in Figure 13,

and again both events with distinct propagation history share the same propagation time.

The final result can be Fourier transformed into the time domain as:

E(z, z, t) = −ρ1c1

2





H(t) + 2
∞∑
n=1

(−1)nRn1R
n
2H

(
t− 2n(a2−a1)

c1

)

+
∞∑
n=0

(−1)n+1Rn+1
1 Rn2H

(
t− 2z+2na2−2(n+1)a1

c1

)

+
∞∑
n=0

(−1)nRn1R
n+1
2 H

(
t− 2(n+1)a2−2na1−2z

c1

)





(9.26)
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Figure 13: The diagram of events for an experiment with both source and receiver coincide at depth
z which located between the first reflector at depth a1 and the second reflector at depth a2.

Balancing out the −ρ1c1
2 factor, the data after removing the direct wave is denoted as

D(z, t)
∆
= −2
ρ1c1

E(z, z, t)−H(t):

D(z, t) =





2
∞∑
n=1

(−1)nRn1R
n
2H

(
t− 2n(a2−a1)

c1

)

+
∞∑
n=0

(−1)n+1Rn+1
1 Rn2H

(
t− 2z+2na2−2(n+1)a1

c1

)

+
∞∑
n=0

(−1)nRn1R
n+1
2 H

(
t− 2(n+1)a2−2na1−2z

c1

)





(9.27)

and after taking the t = 0 imaging condition, we have:

D(z, t) =




−R1 if (z = a1)
0 if (a1 < z < a2)
R2 if (z = a2)

(9.28)

Note that in the previous section, i.e., to image above the first reflector at a1, we obtain the
amplitude R1 when z approach a1 from above. In this section we image below the first reflector at
a1, the amplitude of the image is −R1 when z approaches a1 from below, as it should.

9.3 Below the second reflector

GDN0 (z, z′)
∣∣
z′=zg

=

[
ν−1(R2λ− λ−1) +R1ν(λ−R2λ

−1)
]
µ+

[
R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)
]
µ−1

2ik2(1 +R1)(1 +R2)/ρ2
,

∂

∂z′
GDN0 (z, z′)

∣∣∣∣
z′=zg

=

[
ν−1(R2λ− λ−1) +R1ν(λ−R2λ

−1)
]
µ−

[
R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)
]
µ−1

2k2(1 +R1)(1 +R2)/(kρ2)
,

(9.29)
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where λ ≡ eik2(z−a2), µ ≡ eik(zg−a1), and ν ≡ eik1(a2−a1).

D(z, zs) =
1

ρ(z′)

{
P (z′, ω)

∂GDN0 (z, z′, ω)

∂z′
−GDN0 (z, z′, ω)

∂P (z′, ω)

∂z′

}∣∣∣∣
z′=B

z′=zg

=
1

ρ(z′)

[
GDN0 (z, z′, ω)

∂P (z′, ω)

∂z′
− P (z′, ω)

∂GDN0 (z, z′, ω)

∂z′

]

z′=zg

=
ρ2

2ik2
eik(a1−zs)R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)

(1 +R1)(1 +R2)

− ρ2

2ik2
eik(a1−zs) ν

−1(R2λ− λ−1) +R1ν(λ−R2λ
−1)

(1 +R1)(1 +R2)

{
R1 + (1−R2

1)β
}

(9.30)

Since ρ2k
ρ0k2

= ρ2c2
ρ0c0

= ρ1c1
ρ0c0

ρ2c2
ρ1c1

= 1+R1
1−R1

1+R2
1−R2

, the equation above can be simplified as:

D(z, zs) =
ρ0e

ik(a1−zs)/(2ik)

(1−R1)(1−R2)




[
R1R2ν

−1 + ν
]
λ −

[
R1ν

−1 +R2ν
]
λ−1

−
[
R1R2ν

−1 +R2
1ν
]
λ +

[
R1ν

−1 +R2
1R2ν

]
λ−1

− (1−R2
1)λ

∞∑

n=0

(−1)n
[
Rn1R

n+2
2 ν2n+1 +Rn+1

1 Rn+1
2 ν2n+3

]

+ (1−R2
1)λ−1

∞∑

n=0

(−1)n
[
Rn1R

n+1
2 ν2n+1 +Rn+1

1 Rn+2
2 ν2n+3

]
.




(9.31)

Since
∞∑

n=0

(−1)n
[
Rn1R

n+2
2 ν2n+1 +Rn+1

1 Rn+1
2 ν2n+3

]
= R2

2ν + (1−R2
2)
∞∑

n=0

(−1)nRn+1
1 Rn+1

2 ν2n+3, (9.32)

and

∞∑

n=0

(−1)n
[
Rn1R

n+1
2 ν2n+1 +Rn+1

1 Rn+2
2 ν2n+3

]
= R2ν, (9.33)

equation (9.31) can be simplified as follows:
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D(z, zs) =
ρ0e

ik(a1−zs)(1−R2
1)ν

2ik(1−R1)(1−R2)

(
λ−R2λ

−1 −R2
2λ+R2λ

−1 − (1−R2
2)λ

∞∑

n=0

(−1)nRn+1
1 Rn+1

2 ν2n+2

)

=
ρ0e

ik(a1−zs)(1−R2
1)(1−R2

2)

2ik(1−R1)(1−R2)
λ
∞∑

n=0

(−1)nRn1R
n
2ν

2n+1

=
ρ0(1 +R1)(1 +R2)

2ik
eik(a1−zs)eik2(z−a2)

∞∑

n=0

(−1)nRn1R
n
2e
ik1(2n+1)(a2−a1).

In the derivation above, we rewrite the trivial quantity 1 as the special case of (−1)nRn1R
n
2ν

2n with
n = 0. The expression above is exactly the wave field in the deepest layer: only the down-going wave
is present with correct amplitude; the up-going waves cancel with each other as actually happened
in the subsurface. And the expression above can be simplified as:

D(z, zs) =
ρ0(1 +R1)(1 +R2)

2ik
eik(a1−zs)eik1(a2−a1)eik2(z−a2)γ

After the downward continuation of the receiver, we can use the Green’s theorem to downward
continue the source:

GDN0 (z, z′)
∣∣
z′=zs

=

[
ν−1(R2λ− λ−1) +R1ν(λ−R2λ

−1)
]
ξ +

[
R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)
]
ξ−1

2ik2(1 +R1)(1 +R2)/ρ2
,

∂

∂z′
GDN0 (z, z′)

∣∣∣∣
z′=zs

=

[
ν−1(R2λ− λ−1) +R1ν(λ−R2λ

−1)
]
ξ −

[
R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)
]
ξ−1

2k2(1 +R1)(1 +R2)/(kρ2)
,

(9.34)

where λ ≡ eik2(z−a2), ξ ≡ eik(zs−a1), and ν ≡ eik1(a2−a1).

− 1

ρ(zs)

(
∂GDN0 (z, zs)

∂zs
+ ikGDN0 (z, zs)

)
=

kρ2

k2ρ0

ν−1(λ−1 −R2λ) +R1ν(R2λ
−1 − λ)

(1 +R1)(1 +R2)
ξ,

and

− 1

ρ(zs)

(
∂GDN0 (z, zs)

∂zs
+ ikGDN0 (z, zs)

)
D(z, zs) =

kρ2

k2ρ0

ν−1(λ−1 −R2λ) +R1ν(R2λ
−1 − λ)

(1 +R1)(1 +R2)
eik(zs−a1)

· ρ0(1 +R1)(1 +R2)

2ik
eik(a1−zs)eik1(a2−a1)eik2(z−a2)γ
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The expression above can be simplified as:

E(z, z) =
ρ2

2ik2
eik1(a2−a1)eik2(z−a2)γ

{
ν−1(λ−1 −R2λ) +R1ν(R2λ

−1 − λ)
}

=
ρ2

2ik2
νλγ

{
ν−1(λ−1 −R2λ) +R1ν(R2λ

−1 − λ)
}

=
ρ2

2ik2

{
1−R2λ

2 +R1R2ν
2 −R1λ

2ν2
}
γ

=
ρ2

2ik2

{
1 +R1R2ν

2 −R2λ
2 −R1λ

2ν2
}
γ

Since:
(
1 +R1R2ν

2
)
γ =

(
1−R1R2ν

2
) ∞∑
n=0

[
−R1R2ν

2
]n

= 1, and:

R2λ
2γ = R2λ

2
∞∑

n=0

(−1)nRn1R
n
2ν

2n = R2λ
2 +R2λ

2
∞∑

n=1

(−1)nRn1R
n
2ν

2n

= R2λ
2 −R2

2λ
2
∞∑

n=1

(−1)nRn1R
n−1
2 ν2n+2,

R1λ
2ν2γ = R1λ

2ν2
∞∑

n=0

(−1)nRn1R
n
2ν

2n = λ2
∞∑

n=0

(−1)nRn+1
1 Rn2ν

2n+2,

{
−R2λ

2 −R1λ
2ν2
}
γ = −R2λ

2 − (1−R2
2)λ2

∞∑

n=0

(−1)nRn+1
1 Rn2ν

2n+2.

The final downward continuation result can be expressed as:

E(z, z) =
ρ2

2ik2

{
1−R2λ

2 − (1−R2
2)λ2

∞∑

n=0

(−1)nRn+1
1 Rn2ν

2n+2

}

=
ρ2

2ik2

{
1−R2λ

2 + (1−R2
2)λ2

∞∑

n=0

(−1)n+1Rn+1
1 Rn2ν

2n+2

}

=
ρ2

2ik2

{
1−R2e

ik2(2z−2a2) + (1−R2
2)eik2(2z−2a2)

∞∑

n=0

(−1)n+1Rn+1
1 Rn2e

ik1(2n+2)(a2−a1)

}
.

In the results above, ρ2
2ik2

is the overall amplitude of G+
0 in the third layer. The first term 1 is

the propagation phase of the wave traveling from the source and receiver coincide at depth z. The
second term −R2e

ik1(2a2−2a1) is the reflection from the second reflector at depth a2 (here it has
−R2 as its reflection coefficient since both the source and receiver are located below the reflector).

328



RTM M-OSRP12

The third term (1−R2
2)eik1(2a2−2a1)

∞∑
n=0

(−1)n+1Rn+1
1 Rn2e

ik1(2n+2)(a2−a1) contains infinite number of

internal multiples generated between the first and second reflector.

E(z, z, t) = −ρ2c2

2





H(t)−R2H
(
t− 2z−2a2

c2

)

+(1−R2
2)H

(
t− 2z−2a2

c2
− (2n+2)(a2−a1)

c1

)


 (9.35)

Balancing out the −ρ2c2
2 factor, the data after removing the direct wave is denoted as

D(z, t)
∆
= −2
ρ2c2

E(z, z, t)−H(t):

D(z, t) =




−R2H

(
t− 2z−2a2

c2

)

+(1−R2
2)H

(
t− 2z−2a2

c2
− (2n+2)(a2−a1)

c1

)


 (9.36)

and after taking the t = 0 imaging condition, we have:

D(z, t) =

{
−R2 if (z = a2)
0 if (a2 < z)

(9.37)

Note that in the previous section, i.e., to image between the first and second reflectors, we obtain the
amplitude R2 when z approach a2 from above. In this section we image below the second reflector
at a2, the amplitude of the image is −R2 when z approaches a2 from below, as it should.

10 Conclusions

A general and efficient procedure to compute the Green’s function with vanishing Dirichlet and
Neumann boundary conditions has been derived for a 1D medium of arbitrary complexity, and its
effectiveness has been demonstrated with numerical examples that accurately predict the up-going
and down-going wave field at depth using only the data on the shallower measurement surface. The
density contribution to the Green’s theorem and Green’s function is accurately studied to better
understand its role in imaging. In order to generalize the idea in this paper to a multidimensional
earth, a finite-difference scheme is derived and validated by comparison with an analytic benchmark.

Several remarkable properties of the Green’s function with double vanishing boundary conditions
have been identified:

• The vanishing property of GDN0 for z > a unequivocally states that it is not necessary to know
the medium’s properties below a target to achieve the target’s depth image. This conclusion
is also stated in the paper “Finite volume model for migration” by Weglein et al. (2011a).
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• GDN0 contains no internal multiple and no source-generated reflections; this property agrees
perfectly with not only the reflectionless approximation of WKBJ Green’s function, but also
with the idea of avoiding reflections and multiples in many current seismic imaging procedures.

We also have reported some very early and very positive news on the first wave theory RTM
imaging tests, with a discontinuous reference medium and images that have the correct depth
and amplitude (that is, producing the reflection coefficient at the correctly located target) with
primaries and multiples in the data. That is an implementation of Weglein et al. (2011a;b) with
creative implementation and testing and analysis.
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12 Appendix A: Classical Reflection Problem

In this appendix we derive and list the solution of the classical acoustic reflection problem. The
medium properties are listed in Table 1. We denote k = ω/c0, k1 = ω/c1, and the incident wave
is eikz′ . We assume the reflection and transmission waves are Ae−ikz′ and Beik1z

′ , respectively.
In order to have a minimal framework for derivation, the philosophy here is to use the simplest
possible form for the incident, reflection, and transmission waves. The complexities caused by
flexible reflector depth are transferred to the parameters: A and B.

The boundary condition at the boundary z′ = a requires that:

eika +Ae−ika = Beik1a,

(ik/ρ0)eika + (−ik/ρ0)Ae−ika = (ik1/ρ1)Beik1a.
(12.1)

The equations above can be simplified as:

eika +Ae−ika = Beik1a,

eika −Ae−ika =
ρ0k1

ρ1k
Beik1a.

(12.2)

Since ρ0k1
ρ1k

= c0ρ0
c1ρ1

, we have:
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Figure 14: The solution of the two acoustic reflection problems in this appendix. Left: The down-
going incident wave from the medium above; right: the up-going incident wave from the medium
below.

eika +Ae−ika = Beik1a,

eika −Ae−ika =
ρ0c0

ρ1c1
Beik1a.

(12.3)

Solving the above equations, we have:

A =
c1ρ1 − c0ρ0

c1ρ1 + c0ρ0
eik(2a) = Reik(2a),

B =
2c1ρ1

c1ρ1 + c0ρ0
ei(k−k1)a = Tei(k−k1)a.

(12.4)

If the incident wave comes from the second medium: e−ik1z′ , similarly we can assume the reflection
wave being of the form Aeik1z

′ and the transmission wave of the form Be−ikz
′ .

e−ik1a +Aeik1a = Be−ika,

(−ik1/ρ1)e−ik1a + (ik1/ρ1)Aeik1a = (−ik/ρ0)Be−ika.
(12.5)

After a straightforward simplification we have:
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e−ik1a +Aeik1a = Be−ika,

e−ik1a −Aeik1a =
kρ1

k1ρ0
Be−ika.

(12.6)

Remove the ω dependency in kρ1
k1ρ0

, to have:

e−ik1a +Aeik1a = Be−ika,

e−ik1a −Aeik1a =
ρ1c1

ρ0c0
Be−ika.

(12.7)

The solution of the above equations is:

A =
c0ρ0 − c1ρ1

c0ρ0 + c1ρ1
e−ik1(2a) = Re−ik1(2a),

B =
2c0ρ0

c1ρ1 + c0ρ0
ei(k−k1)a = Tei(k−k1)a.

(12.8)

13 Appendix B: Confirmation that the Green’s function (4.10) is the solu-
tion of the wave equation with vanishing Dirichlet and Neumann boundary
conditions at the deeper boundary

In this case we have: A < a < B, and the acoustic wave equation is:

{
ρ(z′)

∂

∂z′

(
∂

ρ(z′)∂z′

)
− ω2

c2(z′)

}
G0(z, z′, ω) = δ(z − z′). (13.1)

Here we prove that the boundary conditions at the reflector are satisfied. First is the continuity
of pressure. According to equation (4.10), the pressure immediately below the reflector can be
obtained by setting z′ in the expression for z′ > a (i.e., the second case) to a:

G0(z, a+, ω) = ρ1
eik1(z−a) − eik1(a−z)

2ik1
. (13.2)

while the pressure immediately above the reflector can be obtained by setting z′ in the expression
for z′ < a (i.e., the first case) to a:

G0(z, a−, ω) =
ρ1

2ik1

{
Reik1(z−a) − eik1(a−z)

1 +R
+
eik1(z−a)−Reik1(a−z)

1 +R

}
. (13.3)
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We can simplify the expression above as follows:

G0(z, a−, ω) =
ρ1

2ik1

{
(1−R)eik1(z−a) +

−1−R
1 +R

eik1(a−z) +
R+R2

1 +R
eik1(z−a)

}

=
ρ1

2ik1

{
(1−R+R)eik1(z−a) − eik1(a−z)

}

=
ρ1

2ik1

{
eik1(z−a) − eik1(a−z)

}

= G0(z, a+, ω).

(13.4)

On the other hand, the continuity of 1
ρ
∂GDN0
∂z′ across the boundary can be verified in a similar fashion.

The value of 1
ρ
∂GDN0
∂z′ immediately below the reflector is:

1

ρ1

∂G0(z, z′, ω)

∂z′

∣∣∣∣
z′=a+

=
−1

ρ1

{
eik1(z−a) + eik1(a−z)

}
. (13.5)

while the value of 1
ρ
∂GDN0
∂z′ immediately above the reflector can be obtained by setting z′ in the

expression for z′ < a (i.e., the first case) to a:

1

ρ0

∂G0(z, z′, ω)

∂z′

∣∣∣∣
z′=a−

=
c1

ρ0c0

{
Reik1(z−a) − eik1(a−z)

1 +R
+
Reik1(a−z)−eik1(z−a)

1 +R

}
. (13.6)

We can simplify the expression above as follows:

1

ρ0

∂G0(z, z′, ω)

∂z′

∣∣∣∣
z′=a−

=
c1

ρ0c0

{
(R− 1)eik1(z−a) +

R−R2

1 +R
eik1(z−a) +

R− 1

1 +R
eik1(a−z)

}

=
c1

ρ0c0

{
R− 1

R+ 1
eik1(z−a) +

R− 1

R+ 1
eik1(a−z)

}

=
c1

ρ0c0

R− 1

R+ 1

{
eik1(z−a) + eik1(a−z)

}

=
−1

ρ1

{
eik1(z−a) + eik1(a−z)

}

=
1

ρ1

∂G0(z, z′, ω)

∂z′

∣∣∣∣
z′=a+

.

(13.7)
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The derivation above takes advantage of the following relations: since R = ρ1c1−ρ0c0
ρ1c1+ρ0c0

, we have:

c1

ρ0c0

R− 1

R+ 1
=

c1

ρ0c0

ρ1c1−ρ0c0
ρ1c1+ρ0c0

− 1
ρ1c1−ρ0c0
ρ1c1+ρ0c0

+ 1
=

c1

ρ0c0

−2ρ0c0

2ρ1c1
=
−1

ρ1
.

14 Appendix C: The causal acoustic Green’s function used in this report

The analytic solution of the Green’s function in equation (2.2) is available if both the velocity c(z′)
and density ρ(z′) fields are constant: i.e., if c(z′) = c0 and ρ(z′) = ρ0. In this case the term
1/ρ(z′) = 1/ρ0 becomes a constant and can be moved to the front of the ∂/∂z′ operator, to have:

1

ρ0

{
∂

∂z′
∂

∂z′
+
ω2

c2
0

}
G0(z, z′, ω) = δ(z − z′).

Both terms on the left-hand side of the equation above contain the 1
ρ0

factor and the equation can
be more succinctly written as:

{
∂

∂z′
∂

∂z′
+
ω2

c2
0

}
G0(z, z′, ω) = ρ0δ(z − z′). (14.1)

Note that the equation above is identical to equation (27) of Weglein et al. (2011a), except for the
extra density factor ρ0 on the right-hand side, and the solution for equation (27) of Weglein et al.
(2011a) is eik(z−z

′)
2ik where k = ω/c0; our Green’s function in equation (14.1) is:

G0(z, z′, ω) =
ρ0

2ik
eik|z−z

′|, (14.2)

where again, k = ω/c0.
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Abstract

Inverse scattering series (ISS) internal-multiple attenuation is a promising internal-multiple-
suppression algorithm. However, an ISS internal-multiple attenuation is extremely calculation
intensive, and the demand for huge computation power restricts the implementation of this al-
gorithm on large 3D exploration data sets. Terenghi and Weglein (2012) proposed a method to
apply certain angle constraints to reduce the computation cost of ISS internal-multiple attenua-
tion. The essence of the angle constraints is a compromise between the cost of the computation
and the accuracy of the result. How many side effects will be introduced by the compromise,
and how the trade-offs can be optimized, are the issues of concern. No quantitative test has
been done yet to clarify these important concerns. It will be the next step to design a series of
tests to reveal the relation between the cost and quality of this method.

1 Introduction

ISS internal-multiple attenuation is a data-driven internal-multiple-suppression algorithm ((Araújo,
1994; Weglein et al., 1997)). The lack of a prerequisite of prior information about the medium
through which the seismic wave propagates or the reflectors from which the internal-multiples gen-
erate makes the algorithm feasible in areas with complicated geological structure. However, the
demand for huge computation time weakens this advantage. Terenghi and Weglein (2012) proposed
a method to apply the constants of incident angle and dipping angle to reduce the computation cost
of ISS internal-multiple attenuation.

2 Theory

Angle constraints on ISS internal-multiple attenuation consists of three aspects: 1. The inverse
scattering series; 2. internal-multiple attenuation by ISS; and 3. The angle constraints on ISS
internal-multiple attenuation to reduce computational cost. Weglein et al. (2003) provided a very

336



IM attenuation M-OSRP12

comprehensive and detailed review on the inverse scattering series, including the rigorous derivation
of the ISS internal-multiple attenuation algorithm.

b3(kg, ks, qg + qs) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
dk1e

−iq1(εg−εs)dk2e
−iq2(εg−εs)

×
∫ +∞

−∞
dz1e

i(qg+q1)z1b1(kg, k1, z1)

×
∫ z1

−∞
dz2e

i(−q1−q2)z2b1(k1, k2, z2)

×
∫ +∞

z2

dz3e
i(q2+qs)z3b1(k2, ks, z3) (2.1)

Equation 2.1 reveals that the ISS multiple attenuation consists of five integrals. Each of them will
become a loop in the real implementation. If one can narrow the limit of some of those integrals, the
computation will be significantly reduced. This is the reason to introduce angle constraints here. If
the relation between the angles (incident angle and dipping angle) and the integral limits (temporal
frequency and wavenumbers) can be defined, one can use the distribution of the angles to narrow
the integral limits.

Before we begin to discuss this topic further, I should point out one fact explicitly: the angles we
mentioned in angle constraints method is not the corresponding angles in the real medium. Because
we use one constant reference velocity (c0) in the derivation of ISS internal-multiple attenuation.
Therefore the angles we mentioned in the method is pseudo dipping and incident angles.

Let’s start from the time-domain wavefield P (rg, rs, t) on a certain location in the medium rg =
{xg, yg, zg} caused by a point source at rs = {xs, ys, zs}.
In this section, I use Greek letters to denote the horizontal components of the vectors. For instance,
χ is the horizontal component of a location vector r,

χs = {xs, ys}, χg = {xg, yg}, (2.2)

rs = {χs, zs}, rg = {χg, zg} (2.3)

For simplifying the discussion, one can assume that the sources and receivers are both located on the
horizontal free-surface. The seismic exploration data D are the measured wavefield on the surface.

D((χg,χs, t) = P (χg, zg = 0,χs, zs = 0, t) (2.4)

Let k be the wavenumber vector, which is the Fourier domain conjugate of the location vector r,
and use Greek letters to denote the horizontal components,

ks = {ksx, ksy, ksz} = {κs, qs} (2.5)
kg = {kgx, kgy, kgz} = {κg, qg} (2.6)
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The data in the Fourier domain can be obtained by the multi-dimensional Fourier transform

D(κg,κs, ω) =

∫
dtdχgdχsD(χg,χs, t)e

i(ωt−κgχg+κsχs) (2.7)

It is critical to be aware that the vertical wavenumbers (qs and qg) are not independent free variables
here. They are determined by the combination of horizontal wavenumbers (κs and κg) temporal
frequency (ω).

From the relations

|ks| = |{κs, qs}| =
∣∣∣∣
ω

c0

∣∣∣∣ (2.8)

|kg| = |{κg, qg}| =
∣∣∣∣
ω

c0

∣∣∣∣ , (2.9)

it is easy to get qs∼ω and qg∼ω relations for given κs and κg

qg = − ω
c0

√
1− c2

0

ω2
κg · κg (2.10)

qs = +
ω

c0

√
1− c2

0

ω2
κs · κs. (2.11)

The signs in equations 2.10 and 2.11 represent the propagation directions of the incoming wave and
outgoing wave, respectively.

Figure 1 shows the incident angle γ and dipping angle α of a certain reflector. The image function
wavenumbers km and kh are defined as the difference and the sum of the source and receiver
wavenumbers, respectively. (Stolt and Weglein, 2012) give

km = kg − ks = {κg − κs, qg − qs} (2.12)
kh = kg + ks = {κg + κs, qg + qs} (2.13)

From trigonometry we have the relations

|tan(α)| = κm · κm
|qg − qs|

(2.14)

cos(2γ) = − c
2
0

ω2
kg · ks = − c

2
0

ω2
(κs · κs + qgqs), (2.15)

which are the relations between the angles and the temporal frequency for the given horizontal
wavenumbers κs and κg. One can calculate the angles from the temporal frequency.

However, the goal is the opposite. The relation we need is from angles to calculate temporal
frequency ranges by the angles constants. If the relation is invertible, the goal can be achieved.
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Figure 1: The incident angle and dipping angle of a certain reflector. The dashed line represents
a reflector, and ~ks and ~kg are the incoming and outgoing wave directions, respectively. α is the
incident angle and γ is the dipping angle. Courtesy of Terenghi and Weglein (2012)

∂α

∂ω
=
|ω| (qg − qs)

√
κm · κm

2qgqs
(
c2

0(kg · ks)− ω2
) =

|ω| (qg − qs)
√
κm · κm

2qgqsω2(1 + cos(2γ)
(2.16)

∂γ

∂ω
=
q2
g + q2

s + 2qgqs cos(2γ)

2qgqsω
√

1− cos(2γ)
(2.17)

It can be proved that both partial derivatives (equations 2.16 and 2.17) are negative. Therefore the
α∼ω and γ∼ω relations are both monotonic. That means the relations are invertible. One can
obtain the temporal frequency ranges from the angle constraints.

For the simplified case here, both sources and receivers are located on the horizontal free-surface
(εg = zg = εs = zs = 0), and the wavelet of the source is only a spiky δ function (B(ω) = 1), so the
ISS internal-multiple-attenuation problem (equation 2.1) becomes

b3(κg,κs, ω) =

∫ +∞

−∞

∫ +∞

−∞
dκ1dκ2

∫ +∞

−∞
dz1e

i(qg+q1)z1b1(κg,κ1, z1)

×
∫ z1

−∞
dz2e

i(−q1−q2)z2b1(κ1,κ2, z2)

×
∫ +∞

z2

dz3e
i(q2+qs)z3b1(κ2,κs, z3) (2.18)
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and all b1 terms can be calculated from

b1(κi,κj , ω) = iqiD(κi,κj , ω) (i, j = g, 1, 2, s) (2.19)

As mentioned before, the vertical wavenumbers (qi) are not independent free variables. For given
horizontal wavenumbers (κ), the vertical wavenumbers (qi) are dependent on the temporal frequency
(ω)

qi =
ω

c0

√
1− c2

0

ω2
κi · κi (i, j = g, 1, 2, s). (2.20)

Because the vertical wavenumbers (qi) have to be real numbers, the square root part in equation
2.20 must be non-negative.

ω2

c2
0

≥ κi · κi = |κi| (i, j = g, 1, 2, s) (2.21)

Because it is shown that the horizontal wavenumbers κi are determined by the temporal frequency
for a given angle, and because the temporal frequency can be calculated from the angles, the integral
limit (horizontal wavenumbers κi) can be narrowed by the prior information about the ranges of
the angles.

{
max(ωmin

γ , ωmin
α ) ≤ ω < min(ωmax

γ , ωmax
α ) ω > 0

max(−ωmax
γ ,−ωmax

α ) < ω ≤ min(ωmin
γ , ωmin

α ) ω < 0
(2.22)

3 Future plan

The method that uses angle constraints reduces the computational cost of ISS internal-multiple
attenuation, as was shown in previous sections. It is clear that the method is essentially a compro-
mise between cost and quality. Whether adequate computational efficiency can be achieved relative
to the quality lost is a key question in deciding whether it is worthwhile to use angle constants
to accelerate the speed of ISS internal-multiple attenuation. The answer depends on the relation
between the frequency (wavenumbers) reduction in the calculation and the inaccuracy generated
by that reduction. No quantitative test has been done yet to clarify this relation. Because of the
importance of this question, the next step will be to design a series of tests to reveal the relation
between the cost and quality of this method.
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A central purpose of this paper is to bring an alternative voice, perspective, and 
understanding to the latest geophysical stampede, technical bubble, and self-
proclaimed seismic cure-all, the so-called “Full waveform inversion” or FWI. If you think 
this is an exaggerated situation or “straw man” issue or argument, I respectfully refer the 
reader (for one among innumerable pieces of evidence) to the 
advertisement/announcement of the 2013 SEG Workshop on FWI, 27 April-1 May in 
Oman, whose opening line is, and I quote, "Full waveform inversion has emerged as the 
final and ultimate solution to the earth resolution and imaging objective." 

Besides representing language, attitude, and a viewpoint that have no place anywhere 
in science, and, in particular, in exploration seismology, the fact is that the method, as 
put forth, is from a fundamental and basic-principle point of view (aside from, and well 
before, any practical considerations and track record of added-value are considered) 
hardly deserving of the label “inversion,” let alone all the other extreme and unjustified 
claims and attributes, as being the “deliverance” and the last and final word on the 
subject. 

From a direct-inversion point of view, and for the algorithms that are derived for solving 
the exact same problem of estimating, for example, the location of velocity anomalies 
and shallow hazards, and velocity changes at the top and base salt, all the current 
approaches to so-called full waveform inversion are: (1) always using the wrong data, 
(2) always using the wrong algorithms, and (3) all too often, using the wrong earth 
model, as well. Making this clear is one purpose of this article.  

The issue being discussed in this paper is not a matter of semantics and is not a 
labeling/mislabeling issue; it is the substantive issue of what data and what algorithms 
are called for by direct inversion to achieve certain seismic processing objectives. In 
particular, we focus here on objectives that rely on the amplitude of reflection data as a 
function of incident angle to determine changes in, e.g., P-wave velocity, AVO 
parameters, or so-called FWI. 

Another purpose of this paper is to propose and exemplify an alternative and direct 
inverse solution that actually deserves the label "inversion" and could be useful for 
those goals and objectives, and perhaps can actually earn, deserve, and warrant a label 
of FWI, although never as the “ultimate and final solution.” The direct-inversion 
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approach not only provides a method but also a framework and platform for 
understanding when it will and will not work. All current so-called FWI methods are 
indirect model-matching methods, and indirect methods can never provide that 
capability and clarity. Model-matching run backwards, or solving a forward problem in 
an inverse sense, resides behind all the current indirect P-wave-only so-called FWI and 
is never equivalent to a direct inverse solution for any non-linear problem, such as, e.g., 
target identification or velocity determination/updating, nor does it even represent a fully 
and completely aligned goal and property of a direct inverse solution.  

A third and perhaps most important goal of this paper is to provide a new, 
comprehensive overview and bridge for these two approaches for those who may be 
following, applying, and/or considering the current so-called indirect model-matching 
FWI approach and those proposing, interested in, or providing a road to a direct inverse 
methodology. We show how these two approaches have the same starting point, and in 
fact, have the same exact generalized Taylor series expansion for modeling data and 
for expressing the actual data in terms of a reference model and reference data and the 
difference between actual and reference properties. The two approaches differ in how 
they view each of the same terms of that forward series. One view of those individual 
terms leads to a Taylor series form that does not allow a direct inverse series and that 
leaves as the only option the running of a forward (linear truncated) series in an inverse 
sense. That direct inverse series results in an indirect model-matching approach, e.g., 
as seen in AVO and the so-called FWI methods. Another view and understanding of 
those individual terms in the forward Taylor series that derives from the fundamental 
equation of scattering theory (the Lippmann-Schwinger equation) recognizes that the 
forward Taylor series is a very special class of Taylor series –– a geometric series. 
Further, it is a geometric series for a forward problem, and it has a geometric series for 
a direct inverse solution. Without understanding and calling upon the scattering-theory 
equation, that recognition of the forward series as being geometric is not possible, and a 
direct inverse solution would not be achievable. All of the consequences and differences 
between the forward model-matching approach leading to methods such as so called 
FWI and the direct inverse methods, derived from the inverse scattering series, have 
that simple, accessible, and understandable origin. The details, arguments, and 
examples behind these three objectives and goals are provided below.  

Let’s begin. Seismic processing is an inverse problem, in which measurements on or 
near the surface of the earth are used to make inferences about the nature of the 
subsurface that are relevant to the exploration and production of hydrocarbons.  

There was a time, not too long in the past, when a discussion of any method for solving 
inverse or data-processing problems always began with a definition of direct and 
indirect methods. The latter was deemed the less respectable and the lessor choice 
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between the two, considered out of desperation and resignation and offered with 
hesitation and apology. It was associated among “inversionists” with searching and 
model matching rather than with seeking a direct, clear, and definitive solution through a 
math-physics analysis.  

In our view, that earlier, healthy understanding and respect for the framework and 
definitiveness of direct inverse methods has largely given way or has been pushed 
aside, with serious and substantive negative and injurious conceptual and practical 
consequences. Among the latter manifestations and consequences is the totally 
mislabeled and ubiquitous phenomenon of so-called “full wave inversion” (FWI) 
methods. Among FWI references are Brossier et al. (2009), Crase et al. (1990), 
Gauthier et al. (1986), Nolan and Symes (1997), Pratt (1999), Pratt and Shipp (1999), 
Sirgue et al. (2010), Symes (2008), Tarantola (1984, 1986), Valenciano et al. (2006), 
Vigh and Starr (2008), and Zhou et al. (2012). 

In this note, we advocate (whenever possible) direct methods for solving processing 
problems and providing prerequisites. Direct methods offer many conceptual and 
practical benefits over indirect methods. Advantages of direct methods begin with 
actually knowing that you are solving the problem that you are interested in solving.  

How can you recognize a direct versus an indirect method? Consider the quadratic 
equation 

 
2 0ax bx c   , (1) 

and the solution 

 
2( 4 ) / 2x b b ac a    .    (2) 

Equation (2) is a direct solution for the roots of equation (1). On the other hand, if you 
see a cost function involved in a solution, the solution is indirect. Also, if you see a 
modeling equation being solved in an inverse sense, or an iteratively linear updating, 
those are each direct indicators of an indirect solution and a model-matching approach, 
which too often can start with an incorrect or insufficient modeling equation and a 
matching of fundamentally inadequate data. The only time that a forward problem 
solved in an inverse sense can be equivalent to a direct inverse solution is when the 
direct inverse solution is linear. For example, locating reflectors at depth with a known 
velocity model is linear, and, hence, e.g., (asymptotic) RTM is a modeling run 
backwards (i.e., in an inverse sense) to directly determine structure. Another 
transparent example is given by the forward geometric series 
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and the inverse  
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   

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            (4) 

If, rather than these nonlinear relationships among S, a, and r, we instead imagine an 
exact linear relationship that S, a, and r might satisfy, e.g.,  

 S ar  . (5) 

then we have the forward problem of solving for S given a and r, and the inverse 
problem becomes solving for r in terms of S and a. The direct inverse solution r=S/a is 
equivalent to the forward problem solved in an inverse sense, solving S=ar for r in terms 
of S and a. However, if the forward relationship assumed among S, a, and r is a 
quadratic relationship (an approximate of the actual nonlinear forward problem given by 
equation (3)), we have 

 
2S ar ar         (6) 

Then, solving the forward problem equation (6) in an inverse sense is a quadratic 
solution with two roots that can be real or imaginary, whereas the solution to equation 
(4) is a single real solution for r. In place of equation (6), think of the linearized forward 
Zoeppritz equation for RPP solved in an inverse sense, and the point is clear. This 
simple and transparent example demonstrates a pitfall of thinking that a direct inversion 
is equivalent to a forward problem solved in an inverse sense. Another example, 
pointed out in Weglein et al. (2009), is the direct inverse solution for predicting and 
removing free-surface and internal multiples, from the inverse-scattering series, where 
these two distinct algorithms are not only independent of subsurface information, they 
are also independent of whether we assume the earth is acoustic, elastic, anelastic, 
heterogeneous, and anisotropic. The multiple-removal algorithms (which are direct and 
nonlinear) don’t change one line of code when you change your mind about the earth 
model type you want to consider. Can you imagine a model-matching and subtraction 
method or linear-updating method for predicting and removing multiples, with any cost 
function, L1, L2, LP, that would be independent of subsurface properties and the type of 
earth model you are using to generate the synthetic data? It is hard to overstate the 
significance of this point. The widely recognized benefit to industry from effectively 
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removing free-surface and internal multiples using algorithms derived from the inverse 
scattering series, for offshore and onshore plays, never would have occurred if the 
indirect inversion, model-matching, and iterative updating, and FWI-like thinking, were 
the approaches pursued for removing multiples.  

In general, we look at inversion as a set of tasks: free-surface and internal-multiple 
removal, depth imaging, and nonlinear AVO. For the purposes of this paper and for 
discussing FWI, we focus entirely on how the ISS addresses that parameter estimation 
task in isolation, and as if all other tasks (e.g., multiple removal) had been previously 
achieved.  

Indirect methods such as flat Common-Image Gathers (CIGs) were developed as a 
response to the inability to directly solve for and adequately provide a velocity model for 
depth imaging, and those CIGs represent a necessary condition at the image that an 
accurate velocity would satisfy. Among references for CIGs, we list Anderson et al. 
(2012), Baumstein et al. (2009), Ben-Hadj-ali et al. (2008, 2009), Biondi and Sava 
(1999), Biondi and Symes (2004), Brandsberg-Dahl et al. (1999), Chavent and Jacewitz 
(1995), Fitchner (2011), Guasch et al. (2012), Kapoor et al. (2012), Rickett and Sava 
(2002), Sava et al. (2005), Sava and Fomel (2003), Sirgue et al. (2009, 2010, 2012), 
Symes and Carazzone (1991), Tarantola (1987), and Zhang and Biondi (2013). Many 
wrong velocity models can and will also satisfy a flat-common-image-gather criterion, 
especially under complex imaging circumstances. Indeed, unquestioned faith in the 
power of satisfying the flat-CIG criterion can and does contribute to dry-hole drilling. 
Mathematicians who work on the latter types of CIG problems would better spend their 
time describing the underlying lack of a necessary and sufficient condition, and the 
consequences, rather than dressing up and obfuscating the necessary but insufficient 
condition in fancy, rigorous, and abstract new clothes.  

We recognize that the recent surge of interest in estimating changes in velocity is fueled 
by: (1) the improved ability to produce low-frequency and low-vertical-wavenumber 
information from new acquisition and improved deghosting; (2) the implicit admission of 
serious problems with methods to estimate velocity models; e.g., with tomography, 
iterative flat CIG’s searching, and the like; and, of course, (3) the persistent and 
unacceptable dry-hole drilling rate. Today, for example, we basically remain fixed and 
without significant progress (at a one-in-ten success rate) in drilling successful 
exploration wells in the deep-water Gulf of Mexico (Hawthorn (2009), Iledare and Kaiser 
(2007)).  

Indirect methods should only be considered when direct methods are not available or 
are inadequate, or when you cannot figure out how to solve a problem directly. Indirect 
methods are often and reasonably employed to allow a channel or an adjustment (a 
dial) for phenomena and components of reality that are outside and external to the 
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physics of the system you have chosen and defined. Of course, there always are, and 
always will be, phenomena outside your assumed and adopted physics and system that 
must be accommodated and that are ignored at your peril. That's the proper realm and 
role for indirect methods. Even then, however, they need to be applied judiciously and 
always with scrutiny of what resides behind cost-function-criteria assumptions. When a 
direct method to predict the amplitude and phase of free-surface multiples, such as 
inverse-scattering-series free-surface-multiple removal, includes the obliquity factor, and 
has the direct satisfaction of prerequisites such as source and receiver deghosting and 
wavelet estimation, then the better the direct method of providing the prerequisites 
performs, the better the free-surface demultiple provides the amplitude and phase of the 
free-surface multiples. If at any stage you decide you can “roll in” obliquity, source and 
receiver deghosting, and wavelet estimation into a catch-all energy-minimization 
adaptive subtraction, you run into the serious problem: No matter how much better you 
achieve a satisfaction of energy minimization, you still have no guarantee that that 
improved energy minimization aligns with and supports free-surface-multiple removal 
while preserving primaries. In fact, removal of multiples can increase “energy” (e.g., 
when you have destructive interference between a primary and a multiple), and it is 
widely understood that the energy-minimization criteria are today’s greatest impediment 
to effectively removing free-surface and internal multiples for complex onshore and 
marine plays. The criteria behind the indirect adaptive step matters. Within the area of 
free-surface and internal-multiple attenuation, the rush to and overreliance on energy-
minimization adaptive subtraction contributes to the inability to effectively and surgically 
remove multiples at all offsets and without damaging primaries. We discuss that specific 
issue in a report on seeking adaptive criteria (Weglein 2012 M-OSRP) that serve as an 
alternative and replacement for energy minimization for free-surface multiple removal. 
However, the trend of using indirect methods for phenomena and processing goals 
within the system, and for providing prerequisites within the system, is in general a 
conceptual and practical mistake. There has been a dangerous and growing tendency 
to solve everything inside and outside the system by using indirect methods and cost 
functions. We of course recognize, support, and require ever-faster computers. 
However, the growth in computational physics, often at the expense of mathematical 
physics, and the availability of ever-faster computers, encourages the rush to “cost 
functions” and to searching without thinking, and thus represents a ubiquitous, 
misguided, and unfortunate trend, with “solutions” that aren’t. When we give up on 
physics and determinism, we look at statistics and searching, and indirect methods 
become a “natural” choice and are always readily available, along with their drawbacks 
and consequences.  

A direct method provides a framework of precise data needs, and it delivers a straight-
ahead formula that takes in your data and actually solves and explicitly and directly 
outputs the solution that you seek. Indirect methods can never provide that clarity or 
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confidence. Model-matching and iterative updating by any fancy name, such as a new 
“Frechet derivative,” and the so-called “Full Wave Inversion,” are model-matching and 
are never, ever, equivalent to a direct inversion for the earth's elastic mechanical 
property changes. The distinction is significant and has both conceptual and mercantile 
consequences. 

Let us present an example of the difference. Let's suppose someone said that you could 
take a single seismic trace that is a single function of time, and invert simultaneously for 
velocity and density, each as a function of depth in a 1D earth. 

Today, you might reasonably be cautious and concerned because the dimension of the 
data is less than the overall dimension of the quantities you seek to determine. We have 
learned as an industry to be dubious in the latter single-trace, solve-for-two-functions-of-
depth case. We look skeptically at those who would model-match and pull all kinds of 
arcane cost functions and generalized inverses together, using different norms and 
constraints and full-wave predictions of that single trace that can be model-matched 
with amplitude and phase so that we can call that model-matching scheme “full 
waveform inversion.”  Why can't we solve for density and velocity uniquely from a single 
trace, since we can certainly model the single trace from knowing the velocity and 
density as a function of depth? That’s a beginning and an example of thinking that 
solving a forward problem in an inverse sense is in some way actually solving the 
inverse problem. What came along in that earlier time, as a response to this question, 
were direct acoustic inversion methods that said that inverting for velocity and density 
as functions of depth from a single trace is impossible, or at least that it is impossible to 
provide the unique and actual velocity and density as a function of depth. That direct-
inversion framework convinced many (hopefully most) people that the one-trace-in, two-
functions-out approach is not a question or an issue of which indirect algorithm or LP 
cost function you are using. It is more basic and stands above algorithm; it's an 
inadequate-data issue.  No algorithm with that single-trace data input should call itself 
“inversion,” even if that single trace was model-matched and iteratively updated and 
computed with amplitude and phase and, with too much self-regard, labels itself as “full 
wave inversion.” We learned to stop running that single trace through search algorithms 
for velocity and density --- and that lesson was absorbed within our collective psyches in 
our industry --- for whatever the cost function and local or global minimum you 
employed. Using the wrong and fundamentally inadequate data closes the book and 
constitutes the end of the story.  Thus, we learned to look for and respect dimension 
between the data and the sought-after parameters we want to identify. That is a good 
thing, but it turns out that it's not a good-enough thing. In fact, direct acoustic wavefield 
inversion for a 1D earth requires all the traces for a given shot record in order to 
determine one or more parameters (e.g., pV  and density) as a function of depth. 
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We will show (in a similar way) that the fact that you can solve the forward Zoeppritz 
equations (or a linear approximate) for a PP reflection coefficient as a function of 
incident angle and the changes in λ, μ, and ρ across the reflector doesn’t imply that you 
can solve for changes in λ, μ, and ρ in terms of the PP reflection coefficient as a 
function of angle. A direct inverse for the changes in λ, μ, and ρ demands all 
multicomponent sources and receivers, or, equivalently, PP, PS, SP, and SS data. 

These conditions on data requirements hold for any processing/inverse problem in 
which the reference or background medium is elastic –– e.g., for all amplitude analysis, 
including AVO and so-called FWI and all ISS multiple removal and imaging with ocean-
bottom or onshore acquisition. See Li et al. (2011), Liang et al. (2010), Matson (1997), 
Matson and Weglein (1998), Weglein et al. (2003), and H. Zhang (2006). 

By “inadequate data,” we mean something much more basic and fundamental than 
limitations due to sampling, aperture, and bandwidth. That is, indirect solutions can (and 
often do) input data that are fundamentally inadequate from a basic and direct inverse 
perspective and understanding. The indirect methods then search locally and globally 
around error surfaces with Frechet derivatives and conjugate gradients, and they keep 
hordes of math, physics, geophysics, and computer scientists busy using giant and 
super-fast computers looking at outputs and 3D color displays, and being convinced 
that with all the brainpower and resources that are invested, they are on track and are 
on their way to solving the problem. What’s wrong with linear iterative updating? What’s 
wrong begins with understanding the meaning of a linear inverse. Even in cases in 
which the data are adequate –– e.g., cases with P-wave data and an acoustic inverse 
model –– the algorithms that a direct inverse provides for explicit linear and each 
nonlinear estimate of changes in P-wave velocity and density, will differ at the very first 
nonlinear step and at every subsequent step, with the nonlinear iterative linear estimate 
of these changes in physical properties. The linear, quadratic, cubic, … estimates of 
physical properties from a direct method are explicit and unique (a generalized Taylor 
series) and order by order in the data and will not agree with an iterative linear update. 
Hence, although the iterative linear updating is nonlinear in the data, it does not 
represent a direct inverse solution. Further, the terms in the direct solution are 
analytically determined in terms of the first term, whereas iterative linear updating 
requires generalized inverses, SVD, cost functions, and numerical solutions. They could 
not be more different. If you had an alternative to the solution of the quadratic equation 
and it produced different roots from those produced by the direct quadratic formula, 
equation (2), would you call it “an inverse solution for the roots?” That’s the issue, and 
it’s that simple. 

For the elastic inverse case, the difference is yet more serious. A direct inverse solution 
for the P-velocity, VP, shear velocity, VS, and density, ρ, and a linear iterative method, 
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will already differ at the linear step, and that difference and resulting gap grow at each 
nonlinear step and estimate.  

When it comes to directly inverting for changes in elastic properties and density, there 
are direct and explicit formulas for the linear and nonlinear estimates. The same single 
unchanged direct inverse ISS set of equations that derived the algorithms for free-
surface and internal-multiple removal (and have demonstrated stand-alone capability, 
see, e.g., Ferreira (2011), Luo et al. (2011), and Weglein et al. (2003, 2011)), have also 
provided the ISS depth imaging (Weglein et al. 2011, 2012) and direct inversion for 
earth mechanical properties. In Zhang (2006), we find the first direct nonlinear 
equations for estimating the changes in elastic properties for a 1D earth.  

The mathematical origin of linear inverse theory (and linear iterative inversion) begins 
with a Taylor series of the recorded data, D(m), from the actual earth. Those data 
depend on the earth properties characterized by the label m and the synthetic data 
D(m0) from an estimate or reference value of those properties that we label, m0. To 
relate D(m) and D(m0), we introduce a Taylor series  

                                            20
0 0

( )
( ) ( ) ( )

2

D m
D m D m D m m m


      ,                    (7) 

in which the derivatives are Frechet derivatives. A linearized form of equation (7) is 
considered 

                                                  1
0 0 1( ) ( ) ( )D m D m D m m   ,                                           (8) 

where the Frechet derivative,  

                                                0 0
0

( ) ( )
( )

D m m D m
D m

m




   


                                         (9) 

is approximated by a finite-difference approximation involving data at m0 and data at a 
nearby model, m0+ε∆m. ∆m1

1 means the first linear estimate of ∆m, with the subscript 
standing for linear and the superscript for the first estimate. The matrix inversion of 
equation (8) for ∆m1

1 leads to a new approximate m0+∆m1
1 , and  

                                        1 1 2
0 1 0 1 1( ) ( ) ( )D m D m m D m m m       .                     

(10) 

The process is repeated and is the basis of iterative linear inversion. Properties of that 
process related to convergence to m are spelled out in Blum (1972), page 536, with 
issues where the constants such as M (in Blum (1972) page 536) that appear in the 
convergence criteria are unknown.  
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Another starting point for this type of perturbative approach is from scattering theory, 
where D(m) relates to the actual Green’s function G, and D(m0) relates to the reference 
Green’s function, G0 and V=m-m0. The identity among G, G0, and V is called the 
Lippmann Schwinger or Scattering Equation (see, e.g., Taylor 1972)  

                                                        0 0G G G VG   .                     

(11) 

and an expansion of equation (11) for G in terms of G0 and V produces 

                                            0 0 0 0 0 0G G G VG G VG VG     .                     

(12) 

Keys and Weglein (1983) provide the formal association between D’(m0)∆m and G0VG0. 
Equation (7) is a Taylor series in ∆m, and as such that series doesn’t have an available 
inverse series. However, since equation (12) (which follows from the scattering equation 
(11)) is a geometric series in r=VG0 and a=G0, then a geometric series for S=G-G0 in 
terms of a and r: –– S=ar/(1-r) –– has an inverse series r=(S/a)/(1+S/a) with terms 

1 /r S a  

2
2 ( / )r S a   

3
3 ( / )r S a  

4
4 ( / )r S a    

...  

A unique expansion of VG0 in orders of measurement values of (G-G0) is 

                                            0 0 1 0 2( ) ( )VG VG VG                                            (13) 

The scattering-theory equation allows that forward series form and the opportunity to 
find a direct inverse series. Substituting equation (13) into equation (12) and setting the 
terms of equal order in the data to be equal, we have D=G0V1G0. 

For the elastic equation, V is a matrix and the data are 
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where V1, V2 are linear, quadratic contributions to V in terms of the data,  

PP PS
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D D
D

D D
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. 

The changes in elastic properties and density are contained in 
PP PS

SP SS

V V
V

V V

 
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, and that 

leads to direct and explicit solutions for the changes in mechanical properties in orders 

of the data, 
PP PS
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D

D D
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The ability of the forward series to have a direct inverse series derives from (1) the 
identity among G, G0, V provided by the scattering equation and then (2) the recognition 
that the forward series can be viewed as a geometric series for the data, D, in terms of 
VG0. The latter derives the direct inverse series for VG0 in terms of the data. 

Viewing the forward problem and series as the Taylor series (7) in terms of ∆m doesn’t 
offer a direct inverse series, and hence there is no choice but to solve the forward series 
in an inverse sense. It is that fact that results in all current AVO and FWI methods being 
modeling methods that are solved in an inverse sense. Among references that solve a 
forward problem in an inverse sense in P wave AVO we list Beylkin and Burridge 
(1990), Boyse and Keller (1986), Burridge et al. (1998), Castagna and Smith (1994), 
Clayton and Stolt (1981), Foster et al. (2010), Goodway (2010), Goodway et al. (1997), 
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Shuey (1985), Smith and Gidlow (2000), Stolt (1992), and Stolt and Weglein (1985). 
The intervention of the explicit relationship among G, G0, and V (the scattering 
equation) in a Taylor series-like form produces a geometric series and a direct inverse 
solution. 

The linear equations are: 
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and 
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where aγ
(1), aμ

(1), and aρ
(1) are the linear estimates of the changes in bulk modulus, 

shear modulus, and density, respectively. The direct quadratic non-linear equations are 
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Since V̂1
PP  relates to D̂PP , V̂1

PS  relates to D̂PS , and so on, the four components of the 

data will be coupled in the non-linear elastic inversion. We cannot perform the direct 
non-linear inversion without knowing all components of the data. Thus, the direct non-
linear solution determines the data needed for a direct inverse. That, in turn, defines 
what a linear estimate means. That is, a linear estimate of a parameter is an estimate of 
a parameter that is linear in data that can directly invert for that parameter. Since DPP, 
DPS, DSP, and DSS are needed to determine aγ, aμ, and aρ directly, a linear estimate for 
any one of these quantities requires simultaneously solving equations (4.41)-(4.44). 

Those direct nonlinear formulas are like the direct solution for the quadratic equation 

mentioned above and solve directly and nonlinearly for changes in pV , sV , and density in 

a 1D elastic earth. Stolt and Weglein ((2012), Section 7.4, pp. 159-173) present the 
linear equations for a 3D earth that generalize equations (4.41)-(4.44). Those formulas 
prescribe precisely what data you need as input, and they dictate how to compute those 
sought-after mechanical properties. There is no search or cost function, and the 
unambiguous and unequivocal data needed are full multicomponent data –– PP, PS, 
SP, and SS –– for all traces in each of the P and S shot records.  The direct algorithm 
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determines first the data needed and then the appropriate algorithms for using those 
data to directly compute the sought-after changes in the earth's mechanical properties. 
Hence, any method that calls itself inversion (let alone full-wave inversion) for 
determining  changes in elastic properties, and in particular the P-wave velocity pV , and 

that inputs only P-data, is more off base, misguided, and lost than the methods that 
sought two or more functions of depth from a single trace. You can model-match P-data 
until the cows come home, and that takes a lot of computational effort and people with 
advanced degrees in math and physics computing Frechet derivatives, and requires 
sophisticated LP norm cost functions and local or global search engines, so it must be 
reasonable, scientific, and worthwhile.  Why can't we use just PP-data to invert for 

changes in pV , sV , and density, since Zoeppritz says that we can model PP from those 

quantities, and since we have, using PP-data with angle variation, enough dimension? 
As I said above, data dimension is good, but not good enough for a direct inversion of 
those elastic properties. The direct inverse is non-linear. Iterative linear is non-linear. 
But iterative linear inversion is not in any way equivalent to a direct non-linear inversion. 
The further evidence that iterative linear inverse is not a direct elastic inverse solution, is 
that you can iteratively linear invert P wave data. Hence, you can have the 
fundamentally inadequate data and perform iterative linear updating. That’s not possible 
with a direct inverse method. The framework, data needs, and algorithms provided by 
direct inversion all matter. If you iteratively linear invert multi-component data, you 
would not be performing a direct inversion, and your non-linear estimates would not 
agree with the unique non-linear terms provided by a direct solution. Multi-component 
data is important, but the direct inverse algorithm of that data is essential. The 
framework of a direct method helps you understand what will allow things to work in 
principle, and, equally important, it helps you identify the issue or problem when things 
don't work. Indirect methods, on the other hand, can never match that definiteness, 
clarity, and value. When we use just P-wave data with an acoustic or elastic model-
matching FWI for shallow-hazard detection or velocity estimation at top salt, and then 
issues arise, perhaps the framework and requirements described in this note might be 
items behind a lack of predictive stability and usefulness.  

In a paper “Wave theory modeling of P-waves in a heterogeneous elastic medium” 
(Weglein 2012), a single-channel P-wave formalism is presented as a way to model P-
waves in amplitude and phase without needing to model and predict shear waves. This 
P-only wave-modeling method is intractable as a parameter-estimation inverse 
procedure, blocked at the first and linear term. That supports the need for all 
multicomponent data in a direct inverse for estimating changes in the earth’s 
mechanical properties. If one somehow remained insistent that P-data were adequate 
for a direct elastic inverse, one would have to provide a response to that linear, 
intractable inverse step. Further, those direct and explicit nonlinear formulas are only 
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derivable from the direct inverse machinery of the inverse scattering series (please see 
the references below.)  

Using P-wave data with amplitude and phase for an acoustic earth model flies in the 
face of 40 years of AVO experience, which says that the elastic earth is the minimum 
realistic earth model for any amplitude-dependent algorithm or processing method. 
Using P-wave data for an elastic earth model, with algorithms that utilize amplitude and 
phase, violates the necessary multi-component data needs prescribed by direct 

inversion of pV , sV , and density. Having the adequate data (defined by a direct-inversion 

framework) is better than not having the necessary and sufficient data and is a good 
place to start. However, even when one is starting with the indicated multi-component 
data, the train can still be taken off the track by indirect search and iterative linear-
updating algorithms, when direct inverse algorithms are indicated and available. 
Iterative linear updating of multi-component data is a model-matching indirect method 
and is never equivalent to a direct inversion of those data.  

Some might say in response that P-wave FWI with either an acoustic or elastic medium, 
followed by use of some search algorithm, represents “an approximation,” and what's 
wrong with approximations? The answer is precisely that “What IS wrong with the 
approximation?” If you purposefully or inadvertently  ignore (or wish away) the 
framework and algorithms that a direct solution to the elastic parameter estimation  
provides, you will never know what you are ignoring and dropping and what your 
approximation is approximating, nor will you know what value your method actually 
represents and means, and how you could improve the reliability of your prediction. 

In summary, so-called P-wave FWI is something less than advertised and is in general 
the wrong (acoustic)-earth model, the wrong data, and the wrong method --- but besides 
that, it has a lot going for it. 

In Zhang (2006), the direct elastic inverse was applied to a 4D application and the term 
beyond linear was able to help distinguish a pressure change from a fluid change. This 
line of research continued in Xu Li (2011) and H. Liang (2010). This is comparatively 
illustrated with synthetic log data in Figures 1-6 (from Zhang (2006), pages 95-97). 

Epilogue 

A direct method to find the route from where you are to where you want to go –– e.g., 
for a scheduled meeting –– would use MapQuest, while an indirect method would seek 
and search and stop at every possible location in the city until you arrive somewhere 
where someone seems to be happy to see you, and you have a toolbox of LP cost 
functions to define “happy.” A direct solution, in contrast to indirect methods, doesn’t 
require or ever raise the issue of necessary but insufficient conditions or cost functions, 



357 

 

and it’s not a “condition” or property. It’s a solution, a construction. Nothing beats that 
for clarity, efficiency, and effectiveness. The direct MapQuest inversion communication 
and message to the current indirect P-wave FWI methods is that the latter are searching 
for the meeting in the wrong city. 

The message of this paper is that direct inversion provides a framework, and a set of 
data requirements and algorithms, that not only have produced a stand-alone capability 
(with model-type independent algorithms) for removing free-surface and internal 
multiples, without subsurface information, but also for establishing the requirements for 
all seismic processing methods that depend on amplitude analysis, such as AVO and 
so-called FWI. Being frank, we wish these requirements were not the case, because it 
makes our lives more complicated and difficult –– but the conclusions are inescapable. 
When the framework, data requirements, and direct methods are not satisfied, we have 
a clear and understandable reason for the resulting failure and for what we might do to 
provide more reliable and useful predictive capability.  
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Figure 1. Schematic of the synthetic well log A-52. 

 

 

Figure 2. Schematic of the baseline, monitor and input reflection coefficients. 
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Figure 3. Comparison of actual changes in shear modulus, P-impedance and velocity 
ratio Vp/Vs. The baseline is the log data in 1986 and the monitor is the log data in 2001. 
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Figure 4. Comparison of first and second order approximation of relative change in 
shear modulus. The baseline is the log data in 1986 and the monitor is the log data in 
2001. 

 

Figure 5. Comparison of first and second order approximation of relative change in 
Vp/Vs. The baseline is the log data in 1986 and the monitor is the log data in 2001. 
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Figure 6. Zoomed in comparison of first and second order approximation of relative 
change in Vp/Vs. The baseline is the log data in 1986 and the monitor is the log data in 
2001. 
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ABSTRACT 

The wavelet  estimation  algorithm  in  elastic media, which  is  derived  from  the 

displacement  wave  equation  and  Green’s  theorem,  is  analyzed  and  then  written  in 

component  form  for  direct  application.  The  elastic  formulation  of  Green’s  theorem 

provides an algorithm for reconstruction of the direct arrival (or reference wave) and of 

the  scattered  field  of  an  elastic  seismic  experiment, without  requiring  knowledge  of 

propagation velocities or density. The source wavelet can then be estimated by dividing 

the reference wave by the analytic Green’s dyadic. The input to this algorithm includes 

the x, y, and z components of  the displacement wavefield and  their respective spatial 

derivatives. Initial numerical experiments indicate that: (a) If all the input quantities are 

available,  the  reference  field  is  correctly  reconstructed  below  the  receivers  and  the 

estimated wavelet is precise in phase and amplitude; (b) If only the z‐component of the 

data  is  available,  the  wavelet  obtained  is  less  accurate  in  amplitude  but  is  still 

satisfactory in phase and shape.  
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INTRODUCTION 

The signature of the source is a fundamental ingredient of many classic problems 

in exploration seismology. For example, a reliable knowledge of the source signature is 

required in many data‐driven methods that are based on the feedback model (Berkhout 

and  Verschuur,  2005;  Verschuur  and  Berkhout,  2005)  and  on  the  inverse  scattering 

series (Araujo et al, 1994; Carvalho and Weglein, 1994; Weglein, et al., 1997; Weglein, et 

al., 2003) and are used for the removal of free‐surface and internal multiples. Within the 

context  of  seismic  imaging,  the  source  signature  (wavelet)  is  the  quantity  that most 

directly  determines  our  ability  to  obtain  highly  resolved  images  of  the  subsurface. 

Ultimately, for the purposes of time‐lapse analysis and inversion, compensation for the 

source  footprint,  and  for  other  characteristics  of  the  particular  experimental  device 

being employed,  is the key to determination of the  indicators and parameters that are 

sought. 

Weglein and Secrest (1990) published a multidimensional, wave‐theory method 

to  estimate  the  source  signature  directly  from  seismic  recordings, which  requires  no 

information  on  the  subsurface.  The  procedure  is  based  on  the Green's  theorem  and 

has both an acoustic and an elastic  formulation. The elastic approach  is based on  the 

elastic formulation of Green's theorem introduced by Pao and Varatharajulu (1976). 

In both the acoustic case and the elastic case, the method consists of two steps:  
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1. Determination of  the  reference wavefield  (the wavefield  as  it would be  if  the 

experiment were carried out in the reference medium), and 

2. Extraction of the wavelet through a division by the relevant Green's function. 

While acoustic  (marine) applications of  the Green's  theorem have been known 

for  several  years  and  have  produced  several  useful  algorithms,  such  as  multiple 

attenuation (Fokkema and van den Berg, 1993; Amundsen, 2001), wavefield separation, 

deghosting,  and wavelet  estimation  (Zhang  and Weglein,  2005;  Zhang  and Weglein, 

2006; Mayhan et al., 2011), the potential of its elastic counterpart has yet to be carefully 

analyzed and accomplished. One reason for that disparity certainly resides in the innate 

complexity  of  the  elastic  wave  theory,  and  above  all  in  the  large  number  of 

measurements  a  practical  experiment would  require  (12  different  types  of wavefield 

measurements). 

This  paper  documents  the  initial  results  of  an  effort  to  (1)  implement  in  a 

computer code the elastic wavelet‐estimation method published in Weglein and Secrest 

(1990), (2) evaluate the strictness of the theoretical requirement all of the 12 wavefield 

measurements, and (3) ultimately, determine whether useful results can be achieved if 

just the wavefield quantities that are routinely acquired in offshore seismic exploration 

are available. 
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Methodology 

Green’s dyadic for elastic motion equations 

The displacement equation of motion in isotropic and homogeneous elastic 

media is written in the frequency domain as equation 7 in the work of Pao and 

Varatharajulu (1976), for the case in which only steady‐state waves are considered. It is 

ሾሺߣ ൅ ׏׏ሻߤ ∙ ൅׏ߤଶሿݑሬറሺݔറ, ߱ሻ ൅ ,റݔሬറሺݑଶ߱ߩ ߱ሻ ൌ െߩ റ݂ሺݔറ, ߱ሻ .      (1) 

Here, ߣ and ߤ are Lamé constants, ݑሬറ is the vector displacement field, ߩ is density, ߱ is 

the circular frequency, and  റ݂ is the body force per unit mass. We can rewrite Eq.1 in 

such a way that P‐ and S‐wave motions are decoupled, which can only be done under an 

assumption of isotropy and homogeneity:  

ሺߣ ൅ ׏ሺ׏ሻߤ2 ∙ ሬറሻݑ െ ׏ߤ ൈ ሺ׏ ൈ ሬറሻݑ ൅ ሬറݑଶ߱ߩ ൌ െߩ റ݂,       (2) 

and further, 

׏ሺ׏௣ଶܥ ∙ ሬറሻݑ െ ׏௦ଶܥ ൈ ሺ׏ ൈ ሬറሻݑ ൅ ߱ଶݑሬറ ൌ െ റ݂ ,         (3) 

where ܥ௣ and ܥ௦ are the P‐ and S‐wave velocities, ܥ௣ଶ ൌ ඥሺߣ ൅ ௦ଶܥ and ;ߩ/ሻߤ2 ൌ ඥߩ/ߤ. 

Constructed to solve Eq.2, the Green’s dyadic satisfies the dyadic equation: 

ሾሺߣ ൅ ׏׏ሻߤ2 ∙ െ׏ߤ ൈ ׏ ൈሿ࢔࢓ࡳധധധധധധሺݎറ, ,′റݎ ߱ሻ ൅ ,റݎധധധധധധሺ࢔࢓ࡳଶ߱ߩ ,′റݎ ߱ሻ ൌ െࡵധߜሺݎറ െ  റ′ሻ    (4)ݎ
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where ࡵധ is the unit dyadic ൥
1

1
1

൩ . The Cartesian index ݉, ݊ ൌ  which ,3	ݎ݋	1,2

represents the direction in the Cartesian coordinate system. ࢔࢓ࡳധധധധധധ is the dyadic Green’s 

displacement tensor, which describes the nth‐component vector‐displacement field at 

observation point ݎറ  caused by the mth‐component of the source at point ݎറᇱ, and 

റݎሺߜ െ ׬ :റ′ሻ is the 3D Dirac delta functionݎ റݎሺߜ െ റݎറሻ݀ݎറ′ሻ݂ሺݎ ൌ ݂ሺݎറ ൌ  .	റᇱሻݎ

The solution of the elastic wave equation 2 is the vector displacement field ݑሬറ, 

which can be written using Green’s dyadic in the frequency domain:  

,റݎ௡ሺݑ ߱ሻ ൌ∭ ,റݎ௠௡ሺܩ ,′റݎ ߱ሻሾെߩ ௠݂ሺݎറ′, ߱ሻሿஶ dݎറ′.    (5) 

  Following Morse and Feshbach (1953), we can construct the Green’s dyadic 

 :ധധധധധധ as the sum of a P‐wave term and an S‐wave term, as follows࢔࢓ࡳ

ധധധധധധ࢔࢓ࡳ ൌ ധധധധ࢖ࡳ ൅   ധധധ࢙ࡳ ,        (6) 

where ࢖ࡳധധധധ and ࢙ࡳധധധ satisfy the following two equations, respectively: 

ሺߣ ൅ ׏׏ሻߤ2 ∙ ,റݎധധധധሺ࢖ࡳ ,′റݎ ߱ሻ ൅ ,റݎധധധധሺ࢖ࡳଶ߱ߩ ,′റݎ ߱ሻ ൌ െࡵധߜ࢖ሺݎറ െ   റ′ሻݎ   (7a) 

and 

െ׏ߤ ൈ ׏ ൈ ,റݎധധധሺ࢙ࡳ ,′റݎ ߱ሻ ൅ ,റݎധധധሺ࢙ࡳଶ߱ߩ ,′റݎ ߱ሻ ൌ െࡵധߜ࢙ሺݎറ െ  , റ′ሻݎ   (7b) 
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where ࡵധ ൌ ࢖ധࡵ ൅  and the delta function contains two components, which means that ,࢙ധࡵ

both a P‐wave and an S‐wave are generated by the point source.  

In Eq. 7a, ࢖ࡳധധധധ is made to generate only a P‐wave; thus െ׏ߤ ൈ ׏ ൈ ധധധധ࢖ࡳ ൌ 0. Also, 

in Eq. 7b, ࢙ࡳധധധ is made to generate only an S‐wave; thus ሺߣ ൅ ׏׏ሻߤ2 ∙ ധധധ࢙ࡳ ൌ 0, so that the 

P‐ wave and S‐wave are decoupled. The full wave equation 4 is the sum of P‐wave 

equation 7a and S‐wave equation 7b.This decoupling of P‐ and S‐waves only exists in 

isotropic and homogeneous media in which the stiffness tensor has just two 

independent components: ߣ and ߤ. 

Using the identities: ׏ ൈ ሺܽ׏ሻ ൌ 0 for any scalar field ܽ and ׏ ∙ ൫׏ ൈ ሬܾറ൯ ൌ 0 for 

any vector field  ሬܾറ, we can construct the forms of ࢖ࡳധധധധ and ࢙ࡳധധധ from the basic Green’s 

function ݃௣ and ݃௦of the scalar wave equation for vector wave equations: 

,റݎധധധധሺ࢖ࡳ ,′റݎ ߱ሻ ൌ 		
1

ሺߣ ൅ ሻߤ2
1
݇௣ଶ
ᇱ׏௣݃׏ൣ െ റݎሺߜ࢖ധࡵ െ  റ′ሻ൧ݎ

ൌ ଵ

ఘେ೛
మ ൤

ଵ

௞೛
మ ∑ ࢔ොࢋ࢓ොࢋ

డ

డ௫೘

డ

డ௫೙
ᇲ

ଷ
௠,௡ୀଵ ݃௣ െ

ଵ

௞೛
మ റݎሺߜ࢖ധࡵ െ   റ′ሻ൨ݎ       (8a) 

and  

,റݎധധധሺ࢙ࡳ ,′റݎ ߱ሻ ൌ
1
μ
1
݇௦ଶ
׏ൣ ൈ ൫ࡵധ݃௦൯ ൈ ᇱ׏ െ റݎሺߜ࢖ധࡵ െ  റ′ሻ൧ݎ

ൌ ଵ

ఘେೞ
మ ቂെ

ଵ

௞ೞ
మ ∑ ࢔ොࢋ࢓ොࢋ

డ

డ௫೘

డ

డ௫೙
ᇲ

ଷ
௠,௡ୀଵ ݃௦ െ

ଵ

௞ೞ
మ ׏ധࡵ

ଶ݃௦ െ
ଵ

௞ೞ
మ റݎሺߜ࢙ധࡵ െ   റ′ሻቃݎ .    (8b) 
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Here ݇௣ and ݇௦ are the wavenumbers of P‐waves and S‐waves, respectively, and  ݃௣ and 

݃௦ are Green’s functions that satisfy ሺ׏ଶ ൅ ݇ଶሻ݃௣,௦ ൌ െߜ.  

For a 3D medium, they can be shown to be (P.1433, Morse and Feshback, 1953): 

݃௣,௦ ൌ
௘೔ೖ೛,ೞೝ

ସగ௥
   .          (9) 

For those field points not at the source (ݎറ ്  റ′), the deltas in 8a and 8b evaluateݎ

to zero: ࡵധߜ ൌ ߜ࢖ധࡵ ൌ ߜ࢙ധࡵ ൌ 0. 

Also, because ׏ଶ݃௦ ൌ െ݇ଶ݃௦ െ   ;ߜ ଵ
େ೛
మ
ଵ

௞೛
మ ൌ

ଵ

େೞ
మ
ଵ

௞ೞ
మ ൌ

ଵ

ఠమ ; and 
డ

డ௫೙
ൌ െ డ

డ௫೙
ᇲ  , the 

Green’s dyadic is written as: 

ധധധധധധ࢔࢓ࡳ ൌ ധധധധ࢖ࡳ ൅ ധധധ࢙ࡳ ൌ
ଵ

ସగఘఠమ ሾߜ௠௡݇௦ଶ
௘௫௣ሺ௜௞ೞ௥ሻ

௥
െ డ

డ௫೘

డ

డ௫೙
ቀ
௘௫௣൫௜௞೛௥൯

௥
െ ௘௫௣ሺ௜௞ೞ௥ሻ

௥
ቁሿ .  (10) 

Figure 1 shows the wavefields generated by convolving a Ricker wavelet with the 

analytic forms ࢔࢓ࡳധധധധധധ, ࢖ࡳധധധധ , and ࢙ࡳധധധ to demonstrate the effectiveness and accuracy of this 

type of expression of Green’s dyadic tensor. The P‐ and S‐wavefields are decoupled 

using ࢖ࡳധധധധ and ࢙ࡳധധധ , as expected. ࢔࢓ࡳധധധധധധ’s form will be used for ࡳ૙ധധധധ as the reference Green’s 

function later. It can be seen that the horizontal components of the wavefield 

associated with ࢖ࡳധധധധ exhibit the characteristic polarity change while they are moving from 

one side of the source to the other. Similar behavior can be observed for ࢙ࡳധധധ. 
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Algorithm of wavefield extinction in elastic media 

The extinction theorem (Weglein and Secrest, 1990) is 

௣ଶܿߩ රൣ൫ࡳ૙ധധധധሺݎ, ᇱሻݎ ∙ ො݊ᇱ൯൫ߘᇱ ∙ ,ᇱݎሺ࢛ ௦ሻ൯ݎ െ ൫ߘᇱ ∙ ࢛૙ധധധധ൯ሺࡳ ∙ ො݊ᇱሻ൧݀ݏᇱ

ௌ

 

െܿߩ௦ଶ රൣࡳ૙ധധധധ ∙ ሺ ො݊ᇱ ൈ ᇱߘ ൈ ሻ࢛ ൅ ൫ߘᇱ ൈ ૙ധധധധ൯ࡳ ∙ ሺ ො݊ᇱ ൈ ᇱݏሻ൧࢛݀

ௌ

 

ൌ ൜
ሻݏݎ݁ݒ݅݁ܿ݁ݎ	ݓ݋݈ܾ݁	ݎ݋ሺ	ܸ	݊݅	ݎ									,݈݂݀݁݅	݁ܿ݊݁ݎ݂݁݁ݎ
 	ሻݏݎ݁ݒ݅݁ܿ݁ݎ	݁ݒ݋ܾܽ	ݎ݋ሺ	ܸ	ݐݑ݋	ݎ							,݈݂݀݁݅	݀݁ݎ݁ݐݐܽܿݏ ,             (11) 

where ݎ௦  is the source location, ݎᇱ is receiver location and the integral variable, and ݎ is 

the evaluation  location where  the  reconstructed  field  is calculated. The  term  ො݊ᇱ is  the 

unit  vector  pointing  outwards  and  normal  to  the  surface,  and  it  describes  how  the 

Green's  theorem  can  be  utilized  to  selectively  isolate  certain  portions  of  the  seismic 

wavefield without knowing the properties of the actual earth.  

As  shown  in  Figure  2,  a  surface  integral  over  S  surrounding  volume  V  is 

calculated  to  reconstruct  the  reference  field  when  the  evaluation  point ݎ is  chosen 

inside  V,  or  to  reconstruct  the  scattered  field when  the  evaluation  point ݎ is  chosen 

outside V. The volume V surrounded by S  is  the hemisphere extending  to  infinity and 

bounded by the receiver plane at the top. When the hemisphere extends to infinity, we 

can see from Eq.10 that the Green’s dyadic on  its surface approaches 0, therefore the 

surface integral over S reduces to the surface integral only over the receiver plane S0. In 

this case, the directional vector  ො݊ᇱ ൌ ሾ0,0, െ1ሿ, thus Eq.11 can be simplified as Eq.11a:  
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௣ଶܿߩ න ቐ൥
െܩଵଷ
െܩଶଷ
െܩଷଷ

൩ ൫ݑଵ,ଵᇲ ൅ ଶ,ଶᇲݑ ൅ ଷ,ଷᇲ൯ݑ െ ቎
ଵଵ,ଵᇲܩ ൅ ଵଶ,ଶᇲܩ ൅ ଵଷ,ଷᇲܩ
ଶଵ,ଵᇲܩ ൅ ଶଶ,ଶᇲܩ ൅ ଶଷ,ଷᇲܩ
ଷଵ,ଵᇲܩ ൅ ଷଶ,ଶᇲܩ ൅ ଷଷ,ଷᇲܩ

቏ ሺെݑଷሻቑ݀ݕ݀′ݔ′
ௌ଴

 

െܿߩ௦ଶ න ቎࢔࢓ࡳ ∙ ൥
ଵ,ଷᇲݑ െ ଷ,ଵᇲݑ
ଶ,ଷᇲݑ െ ଷ,ଶᇲݑ

0
൩ ൅ ሺߘᇱ ൈ ሻ࢔࢓ࡳ ∙ ቈ

ଶݑ
െݑଵ
0
቉቏ ′ݕᇱݔ݀

ௌ଴

 

ൌ ൜
ሻݏݎ݁ݒ݅݁ܿ݁ݎ	ݓ݋݈ܾ݁	ݎ݋ሺ	ܸ	݊݅	ݎ									,݈݂݀݁݅	݁ܿ݊݁ݎ݂݁݁ݎ
 	ሻݏݎ݁ݒ݅݁ܿ݁ݎ	݁ݒ݋ܾܽ	ݎ݋ሺ	ܸ	ݐݑ݋	ݎ							,݈݂݀݁݅	݀݁ݎ݁ݐݐܽܿݏ .          (11a) 

Finally, we can obtain the wavefield‐extinction algorithm in vector component form: 

௣ଶܿߩ න ൦

െܩଵଷ൫ݑଵ,ଵᇲ ൅ ଶ,ଶᇲݑ ൅ ଷ,ଷᇲ൯ݑ ൅ ൫ܩଵଵ,ଵᇲ ൅ ଵଶ,ଶᇲܩ ൅ ଷݑଵଷ,ଷᇲ൯ܩ
െܩଶଷ൫ݑଵ,ଵᇲ ൅ ଶ,ଶᇲݑ ൅ ଷ,ଷᇲ൯ݑ ൅ ൫ܩଶଵ,ଵᇲ ൅ ଶଶ,ଶᇲܩ ൅ ଷݑଶଷ,ଷᇲ൯ܩ
െܩଷଷ൫ݑଵ,ଵᇲ ൅ ଶ,ଶᇲݑ ൅ ଷ,ଷᇲ൯ݑ ൅ ൫ܩଷଵ,ଵᇲ ൅ ଷଶ,ଶᇲܩ ൅ ଷݑଷଷ,ଷᇲ൯ܩ

൪ ′ݕ݀′ݔ݀
ௌ଴

 

െܿߩ௦ଶ න ൦

ଵ,ଷᇲݑଵଵ൫ܩ െ ଷ,ଵᇲ൯ݑ ൅ ଶ,ଷᇲݑଵଶ൫ܩ െ ଷ,ଶᇲ൯ݑ ൅ ൫ܩଶଶ,ଷᇲ െ ଵݑଷଶ,ଶᇲ൯ܩ ൅ ൫ܩଷଵ,ଶᇲ െ ଶݑଶଵ,ଷᇲ൯ܩ
ଵ,ଷᇲݑଶଵ൫ܩ െ ଷ,ଵᇲ൯ݑ ൅ ଶ,ଷᇲݑଶଶ൫ܩ െ ଷ,ଶᇲ൯ݑ ൅ ൫ܩଷଶ,ଵᇲ െ ଵݑଵଶ,ଷᇲ൯ܩ ൅ ൫ܩଵଵ,ଷᇲ െ ଶݑଷଵ,ଵᇲ൯ܩ
ଵ,ଷᇲݑଷଵ൫ܩ െ ଷ,ଵᇲ൯ݑ ൅ ଶ,ଷᇲݑଷଶ൫ܩ െ ଷ,ଶᇲ൯ݑ ൅ ൫ܩଵଶ,ଶᇲ െ ଵݑଶଶ,ଵᇲ൯ܩ ൅ ൫ܩଶଵ,ଵᇲ െ ଶݑଵଵ,ଶᇲ൯ܩ

൪ ′ݕᇱݔ݀
ௌ଴

 

ൌ ൜
ሻݏݎ݁ݒ݅݁ܿ݁ݎ	ݓ݋݈ܾ݁	ݎ݋ሺ	ܸ	݊݅	ݎ									,݈݂݀݁݅	݁ܿ݊݁ݎ݂݁݁ݎ
 	ሻݏݎ݁ݒ݅݁ܿ݁ݎ	݁ݒ݋ܾܽ	ݎ݋ሺ	ܸ	ݐݑ݋	ݎ							,݈݂݀݁݅	݀݁ݎ݁ݐݐܽܿݏ           (11b) 

The  indices  1,2,3  indicate  the  x,y,z  axes,  respectively.  The  index  after  the  comma 

indicates  the  direction  that  is  taken  by  the  spatial  derivative  with  respect  to,  for 

example, ݑଵ,ଶᇲ ൌ
డ௎ೣ
డ௬ᇲ

. All the derivatives are over the components ݔ௜
ᇱ of the  integration 

variable ݎᇱ on the receiver plane. Notice that here Green’s dyadic ࡳ૙ധധധധሺݎ,  ᇱሻ is a functionݎ

of ݎ and ݎᇱ, and the displacement field ࢛ሺݎᇱ,   .௦ݎ ᇱ andݎ ௦ሻ is a function ofݎ

Both  the extinction  and wavelet extraction  algorithms  require  knowledge of  a 

reference medium, which defines ࡳ૙. The reference medium  is defined as the simplest 
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medium that agrees with the actual earth at and near the locations where the field and 

its derivatives  are measured.  In marine  seismic  exploration,  its properties  are  readily 

identified with those of seawater. Consequently, the reference medium can  largely be 

considered to be acoustic and homogeneous, and the algorithm can be simply evaluated 

using analytical methods.  

Onshore, determination of the reference (elastic) medium may certainly be more 

difficult. However, at  the early  stage of  this  research, we  choose not  to address  that 

problem directly: within the rest of this document the reference medium is assumed to 

be a homogeneous elastic half space with known properties (Vp, Vs,ρ).  

Wavelet estimation using the wavefield extinction algorithm in elastic media 

When ݎ is chosen inside ܸ (Fig.2) or below receivers (Fig.3, left side), Eq.11b can 

be used to calculate the reference wavefield at ݎ, as  if the wave had gone through the 

reference medium without scattering. In the reference medium, the vector wavefield of 

3‐component  displacement  can  also  be written  as  the  product  of  a wavelet  (source 

signature) and the Green’s dyadic tensor, 

,ሺ߱ܣ ,ݎ଴ሺܩ௦ሻݎ ௦ሻݎ ൌ ௥ܷ௘௙ሺݎ,  .௦ሻݎ       (12) 

The  power  of  the  extinction  theorem  is  that  the  simplest  reference medium  can  be 

chosen as long as it agrees with the real medium where the fields and their derivatives 

are  measured.  Therefore,  the  Green’s  dyadic  solution  of  a  whole‐space  isotropic 
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homogeneous  medium  Eq.10  can  be  chosen  as  the  value  of  Green’s  tensor  in  a 

reference medium. 

Next,  if  the  nature  of  the  body  force  at  the  source  is  known,  the  wavelet 

estimation  algorithm  can  be  directly  obtained  from  Eq.11b.  From  here  onwards, we 

make an assumption  that  the  source wavelet only acts along  the z‐direction.  In other 

words,  it  is  a  directional  force  applied  at  the  source  point  in  the  vertical  direction. 

Therefore the z‐component of the reference field equals the product of the wavelet and 

the reference Green’s dyadic component ܩଷଷ. Under that assumption, the algorithm of 

vertical wavelet estimation in elastic media can be written as: 

ሺ߱ሻܣ ൌ
1

,ݎଷଷሺܩ ௦ሻݎ
ቐܿߩ௣ଶ නൣെܩଷଷ൫ݑଵ,ଵᇱ ൅ ଶ,ଶᇱݑ ൅ ଷ,ଷᇱ൯ݑ ൅ ൫ܩଷଵ,ଵᇱ ൅ ଷଶ,ଶᇱܩ ൅ ᇱݏଷ൧݀ݑଷଷ,ଷᇱ൯ܩ

ௌ

 

െܿߩ௦ଶ නൣെܩଵଵݑଷ,ଵᇱ െ ଷ,ଶᇱݑଵଶܩ ൅ ଵ,ଵᇱݑଵଷ൫ܩ ൅ ଶ,ଶᇱ൯ݑ ൅ ൫ܩଵଶ,ଶᇱ െ ଵݑଶଶ,ଵᇱ൯ܩ ൅ ൫ܩଶଵ,ଵᇱ െ ᇱݏଶ൧݀ݑଵଵ,ଶᇱ൯ܩ

ௌ

ቑ 

                      (13) 

The RHS of Eq.13  inside the brace  is the z‐component of the surface  integral  in 

Eq.11b. The Cartesian  indices 1,2,3  indicate the x,y,z axes, respectively. The  index after 

the comma indicates the direction that is taken by the spatial derivative with respect to. 

for instance,  ଵܷ,ଶ ൌ
డ௎ೣ
డ௬

. The wavelet will be obtained from this algorithm. 

If the volume force is along a direction other than z, a circular symmetry rule can 

always be used to change the indices (1‐>2‐>3‐>1) in all the terms in Eq.13, to obtain an 
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expression  that  is  a  suitable  algorithm  for wavelet  estimation  in  the  desired  source 

direction.  

DESIGN AND RESULTS OF NUMERICAL TESTS 

Three different tests have been designed to check the accuracy and potential of 

the algorithm  in different circumstances. The model  is an  isotropic and homogeneous 

elastic medium  without  a  free  surface  above  and  without  scattering.  The  common 

parameters used in these tests are listed in Table 1. 

From  Figure  2 we  know  already  that  the  surface  integral  in  the  algorithm  of 

Eq.13  can  be  approximated  as  the  integral  over  the  receiver  plane ܵ௫௬ topping  the 

volume V. The source  is  located at ሺ1000݉, 1000݉, 50݉ሻ, 150m above the receivers. 

The receivers are in the plane ܵ௫௬ at a depth of 200݉. Evaluation of Eq 13 is performed 

at a depth of 100m  for  tests above receivers, and at a depth of 300m  for  tests below 

receivers. In both cases, the evaluation is performed in the vertical plane containing the 

source. To compare with the reference field for all offsets, we output the reconstructed 

field  of  all  201  evaluation  points  at  the  same  depth  along  the  line  y=1000m.  The 

reference fields are also calculated with the analytic Green’s dyadic. Figure 3 shows the 

experimental  configurations  for  tests  above  and  below  the  receivers.  At  each  single 

evaluation  point  (black  circle  in  Figure  3),  the  surface  integral  over  S  can  output  the 

reconstructed fields. Therefore it is possible to obtain an arbitrary number of estimated 

wavelets.  Averaging  the  wavelet  from  all  estimations  will  significantly  increase  the 

accuracy and reduce the numerical noise.  
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   The data sets we choose for these early tests are generated from the product of 

the Green’s dyadic ܩ௠௡ሺݎᇱ,  ௦ሻ andݎ the  source wavelet ܣሺ߱ሻ, which  the algorithm will 

try to recover, on the basis of the assumption that the initial pulse was given by a force 

in the z‐direction. 

In  the  same  way  as  above,  except  this  time  using ܩ௠௡ሺݎ, ௦ሻݎ  instead  of 

,ᇱݎ௠௡ሺܩ  ௦ሻ, we also generate a “reference” dataset to be compared with the outcomeݎ

of the braced expression in Eq.13. The profiles of the reference displacement fields at a 

depth of 300m are shown in the left column of Figure 1. 

Test 1: full data, full Green’s dyadic 

In  the  first  test,  we  input  all  the  required  data,  which  are  12  fields 

( ௜ܷ 	ܽ݊݀	 ௜ܷ,௝; ݅, ݆ ൌ 1,2,3ሻ, including all the components of the displacement field and all 

three  spatial  derivatives  of  each.  The  full  analytic  Green’s  dyadic  is  used.  The  test 

parameters are identical to those listed in Table 1. 

Eq.11  suggests  that  when  we  are  evaluating  below  the  receivers,  the 

reconstructed  fields are equal  to  the  reference wavefields, which  is  shown  in  the  left 

column of Figure 1, and when we are evaluating above the receivers, the reconstructed 

fields are equal  to  the  scattered wavefields, which  is  zero because our homogeneous 

model doesn’t have any scattering. Let’s find out by outputting the surface  integral for 

201 evaluation points along one line.  
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Figure 4 shows the resulting traces reconstructed below the receivers,  in which 

each  trace  is  the one estimated  from  the surface  integral  for one evaluation point.  In 

theory,  the  reconstructed  fields below  the  receivers should be equal  to  the  reference 

fields, as shown in the left column of Figure 1. After comparing the two sets of figures, 

we can state that the arrivals of the P‐wave and the S‐wave are precisely the same  in 

amplitude, phase, and  time.  Some noise  can be  seen near  the boundaries. There are 

several reasons to consider. First, this test only calculates the surface integral in a finite 

area, and the numerical grids are very sparse, so truncation at the edge of receivers will 

cause noise. Second, we notice that the  integral is calculated  in the frequency domain, 

so a short FFT length can also cause this kind of aliasing error.   This error is very small in 

amplitude compared with that of the wave arrivals, so its effect can be neglected when 

we estimate the wavelet. Averaging over many estimation results will further reduce the 

effects of this error.  

Now we have the reconstructed reference wavefields, so that from Eq.13 we can 

divide the reference  fields by the Green’s dyadic  in the reference media to obtain the 

wavelet.  The wavelet  used  to  generate  our  data  is  shown  in  Figure  5a.  The wavelet 

estimated from the reconstruction below the receivers is shown in Figure 5b.  

Table 2 presents  the  real wavelet and  the estimated wavelet,  side by  side,  for 

every time sample.  It clearly shows that the similarity between the estimated wavelet 

and the real wavelet is higher than 97.6% from the 20th sample to the 41st sample. The 
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amplitude of the wavelet beyond this range  is very small and can be considered to be 

zero. The algorithm of Eq.13 works very well in this situation.  

Next,  let’s  reconstruct  the  field  above  the  receivers.  A  zero  field  is  expected 

because the scattered field in our model is zero. The evaluation points are at a depth of 

100m, and all the other parameters remain the same as the case below the receivers. 

The x‐ and z‐components of displacement fields for reconstruction above the receivers 

are shown in Figure 6. 

From Figure 6,  it  is obvious that the main wavefields vanish. The residue  is the 

same boundary error as is shown in Figure 4. The amplitude of the residue in Figure 6 is 

identical to that in Figure 4. Therefore it can be neglected for the same reason.  

The estimated wavelet above the receivers  is given  in Figure 7. Notice that the 

maximum amplitude of the estimation above the receivers falls into the order of 10ିସ, 

so  that  the  estimation  is  negligible when  displayed  beside  the  estimation  below  the 

receivers.  This  amount  of  error  is  expected  when  we  analyze  the  error  around 

boundaries.  

To further understand how the surface integral vanishes above and accumulates 

below  receivers, we display  the  integrand  function  for one estimation point  for both 

cases.  In  Figure  8,  the  integrand  function  is  shown  for  evaluation  point 

ሺ1400,1000,300ሻ, below the receivers. 
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In  Figure  9,  the  integrand  function  is  shown  for  evaluation  point 

ሺ1400,1000,100ሻ, above  the  receivers. The polarity  reversal of  integrand  functions  is 

indicated by arrows. After summing the integrand functions for all receivers, we can see 

that the surface  integral accumulates below receivers and vanishes above receivers.  In 

both cases, the cross‐terms will cancel in the surface integral.    

Test 2: only z‐component data, full Green’s dyadic 

There are many restrictions for this application on real data, and one of the most 

non‐negligible  problems  is  that  usually  we  don’t  have  sufficient  data  from  our 

geophones. Generally  speaking,  the  z‐component data  and  their derivatives  are  fairly 

easy to get. Before taking the step into real data, we want to know how this algorithm 

does with insufficient data input, in particular with ܷଷ, ܷଷ,ଵ, ܷଷ,ଶ, ܷଷ,ଷ. 

In  this  test, we  input  only  the  z‐component  of  the  displacement  field  and  its 

three spatial derivatives into our algorithm. For several reasons, we only are interested 

in  the  result  for  the  case  below  the  receivers.  Reason  1  is  that  in  real  onshore 

applications,  there  is  no  wave  in  the  air  above  the  receivers.  Reason  2  is  that  the 

cancelation is not expected to happen if we don’t provide all the required data, which is 

easier to understand  if we  look at Eq.13: the  first surface  integral has 2 missing terms 

out  of  6,  and  the  second  surface  integral  has  6 missing  terms  out  of  8.  Although  it 

sounds  fishy,  we  really  want  to  extract  some  useful  information  with  only  the  z‐

component data.  



383 
 

The reconstructed fields below the receiver using only z‐component data and the 

full Green’s dyadic are shown  in Figure 10. Figure 10 shows a worse result than that  in 

Figure 4. The  result has some additional waves between  the P‐ and S‐waves, because 

the cross‐terms can’t be canceled without all the required data in test 2. We can guess 

that the averaging may help us to extract some information about the wavelet. Then we 

display the estimated wavelet in Figure 11. 

The wavelet  in Figure 11  looks promising.  It has  the  right phase, and  is only a 

little off the correct shape and amplitude. The averaging may reduce the error  from a 

single  estimation  and  make  the  final  result  better.  Now  let’s  check  the  wavelet 

estimated from a single evaluation point, as  is shown  in Figure 12. From Figure 12, the 

error  spike exists at  the  side bands of  the wavelet, mainly  caused by  the  cross‐terms 

that can’t be canceled. 

Test 3: only z‐component data, P‐wave Green’s dyadic Gp 

It seems that the cross‐terms cause a major problem. To the reader’s knowledge, 

the cross‐terms are the multiplication of the P‐wave (or S‐wave) Green’s dyadic and the 

S‐wave  (or P‐wave) displacement  field’s derivatives, or alternatively, the multiplication 

of  the  P‐wave  (S‐wave)  Green’s  dyadic’s  derivatives  and  the  S‐wave  (P‐wave) 

displacement  field.  Since we  only  use  z‐component  data,  the  input  near  the  source 

wavefield is mainly contributed by the P‐wave. We choose to switch the S‐wave part off 

in  the  Green’s  dyadic  and  use  only  the  P‐wave  Green’s  dyadic  in  test  3,  which  is 

described in Eq.8 and Figure 1. 
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In  this  test, we  still use 4 data  sets  (Uଷ, Uଷ,ଵ, Uଷ,ଶ, Uଷ,ଷ) as  input data. The only 

difference  between  test  2  and  test  3  is  the  choice  of  Green’s  dyadic.  All  the  other 

parameters are the same as those in Table 1. 

The reconstructed fields below the receiver using only z‐component data and P‐

wave Green’s dyadic are shown in Figure 13. 

The  reconstructed  field  using  the  P‐wave  Green’s  dyadic  is  very  close  to  the 

reference field shown in the middle column of Figure 1. The low‐frequency noise in the 

center  is  caused  by  the  rapid  change  of  the  P‐wave Green’s  dyadic  in  the  frequency 

domain. The amplitude of the noise is negligible compared with the main wavefields. 

The wavelet estimated from averaging the 201 estimations is given in Figure 14, 

and the wavelet from a single estimation at (1400, 1000, 30) is given in Figure 15. 

When we use the P‐wave Green’s dyadic  in conjunction with the  insufficient z‐

component data, the single estimation result in Figure 15 doesn’t have more noise than 

the averaging  in Figure 14. The overall results are very satisfactory,  if we acknowledge 

that 2 terms in the first integral are not taken into account. After comparing it with the 

original wavelet, we observe that the wavelet estimation in test 3 keeps the exact phase, 

a very similar shape, and a lower than actual amplitude compared with the real wavelet.  

Attention should be paid in this type of calculation. We altered Green’s dyadic to 

a P‐wave‐only form, which violates the basic assumption that the reference field should 

agree with  the  real medium where  the  data  and  the  derivatives  are measured.    The 
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result  doesn’t  show  a  large  error  for  this  very  simple model without  any  scattering. 

However, we suspect that it may cause trouble when we deal with a more complicated 

model  that  has more  reflectors.  The  reason we  could  not  test  that  is  because  very 

limited data  can be obtained  from  the 12  components  (3 displacements, each with 3 

spatial derivatives).  If the example had a reflector, the results would be  less  favorable 

for  an  acoustic  reference  and  single‐component  data.  Thus,  further  investigation  is 

needed to evaluate the performance of this method in the case of limited data.  

CONCLUSIONS 

In  this paper, we  first provide an algorithm  for estimating a wavelet  in elastic 

media, without prior subsurface information in a form that can be directly applied. Then 

we analyze the characteristics of the Green’s dyadic in the situation of decoupled P‐ and 

S‐wave Green’s dyadics in elastic media.  

We  designed  three  numerical  experiments  to  test  the  algorithm  for  different 

purposes. The first is to test the accuracy and correctness of the algorithm, in which we 

use all 12 data sets and the full Green’s dyadic. The second one is to test the usefulness 

of  the  algorithm when we  input  the  insufficient  data  that  are  usually  provided  from 

almost  all  the  existing  geophones.  The  third  one  is  to  attempt  to  improve  the  result 

from the second test.  

We conclude from all the results of the three tests: 
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This  Green’s  theorem‐based  wavelet‐estimation  algorithm  is  proved  to  be 

correct and shows its effectiveness, accuracy, and robustness. When fed all the required 

data, it can yield a nearly perfect estimated wavelet.  

The most exciting performance aspect of this algorithm is that it can make good 

use of all the existing z‐component‐only data and can calculate good wavelet estimates 

that have  the correct phase, a very  similar  shape, and a  lower‐than‐actual amplitude. 

The reason for the reduced amplitude is that the data in a large offset don’t contain all 

the energy found in the z‐component, and the horizontal components are not input into 

this algorithm. Thus, it can only give results on the basis of what is input. To summarize, 

the closer the input data are to the requirements of the algorithm, the better the results 

are that can be obtained. We should be careful when we use the P‐wave Green’s dyadic 

instead of the full wave. The testing shows that the P‐wave Green’s dyadic is safe to use 

in homogeneous media, but the result of acoustic‐reference and single‐component data 

would be less favorable for a model with more reflectors.  
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Table 1 Parameters in the numerical tests for wavelet estimation in elastic media.  

 or 31st ;ݏSource Peak 120݉ ݏ/݉ ௣ 1500ܥ
sample 

 ݖܪDominant f 20 ݏ/݉ ௦ 1000ܥ
Density 1 ߩ ݃/ܿ݉ଷ Receiver Number 201 inline and crossline 
Sampling 4݉ݏ Interval dx=dy=10݉ 

Trace length 512 Evaluation Location Above or below receiver 

Recording time 2.048ܿ݁ݏ Profile 201points in y=1000m 

 

Table 2 Comparison of the original wavelet used to generate the data and the wavelet estimated from the Green’s 
theorem‐based elastic wavelet estimation algorithm. 

Sample No.  Real value  Estimation  Sample No. Real value Estimation Sample No. Real value  Estimation

1  ‐2.31E‐23  3.38E‐05  21 ‐2.10E‐02 ‐2.11E‐02 41 ‐2.10E‐02  ‐2.05E‐02

2  ‐8.94E‐22  9.59E‐06  22 ‐5.54E‐02 ‐5.54E‐02 42 ‐6.85E‐03  ‐6.40E‐03

3  ‐3.05E‐20  ‐4.44E‐06  23 ‐0.12436 ‐0.12441 43 ‐1.93E‐03  ‐1.60E‐03

4  ‐9.15E‐19  1.80E‐05  24 ‐0.23496 ‐0.23501 44 ‐4.70E‐04  ‐3.32E‐04

5  ‐2.41E‐17  5.75E‐05  25 ‐0.3651 ‐0.36514 45 ‐9.98E‐05  ‐1.38E‐04

6  ‐5.58E‐16  7.20E‐05  26 ‐0.44493 ‐0.44497 46 ‐1.84E‐05  ‐1.72E‐04

7  ‐1.13E‐14  4.92E‐05  27 ‐0.37173 ‐0.37177 47 ‐2.97E‐06  ‐1.95E‐04

8  ‐2.03E‐13  1.81E‐05  28 ‐7.76E‐02 ‐7.76E‐02 48 ‐4.19E‐07  ‐1.75E‐04

9  ‐3.18E‐12  6.36E‐06  29 0.38423 0.3842 49 ‐5.17E‐08  ‐1.39E‐04

10  ‐4.37E‐11  5.13E‐06  30 0.82019 0.820162 50 ‐5.58E‐09  ‐1.22E‐04

11  ‐5.27E‐10  ‐9.98E‐06  31 1 0.999976 51 ‐5.27E‐10  ‐1.43E‐04

12  ‐5.58E‐09  ‐3.30E‐05  32 0.82019 0.820172 52 ‐4.37E‐11  ‐1.94E‐04

13  ‐5.17E‐08  ‐2.23E‐05  33 0.38423 0.384215 53 ‐3.18E‐12  ‐2.45E‐04

14  ‐4.19E‐07  5.08E‐05  34 ‐7.76E‐02 ‐7.76E‐02 54 ‐2.03E‐13  ‐2.70E‐04

15  ‐2.97E‐06  1.59E‐04  35 ‐0.37173 ‐0.37173 55 ‐1.13E‐14  ‐2.61E‐04

16  ‐1.84E‐05  2.28E‐04  36 ‐0.44493 ‐0.44491 56 ‐5.58E‐16  ‐2.29E‐04

17  ‐9.98E‐05  1.55E‐04  37 ‐0.3651 ‐0.36502 57 ‐2.41E‐17  ‐1.87E‐04

18  ‐4.70E‐04  ‐2.81E‐04  38 ‐0.23496 ‐0.23481 58 ‐9.15E‐19  ‐1.43E‐04

19  ‐1.93E‐03  ‐1.84E‐03  39 ‐0.12436 ‐0.12409 59 ‐3.05E‐20  ‐1.07E‐04

20  ‐6.85E‐03  ‐6.84E‐03  40 ‐5.54E‐02 ‐5.50E‐02 60 ‐8.94E‐22  ‐8.06E‐05
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Figure 1 The displacement fields generated by analytic Green’s dyadic. The left column 

is  from  the  full Green’s dyadic,  including P‐ and S‐wave  terms.  tThe middle column  is 

from the P‐wave term of Green’s dyadic, and the right column  is from S‐wave term of 

Green’s dyadic. The x‐components of displacement fields are the upper ones, and the z‐

components are the lower ones. The lateral axis is the receiver number, and the vertical 

axis is the time (in seconds). The source is a Ricker wavelet in the z‐direction with a peak 

at 120ms in the center of the x‐y plane, at a depth of 50m.  The receivers are at a depth 
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of  300m.  The  receiver  distance  is  10m. ܥ௣ ൌ ;ଵିݏ1500݉ ௦ܥ ൌ  .ଵିݏ1000݉ The white 

color indicates positive amplitude and the black color is negative amplitude.  
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Figure 2 Sketch of the geometry of the reconstruction equation using Green’s theorem 

in elastic media. 
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Figure 3 The sketches of experimental configurations  for  tests above  (see  right panel) 

and below receivers (see left panel) ܵ଴. The star indicates the source location at a depth 

of 50m; triangles indicate receivers at a depth of 200m; black circles indicate evaluation 

points at a depth 300m (below) or 100m (above) the receivers and along y=1000. 
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Figure 4 The wavefields  reconstructed below  the  receivers by  the wavelet estimation 

algorithm in elastic media. The left side is the x‐component of displacement fields, and 

the right side  is the z‐component. All 12 required data sets and the full Green’s dyadic 

are used. 
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Figure  5a  The  wavelet  used  to  generate  the  data  in  our  experiments.  It’s  a  Ricker 

wavelet with the peak at the 31st sample, or 120ms, a dominant frequency of 20Hz, and 

the peak amplitude of 1. 

 

 

Figure  5b  The  wavelet  estimated  when  evaluation  points  are  below  receivers.  All 

required  data  are  used.  The  full  Green’s  dyadic  is  used  to  generate  the  data  and 

estimate the wavelet. The wavelet is the average value of 201 estimations along the line 

y=1000. 
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Figure 6 The wavefields  reconstructed above  the  receivers by  the wavelet estimation 

algorithm in elastic media. The left side is the x‐component of displacement fields, and 

the right side  is the z‐component. All 12 required data sets and the full Green’s dyadic 

are used. 
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Figure 7 The wavelet estimated when evaluation points are below receivers. All required 

data are used. The  full Green’s dyadic  is used  to generate  the data and estimate  the 

wavelet. The wavelet is the average value of 201 estimations along the line y=1000. 
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Figure  8  The  integrand  functions  for one  estimation pointሺ1400,1000,300ሻ, which  is 

below  the  receivers.  The  left  side  is  the  x‐component,  and  the  right  side  is  the  z‐

component. All required 12 data sets and the full Green’s dyadic are used. 
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Figure  9  The  integrand  functions  for one  estimation pointሺ1400,1000,100ሻ, which  is 

above  the  receivers.  The  left  side  is  the  x‐component,  and  the  right  side  is  the  z‐

component. The arrow  indicates where the polarity reversal occurs compared with the 

integrand  functions below the receivers. All 12required   data sets and the  full Green’s 

dyadic are used. 
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Figure 10 The wavefields reconstructed below the receivers by the wavelet estimation 

algorithm in elastic media. The left side is the x‐component of displacement fields, and 

the right side  is the z‐component. Four data sets of z‐components and the full Green’s 

dyadic are used. 
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Figure  11  The  wavelet  estimated  when  evaluation  points  are  below  the  receivers. 

Uଷ, Uଷ,ଵ, Uଷ,ଶ, Uଷ,ଷ are used as input data. The full Green’s dyadic is used to generate the 

data  and  estimate  the wavelet.  The wavelet  is  the  average  value  of  201  estimations 

along the line y=1000. 
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Figure  12  The  wavelet  estimated  when  evaluation  points  are  below  the  receivers. 

Uଷ, Uଷ,ଵ, Uଷ,ଶ, Uଷ,ଷ are used as input data. The full Green’s dyadic is used to generate the 

data and estimate the wavelet. The wavelet is the value for one estimation at the point 

(1400, 1000, 300). 
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Figure 13 The wavefields reconstructed below the receivers by the wavelet estimation 

algorithm in elastic media. The left side is the x‐component of displacement fields, and 

the  right  side  is  the  z‐component.  Four  data  sets  of  z‐components  and  the  P‐wave 

Green’s dyadic are used. 
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Figure  14  The  wavelet  estimated  when  evaluation  points  are  below  the  receivers. 

Uଷ, Uଷ,ଵ, Uଷ,ଶ, Uଷ,ଷ are used as input data. The P‐wave Green’s dyadic is used to generate 

the data and estimate the wavelet. The wavelet is the average value of 201 estimations 

along the line y=1000. 
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Figure  15  The  wavelet  estimated  when  evaluation  points  are  below  the  receivers. 

Uଷ, Uଷ,ଵ, Uଷ,ଶ, Uଷ,ଷ are used as input data. The P‐wave Green’s dyadic is used to generate 

the data and estimate the wavelet. The wavelet  is the value  for one estimation at the 

point (1400, 1000, 300). 

 

 

 

 

 



Time saving method based on angular quantities applied to an internal multiple attenuation algo-
rithm: fundamental concept, development and numerical analysis.
Hichem Ayadi∗, Arthur B. Weglein, M-OSRP, University of Houston.

SUMMARY

The Inverse Scattering Series (ISS) is a direct inversion method
for a multidimensional acoustic, elastic and anelastic earth. It
communicates that all inversion processing goals are able to
be achieved directly and without any subsurface information.
This task is reached through a task-specific subseries of the
ISS. Using primaries in the data as subevents of the first-order
internal multiples, the leading-order attenuator can predict the
time of all the first-order internal multiples and is able to atten-
uate them.
However, the ISS internal multiple attenuation algorithm can
be a computationally demanding method specially in a com-
plex earth. By using an approach that is based on two angular
quantities and that was proposed in Terenghi et al. (2012), the
cost of the algorithm can be controlled. The idea is to use the
two angles as key-control parameters, by limiting their vari-
ation, to disregard some calculated contributions of the algo-
rithm that are negligible. Moreover, the range of integration
can be chosen as a compromise of the required degree of accu-
racy and the computational time saving.
This time-saving approach is presented in this paper and
applied to the ISS internal multiple attenuation algorithm.
Through a numerical analysis, the relationship between accu-
racy and performance is examined and discussed.

INTRODUCTION

Araújo et al. (1994) and Weglein et al. (1997) have proposed
the ISS internal multiple attenuation algorithm. It is a leading
order contribution towards the elimination of first order inter-
nal multiples. The algorithm is based on the construction of
an internal multiple attenuator coming from a subseries of the
ISS. It has received positive attention for stand-alone capabil-
ity for attenuating first-order internal multiples in marine and
off-shore plays.

Terenghi et al. (2012) introduced two angular quantities that
can be used as a key-control of the computational cost of the
ISS leading order internal multiple attenuation algorithm. The
two angles, the dip angle and the incidence angle, are related
to the wavefield variables in the f-k domain. Therefore, con-
trol of this angles can be key to our ability to control the time
loop of the algorithm. In this paper, we will discuss how the
computational cost can relate to the accuracy to the internal
multiples prediction. In other words, is it possible to reduce
the computational time of the ISS internal multiple attenuation
algorithm without affecting its efficiency?

In the first part of this paper, a description of the internal mul-
tiple attenuation algorithm will be provided. Then, the an-
gle constraints method will be develloped and applied to the
ISS internal multiple attenuation algorithm. Finally, a numer-

ical analysis will be shown in order to discuss the relation be-
tween the accuracy and efficiency of the algorithm, and this
key-control parameters.

THE INVERSE SCATTERING SERIES INTERNAL MUL-
TIPLE ATTENUATION ALGORITHM

In seismic processing, many methods make assumptions and
require subsurface information. However sometimes these as-
sumptions could be difficult or impossible to satisfy in a com-
plex world. The Inverse Scattering Series states that all pro-
cessing objectives can be achieved directly and without any
subsurface information.
The Inverse Scattering Series is based on scattering theory
which is a form of a perturbation analysis. It describes how
a scattered wavefield (the difference between the actual wave-
field and the reference wavefield) relates to the perturbation
(the difference between the actual medium and the reference
medium).
The forward scattering series construction starts with the dif-
ferential equations governing wave propagation in the media:

LG = δ (r− rs), (1)

L0G0 = δ (r− rs). (2)

With L and L0 the actual and the reference differential opera-
tors. And G and G0 are the actual and reference Green’s func-
tions. We define the scattered field as ψs = G−G0 and the
pertubation as V = L0−L.
The Lippmann-Schwinger equation relates G, G0 and V :

G = G0 +G0V G (3)

Substituing iteratively the Lippmann-Schwinger equation into
itself gives the forward scattering series:

ψs = G0V G0 +G0V G0V G0 +G0V G0V G0V G0 + ...
= (ψ1)+(ψ2)+(ψ3)+ ...,

(4)
Where, (ψn) is the portion of the scattered wavefield that is the
nth order in V . The measured values of ψs are the data D.

The pertubation V can also be expanded as a series,

V =V1 +V2 +V3 + ... (5)

Substituing V into the forward scattering series, and evaluating
the scattered field on the measurement surface results in the
inverse scattering series:

(ψs)m = (G0V1G0)m (6)

0 = (G0V2G0)m +(G0V1G0V1G0)m (7)

0 = (G0V3G0)m +(G0V2G0V1G0)m +

(G0V1G0V2G0)m +(G0V1G0V1G0V1G0)m (8)

...
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The Inverse Scattering Series internal multiple attenuation con-
cept is based on the analogy between the forward and the in-
verse series. The forward series could generate primaries and
internal multiples through the action of G0 on the perturbation
V , while, the inverse series can achieve a full inversion of V by
using G0 and the measured data. The way that G0 acts on the
pertubation to construst the internal multiples suggests the way
to remove them. In the forward series the first-order internal
multiples have their leading-order contribution from the third
term: G0V G0V G0V G0. This suggests that the leading-order
attenuator of internal multiples can be find in the third term
in the inverse series equation (8). In Weglein et al. (1997), a
subseries that attenuates internal multiples was identified and
separated from the entire inverse scattering series.

The ISS internal multiple attenuation algorithm is a subseries
of the inverse scattering series. The algorithm begins with the
input data D(kg,ks,ω) which is the data in the ω temporal
frequency deghosted and with free-surface multiple removed.
This means that they are only primaries and internal multi-
ples in the data. With ks, kg are the source and receiver hori-
zontal wavenumber. Then, let define b1(kg,ks,ω) which cor-
respond to an uncollapsed f-k migration of effective incident
plane-wave data as

b1(kg,ks,ω) = (−2iqs)D(kg,ks,ω) (9)

where qs = sgn(ω)
√

( ω
c0
)2− ks is the source vertical wavenum-

ber and c0 the reference velocity. The second term in the al-
gorithm is the leading-order attenuator b3, which attenuates all
the first-order internal multiples. The leading-order attenuator
for a 2D earth is given by,

b3(ks,kg,ω) = 1
(2π)2

∫ +∞
−∞ dk1

∫ +∞
−∞ dk2e−iq1(zg−zs)e−iq2(zg−zs)

×
∫ +∞
−∞ dz1b1(kg,k1,z1)ei(qg+q1)z1

×
∫ z1−ε
−∞ dz2b1(k1,k2,z2)e−i(q1+q2)z2

×
∫ +∞

z2+ε dz3b1(k2,ks,z3)ei(q2+qs)z3 (10)

where z1, z2 and z3 are the pseudo-depths. ε is a small positive
parameter chosen in order to make sure that z1 > z2 and z3 > z2
are satisfied.
Finally, using the input data and the leading-order attenuator
of the first-order internal multiples, the data with the first-order
internal multiples attenuated is given by

D(kg,ks,ω)+D3(kg,ks,ω) (11)

with D3(kg,ks,ω) = (−2iqs)
−1b3(kg,ks,ω).

COMPUTATIONAL COST SAVING METHOD : ANGLE
CONSTRAINTS.

Terenghi et al. (2012) discuss about two angular quantities that
can be used in order to reduce the computational cost of any
algorithm defined in source and receiver transformed domain.
The idea is to construct key-control parameters that allow to
disregard some part of the calculus that is insignificant dur-
ing the computation. In other words, use this key-paramters

to optimize some intervals of calculus in the algorithm. The
approach used is based on certain angular quantities in order
to control the cost of the algorithm.

Stolt and Weglein (2012) define the image function wavenum-
ber as a difference between the receiver and source-side wavenum-
bers

~km = ~kg−~ks = (~κg− ~κg,qg−qs) (12)

With ~κs and ~κs the horizontal component of the source and
receiver wavenumbers. These definitions allow the construc-

Figure 1: Plane waves at an interface in the subsurface. α is the
angle between ~km and the vertical component. γ is the angle
between ~km and ~kg or ~ks. Figure from Terenghi et al. (2012).

tion of two angles α and γ (cf. Figure 1): α the dip angle
corresponds to the angle between the surface and the horizon-
tal component. γ the incident angle is the angle between the
image function wavenumber and the source (or receiver) side
wavenumber. Using simple trigonometry, α and γ can be re-
lated to the field quantities in the f-k domain:

α = tan−1

(√
~κm. ~κm

| qg−qs |

)
(13)

γ =
1
2

(
− c2

0
ω2 (~κg.~κs +qgqs)

)
(14)

The dependence of α and γ on the temporal frequency is car-
ried by the occurrences of the vertical wavenumber q. More-
over, the relationship between α , γ and ω is monotonic. This
means that at fixed values of ~κs and ~κg any given value of
ω univocally identifies angles α and γ . Then, increasing the
temporal frequencies in the data maps to decreasing values of
the reflection dip and the aperture angle. At set value of ~κs
and ~κs, it is possible to conclude that any desired finite angle-
domain interval maps to a similar finite frequency domain in-
terval. This may be used in order to decrease the number of
loop. Indeed, looking at the eqs (10), b3 have - in 2D - two
integrations over the wavenumber component. Therefore, it is
possible to constrain the algorithm within a range of angular
quantities,

αmin ≤ α ≤ αmax (15)
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γmin ≤ γ ≤ γmax (16)

Using the α/γ and ω monotonic relationship, the total fre-
quency interval can also be constrained,

max(ωmin
γ ,ωmin

α )≤ ω ≤ min(ωmax
γ ,ωmax

α ) (17)

Then, the reduction of the total frequency interval allows to
reduce the interval of integration of b3, which means reducing
the number of loop.

Figure 2: Process of the ISS internal multiple attenuation with
angle constraints.

Figure 2 recapitulates in a graph the ISS internal multiple al-
gorithm with angle constraints.
In the next section, a numerical analysis continues and illus-
trates the discussion, in which the efficiency and accuracy of
the angle constraints method applied to the ISS internal multi-
ple attenuation algorithm is discussed.

NUMERICAL ANALYSIS

The model considered in this numerical analysis is a three layer
earth at depth : z = 1000m, 1300m and 1700m. The source
shot (z = 910 and x = 6086) is recorded by 928 receivers. In
Figure 3 is the shot gather with primaries (green arrow) and
internal multiples.

In the Figure 4, is the internal multiple prediction using the
ISS internal multiple attenuation algorithm. All the first-order
internal multiple are predicted. The model is in 1D; conse-
quently just one angle (the incident angle γ) can be used as a
key-control parameter. The analysis made in 1D for γ can be
extended to α by analogy.
The Figure 5 illustrates the internal multiple prediction that
uses angle constraints, as shown in Figure 2, for different γmax.
Also, for the same γmax the percentage of time saved is listed
in the Table 1.

γmax 15◦ 20◦ 25◦

Percentage time saved 67 % 57 % 50 %

Table 1: Time saved (in %) for the different γmax studied.

A first interpretation would be that we do not need to compute
for a full open γ-angle (90◦ degree by definition) to obtain an

Figure 3: Shot gather recorded. The three primaries resulting
from the three layers-reflectors are shown by the green arrows.

Figure 4: Prediction of all the first-order internal multiples.

accurate prediction of the internal multiples. Notice that a pre-
diction with a full open angle corresponds to an internal mul-
tiple prediction without any angle constraints. Even so, with
reduction to a certain angle (γlimite), the prediction of the inter-
nal multiples is degraded.
For one trace number (750), is plotted in the Figure 6 the am-
plitude for different γmax and compared with the amplitude
for a full open γ-angle. In the Figure 5, the prediction of
the internal multiples for γmax = 20◦ seems to be the same
as γmax = 25◦ and Figure 4. If we look more precisly to the
amplitude, we can notice that it had been affected. The am-
plitude for γmax = 20◦ do not overlap with the amplitude for
γmax = 90◦ contrary to γmax = 25◦.
If we look at the shape (cf. Figure 7), the same interpretation
can be made. For γmax = 25◦ the shape matches with an usual
internal multiple prediction (full open γ-angle). Bellow this
incident angle, the shape do not match which means that the
prediction can not be considered accurate.
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Figure 5: Internal multiple prediction for different angles of γ:
γmax = 15◦, γmax = 20◦ and γmax = 25◦.

Figure 6: Comparaison of the amplitude for a full open γ-angle
(red) and for different γmax (green).

DISCUSION AND CONCLUSION

Terenghi et al. (2012) have introduced a time saving method:

Figure 7: Wiggle plot for γmax = 15◦, γmax = 20◦, γmax = 25◦

and full open γ-angle. Source at trace number 119.

the angle constraints. Looking at the procedure (cf. Figure 2),
it is undeniable that applied to an algorithm defined in source
and receiver transformed domain like the ISS internal multiple
attenuation, this approach can reduce considerably the compu-
tational cost of the algorithm. Studying the impact of this key-
control method in the algorithm, it appears that a compromise
between the time saved and the accuracy of the internal multi-
ple prediction has to be made. Indeed, above a certain ”angle
limit” the internal multiple prediction stays accurate and pre-
cise. Below, the internal multiples are still predicted at the
right time but with an approximate amplitude. Thus, the angle
constraints is a trade-off tool between accuracy and cost of the
algorithm. In other words, the ISS internal multiple algorithm
will have its computational time reduced according to the de-
gree of accuracy required by the user. The next step will be to
identify this two angles using the input data in order to be able
to define the constraint limits.
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Eliminating first-order internal multiples with downward reflection at the shallowest interface: theory
and initial examples
Wilberth Herrera and Arthur B. Weglein, M-OSRP, University of Houston

SUMMARY

The Inverse Scattering Series (ISS) is capable of directly
achieving all processing objectives through specific-task sub-
series and without any subsurface information. In this work
a subseries of the ISS is isolated, with the specific task of re-
moving internal multiples of first-order, with downward reflec-
tion at the shallowest reflector. The algorithm predicts both the
phase and exact amplitude of the internal multiples and does
not modify any primary; therefore the internal multiples are
removed surgically. This algorithm may be relevant and pro-
vide added value when one of the internal multiples under dis-
cussion is interfering destructively with (or is proximal to) a
primary, and the attenuation of the internal multiple provided
by previous algorithms is not adequate for the clean removal
of the multiple and not touching the primary. To show how
the elimination subseries proposed in this work deals with this
challenging situation, an analytic example with three interfaces
is included, with one of the relevant first-order internal multi-
ples interfering destructively with the primary generated at the
third reflector. We show in particular how the interfering in-
ternal multiple is eliminated with no damage to the amplitude
or the phase of the primary, as is expected from a method for
surgical removal of internal multiples.

INTRODUCTION

Using the ISS and the concept of specific-task subseries, a mul-
tidimensional direct algorithm was derived in Araújo (1994),
Araújo et al. (1994) and Weglein et al. (1997), to predict and
attenuate internal multiples present in the data of a seismic
experiment. Prediction methods are followed by the energy-
minimization adaptive subtraction to try to accommodate all
shortcomings in the prediction. However, there are situations
in which the energy-minimization adaptive subtraction tech-
nique is not suitable anymore, and the attenuation of internal
multiples is not enough for a correct interpretation of the seis-
mic data. An example of this challenging situation for the oil
industry can arise when an internal multiple is interfering de-
structively with (or is proximal to) a primary associated to a
target e.g. subsalt targets. This situation is often present in
onshore exploration, but it can also happen offshore. While
the energy-minimization adaptive subtraction technique is of
value for isolated multiples, in this case it might also affect the
primary interfering with the internal multiple.

Therefore, it is important to develop new algorithms with en-
hanced capabilities. In response to this need, Ramı́rez and
Weglein (2005) and Ramı́rez (2007) discuss early ideas for
moving attenuation of internal multiples towards elimination
through higher order terms in the ISS. Those ideas and con-
cepts are here progressed and developed leading to a subseries
which surgically removes at the same time all internal mul-

tiples of first-order having their single downward reflection
generated at the shallowest reflector (we will refer to those
events as internal multiples generated at the shallowest reflec-
tor/interface).

As with any other subseries from the ISS previously isolated,
this algorithm requires no subsurface information. We also il-
lustrate how to use this subseries in a three-interface analytic
model, to surgically remove the first-order internal multiple
generated at the shallowest interface and with both upward re-
flections generated at the second reflector. The parameters of
the model are chosen to allow the internal multiple to interfere
destructively with the primary generated at the third reflector.

REVIEW OF THE LEADING-ORDER ATTENUATOR

The Inverse Scattering Series (ISS) is a direct inversion method
which can in principle determine, in seismic applications, sub-
surface properties of the earth using only the measured data D
in a seismic experiment, and a Green’s function for a chosen
reference medium. Unfortunately, with no a priori informa-
tion of the subsurface of the earth, the convergence is highly
restricted (Carvalho 1992).

However, specific-task subseries with different objectives in
the chain of data processing can be isolated, and have better
convergence properties than the entire ISS. In regard of inter-
nal multiples, a subseries was isolated in Araújo (1994) and
Weglein et al. (1997), with the specific task of the attenua-
tion of internal multiples of all orders (the order of an internal
multiple is defined as the number of downward reflections it
experiences anywhere during its travel time. See Figure 1).

Air/water interface 

Z3 
 

Z2 
 

Z1 
 

X 

Z 

Figure 1: First-order internal multiple: we say, based on the
position where reflections occur, that the interfaces generat-
ing a first-order internal multiple are in a “lower-higher-lower”
configuration.

This Internal Multiple Attenuation Subseries (IMAS) requires
that 1) the data D have been deghosted, 2) the reference wave
field and free-surface multiples have also been removed from
the data and 3) the source wavelet has been deconvolved. The
first term of this subseries is the result of the uncollapsed Stolt’s
migration of the data using the water speed, c0. The second



An elimination algorithm for internal multiples of first-order generated at the shallowest reflector

term, conveniently named the leading-order attenuator, atten-
uates all first-order internal multiples at a single step and is of
third-order in the measured data.

It turns out that the elimination subseries isolated in this work
shares with the IMAS the first two terms, i.e., the data migrated
at water speed and the leading-order attenuator. However, both
subseries differ from each other for higher-order terms. Hence,
we review here the leading-order attenuator, and in the next
section we explain how to isolate the higher-order contribu-
tions to the elimination subseries.

We will restrict our discussion to a 1D earth with data gener-
ated by waves at normal incidence. In this case, the analytic
expression for the leading-order attenuator is (Weglein et al.
2003)

b3(k) =
∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz′b1(z′)×

∫ ∞

z′+ε
dz′′eikz′′b1(z′′), (1)

where ε is a small and positive parameter introduced to ensure
the characteristic “lower-higher-lower” configuration for first-
order internal multiples, and to avoid configurations including
contributions from the self-interactions, which are defined by
the conditions z′′ = z′ and z′ = z in eq. (1). Also, the input
b1(z) of the leading-order attenuator is the first term of the
subseries, i.e., the deghosted data migrated at water speed us-
ing uncollapsed Stolt’s migration. The subindexes in b1(k) and
b3(k) mean that they are of first-order and third-order respec-
tively in the data.

In the following, we will restrict to the 1D model shown in
Figure 2, where Zi denotes the depth of the i-th. reflector for
i = 1,2,3.

1 
The Leading-order attenuator: a three-interface example 
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Air/water interface 

Figure 2: A 1D earth model, with three interfaces. The first
interface, with depth Z1 is the water bottom. The second inter-
face, with depth Z2, can be identified with the top salt and the
third interface, with depth Z3, can be identified with the target.

We consider data made of primaries and internal multiples cre-
ated by spike-waves at normal incidence: D(t) = R1δ (t−t1)+
R′2δ (t − t2) + R′3δ (t − t3) + IM, with R′2 = T01R2T10, R′3 =
T01T12R2T21T10. Also ti is the travel time of the primary as-
sociated with the interface with depth Zi, Ri is the reflection
coefficient experienced by a wave when upward reflected at
the interface with depth Zi, and Ti j represents the transmission
coefficient experienced by a wave traveling from the acoustic
medium with parameters (ci,ρi) to the acoustic medium with
parameters (c j,ρ j).

In this case, the input of the leading-order attenuator, eq. (1),
becomes:

b1(z) = R1δ (z− z1)+R′2δ (z− z2)+R′3δ (z− z3)+ · · · , (2)

where zi = c0ti/2 is the position of the reflector with depth
Zi, after Stolt’s uncollapsed migration∗. The zi are usually re-
ferred to as pseudodepths, and we say that eq. (2) is in the
pseudodepth domain.

Although the input data of the leading-order attenuator, eq. (2),
includes primaries and internal multiples, we only consider the
effect of the primaries. Initial steps towards the inclusion of
internal multiples are addressed in Ma and Weglein (2012) and
Liang and Weglein (2012). In the time domain the result for
the evaluation of eq. (1), using eq. (2) is (See Weglein et al.
2003)

b3(t) =−T01T10 ∗ (IM) j=1 + · · · , (3)

where (IM) j=1 is the sum of the contributions to the data of
all first-order internal multiples generated at the shallowest re-
flector of the model:

(IM) j=1 =−T01R2R1R2T10δ (t− (2t2− t1))

−2T01R2R1T21R3T12T10δ (t− (t2 + t3− t1))

−T01T 2
12R3R1R3T 2

21δ (t− (2t3− t1)). (4)

Consider now the contribution of the data and the leading-
order attenuator b3(t) to the IMAS:

b1(t)+b3(t) = P+[1−T01T10](IM) j=1 + · · · , (5)

where P stands for primaries. As 0 < T01T10 < 1, it follows
from (5) that the amplitude contribution of (IM) j=1 is reduced
by an amount T01T10 with respect to their contribution pre-
vious to the addition of b3(t). T01T10 is referred as attenuator
factor. An analogous situation is present for the internal multi-
ple with downward reflection at the second reflector. However,
in the present work we will only need the effects of b3(t) on
(IM) j=1.

THE ELIMINATION SUBSERIES

In the past section we showed, using the model of Figure 2,
how the leading-order attenuator decreases the amplitude con-
tribution for first-order internal multiples generated at the shal-
lowest interface, by an amount of T01T10. This means that to
promote this attenuation to an elimination, the contribution
of higher-order terms from the elimination subseries need to

∗For normal incidence of a spike-wave, the relation between D(t) and b1(z) is as follows:
1) Fourier transform D(t), 2) write the result, D(ω), in terms of zi = c0ti/2 and the vertical
wavenumber k = 2ω/c0 to end with a function D(k) and 3) define b1(z)≡F−1[D(k)] where
F−1 denotes the inverse Fourier transform
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move this attenuator factor to the unity: when those higher-
order contributions are added to the initial attenuation provided
by b3(t), the predicted amplitude will exactly match (IM) j=1.
Hence, the collective contribution of the terms in the elimina-
tion subseries will remove (IM) j=1 from the data.

To isolate terms from the ISS with the right contributions, it
is convenient to express 1 in terms of R1. For this purpose the
following geometric series expansion is useful:

1 =
T01T10

T01T10
=

T01T10

(1−R2
1)

= T01T10(1+R2
1 +R4

1 + · · ·). (6)

Notice that after distributing the product on the right hand
side of eq. (6), the first term is the initial attenuation pro-
vided by the leading-order attenuator. Therefore, the remain-
ing terms are the amplitude contribution required from higher-
order terms, in any subseries claiming to promote the attenua-
tion to elimination. We will focus in isolating the term with at-
tenuation factor T01T10 ∗R2

1, the second term on the right hand
side of eq. (6). We also want to predict the exact travel time
of the internal multiples, i.e., we are looking for a term with
contribution equal to T01T10 ∗R2

1 ∗ (IM) j=1.

Upon inspection of the ISS, we arrive to:

b(IM) j=1
5 (k)≡

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz′F [b1(z′)]×

∫ ∞

z′+ε
dz′′eikz′′b1(z′′). (7)

F [b1(z′)] is given by

F [b1(z′)] = F−1
[∫ ∞

−∞
dzeikzb1(z)

∫ z+ε

z−ε
dz1e−ikz1 b1(z1)×

(8)
∫ z1+ε

z1−ε
dz2eikz2 b1(z2)

]
,

where F−1 means inverse Fourier transform, and the subindex
in b(IM) j=1

5 means that it is of fifth-order in the data. The ε is
applied in this context to include the self-interactions z2 = z1
and z1 = z, rather than to avoid them, as is the case for the
leading-order attenuator.

Upon evaluation of eqs. (7) and (8) using the primaries in
eq. (2), the result in the time domain includes the expected
contribution, plus additional terms which contribute to further
attenuation of (presumably they also start the elimination of)
other first-order internal multiples: b(IM) j=1

5 (t) = −T01T10 ∗
R2

1 ∗ (IM) j=1 + · · · .

Consider now the sum of the data, the leading-order attenuator
and b(IM) j=1

5 :

b1(t)+b3(t)+b(IM) j=1
5 (t) =

P+[1−T01T10(1+R2
1)](IM) j=1 + · · · . (9)

Eq. (9) makes evident that in this case the attenuation fac-
tor T01T10 is changed to T01T10(1+R2

1). This attenuation con-
tains the first and second terms of the geometric series on the
right hand side of eq. (6). Hence, the expression proposed for
b(IM) j=1

5 in eqs. (7) and (8) correctly reproduces the required
amplitude contribution to move the attenuation of (IM) j=1 a
step closer to elimination.

Higher-order contributions for the elimination subseries are
analogous to eq. (7) but with an appropriate F [b1(z′)], e.g.

the function F [b1(z′)] for the term following b(IM) j=1
5 , denoted

b(IM) j=1
7 , and with contribution T01T10 ∗R4

1 ∗ (IM) j=1 is

F [b1(z′)] = F−1
[∫ ∞

−∞
dzeikzb1(z)

∫ z+ε

z−ε
dz1e−ikz1 b1(z1)×

(10)
∫ z1+ε

z1−ε
dz2eikz2 b1(z2)

∫ z2+ε

z2−ε
dz3e−ikz3 b1(z3)×

∫ z3+ε

z3−ε
dz4eikz4 b1(z4)

]
.

Following this line of thinking, further contributions to the
elimination of (IM) j=1 can be isolated to get the elimination
subseries:

b(IM) j=1(t) = b1(t)+b3(t)+b(IM) j=1
5 (t)+b(IM) j=1

7 (t)+ · · · .
(11)

We can use as many terms as we need, in order to achieve a
desired degree of accuracy in the prediction of an internal mul-
tiple (of first-order and generated at the shallowest reflector).

APPLICATION OF THE ELIMINATION SUBSERIES TO
AN ANALYTIC MODEL

In this section we will use an analytic model in which an in-
ternal multiple of first-order is interfering destructively with a
primary. This is to show the usefulness of the eliminator sub-
series by surgically removing the internal multiple.

The analytic model we will focus is the three-interface model
of Figure 2, with specific values for the acoustic parameters
assigned as (1500m/s,1000kg/m3), (2280m/s,1000kg/m3),
(9000m/s,1700kg/m3) and (9900,1578kg/m3) for (c0,ρ0),
(c1,ρ1), (c2,ρ2) and (c3,ρ3) respectively. The Primary cre-
ated at the interface with depth Zi is denoted Pi. First-order
internal multiples are denoted as IMi jk with j indicating the
reflector in which the downward reflection is generated; i and
k indicate the reflectors where the first and second upward re-
flections are generated respectively.
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The interfering events are the primary P3 and the internal mul-
tiple IM212, whose common travel time is 2.2947s. The am-
plitudes for P3 and IM212 are 0.0045 and -0.1084 respectively.
A trace is shown in Figure 3, from which the amplitude of the
combined event P3+IM212 can be read as -0.1039: the polarity
is opposite to that of the primary.
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Figure 3: Data of the model. This data includes primaries and
the relevant internal multiples of first order.

Next is the application of b3(t) to attenuate internal multiples
of first-order. For the interfering event the amplitude after the
action of b3(t) is -0.0001 and hence the amplitude attenuation
is not enough to change the polarity of the interfering event.
This might lead to assign to the primary an incorrect polarity.

From the above paragraph it is evident that improvement in
the predicted amplitude for IM212 is necessary. This is possi-
ble if we include further terms from the elimination subseries
isolated in the previous section. This is shown in Figure 4,
in which the effect of the third term, b(IM) j=1

5 (t), has been in-
cluded in addition to b3(t).

Data  (after elimination)  
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Figure 4: Data after the action of both, the leading-order atten-
uator and b(IM) j=1

5 (t).

The primary P3 is now with its original amplitude and polarity,
0.0045, which means that the interfering internal multiple has
been removed. However, for more complex models the conver-
gence can be slower, and more terms might be needed. Also,

from Figure 4, it can be noticed that neither the travel times
nor the amplitudes of the primaries P1 and P2 are changed, as
expected from a method for surgical removal of internal mul-
tiples.

DISCUSSION AND CONCLUSIONS

We have isolated from the ISS a subseries whose task is to
eliminate first-order internal multiples generated at the shal-
lowest interface, and also attenuates internal multiples from all
deeper reflectors. This elimination subseries predicts the phase
and the exact amplitude of the internal multiples and does not
modify any primary. Therefore, the surgical removal of such
internal multiples is achieved.

We have also applied the eliminator subseries to an analytic
example with three interfaces. The configuration is set up to
produce an internal multiple (with downward reflection at the
shallowest reflector) interfering destructively with the primary
generated at the third reflector, in a way that the leading-order
attenuator is not enough to let the primary show up in the data
with its correct polarity. We show how the action of the third-
order and fifth-order contributions of the algorithm remove the
interfering internal multiple, making the primary to appear in
the trace with its original amplitude and polarity. In practice
however, it is not possible to know a priori the number of terms
that are necessary to eliminate the interfering internal multi-
ple. The recipe is to apply to the data one term at a time
until no change is noticed in the primary. Although higher-
order terms will imply an increased computational cost (more
integrals need to be calculated), if the interfering primary is
suspected to be the target, then the investment might be worth-
while, as a situation involving a drilling or no drilling deci-
sion might be involved and processing costs pale compared to
drilling dry holes.

Interfering events are common in onshore exploration, but they
may also occur offshore. Therefore, the algorithm in this work
may provide added value in those challenging geologic config-
urations in which techniques such as the energy-minimization
adaptive subtraction fails.

Further research in this topic includes extending the method
beyond the normal incidence assumption of the present work,
and to derive the corresponding multidimensional version of
the subseries presented here. Additionally, current challenges
in exploration seismology might also require the removal of
other internal multiples of first-order, generated beneath the
shallowest reflector. Hence, a more generalresearch goal is to
isolate a subseries, with the specific task of the elimination of
first-order internal multiples generated at all reflectors.
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Araújo, F. V., W. A. B., C. P. M., and S. R. H., 1994, Inverse
scattering series for multiple attenuation: an example with
surface and internal multiples, in 64th Ann. Int. SEG Mtg,
Expanded Abstracts: Soc. Expl. Geophys., 1039–41.

Carvalho, P. M., 1992, Free-surface multiple reflection elim-
ination method based on nonlinear inversion of seismic
data: PhD thesis, Universidade Federal da Bahia. (In Por-
tuguese).

Liang, H., and A. B. Weglein, 2012, A further general modifi-
cation of the leading order iss attenuator of first order inter-
nal multiples to accommodate primaries and internal mul-
tiples when an arbitrary number of reflectors generate the
data: theory, development, and examples: M-OSRP 2012
Annual Meeting, 148–166.

Ma, C., and A. B. Weglein, 2012, Modifying the leading-order
iss attenuator of first-order internal multiples to accomodate
primaries and internal multiples: fundamental concept and
theory, development, and examples exemplified when three
reflectors generate the data: M-OSRP 2012 Annual Meet-
ing, 133–147.

Ramı́rez, A. C., 2007, I. - inverse scattering subseries for re-
moval of internal multiples and depth imaging primaries; ii.
- green’s theorem as the foundation of interferometry and
guiding new practical methods and applications: PhD the-
sis, University of Houston.

Ramı́rez, A. C., and A. B. Weglein, 2005, An inverse scatter-
ing internal multiple elimination method: Beyond attenua-
tion, a new algorithm and initial tests, in 75st Annual In-
ternational Meeting, SEG, Expanded Abstracts: Soc. Expl.
Geophys.
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General theory for accommodating primaries and multiples in internal multiple algorithm: analysis
and numerical tests
Hong Liang*, Chao Ma and Arthur B. Weglein, M-OSRP/Physics Dept./University of Houston

SUMMARY

The inverse scattering series (ISS) predicts internal multiples
directly and without subsurface information. This is
achieved through a task-specific subseries within the overall
ISS. The ISS leading-order attenuator of first-order internal
multiple is the leading-order term in the subseries that
contributes to the removal of first-order internal multiples.
It has shown stand-alone capabilities for internal multiple
prediction/attenuation for both marine and on-shore plays.
The basic idea behind the leading-order attenuator is that all
the events in the data are treated as subevents and combined
nonlinearly (three data sets are involved), and among all the
combinations first-order internal multiples can be predicted
by the combination that has all subevents correspond to
primaries. However, the entire data set, consisting of
primaries and internal multiples, enters the algorithm. When
internal multiples in the data themselves act as subevents, the
leading-order attenuator produces not only first-order internal
multiples, but also higher-order internal multiples and, at
times, spurious events. The latter have been observed in the
tests of Fu et al. (2010) and Luo et al. (2011). Weglein et al.
(2011) have noted this and suggest that the resolution of the
problem would reside in other terms of the ISS. Ma et al.
(2012) describes the initial occurrence of the circumstance
under which spurious event arises, and explains how to address
that issue. This abstract extends the analysis in Ma et al. (2012)
to more complex circumstances, and provide a description of
the general arrival of spurious events. In this abstract we show
how the ISS anticipates the issue due to spurious events and
provides the response.

INTRODUCTION

The inverse scattering series can achieve all processing
objectives directly and without subsurface information.
Compared to the ISS free-surface multiple removal methods
where the location and the properties of the free surface
responsible for free-surface multiples are well-defined, the
ISS internal multiple method does not require information
concerning the properties of the Earth where internal multiples
have experienced a shallowest downward reflection. It is
data-driven and predicts internal multiples at all depths at once.

The ISS internal multiple attenuation algorithm was first
proposed by Araújo et al. (1994) and Weglein et al. (1997).
This algorithm is applicable for towed-streamer field data,
land data, and ocean bottom data (Matson and Weglein,
1996; Matson, 1997) and can accommodate internal multiples
with converted wave phases (Coates and Weglein, 1996).
Ramı́rez and Weglein (2005) and Ramı́rez (2007) discuss
early ideas to extend the attenuation algorithm towards an
elimination method. The ISS internal multiple algorithm has

shown encouraging results and differential added value when
compared to other internal multiple methods (Fu et al., 2010;
Hsu et al., 2011; Terenghi et al., 2011; Weglein et al., 2011;
Luo et al., 2011; Kelamis et al., 2013).

Early analysis of the ISS leading-order attenuator focused
on the performance of internal multiples prediction by using
subevents that correspond to primaries. However, the input
data contain both primaries and internal multiples and all
events in the data will be treated as subevents. Under some
circumstances treating internal multiples as subevents in the
leading-order internal multiple algorithm can lead to spurious
events. We show that spurious events can occur when more
than two reflectors are involved in the data being processed,
and explain how terms further in the ISS address and remove
those spurious events. Following the suggestion of Weglein
et al. (2011) Ma et al. (2012) derives the modified ISS internal
multiple algorithm addressing the spurious event arising from
the second of the three integrals of the ISS leading-order
attenuator in a three-reflector medium. This paper evaluates
that algorithm using numerical examples, and also extends the
algorithm to a medium with a large number of reflectors.

THE LEADING-ORDER ISS INTERNAL MULTIPLE
ATTENUATION ALGORITHM

The ISS internal multiple attenuation algorithm is a subseries
of the inverse scattering series. The first term in the algorithm
is the deghosted input data D from which the reference
wavefield and free-surface multiples have been removed and
source wavelet has been deconvolved. The second term in the
algorithm is the leading-order attenuator of first-order internal
multiples which attenuates first-order internal multiples (the
order of an internal multiple is defined by the total number of
downward reflections). The leading-order attenuator in a 2D
earth is given by Araújo et al. (1994) and Weglein et al. (1997).
For a 1D earth and a normal incidence wave the equation
reduces to

bPPP
3 (k) = b3(k) =

∫ ∞

−∞
dz1eikz1 b1(z1)

∫ z1−ε

−∞
dz2e−ikz2 b1(z2)

∫ ∞

z2+ε
dz3eikz3 b1(z3), (1)

where the deghosted data, D(t), for an incident spike
wave, satisfy D(ω) = b1(2ω/c0), and where b1(z) =∫ ∞
−∞ e−ikzb1(k)dk, k = 2ω/c0 is the vertical wavenumber,

and b1(z) corresponds to an uncollapsed FK migration of an
normal incident spike plane-wave data. For non-spike data,
there is an obliquity factor in the relations between the data
D and b1 in the frequency domain (see Page R64 and R65
in Weglein et al. (2003)). Here, we introduce a new notation
bPPP

3 where the superscript (“P” represents primary) indicates
which events in the data input in each of the three integrals that
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Figure 1: An internal multiple (dashed line) constructed by the
“lower-higher-lower” pattern of three primary subevents (solid
line). Figure adapted from Weglein et al. (2003).

we are focusing on towards the overall purpose of removing
first-order internal multiples. The data with first-order internal
multiples attenuated are

D(t)+D3(t), (2)

where D3(t) is the inverse Fourier transform of D3(ω) and
D3(ω) = b3(k) for an incident spike wave. Weglein and
Matson (1998) showed that this algorithm can be interpreted
using the subevent concept (see Figure 1).

THE GENERAL OUTPUT OF THE LEADING-ORDER
ATTENUATOR WHEN AN INTERNAL MULTIPLE IS
TREATED AS A SUBEVENT BY THE ALGORITHM

Early analysis focused exclusively on the performance of the
algorithm for b3 for the events in the data that correspond
to primaries. However, seismic data contain not only
primary events but also internal multiples. Zhang and Shaw
(2010) have shown that higher-order internal multiples can
be predicted by the leading-order attenuator using internal
multiples as subevents in a two-interface example. However,
the situation is considerably more complicated when the data
from three or more reflectors are considered. In the latter
case, spurious events can be predicted whose traveltimes do
not correspond to an event in the data. In this section, we
illustrate in a 1D earth the specific conditions under which the
spurious events are produced by the leading-order attenuator
using one internal multiple subevent.

An internal multiple subevent in the second integral in b3

In Ma et al. (2012) it is shown that in a medium with three
reflectors, and when an internal multiple acts as a subevent
in the second of the three integrals (in equation 1) a spurious
event can be produced. In this section, we interpret this
diagrammatically using Figure 2 (pseudo-depth is determined
by the water speed image, b1(z)). An internal multiple
has each of its downward reflections between two upward
reflections. Then, in the diagrammatic representation of an
internal multiple (Figure 2(a)) a higher red circle with a “-”
sign should have lower blue circles with “+” signs on both
side. However, in Figure 2(c) each of the two red circles has
only one lower blue circle on one side, and one higher blue
circle on the other side. Thus, this predicted event is neither an

Figure 2: Diagrammatic illustration of the generation of a
spurious event. (a) The diagram of a first-order internal
multiple. The sign “+” (“-”) means upward (downward)
reflection or the pseudo-depth is added (subtracted). (b) Three
subevents used by b3: a primary (“P”) with pseudo-depth z,
an internal multiple (“I”) with pseudo-depth z′, and a primary
with pseudo-depth z′′, with z′ < z,z′′. (c) The produced
spurious event with pseudo-depth (z+ z′′− (z1 + z3− z2)).

internal multiple, nor a primary. The spurious event described
here is generated by the leading-order attenuator using an
internal multiple subevent in the second integral. The way it is
generated suggests the way it can be removed. For the removal
of this type of spurious events, substituting b3 for the second b1
in equation 1 leads to equation 3. The subevent combination of
“primary–predicted internal multiple–primary” in equation 3
can be used to attenuate the spurious event. We examine one
of the fifth order terms (G0V1G0V3G0V1G0) that satisfies the
required Figure 2(c) geometry. The derivation and analytical
examples are shown in Ma et al. (2012).

bPIP
5 (k) =

∫ ∞

−∞
dz1eikz1 b1(z1)

∫ z1−ε

−∞
dz2e−ikz2 b3(z2)

∫ ∞

z2+ε
dz3eikz3 b1(z3) (3)

The output of the new ISS internal multiple algorithm for this
three reflectors case is

D(t)+D3(t)+DPIP
5 (t), (4)

where DPIP
5 (t) is the inverse Fourier transform of DPIP

5 (ω)
and DPIP

5 (ω) = bPIP
5 (k) for spike data. The original algorithm

(equation 2) attenuates the first-order internal multiples and
preserve primaries but can also output spurious events. The
modified algorithm in equation 4 provides the benefit of the
original algorithm while addressing issues due to spurious
events.

An internal multiple subevent in either of the outer
integrals in b3

The problem is yet more complicated when a first-order
internal multiple subevent is in either of the outer integrals. As
shown in the left panel of Figure 3, when an internal multiple
with pseudo-depth z′′ is in the rightmost integral (z,z′′ > z′),
we have z′′ = (z1 + z3 − z2) > z′ (this lower-higher-lower
relationship in pseudo depth domain is required by b3, and
if it is not satisfied this kind of subevent combination will not
occur in b3). In such a case, there are several possible relations
between z1,z2,z3 and z′, which are as follows:
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• As shown by the first item in Figure 3, when z1 > z′, the
predicted event has the same pseudo-depth as a second
order internal multiple. Its subevent construction is
shown in Figure 4(a), and this occurs in a medium with
number of reflectors N ≥ 2.

• The second item in Figure 3 shows that when z1 =
z′, the predicted event has the same pseudo-depth as
a first-order internal multiple. Figure 4(b) describes
its subevent construction, which only happens in a
medium with N ≥ 3.

• The third item in Figure 3 shows that a spurious event
is produced with z1 < z′ and z3 < z′ (the red circle
at z′ has only one lower blue circle on one side).
Its subevent construction is illustrated by Figure 4(c).
This type of spurious event can only be generated in a
medium with N ≥ 4.

Using the same logic and analysis as the previous section,
we propose another method to address this type of spurious
events by replacing the third b1 in equation 1 with b3, and the
new term is shown in equation 5. Since this type of spurious
event could be produced by the leading order attenuator using
a first-order internal multiple subevent in either of the outer
integrals (these two cases are equivalent), there is a leading
coefficient 2 in the equation 5. This term is also identified
from a portion of the fifth order term in the ISS (from the term
G0V1G0V1G0V3G0).

bPPI
5 (k) = 2

∫ ∞

−∞
dz1eikz1 b1(z1)

∫ z1−ε

−∞
dz2e−ikz2 b1(z2)

∫ ∞

z2+ε
dz3eikz3 b3(z3) (5)

The new ISS internal multiple algorithm for this case with
more than three reflectors is

D1(t)+D3(t)+DPIP
5 (t)+DPPI

5 (t). (6)

where DPPI
5 (t) is the Fourier transform of DPPI

5 (ω) and
DPPI

5 (ω) = bPIP
5 (k) for an incident spike wave. This modified

general algorithm in equation 6 retains the strengths of the
original algorithm while addressing issues due to spurious
events.

NUMERICAL EXAMPLES

In this section, we will compute and analyze the new terms
for one dimensional, three reflector models. The spurious
event would be produced when the internal multiple subevent
is in the second of the three integrals. Thus, only the term in
equation 3 will be tested in this section. In the previous section,
the input data are assumed to be source wavelet. If the data are
generated by using a source wavelet, then we have D(ω) =
A(ω)b1(2ω/c0), and hence, D3(ω) = A(ω)b3(ω/c0), and
DPIP

5 (ω) = A(ω)bPIP
5 (ω/c0).

Figure 5(a) shows a 1D normal-incidence trace, which
includes three primaries and all internal multiples. Figure 5(b)
shows the comparison of the actual internal multiples in the

Figure 3: Diagrammatic illustration of predicted events when
an internal multiple subevent is in either of the outer integrals.

(a)

(b)

(c)

Figure 4: Events generated by the leading-order attenuator
using an internal multiple subevent in either of the outer
integrals: (a) a second order internal multiple, (b) a first order
internal multiple, and (c) a spurious event, 2z2− z1 > z3.

data and the events produced by the leading-order attenuator.
From the results we can see that by treating both primaries and
internal multiples as subevents the leading-order attenuator can
predict first-order and higher-order internal multiples, as well
as the spurious event (pointed by the green arrow). Figure 5(c)
shows the comparison of the spurious event generated by
the leading-order attenuator and the one predicted by the
higher-order term. By adding DPIP

5 to D3 the spurious event is
well attenuated and the internal multiple prediction is almost
unchanged, as shown in Figure 6. From Figure 6 we can
conclude that the modified algorithm in equation 4 provides
the benefit of original algorithm (equation 2) while addressing
the limitation due to spurious events.
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Figure 5: (a) An input trace, including primaries (red) and
all internal multiples (blue); (b) Actual internal multiples in
the data (red), and events predicted by the ISS leading-order
attenuator (blue) including predicted internal multiples and the
spurious event (pointed by the green arrow); (c) comparison
of the actual spurious event in D3 and the predicted one in
(−DPIP

5 ) (pointed by the green arrow and and the close-up
shown in the upper right box).
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Figure 6: Actual internal multiples in the data (red) and
the ones predicted by the modified algorithm (represented by
−(D3 +DPIP

5 )). Green arrow points to the spurious events.

(a) (b)

Figure 7: (a) The left are the input data (the first, second
and fifth events are primaries), and the right are the events
produced by b3 (the spurious event is marked by the red circle);
(b) The right are the events produced by b3, and the left is the
spurious event predicted by bPIP

5 .

The modified algorithm 4 can be also extended to 2D
experiment in a 1D earth. Figure 7(a) shows a shot gather
on the left, and on the right are the events predicted by the
leading-order attenuator, in which the red circle mark the
generated spurious event. In Figure 7(b), the right are still the
events predicted by the leading-order attenuator, while the left
shows the spurious event predicted by the higher-order term.

CONCLUSIONS

While the ISS leading-order attenuator has demonstrated its
capability for internal multiple removal, it has strengths and
limitations as implied by “leading order” and “attenuator”.The
modified algorithm presented in this paper and Ma et al.
(2012) addresses a shortcoming of the current leading-order
ISS internal multiple attenuation algorithm that are observed in
the examples of Fu et al. (2010) and Luo et al. (2011). Spurious
events can be a particular problem if they are proximal to or
interfere with primaries or multiples. If you suspect that this
is the case, then the algorithm of this paper can remove the
spurious event. The modified ISS internal multiple attenuation
algorithm retains the benefit of the original algorithm while
addressing one of its shortcomings. It now accommodates both
primaries and internal multiples in the input data.
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Accommodating primaries and multiples in internal multiple algorithm: initial concept and data tests
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SUMMARY

The Inverse Scattering Series (ISS) is a comprehensive
framework for achieving seismic data processing goals
without requiring subsurface information. Distinct isolated
task-specific subseries can accomplish free surface multiple
removal, internal multiple removal, depth imaging and
inversion of primaries. The current leading-order internal
multiple attenuation algorithm derived from ISS can predict
all first-order internal multiples with the correct time and
an approximate, well understood amplitude, at all depths at
once. It has shown unmatched capability on complex synthetic
and onshore data compared with other methods (e.g., Fu
et al. (2010); Luo et al. (2011); Ferreira (2011)). However,
in Weglein et al. (2011), there are issues pointed out (e.g.,
spurious prediction) and circumstances have been identified
when those issues are significant. It was also pointed out the
limitation is only for the current leading-order algorithm, not
for the entire inverse scattering series. This paper provides
details for the simplest circumstance under which spurious
prediction arises, and how to locate higher-order terms within
ISS to address that issue. The companion and complementary
paper (Liang et al., 2012) provides a description of the general
arrival of spurious events when using the current leading-order
algorithm under more complicated/complex circumstances
and how the ISS provides the response. The new algorithm
maintains the strength of the current leading-order algorithm
and, in addition, provides added value to address a limitation
of the leading-order algorithm that arises when primaries and
multiples enter the algorithm.

INTRODUCTION

In seismic exploration, primaries are events that have
experienced only one upward reflection while multiples are
events that have experienced multiple upward reflections.
Multiples that have at least one downward reflection at the
free surface (air-water or air-land) are free surface multiples.
Multiples that have experienced all their downward reflections
below the free surface are internal multiples. The order of
an internal multiple depends on the number of downward
reflections it has experienced. For example, the first-order
internal multiples have only one downward reflection (dashed
line in Figure 1). The primaries-only assumption in seismic
data analysis requires multiple removal. The methods for
removing multiples are classified as separation and wavefield
prediction (e.g.,Weglein (1999) and Weglein et al. (2011)).
The separation methods sought a characteristic to distinguish
primaries from multiples, while the early wavefield prediction
methods first modeled and then subtracted multiples. Each
of these approaches have earned their place in the seismic
toolbox. However, as seismic exploration moves toward
more complex areas, these methods have limitations due

to their assumptions and the requirements for subsurface
information. The ISS free surface multiple removal algorithm
(Carvalho and Weglein, 1994; Weglein et al., 1997) and
internal multiple attenuation algorithm (Araújo et al., 1994;
Weglein et al., 1997) starts by avoiding the assumptions of the
earlier methods, e.g., they are completely multi dimensional
and have no requirements for subsurface information. There
are both separation and wavefield prediction ingredients in the
ISS multiple removal methods and they can be viewed as a next
step in the development of separation and wavefield prediction
methods (Weglein et al., 2011).

The current algorithm to attenuate first-order internal multiple
derived from ISS is called leading-order internal multiple
attenuation algorithm. The “leading-order” means it begins
the work of removing first-order internal multiples, i.e., it
predicts all first-order internal multiples at all depths at once
with the correct time and an approximate, well understood
amplitude. Because it is only a leading-order algorithm,
limitations can occur (Weglein et al., 2011). Spurious events
can be generated when there are three or more than three
significant internal multiple generators. However, an analysis
indicates that the spurious prediction can be addressed by
including more terms into the current leading-order algorithm.
This paper will analyze the simplest case where limitation of
the current leading-order algorithm can occur and show how
higher-order can be isolated to address that limitation.

AN OVERVIEW OF THE ISS LEADING-ORDER
INTERNAL MULTIPLE ATTENUATION ALGORITHM

The leading-order contribution to constructing a class of
multiples in the forward series suggests the leading-order
contribution for their removal in the inverse series (Weglein
et al., 2003). A subseries that focuses on internal multiple
removal can be isolated from the inverse series. The ISS
internal multiple attenuation algorithm starts with the input
data, D(xg,xs, t) with the wavelet deconvolved, ghosts and free
surface multiples removed. The leading-order prediction of the
first-order internal multiples, in a 2D earth is,

b3(kg,ks,ω) =
1

(2π)2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2e−iq1(zg−zs)eiq2(zg−zs)

×
∫ ∞

−∞
dz1b1(kg,k1,z1)ei(qg+q1)z1

×
∫ z1−ε

−∞
dz2b1(k1,k2,z2)e−i(q1+q2)z2

×
∫ ∞

z2+ε
dz3b1(k2,ks,z3)ei(q2+qs)z3 , (1)

where D(kg,ks,ω) is the Fourier transform of D(xg,xs, t), ω is
temporal frequency, ks and kg are the horizontal wavenumbers
for the source and receiver coordinates, respectively; qg and qs
are the vertical source and receiver wavenumbers defined by
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qi = sgn(ω)

√
ω2

c2
0
− k2

i for i = (g,s); zs and zg are source and

receiver depths; and z j ( j = 1,2,3) represents the pseudo-depth
using reference velocity migration. The quantity b1(kg,ks,z)
corresponds to an uncollapsed migration (Weglein et al., 1997)
of effective plane-wave incident data, and b1(kg,ks,qg +qs) =
−2iqsD(kg,ks,ω).

With the input data and the leading-order prediction of the
first-order internal multiples, we can obtain the data with the
first-order internal multiples attenuated, given by

D(kg,ks,ω)+D3(kg,ks,ω), (2)

where D3(kg,ks,ω) = (−2iqs)
−1b3(kg,ks,qg +qs).

For a 1D earth and a normal incident plane wave, equation 1
reduces to

b3(k) =
∫ ∞

−∞
dz1eikz1 b1(z1)

∫ z1−ε

−∞
dz2e−ikz2 b1(z2)

×
∫ ∞

z2+ε
dz3eikz3 b1(z3). (3)

The leading-order ISS internal multiple attenuation algorithm
for the first-order internal multiples in a 1D earth and an
normal incident plane wave is

b1 +b3. (4)

Note that the (−2iqs) factor is not needed here. However, for
an incident wave which is not a plane wave, the output of the
ISS leading-order removal of the first-order internal multiples
needs the (−2iqs) factor to take b to D as in equation 2.

The portion of the third term of the ISS that predicts
the first-order internal multiple attenuation is isolated by
requiring the “lower(A)-higher(B)-lower(C)” relationship in
pseudo-depth domain as shown in Figure 1. Figure 1 only
shows the case where primaries act as subevents predicting
first-order internal multiples. Notice that the input data
contain both primaries and internal multiples and there
are circumtances, shown in the next section, where the
“lower-higher-lower” template would produce spurious events
when one of the subevents is an internal multiple. However,
these spurious events are fully anticipated and removed by
other higher order terms in the inverse series.

A LIMITATION OF CURRENT LEADING-ORDER
INTERNAL MULTIPLE ATTENUATION ALGORITHM
ARISING IN A THREE-REFLECTOR MODEL

Zhang and Shaw (2010) analytically show that higher-order
internal multiples, e.g., second-order internal multiples can
be generated when internal multiples act as subevents in the
case where there are two reflectors. In this paper, we use a
three reflector example as a simplest circumstance to analyze
when/where the spurious prediction can occur.

In a three reflector model (Figure 2), data due to an impulsive
incident spike wave δ (t− z

c ) are

D(t)=R1δ (t−t1)+R′2δ (t−t2)+R′3δ (t−t3)+R′4δ (t−(2t2−t1)),
(5)

Figure 1: Combination of subevents for the first-order
internal multiple (dashed line), (SABE)time + (DBCR)time −
(DBE)time = (SABCR)time, figure adapted from Weglein et al.
(2003). The capitalized letters stand for a primary or an
internal multiple.

R1!

R2!

R3!

T01! T10! T10!T01!

T12! T21!
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-R1!

P3!P2!P1! I212!

Figure 2: Three primaries and one internal multiple in a
three-reflector model.

where R′2 = T01R2T10, R′3 = T01T12R3T21T10, R′4 =
T01R2(−R1)R2T10, and ti, Ri are two way times and
reflection coefficients from the ith reflector, respectively. Ti j is
the transmission coefficient between the ith and jth reflector.

Given this data, we find from equation 3 that

b3(t) =

R1(R′2)
2δ (t− (2t2− t1))+2R1R′2R′3δ (t− (t2 + t3− t1))

+R1(R′3)
2δ (t− (2t3− t1))+R2(R′3)

2δ (t− (2t3− t2))

+2R1R′2R′4δ (t− (3t3−2t1))+R′2(R
′
4)

2δ (t− (3t3−2t2))

+2R1R′3R′4δ (t− (t3 +2t2−2t1))+R1(R′4)
2δ (t− (4t2−3t1))

+2R′2R′3R′4δ (t− (t3 + t2− t1))+(R′3)
2R′4δ (t− (2t3− (2t2− t1))).

(6)

We have assumed the travel time of the internal multiple is
less than that of the third primary in deriving equation 6. An
analysis of the traveltimes of these events shows that each of
them corresponds to an internal multiple with the exception
of the last event (R′3)

2R′4δ (t − (2t3− (2t2− t1))), which is a
spurious event prediction.

The data entering this algorithm include both primaries and
internal multiples, i.e., b1 = P + I, where P stands for
primaries, and I stands for internal multiples. It follows from
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Second-order internal multiple!P3! P1!I212!

Figure 3: Subevent diagram for the prediction of a
second-order internal multiple. This corresponds to
R1R′3R′4δ (t− (t3 +2t2−2t1)) in equation 6.

P3! P3! I212! Spurious event!

Figure 4: Subevent diagram for the prediction of a spurious
event. This corresponds to (R′3)

2R′4δ (t− (2t3− (2t2− t1))) in
equation 6.

equation 3 that

b3 = b1 ∗b1 ∗b1

= (P+ I)(P+ I)(P+ I)

= PPP+PPI +PIP+ IPP+PII + IPI + IIP+ III,

where ∗ stands for the nonlinear interaction between the data.
Notice that we use the above expression to categorize different
possible subevents combinations, it is not specifying which
events acting as subevents.

A more detailed analysis shows that in equation 6, first-order
internal multiples are predicted in the case of primaries
entering the three integrands and acting as subevents (PPP),
higher-order multiples are predicted in the case of an internal
multiple entering the innermost and/or outermost integrand
(PPI, IPP, or IPI), and the spurious event is predicted in
the case of an internal multiple entering the middle integrand
(PIP).

Extending the diagrammatic illustrations in Zhang and Shaw
(2010), Figure 3 and Figure 4 illustrate the generation of a
second-order internal multiple and a spurious event in this
three reflector example, respectively.

It can be shown that in the cases where there are more than
three internal multiple generators, additional spurious events
can be generated by PPI or IPP combinations (Liang et al.,
2012).

A NEW HIGHER-ORDER ISS CONTRIBUTION TO
ADDRESS THE SPURIOUS PREDICTION OF THE
LEADING-ORDER TERM

The way for the ISS method to reach seismic data processing
goals, e.g., removing multiples and imaging, is through
collective works from different terms that share the same
objective. For example, terms that can remove internal
multiples are grouped together, in which each term achieves
what the order of that term enables it to achieve towards
the ultimate goal. There are certain issues that a term of
a given order can address, and other issues that require aid
from higher order terms. Here, the leading-order term is
able to attenuate all the first-order internal multiples at all
depths, and the removal of spurious events generated by this
leading-order term requires aid from higher-order terms within
ISS. Following the suggestions in Weglein et al. (2011), we
show how to isolate higher-order term that help to remove
spurious prediction generated by the leading-order term.

To isolate the higher-order term, we first analyze the
generation of a spurious event. The left part of Figure 5 shows
the generation of a spurious event when an internal multiple
acts as a middle subevent, the higher-order term must produce
a negative of that spurious prediction to address it. With that
in mind, we isolate the higher-order term from a portion of
fifth-order term in inverse series, i.e., (Gd

0V ′1Gd
0V ′3Gd

0V ′1Gd
0)m.

● ●P P
●

 I  
I pred

● ●P P
●

Figure 5: The left part shows the “lower-higher-lower”
template of the current leading-order algorithm when the three
subevents are “primary-internal multiple-primary”; the right
part shows the higher-order term to address the spurious
prediction in which the predicted internal multiple acts as
a middle subevent. “+” and “-” sign indicate addition and
subtraction of phase term for three subevents.

In one dimension, the higher-order term is,

bPIP
5 (k) =

∫ ∞

−∞
dz1eikz1 b1(z1)

∫ z1−ε

−∞
dz2e−ikz2 b3(z2)

×
∫ ∞

z2+ε
dz3eikz3 b1(z3), (7)

where b1(z) is an uncollapsed migration and b3(z) is the
first-order attenuator. The superscript, PIP indicates that this
higher-order term, bPIP

5 is included to address the spurious
prediction generated by primary-internal multiple-primary
subevent combination.

Equation 7 and equation 3 together provide a new ISS intenral
multiple attenuation algorithm for a 1D earth,

D1(t)+D3(t)+DPIP
5 (t), (8)
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Figure 6: (a): the input data; (b) internal multiple prediction of the current leading-order algorithm; (c) prediction of higher-order
modification to address spurious prediction.

Where, in 1D case, DPIP
5 = bPIP

5 .

We use the same analytic example (Figure 2) to test the new
algorithm. Substituting D(t) in equation 5 and b3 in equation
6 into equation 7 produces a term, R1(R′2)

2(R′3)
2δ (t− (2t3−

(2t2− t1))). Substitution of R′2 = T01R2T10 leads to

(T01T10)
2R1(R2)

2(R′3)
2δ (t− (2t3− (2t2− t1))).

The spurious event in b3 is

(−T01T10)R1(R2)
2(R′3)

2δ (t− (2t3− (2t2− t1))).

Hence, the introduced higher-order term can effectively
address the spurious prediction in the current leading-order
algorithm.

We present a synthetic example in 1.5D to test the
higher-order modification. The model parameters we use
to generate the test data are shown as follows, V1 =
1500m/s,ρ1 = 1.0g/cm3,d1 = 500m;V2 = 1700m/s,ρ2 =
1.8g/cm3,d2 = 900m;V3 = 1550m/s,ρ3 = 1.0g/cm3,d3 =
1530m;V4 = 5000m/s,ρ4 = 4.0g/cm3.

The data, D(t) are shown in Figure 6 (a). The first, second
and fourth event are three primaries, P1, P2, P3, from three
reflectors, respectively; the third event is a first-order internal
multiple, I212, generated by the first two reflectors. Internal
multiple predictions using the current leading-order algorithm,
D3(t) are shown in Figure 6 (b). Both internal multiples
(first-order I212 and second-order I21212) and a spurious event
are generated. The result of higher-order modification, DPIP

5 (t)
is shown in Figure 6 (c). The introduced term, DPIP

5 (t) can
address the spurious prediction.

It is worth pointing out that the current leading-order internal
multiple attenuation algorithm is sufficient and adequate when
the there are two significant internal multiple generator, e.g.,
in deep water of Gulf of Mexico where the water bottom and
top salt are two main internal multiple generators. When there
exist more than two significant internal multiple generators
and the amplitude of an internal multiple is comparable

with that of a deeper primary, e.g., in Middle East where
there are strong near-surface internal multiple generators,
the current leading-order algorithm can produce significant
spurious prediction, higher-order modification needs to be
included to address the spurious prediction.

DISCUSSION AND CONCLUSION

In this paper, we provide both (1) a detailed analysis for
the simplest circumstance under which significant spurious
events can be generated by the current leading-order internal
multiple attenuation algorithm and (2) a higher-order term
that is selected from inverse scattering series to address that
spurious prediction. The simpler case shown in this paper
provides an initial analysis and helps to understand the more
complicated and more realistic case shown in Liang et al.
(2012). The ISS can remove all internal multiples without
subsurface information and also remove spurious events that
arise from using a complex data in a leading-order algorithm.

To conclude, the new higher-order algorithm in this paper
provides added value to the current leading-order ISS internal
multiple attenuation algorithm, it retains the strength of the
original leading-order algorithm while addressing a limitation
in the latter.
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First application of Green’s theorem-derived source
and receiver deghosting on deep-water Gulf
of Mexico synthetic (SEAM) and field data

James D. Mayhan1 and Arthur B. Weglein1

ABSTRACT

Deghosting benefits traditional seismic processing and is
a prerequisite to all inverse-scattering-series based proces-
sing. The freedom of choosing a convenient reference med-
ium (and associated Green’s function) means Green’s
theorem offers a flexible framework for deriving useful
algorithms including deghosting. Among advantages over
traditional deghosting methods are: (1) no need for Fourier
transforms over receivers and sources, and (2) can accom-
modate a horizontal or non-horizontal measurement surface,
the latter of particular interest for ocean bottom and onshore
applications. The theory of Green’s theorem-derived de-
ghosting is presented, and its first application on deep-water
Gulf of Mexico synthetic (SEAM) and field data is reported.
The source and receiver deghosting algorithms work with
positive and encouraging results.

INTRODUCTION

Deghosting is a long-standing problem (see, e.g., Robinson and
Treitel, 2008) and benefits traditional seismic processing and all
inverse-scattering-series (ISS) based processing. The benefits of
deghosting include the following: (1) removing the downward com-
ponent of the recorded pressure wavefield (receiver deghosting) en-
hances seismic resolution by removing ghost notches and boosting
low frequencies, (2) deghosting is a prerequisite for many proces-
sing algorithms including multiple elimination (ISS free-surface
multiples, ISS internal multiples, and surface-related-multiple elim-
ination), and (3) model-matching full-wave inversion (FWI) bene-
fits from enhanced low-frequency data.
Although ISS methods are independent of subsurface velocity

(and in fact of all subsurface properties), they make certain assump-

tions about their input data. Weglein et al. (2003) describe how
every ISS isolated-task subseries requires (1) the removal of the
reference wavefield, (2) an estimate of the source signature and
radiation pattern, and (3) source and receiver deghosting, and how
the ISS has a nonlinear dependence on these preprocessing steps.
The fact that the ISS is nonlinear places a higher premium on pre-
processing requirements. An error in the input to a linear process
creates a linear error in its output, but the same linear error in ISS
input creates a combination of linear, quadratic, cubic, etc., errors in
its output. The non-linear model matching FWI would share that
interest.
The freedom of choosing a convenient reference medium (and

associated Green’s function) means Green’s theorem offers a flex-
ible framework for deriving useful algorithms. Green’s theorem
methods can be categorized as wavefield prediction or wavefield
separation. To predict the wavefield anywhere in a volume V,
Green’s theorem based wavefield prediction has the traditional need
for (a) wavefield measurements on the boundary S enclosing V and
(b) a knowledge of the medium throughout V. Examples of wave-
field prediction based on Green’s theorem include Schneider
(1978), Clayton and Stolt (1981), Stolt and Weglein (2012), and
reverse-time migration (Weglein et al., 2011a, 2011b). In contrast,
Green’s theorem-based wavefield separation only assumes separate
sources inside and outside V, and nothing about the character of
those sources is called for or needed. Within wavefield separation,
different applications (e.g., wavelet estimation and deghosting) call
for different choices of reference media and sources. Examples of
wavefield separation based on Green’s theorem include source-wa-
velet estimation (Weglein and Secrest, 1990) and deghosting (We-
glein et al., 2002; Zhang andWeglein, 2005, 2006; Zhang, 2007). In
Green’s theorem wavefield separation methods, evaluating the sur-
face integral at a point inside V provides the contribution to the total
field at a point inside V due to sources outside V, without needing or
determining the nature or properties of any of the actual (active or
passive) sources inside or outside V. Hence, Green’s theorem-
derived wavefield separation preprocessing steps (e.g., for wavelet
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estimation and deghosting) are consistent with subsequent ISS pro-
cessing methods that also do not assume knowledge of or require
subsurface information. The Green’s theorem wavefield prediction
and wavefield separation methods are multidimensional and work
in the ðr;ωÞ or ðr; tÞ data spaces (and, hence, are simple to apply to
irregularly spaced data).
Green’s theorem-derived deghosting was developed in a series

of papers (Weglein et al., 2002; Zhang and Weglein, 2005, 2006;
Zhang, 2007) and has characteristics not shared by previous meth-
ods. For example, there is no need for Fourier transforms over
receivers and sources, and it can accommodate a horizontal or
non-horizontal measurement surface. In Mayhan et al. (2011),
we reported the first use of Green’s theorem-derived receiver de-
ghosting on deep-water Gulf of Mexico synthetic (SEAM) and field
data; in Mayhan et al. (2012), we reported the first use of Green’s
theorem-derived source deghosting on the same data; and in this
paper we provide more detail on the algorithms used.
A brief aside on our terminology. (1) The total wavefield P mea-

sured by the hydrophones is considered as the sum of a reference
wavefield P0 (which for a homogeneous whole-space reference
medium (used in Green’s theorem deghosting) is a direct wave from
source to receiver) and the scattered wavefield Ps (which is P − P0).
(2) Ghosts begin their propagation moving upward from the source
(source ghosts) or end their propagation moving downward to the
receiver (receiver ghosts) or both (source/receiver ghosts) and have
at least one upward reflection from the earth.
After the reference wavefield and all ghosts have been removed,

multiples and primaries are defined. (3) Free-surface multiples have
at least one downward reflection from the air/water boundary and
more than one upward reflection from the earth. (An nth order free-
surface multiple has n downward reflections from the air/water
boundary.) (4) Internal multiples have no downward reflections
from the air/water boundary, more than one upward reflection from
the earth, and at least one downward reflection from below the free
surface. (An nth order internal multiple has n downward reflections
from any reflector(s) below the free surface.) (5) Primaries have
only one upward reflection from the earth. These marine events
are summarized in Figure 1.

The source- and receiver-deghosting steps described below
essentially follow the method described and exemplified in pages
33–39 of Zhang (2007). The difference is that for each shot we
choose to input dual measurements of P and ∂P∕∂z along the towed
streamer, whereas Zhang chose to use the source wavelet and P
along the cable for his numerical examples. (The theory in Zhang
[2007] covers both cases.) The advantages of having the wavefield
P and its normal derivative along the towed streamer are (1) to allow
deghosting for an arbitrary source distribution without needing to
know or to determine the source, and (2) for increased stability in
the vicinity of notches. Using measurements at two depths (or GDD

0

as described below) introduces a more depth-sensitive denominator.

THEORY

Receiver deghosting

Green’s theorem derived-preprocessing is based on a perturba-
tion approach where the actual problem and medium are considered
as composed of a reference medium plus “sources.” The latter arise
as source terms in the differential equation that describes the wave
propagation in the actual medium. A reference medium (and its
associated Green’s function) is chosen to facilitate solving the pro-
blem at hand, and the perturbations are represented as source terms
necessary to write the actual propagation in terms of a reference
medium source term picture. Within that general reference medium
and source term framework, Green’s theorem-derived preproces-
sing is remarkably wide ranging. For example, Figure 2 shows
the configuration chosen for Green’s theorem-derived deghosting.
For deghosting, a reference medium that consists of a whole-space
of water requires three source terms: a source that corresponds to air
and begins above the air-water boundary, the air guns in the water
column, and a source that corresponds to earth and begins below
the water-earth boundary. Choosing a hemispherical surface of
integration bounded below by the measurement surface, and the
prediction or observation point inside the surface of integration

Didn’t experience the earth Experienced the earth

FS

No ghost Ghost 

Primaries + Internal multiples Free-surface multiples 

Primaries Internal multiples 

Locate Invert 

Tools 
Green’s theorem 
Scattering series 

Improve resolution 

Figure 1. Classification of marine events and how they are
processed.

Free surfaceFree surface

Measurement surfaceMeasurement surface

sr

Earth

r
V

air

earth

Figure 2. Configuration for Green’s theorem-derived deghosting
(Zhang [2007] Figure 2.10). αair and αearth are perturbations, the
differences between the actual medium (half-space of air, water,
half-space of earth) and the reference medium (whole-space of
water). The closed surface S of integration is the measurement
surface plus the dashed line. r in the figure corresponds to r 0g in
equation 2.
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gives receiver-deghosted data, P 0
R (as explained in Appendix A). A

different choice of a reference medium (a half-space of air and a
half-space of water, separated by an air/water boundary) with
two source terms, is useful for separating the reference wave
P0=Pd

0 þ PFS
0 and Ps ¼ P − P0. The prediction or observation point

outside or inside the surface of integration, gives wavefield separa-
tion, in which the total wavefield P is separated into the reference
wavefield P0 (prediction or observation point outside) or the scat-
tered wavefield Ps (prediction or observation point inside).
Green’s theorem-derived deghosting (receiver and source) is

based on Weglein et al. (2002), Zhang and Weglein (2005,
2006), and Zhang (2007). Depending on the marine experiment,
we have the following options for receiver deghosting. (1) If we
have P measurements only, we can use a derived variation of
Green’s theorem (equation 3), a “double Dirichlet” Green’s func-
tion (equation 7 or 8), and an estimate of the source wavelet to pre-
dict P and ∂P∕∂z above the towed streamer(s). Then we can use the
derived variation of Green’s theorem, a “whole-space” Green’s
function (equation 1), and the predicted P and ∂P∕∂z to predict
receiver-deghosted P 0

R above the input P and ∂P∕∂z. (2) If we have
a dual-sensor towed streamer or over/under towed streamers, we can
use the derived variation of Green’s theorem and a whole-space
Green’s function to directly predict receiver-deghosted P 0

R above
the towed streamer(s). The theory of case (2) assumes measurement
of the pressure wavefield P and its normal derivative ∂P∕∂n≡
∇Pðr; rs;ωÞ · n̂ where r is the receiver location, rs is the source
location, and n̂ is the unit normal to the measurement surface (point-
ing away from the enclosed volume V).
The reference medium is chosen to be a whole-space of water

(where a causal solution exists for the acoustic wave equation in
3D). In the ðr;ωÞ domain, the causal whole-space Green’s function is

G0ðr; r 0g;ωÞ ¼ Gd
0 ¼

�
−ð1∕4πÞ exp ðikRþÞ∕Rþ in 3D

−ði∕4ÞHð1Þ
0 ðkRþÞ in 2D

(1)

where r 0g is the observation or prediction location, k ¼ ω∕c0, c0 is the
wave speed in the reference medium, Rþ ¼ jr − r 0gj, and Hð1Þ

0 is the
zeroth-order Hankel function of the first kind (Morse and
Feshbach [1953], § 7.2). The observation or prediction point is chosen
between the air/water boundary and the measurement surface, i.e.,
inside the volume V bounded by the closed surface of integration
consisting of the measurement surface and the dashed line in
Figure 2. For a discussion of why the causal whole-space Green’s
function exhibits the forms in equation 1, please see chapter 7 inMorse
and Feshbach (1953).
The configuration in Figure 2, the derived variation of Green’s

theorem, and the acoustic wave equations for P and Gd
0 combine to

give the key equation,

P 0
Rðr 0g; rs;ωÞ ¼

I
S
dS n̂ · ½Pðr; rs;ωÞ∇Gd

0ðr; r 0g;ωÞ

− Gd
0ðr; r 0g;ωÞ∇Pðr; rs;ωÞ�; (2)

where S is the closed surface consisting of the measurement surface
and the dashed line in Figure 2, and n̂ is the unit normal to S (point-
ing away from the enclosed volume V). The source location, rs,
and observation or prediction point, r 0g, are inside the volume V.
Extending the radius of the hemisphere to infinity, invoking the

Sommerfeld radiation condition, and assuming a horizontal mea-
surement surface, the integral over the closed surface becomes
an integral over the measurement surface (Weglein et al. [2002]
equation 5),

P 0
Rðr 0g; rs;ωÞ ¼

Z
m:s:

dS

�
Pðr; rs;ωÞ

∂
∂z

Gd
0ðr; r 0g;ωÞ

− Gd
0ðr; r 0g;ωÞ

∂
∂z

Pðr; rs;ωÞ
�
: (3)

The algorithm in equation 3 lends itself to application in a marine
single-shot experiment. If the predicted cable is above the towed
cable and below the shots, equation 3 identifies and attenuates
downgoing waves at the predicted cable (as shown in Appendix A).
Receiver ghosts, source/receiver ghosts, the direct wave, and the
direct wave’s reflection at the air/water boundary are removed.
Green’s theorem derived receiver deghosting can be compared

with a conventional Pþ Vz sum method of deghosting (Amundsen,
1993; Robertsson and Kragh, 2002; Kragh et al., 2004). For a 3D
point source and given a 1D earth and horizontal acquisition and
adequate sampling to allow a Fourier transform from space to wa-
venumber, the two algorithms are equivalent. But these givens can
be an issue. In addition, the application of the Pþ Vz sum, under
certain circumstances, brings other assumptions. For example, a 1D
layered earth is assumed and dense sampling is needed to support its
inverse Hankel transform (Amundsen [1993], p. 1336). The latter is
often considered the current industry standard deghosting method.
In contrast, the Green’s theorem deghosting algorithm (1) can ac-
commodate a 1D, 2D, or 3D earth and (2) stays in coordinate space.
Within these assumptions, Pþ Vz can be derived from Green’s
theorem as shown in Appendix B. The derivation follows in the
tradition of Corrigan et al. (1991), Amundsen (1993), Weglein
and Amundsen (2003); Weglein et al. (personal communication,
2013). This derivation, which to our knowledge has not been

Earth Earth

Figure 3. Input (left), receiver deghosted (right) (Zhang [2007]
Figure 2.14).

Earth Earth

Figure 4. CSG to CRG (left), exchange coordinates (right) (Zhang
[2007] Figure 2.15–2.16).
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published before, shows that deghosting in the wavenumber-
frequency domain is a special case of the more general deghosting
in the space-frequency domain derived from Green’s theorem.

Source deghosting

We have shown how Green’s theorem can be applied to select the
portion of the seismic wavefield that is upgoing at a field position
above the cable. The algorithm uses data from a single shot gather
and the receiver coordinate as the integration variable. This section
shows how the theory can be similarly applied for source deghost-
ing, where the portion of the wavefield that is downgoing at the
source is sought. Depending on the marine experiment, we have
the following options for source deghosting. (1) If we have a col-
lection of single source experiments, we can use the derived varia-
tion of Green’s theorem (equation 3), a double Dirichlet Green’s
function (equation 7 or 8), and receiver-deghosted data P 0

R to pre-
dict new P 0

R and ∂P 0
R∕∂z above the receiver-deghosted data. Then

we can use the derived variation of Green’s theorem, a whole-space
Green’s function (equation 1), and the predicted P 0

R and ∂P 0
R∕∂z to

predict source and receiver-deghosted P 0
SR above the input P 0

R and
∂P 0

R∕∂z. (2) If we have over/under shots, we can use the derived
variation of Green’s theorem (equation 4), a whole-space Green’s
function, and receiver-deghosted data P 0

R to directly predict source
and receiver-deghosted P 0

SR above the receiver-deghosted data. An
application of reciprocity to the entire set of shot records allows the
original receiver-ghost removal to become a source-ghost removal.
Then a second application of the derived variation of Green’s
theorem over receivers results in source- and receiver-deghosted
data. An experiment with over/under receivers and over/under
sources can be receiver deghosted and source deghosted by a double
application of the derived variation of Green’s theorem (part of
Weglein et al., 2002).
Green’s theorem-derived source deghosting begins with source-

receiver reciprocity. We interpolate shots so that the distance be-
tween shots is the same as the inline distance between receivers,
assign “station numbers” to shots and receivers relative to a grid
fixed in space, use the station numbers to re-sort the sail line from
common-shot gathers (CSGs) to common-receiver gathers (CRGs),

and exchange the locations of the shots and receivers. Source ghosts
upgoing at the shots are now receiver ghosts downgoing at the
“receivers,” and a second application of equation 3 will remove
them. This can be seen in Figures 3 and 4. In Figure 3, the left panel
shows the recorded data (for simplicity, only primaries and their
ghosts are shown), and the right panel shows receiver-deghosted
data (the receiver ghosts and source/receiver ghosts have been at-
tenuated leaving primaries and their source ghosts). In the left panel
of Figure 4, CSGs have been sorted to produce CRGs, and in the
right panel shot and receiver locations have been exchanged. The
configuration in panel (d) looks like that in panel (a), so a second
application of equation 3 will remove the source ghosts.
If the experiment has over/under shots, the integral analogous to

equation 3 is

P 0
SRðr 0g; r 0s;ωÞ ¼

Z
sources

dS n̂ · ½P 0
Rðr 0g; r;ωÞ∇Gþ

0 ðr; r 0s;ωÞ

− Gþ
0 ðr; r 0s;ωÞ∇P 0

Rðr 0g; r;ωÞ�: (4)

With single shot experiments, the next step in Green’s theorem-
derived source deghosting predicts a dual-sensor cable. Now
(following Zhang (2007)) use a double Dirichlet Green’s function
GDD

0 to predict a dual-sensor cable above the receiver-deghosted
cable. GDD

0 is constructed to vanish on the air/water boundary
and the measurement surface (Morse and Feshbach [1953],
p. 812ff; Osen et al., 1998; Tan, 1999; Zhang [2007], p. 20ff).
In the ðr;ωÞ domain, Green’s theorem now takes the form

P 0
Rðr 0 0g ; rs;ωÞ ¼

Z
m.s.

dS 0
gP 0

Rðr 0g; rs;ωÞ
∂GDD

0

∂zg 0
ðr 0g; r 0 0g ;ωÞjz 0g¼m:s:

(5)

∂P 0
R

∂z 0g
ðr 0 0g ; rs;ωÞ ¼

Z
m.s.

dS 0
gP 0

Rðr 0g; rs;ωÞ
∂2GDD

0

∂z 0g∂z 0 0g
ðr 0g; r 0 0g ;ωÞjz 0g¼m:s:

(6)

where r 0 0g is the observation or prediction point, rs is the shot loca-
tion, r 0g is the receiver location on the receiver-deghosted cable, and
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Figure 5. Flat-layer model: Ps at 11 m. The first
event is the water bottom primary and its ghosts,
and the second event is the first free surface multi-
ple and its ghosts. The right panel shows the zero-
offset trace (801 of 1601). More detail is given in
Table C-1 in Appendix C.
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differentiating equation 5 with respect to the observation or predic-
tion coordinate z 0 0g derives equation 6. P 0

R is the result of receiver
deghosting and source-receiver reciprocity. For a single source
experiment, source and receiver deghosting is achieved (with
over/under receivers) first using equation 3 and then substituting
equations 5 and 6 in equation 4.
In 2D the analytic form of the double Dirichlet Green’s function

GDD
0 in the ðr;ωÞ domain is

GDD
0 ðr 0g; r 0 0g ;ωÞ ¼ −

1

b

X∞
n¼1

1ffiffiffi
β

p exp

�
−

ffiffiffi
β

p
jx 0

g − x 0 0
g j
�

× sin

�
nπ
b
z 0g

�
sin

�
nπ
b
z 0 0g

�
(7)

where ðx 0 0
g ; z 0 0g Þ are the observation or prediction coordinates,

ðx 0
g; z 0gÞ are the receiver coordinates on the receiver-deghosted cable,

the air/water boundary is at z 0g ¼ 0, the input (receiver-
deghosted) cable is at zg 0 ¼ b, and we assume β ≡ ðnπ∕bÞ2 − k2 >
0 (Osen et al., 1998; Tan, 1999). In 3D,

GDD
0 ðr 0 0g ; r 0g;ωÞ ¼

2πi
b

X∞
n¼1

Hð1Þ
0 ðγρÞ sin

�
nπ
b
z 0g

�
sin

�
nπ
b
z 0 0g

�

(8)

where γ ¼ i
ffiffiffi
β

p
and ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx 0 0

g − x 0
gÞ2 þ ðy 0 0

g − y 0
gÞ2

q
(Osen et al.,

1998). For a discussion as to why GDD
0 has these forms, please

see p. 820 in Morse and Feshbach (1953). For purposes of
numeric evaluation, the Hankel function with imaginary argument
is replaced by a hyperbolic Bessel function with real argument
(Morse and Feshbach [1953], p. 1323).
The following simple analysis shows that for separating up and

down waves using two measurements at one depth can be more
stable than two measurements at two different depths. Using Pmea-
sured at two depths introduces a depth sensitive denominator. Under
perfect conditions the two methods are equivalent, but under prac-
tical conditions they are not. For example,

P ¼ A expðikzÞ þ B expð−ikzÞ (9)

Pð0Þ ¼ Aþ B (10)
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Figure 6. Flat-layer model: Receiver deghosted
Ps at 8 m. Note that the receiver and source-
receiver ghosts have been attenuated. The right
panel shows the zero-offset trace (801 of 1601).
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Figure 7. Flat-layer model: Source and receiver
deghosted Ps at 1 m. Note that the source ghosts
have been attenuated. The right panel shows the
zero-offset trace (801 of 1601).
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dP
dz

ð0Þ ¼ ikðA − BÞ (11)

A ¼ dP∕dzð0Þ þ ikPð0Þ
2ik

(12)

B ¼ dP∕dzð0Þ − ikPð0Þ
−2ik

(13)

is stable. However, measurements at two depths or GDD
0 (the latter

comes from G0 ¼ 0 at two depths) gives

Pð0Þ ¼ Aþ B (14)

PðaÞ ¼ A exp ðikaÞ þ B expð−ikaÞ (15)

A ¼ Pð0Þ expð−ikaÞ − PðaÞ
−2i sinðkaÞ (16)

B ¼ Pð0Þ expðikaÞ − PðaÞ
2i sinðkaÞ (17)

which is sensitive in the vicinity of ghost notches (where ka ¼ nπ).
If our interest is away from ghost notches, one-source experiments
will be fine for source and receiver deghosting, whereas if our in-
terest includes the ghost notches, two-source experiments can
provide more stability for source-side deghosting. The appropriate
method depends on bandwidth and depth of sources and receivers.
If our sources and receivers are at the ocean bottom, ghost notches
come up early and double sources would be indicated. This also
impacts receiver deghosting using measurements at two depths
because of sensitivity to ghost notches. The alternative method
of receiver deghosting using the source wavelet AðωÞ, P along
the cable, and the double Dirichlet Green’s function GDD

0 allows
receiver deghosting without the need for measurements at two
depths, but GDD

0 uses information at two different depths and hence

Figure 9. P at 150 m (left panel), P0 at 150 m using 10 m between over/under cables (middle panel), P0 at 150 m using 1 m between over/
under cables (right panel). Note the “leakage” of Ps in the middle panel and the absence of visible “leakage” of Ps in the right panel.
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Figure 8. Flat-layer model data, spectrum of the zero-offset
trace (801 of 1601): blue ¼ input, red ¼ receiver deghosted,
green ¼ source and receiver deghosted. Note the shift of the spec-
trum toward lower frequencies. Also note that source and receiver
deghosting (green) has a larger effect that receiver deghosting (red).
Receiver deghosting results from one application of the algorithm to
measured data, whereas source and receiver deghosting results from
three applications: receiver deghosting, wavefield prediction (of the
receiver deghosted data at a point above the cable), and source
deghosting.
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may have stability issues compared to two measurements at
one depth.

Code

The implementation of the above theory is done in a straightfor-
ward manner. The Green’s theorem-derived algorithm computes the
surface integral in equation 3. The method requires as input two
wave fields, the pressure measurements P and their normal deriva-
tives ∂P∕∂z. Measuring the latter requires a dual-sensor cable or

over/under cables. The programs use data in the Seismic Unix
(SU) format and integrate with all native SU programs.

RESULTS

Example: Flat-layer model

Figure 5 shows synthetic data produced using Cagniard-de Hoop
code and a flat-layer model. (More detail on the input data is given
in Tables C-1, C-2, and C-3 in Appendix C.) The first event is the

Figure 10. SEAM data, shot 131,373: recorded data at 17 m (top left), receiver deghosted at 10 m (top right), source and receiver deghosted at
10 m (bottom left). Note the collapsed wavelets in the top right and bottom left panels. Frequency spectra (bottom right): red ¼ P at 17 m,
blue ¼ receiver deghosted at 10 m, green ¼ source and receiver deghosted at 10 m. The spectrum uses a window of 201 traces (232–432) by
0.6 s (1.4–2.0). The first source notch is at 44 Hz which lies above the source frequency range (1–30 Hz). Note the shift of the spectrum toward
lower frequencies (which may be of interest to FWI).
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water-bottom primary and its source ghost, receiver ghost, and
source/receiver ghost, and the second event is the first free-surface
multiple and its three ghosts. Figure 6 shows Green’s theorem-de-
rived output computed using equation 3. Comparing Figures 5 and 6
shows that the receiver ghost and source/receiver ghost associated
with the primary and first free-surface multiple have been attenu-
ated. Figure 7 shows the result of source deghosting. Comparing
Figures 6 and 7 shows that the source ghost has been attenuated
for the first event (the water-bottom primary) and the second event
(the first free-surface multiple). Deghosting also boosts low
frequencies as seen in Figure 8.

Does the quality of deghosting depend on the distance between the
over/under cables? Tang (L. Tang, 2013, personal communication)
has used the same algorithm and a similar flat-layer model to study
how a particular wavefield separation (into the reference and scat-
tered fields) depends on this (and other) parameters. She concluded,
“The estimated results get better when the over/under cables are clo-
ser to each other, i.e., P and dP∕dz are approximately located at the
same depth.” Her results are shown in Figure 9. Robertsson and
Kragh (2002) report the same result, where their upper “cable” is
the air/water boundary. It is expected that the quality of deghosting
is also a function of the distance between the over/under cables.

Figure 11. Field data: hydrophones at 22–25 m (top left), receiver deghosted at 10.5 m (top right), source and receiver deghosted at 8 m
(bottom left). Note the collapsed wavelets in the top right and bottom left panels. Closeup of trace 5 in each of the above panels (bottom right).
Note the gradual recovery of the shape of the wavelet: by receiver deghosting (middle trace) then by source and receiver deghosting (right
trace). Input data courtesy of PGS.
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Example: SEAM

Green’s theorem-derived deghosting was applied to the SEAM
data set generated based on a deep-water Gulf of Mexico earth mod-
el (SEG Advanced Modeling Corporation [SEAM], 2011). We used
the special SEAM classic data set modeled to simulate dual-sensor
acquisition by recording the pressure wavefield at two different
depths, 15 and 17 m, respectively. This dual-sensor data consisted
of nine sail lines for an equivalent wide-azimuth towed-streamer
survey. The source interval is 150 × 150 m, whereas the receiver
interval is 30 m in inline and crossline directions. (More detail about
this data is given in Table C-2 in Appendix C.) Given the low fre-
quency of the data (less than 30 Hz) and the source and receiver
depths of 15 and 17 m, the ghost reflections are not as separable
as in the previous flat layer model with deeper sources and recei-
vers. In this shallower source and receiver situation, successful de-
ghosting would correspond to a change in the wavelet shape. The
top left panel of Figure 10 shows SEAM input, the top right panel
shows receiver-deghosted output computed by the Green’s theorem
approach, and the bottom left panel shows source and receiver-
deghosted output also computed by the Green’s theorem approach.
In the top right and bottom left panels of Figure 10, note the col-
lapsed wavelet. In the bottom right panel of Figure 10, note the shift
of the amplitude spectrum toward low frequencies. Deghosting re-
duces amplitude between notches, where constructive interference
occurs between waves propagating upward and waves propagating

downward. In this data, notches occur at f ¼ nc0∕ð2zÞ, i.e., at mul-
tiples of 50 Hz. Because the source energy is in frequencies less
than 30 Hz, deghosting is manifested by the frequency shift.

Example: Field data

Green’s theorem-derived deghosting was also applied to a field
survey from the deep-water Gulf of Mexico. The data were acquired
using dual-sensor streamers comprised of hydrophones and vertical
geophones. (More detail about this data is given in Table C-3 in
Appendix C.) The vertical geophones measure Vz, whereas Green’s
theorem-
derived algorithms require dP∕dz. It can be shown (from the equa-
tion of motion for a fluid, see Appendix D) that the required
conversion is dP∕dz ¼ iωρVz, where ρ is the density of the refer-
ence medium (sea water). The top left panel in Figure 11 shows a
close up of an input shot record whereas the top right panel displays
the same traces after receiver deghosting and the bottom left panel
displays the same traces after source and receiver deghosting. Note
the collapsed wavelet in the output images. This is also demon-
strated in Figure 12, which compares the amplitude spectra before
and after receiver deghosting. As expected, the deghosting solution
successfully removed the notches from the spectrum that are asso-
ciated with the receiver ghost. In the bottom right panel in Figure 11,
note the gradual recovery of the shape of the wavelet: first by
receiver deghosting (middle trace) and then by source and
receiver deghosting (right trace).

DISCUSSION

In deep water, the particular form of Green’s theorem-derived al-
gorithm that was applied works as well as a conventional Pþ Vz

sum. It does so without the need for a Hankel transform from coor-
dinate space to wavenumber domain, thus avoiding the difficulty of
sufficient sampling needed to support the inverse Hankel transform
(Amundsen [1993], p. 1336). There are two categories of advantages
in using Green’s theorem: (1) avoiding demands of transforms when
the measurement is on a horizontal surface, and (2) when the acqui-
sition is not confined to a horizontal measurement surface, which
precludes the use of transforms. Evaluating the advantages of the
Green’s theorem-derived algorithm requires side by side testing of
the two algorithms as the water becomes shallower, the water bottom
becomes less flat, and full 3D acquisition is used.

CONCLUSIONS

The message for the prospector or seismic processor seeking the
bottom line and user-guide for seeking to source and receiver
deghost marine towed streamer and ocean bottom data is as follows:
(1) away from notches, a single streamer of pressure data, and an
estimate of the source signature can achieve receiver deghosting,
and a set of single shot records can then achieve source deghosting,
and (2) if deghosting is requiring for a frequency range that includes
the notches (as can occur for high-frequency towed streamer acqui-
sition and will occur with ocean-bottom data), then we advocate
measurements of the pressure and its normal derivative along a
cable for receiver deghosting and a set of dual over-under source
experiments to achieve source deghosting. We have implemented
and tested Green’s theorem-derived source and receiver deghosting
for the first time on deep-water Gulf of Mexico synthetic (SEAM)
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Figure 12. Field data: muted hydrophones (blue), receiver
deghosted (red). The receiver notches around 30, 60, and 90 Hz
have been filled in. Input data courtesy of PGS.
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and field data. These tests indicate that the algorithm works with
positive and encouraging results. The Green’s theorem derived
deghosting algorithms provide a unique and comprehensive frame-
work and methodology for understanding and addressing each of
these cases.
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APPENDIX A

RECEIVER DEGHOSTING: SUPPLEMENTAL
THEORY

Following Weglein et al. (2002) and Chapter 2 of Zhang (2007),
to separate upward-moving and downward-moving waves, we
define the following (see Figure 2):

1) a reference medium consisting of a whole-space of water with
wavespeed c0,

2) a perturbation αairðrÞ that is the difference between the refer-
ence medium (water) and the upper part (air) of the actual
medium, defined by 1∕c2air ¼ 1∕c2waterð1 − αairÞ,

3) a perturbation αearthðrÞ that is the difference between the re-
ference medium (water) and the lower part (earth) of the actual
medium, defined by 1∕c2earth ¼ 1∕c2waterð1 − αearthÞ,

4) V is a volume bounded above by an upper hemisphere and
below by the measurement surface,

5) a surface (air-water interface) above the measurement surface
(i.e., inside V),

6) a source at rs above the measurement surface (again inside V),
7) a causal whole-space Green’s function Gþ

0 ðr; r 0g;ωÞ in the
reference medium,

8) k0 ¼ ω∕c0,
9) the prediction/observation point r 0g ∈ V lying below the source

rs and above the measurement surface, and
10) S as the hemisphere’s surface.

For two wavefields P and Gþ
0 , Green’s theorem becomes

I
S
dS n · ½Pðr; rs;ωÞ∇Gþ

0 ðr; r 0g;ωÞ −Gþ
0 ðr; r 0g;ωÞ∇Pðr; rs;ωÞ�

¼
Z
V
dr½Pðr; rs;ωÞ∇2Gþ

0 ðr; r 0g;ωÞ

−Gþ
0 ðr; r 0g;ωÞ∇2Pðr; rs;ωÞ�: (A-1)

Substituting the partial differential equations for the pressure
wavefield P and causal whole-space Green’s function Gþ

0

ð∇2 þ k20ÞPðr; rs;ωÞ ¼ AðωÞδðr − rsÞ þ k20ðαair þ αearthÞP
(A-2)

ð∇2 þ k20ÞGþ
0 ðr; r 0g;ωÞ ¼ δðr − r 0gÞ (A-3)

into the right hand side of equation A-1 gives

Z
V
drfPðr; rs;ωÞ½−k20Gþ

0 þ δðr − r 0gÞ� − Gþ
0 ðr; r 0g;ωÞ½−k20P

þ AðωÞδðr − rsÞ þ k20ðαair þ αearthÞP�g

¼
Z
V
drfPðr; rs;ωÞδðr − r 0gÞ − Pðr; rs;ωÞk20Gþ

0 ðr; r 0g;ωÞ

þ Gþ
0 ðr; r 0g;ωÞk20Pðr; rs;ωÞ

− k20½αairðrÞ þ αearthðrÞ�Pðr; rs;ωÞGþ
0 ðr; r 0g;ωÞ

− AðωÞδðr − rsÞGþ
0 ðr; r 0g;ωÞg: (A-4)

The first term gives Pðr 0g; rs;ωÞ because the prediction/observa-
tion point r 0g is between the measurement surface and air-water sur-
face, i.e., ∈ V. The cross terms −Pðr; rs;ωÞk20Gþ

0 ðr; r 0g;ωÞþ
Gþ

0 ðr; r 0g;ωÞk20Pðr; rs;ωÞ cancel. (This cancellation occurs in
the frequency domain but not in the time domain.) αearthðrÞ ¼ 0

because the volume integral doesn’t contain αearth. The last term
gives AðωÞGþ

0 ðrs; r 0g;ωÞ because the source (air guns) is between
the measurement surface and air-water surface, i.e., within the
volume V. Substituting these four results into equation A-4 gives
for the left member of A-4

Pðr 0g; rs;ωÞ −
Z
V
dr k20αairðrÞPðr; rs;ωÞGþ

0 ðr; r 0g;ωÞ

− AðωÞGþ
0 ðrs; r 0g;ωÞ: (A-5)

Using the symmetry of the Green’s function (Gþ
0 ðrs; r 0g;ωÞ ¼

Gþ
0 ðr 0g; rs;ωÞ) and collecting terms givesI
S
n dS · ½Pðr; rs;ωÞ∇Gþ

0 ðr; r 0g;ωÞ −Gþ
0 ðr; r 0g;ωÞ∇Pðr; rs;ωÞ�

¼ Pðr 0g; rs;ωÞ −
Z
V
drGþ

0 ðr; r 0g;ωÞk20αairðrÞPðr; rs;ωÞ

− AðωÞGþ
0 ðr 0g; rs;ωÞ: (A-6)

The physical meaning of equation A-6 is that the total wavefield
at r 0g can be separated into three parts. There are three spatially
distributed sources causing the wavefield P. From the extinction
theorem/Green’s theorem, the left side of equation A-6 is the
contribution to the field at r 0g due to sources outside V. There is
one source outside V, ρearth ¼ k2αearthP. The contribution it
makes at r 0g is ∫Gþ

0 ρearth and upgoing. The two other sources
(ρair ¼ k2αairP and ρair guns) produce a down field at r 0g, since r 0g
is below rs.
Letting the radius of the hemisphere go to ∞, the Sommerfeld

radiation condition gives

Z
m:s:

dSn · ½Pðr; rs;ωÞ∇Gþ
0 ðr; r 0g;ωÞ

− Gþ
0 ðr; r 0g;ωÞ∇Pðr; rs;ωÞ� ¼ P 0

Rðr 0g; rs;ωÞ; (A-7)

where Pðr; rs;ωÞ and ∇Pðr; rs;ωÞ · n̂ are respectively the hydro-
phone measurements and normal derivatives (in the frequency
domain), and Gþ

0 is the causal whole-space Green’s function for
a homogeneous acoustic medium with water speed.
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APPENDIX B

DERIVATION OF CONVENTIONAL P� Vz SUM
FROM GREEN’S THEOREM

A conventional Pþ Vz sum receiver deghosts by decomposing P
into an upgoing wavefield, Pup, and a downgoing wavefield, Pdown,
using

Pup

Pdown

�
¼ 1

2
ð ~P∓ ρω

kz
~VzÞ; (B-1)

where ~P; ~Vz are plane waves and kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω∕c0Þ2 − k2x − k2y

q
.

Equation B-1 is equation 1 in Klüver et al. (2009), which is
equation 17 in Amundsen (1993). The latter assumes a half-space
of air, a water column, and a 1D layered earth.
Substituting the (acoustic) partial differential equations for the

pressure wavefield Pðr 0;ωÞ and Green’s function G0ðr; r 0;ωÞ into
Green’s second identity givesZ

V
dr 0Pðr 0; rs;ωÞδðr 0 − rÞ ¼

Z
V
dr 0ρðr 0; rs;ωÞG0ðr; r 0;ωÞ

þ
I
S
dS 0n̂ 0 · ½Pðr 0; rs;ωÞ∇ 0G0ðr; r 0;ωÞ

− G0ðr; r 0;ωÞ∇ 0Pðr 0; rs;ωÞ�: (B-2)

See, e.g., Weglein et al. (2002) and Chapter 2 of Zhang (2007). For
deghosting, use the configuration shown in Figure 2, i.e., choose

1) ρðr0;rs;ωÞ¼AðωÞδðr0−rsÞþk2½αairðr0Þþαearthðr0Þ�Pðr0;rs;ωÞ,
2) V is a volume bounded above by an upper hemisphere and be-

low by the measurement surface,
3) r above the measurement surface and below the air/water

boundary (i.e., ∈ V), and
4) G0 a whole-space causal Green’s function Gþ

0 .

We can start with Appendix A, equation A-7

P 0
Rðr; rs;ωÞ ¼

Z
m:s:

dS 0n̂ 0 · ½Pðr 0; rs;ωÞ∇ 0Gþ
0 ðr; r 0;ωÞ

− Gþ
0 ðr; r 0;ωÞ∇ 0Pðr 0; rs;ωÞ�: (B-3)

For simplicity assume 2D, and equation B-3 becomes

P 0
Rðx; z; xs; zs;ωÞ ¼

Z
m:s:

dx 0

×
�
Pðx 0; z 0; xs; zs;ωÞ

∂Gþ
0

∂z 0
ðx; z; x 0; z 0;ωÞ

− Gþ
0 ðx; z; x 0; z 0;ωÞ ∂P

∂z 0
ðx 0; z 0; xs; zs;ωÞ

�
: (B-4)

Fourier transform equation B-4 with respect to x,Z
dx expðikxxÞP 0

Rðx; z; xs; zs;ωÞ ¼
Z

dx expðikxxÞ

×
Z
m:s:

dx 0
�
Pðx 0; z 0; xs; zs;ωÞ

∂Gþ
0

∂z 0
ðx; z; x 0; z 0;ωÞ

− Gþ
0 ðx; z; x 0; z 0;ωÞ ∂P

∂z 0
ðx 0; z 0; xs; zs;ωÞ

�
: (B-5)

The left side of equation B-5 becomes ~P 0
Rðkx; z; xs; zs;ωÞ. Substi-

tute the bilinear form of the Green’s function into the right hand side
of equation B-5,Z

dx expðikxxÞ

×
Z
m:s:

dx 0
�
Pðx 0; z 0; xs; zs;ωÞ

∂
∂z 0

×
�
1

2π

Z
dkx 0

expð−ikx 0ðx − x 0ÞÞ expðikz 0ðz 0 − zÞÞ
2ikz 0

�

−
1

2π

Z
dkx 0

expð−ikx 0ðx − x 0ÞÞ expðikz 0ðz 0 − zÞÞ
2ikz 0

∂P
∂z 0

× ðx 0; z 0; xs; zs;ωÞ
�
; (B-6)

where k 0
z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω∕c0Þ2 − k 02

x

p
. Substitute μ ¼ r − r 0 in equation B-6,

Z
m:s:

dx 0
Z

dμx exp½ikxðμx þ x 0Þ�
�
Pðx 0; z 0; xs; zs;ωÞ

×
1

2π

Z
dkx 0

expð−ik 0
xμxÞ expð−ik 0

zμzÞ
2ik 0

z
ð−ik 0

zÞð−1Þ

−
1

2π

Z
dk 0

x
expð−ik 0

xμxÞ expð−ik 0
zμzÞ

2ik 0
z

∂P
∂z 0

ðx 0; z 0; xs; zs;ωÞ
�

¼ 1

2π

Z
m:s:

dx 0
Z

dμx exp½ikxðμx þ x 0Þ�
�
Pðx 0; z 0; xs; zs;ωÞ

×
Z

dk 0
x expð−ik 0

xμxÞik 0
z

−
Z

dk 0
x expð−ik 0

xμxÞ
∂P
∂z 0

ðx 0; z 0; xs; zs;ωÞ
�
expð−ik 0

zμzÞ
2ik 0

z

¼ 1

2π

Z
dk 0

x
expð−ik 0

zμzÞ
2ik 0

z

Z
dμx expð−iðk 0

x − kxÞμxÞ

×
�
ik 0

z

Z
m:s:

dx 0 expðikxx 0ÞPðx 0; z 0; xs; zs;ωÞ

−
Z

dx 0 expðikxx 0Þ ∂P
∂z 0

ðx 0; z 0; xs; zs;ωÞ
�
: (B-7)

In equation B-7, the integral over dμx gives a Dirac delta,
2πδðk 0

x − kxÞ, the integral over dx 0 is a Fourier transform of the
pressure wavefield and gives ~Pðkx; z 0; xs; zs;ωÞ, and the vertical
derivative of the pressure wavefield is iωρVzðx 0; z 0; xs; zs;ωÞ.
(The latter relationship is derived in Appendix D.) The integral of
dx 0 over the measurement surface allows a Fourier transform
because, in the derivation of equation B-3, we took the radius of
the hemisphere to infinity. We now have (for the right side of
equation B-5),

1

2π

Z
dk 0

x
expð−ik 0

zμzÞ
2ik 0

z
2πδðk 0

x − kxÞ
�
ik 0

z
~Pðkx; z 0; xs; zs;ωÞ

− iωρ
Z

dx 0 expðikxx 0ÞVzðx 0; z 0; xs; zs;ωÞ
�
: (B-8)

In equation B-8, the integral over dx 0 is a Fourier transform of the
vertical velocity field and gives ~Vzðkx; z 0; xs; zs;ωÞ. Using
k 02
z ¼ ω2∕c20 − k 02

x and k2z ¼ ω2∕c20 − k2x, equation B-8 can be
rewritten as
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Z
dk 0

x δðk 0
x − kxÞ

expð−ikz 0μzÞ
2ik 0

z
½ik 0

z
~Pðkx; z 0; xs; zs;ωÞ

− iωρ ~Vzðkx; z 0; xs; zs;ωÞ�

¼ expð−ik 0
zμzÞ

2ik 0
z

½ik 0
z
~Pðkx; z 0; xs; zs;ωÞ

− iωρ ~Vzðkx; z 0; xs; zs;ωÞ�: (B-9)

Collecting terms gives

~P 0
Rðkx; z; xs; zs;ωÞ ¼

expð−ikz 0μzÞ
2ikz 0

ðikzÞ

×
�
~Pðkx; z 0; xs; zs;ωÞ −

ωρ

kz
~Vzðkx; z 0; xs; zs;ωÞ

�

¼ −
1

2
exp½ikz 0ðz 0 − zÞ�

�
~Pðkx; z 0; xs; zs;ωÞ

−
ωρ

kz
~Vzðkx; z 0; xs; zs;ωÞ

�
: (B-10)

In the last equation, the phase factor exp ðikz 0ðz 0 − zÞÞ takes the
one-way wavefield ~P 0

R from the cable depth z 0 to the predicted
(deghosted) depth z. This demonstrates that the Green’s theorem de-
ghosting reduces to the Fourier form equation B-10 under con-
ditions which allow the steps in this demonstration. The standard
practice deghosting P − Vz algorithm today is a version of B-10 that
accommodates a 3D point source, but assumes the earth is 1D.
Equations B-3 and B-10 allow the lifting of the 1D assumption,
and in addition B-3 doesn’t require a horizontal measurement surface.

APPENDIX C

INPUT DATA

APPENDIX D

QUICK DERIVATION OF ∂P∕∂z � iωρVz

1) Newton’s second law of motion: F ¼ mdV∕dt
2) Consider a unit volume in a fluid: F ¼ ρ dV∕dt
3) Fourier transform: F ¼ ρð−iωVÞ
4) Force in a fluid is the pressure gradient: F ¼ −∇P ¼ ρð−iωVÞ
5) Rewriting: ∇P ¼ iωρV
6) The z-component is the desired result.

Table C-1. Synthetic data: Flat-layer-model data created
using Cagniard-de Hoop code.

Parameter Value

Number of shots 1

Number of channels per shot 1601

Number of samples per trace 625

Time sampling 4 ms

Record length 2.5 s

Shot interval n.a.

Group interval 3 m

Shortest offset 0 m

Gun depth 7 m

Streamer depth 9 and 11 m

Air/water boundary, water depth 300 m, 1D constant velocity
acoustic earth (c ¼ 2250 m∕s)
∂P∕∂z ≃ ðPð11 mÞ − Pð9 mÞÞ∕2 m
This data was created by Jinlong Yang using code written by

Jingfeng Zhang (now at BP).

Table C-2. Synthetic data: SEAM deep-water Gulf of Mexico
model.

Parameter Value

Number of shots 9 × 267

Number of channels per shot 661 × 661

Number of samples per trace 2001

Time sampling 8 ms

Record length 16 s

Shot interval 150 m

Group interval 30 m

Shortest offset 0 m

Gun depth 15 m

Streamer depth 15 and 17 m

Air/water boundary, variable water depth, 3D variable density
acoustic earth
3D source, frequency of source: 1–30 Hz
Distance between towed streamers: 30 m
∂P∕∂z ≃ ðPð17 mÞ − Pð15 mÞÞ∕2 m
Reviewer 2 pointed out that “The numerical approximation of the

vertical derivative using a finite difference approach is subject to
considerable error when a distance dz ¼ 2 m is used. In other
words, the pressure data have a much higher accuracy than the
pressure derivative data when computed this way.”

Table C-3. Field data: Deep-water Gulf of Mexico.

Parameter Value

Number of shots 2451

Number of channels per shot 960

Number of samples per trace 3585

Time sampling 4 ms

Record length 14.34 s

Shot interval 32 m

Group interval 12.5 m

Shortest offset 112 m

Gun depth 9 m

Streamer depth 25 m

Data courtesy of PGS
Dual-sensor towed streamer
∂P∕∂z ¼ iωρVz, where ρ is the density of the reference medium

(seawater)
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Using Green’s theorem to satisfy data requirements of multiple removal methods: The impact of
acquisition design
Lin Tang∗, James D. Mayhan, Jinlong Yang, and Arthur B. Weglein, M-OSRP, University of Houston

SUMMARY

The freedom of choosing a convenient reference medium
means Green’s theorem offers a flexible framework for de-
riving a number of useful algorithms. Methods that can be
derived from Green’s theorem include: separation of reference
and scattered wavefields (P=P0+Ps), wavelet estimation, and
ghost removal. Green’s theorem preprocessing methods are
fully consistent with the inverse scattering series (ISS) isolated
task subseries processing because Green’s theorem wave sepa-
ration methods are multidimensional and make no assumptions
about the earth. The ISS multiple removal algorithms require
their input data to be deghosted and to have an estimate of the
wavelet. We discuss the effect of acquisition design on Green’s
theorem for predicting P0 and Ps and for deghosting.

INTRODUCTION

Preprocessing of seismic data, including removal of reference
waves, wavelet estimation, and removal of ghosts, is very im-
portant in seismic data processing. The reference wave does
not experience reflection from the earth, which is our ultimate
objective, so it should be removed before subsequent analy-
sis. Seismic data are affected by both the acquisition signa-
ture and the properties of the earth. Thus, we need to iden-
tify and remove the wavelet’s contribution from the seismic
data (Weglein and Secrest (1990)). Deghosting will remove
the down-going wave from the scattered wave and will en-
hance the low-frequency content of the data (Mayhan et al.,
2011, 2012; Mayhan and Weglein, 2013). These are the pre-
requisites of the following steps of multiple removal and depth
imaging in the Inverse Scattering Series (ISS) algorithm (We-
glein et al. (2003)). All three of these processing steps can
be achieved by using Green’s theorem. In Weglein and Se-
crest (1990), wave separation and wavelet estimation by us-
ing Green’s theorem are discussed. By performing an inte-
gral along the measurement surface, we can predict the refer-
ence wave or the scattered wave, depending on the choice of
observation point. Green’s theorem can work in multiple di-
mensions and is especially effective in the case of interfering
events, compared with other methods such as simply muting
the direct wave from the data, which can lead to the loss of
long offset wave information. By the way, the thing we call
a wavelet is the factor that separates what we are measuring
P0 vs. a Green’s function G0 and hence includes the source
signature and the instrument response, that we could call the
acquisition wavelet. In the methods described below, the factor
A(ω) is actually the acquisition wavelet.

In this paper we focus on preparing the data for the subsequent
multiple removal steps, including removing reference wave,
estimating wavelet and deghosting. The effect of acquisition
design on wave separation when using an over/under cable is

discussed. The necessity of deghosting for free surface multi-
ple removal will be shown.

THEORY

In scattering theory, we treat the actual medium as a combina-
tion of an unperturbed medium, called the reference medium,
and a perturbation. Correspondingly, the total measured wave-
field P is the summation of the reference wave P0 and the scat-
tered wave Ps. P0 does not experience the earth, which is our
interest, thus we need to remove it before further processing
and analysis. In the marine environment, for the purpose of
separating P0 and Ps, we choose as the reference medium a
half-space of water plus a half space of air. Overlaying the
reference medium are two sources, the air guns and the earth,
which create the measured wavefield P, where P = P0 + Ps.
Combining the wave equations for P0 and the corresponding
Green’s function G0 in the reference medium and Green’s sec-
ond identity, we can have the equations for Green’s theorem
wave separation. When choosing the observation point below
the measurement surface, we have the reference wave

P0(r,rs,ω) =

∫

m.s.
dSn̂·

[
P(r ′,rs,ω)∇′G0(r ′,r,ω)−G0(r ′,r,ω)∇′P(r ′,rs,ω)

]
.
(1)

In addition, using the information of reference wave P0, we
can solve for the wavelet

A(ω) =
P0(r,rs,ω)

G0(r,rs,ω)
. (2)

When choosing the observation above the cable, Green’s theo-
rem will give us the scattered wave Ps,

Ps(r,rs,ω) =

∫

m.s.
dSn̂·

[
P(r ′,rs,ω)∇′G0(r ′,r,ω)−G0(r ′,r,ω)∇′P(r ′,rs,ω)

]
.
(3)

From the above equations, we can see that given the wavefield
P and its normal derivative Pn on the measurement surface, we
can easily calculate the reference wave P0 and the scattered
wave Ps, depending on the observation point we choose. In
other words, the reference wave and the scattered wave are
separated by using Green’s theorem.

Green’s theorem receiver deghosting is carried out via

P′R(r
′
g,rs,ω) =

∫

m.s.
dS n̂·

[P(r,rs,ω)∇G+
0 (r,r

′
g,ω)−G+

0 (r,r
′
g,ω)∇P(r,rs,ω)], (4)
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where P(r,rs,ω) is the measured pressure wavefield, G+
0 (r,r

′
g,ω)

is a whole space, causal Green’s function, rs is the source loca-
tion, r is a receiver location, r′g is the prediction point, and the
integration is over the measurement surface for a common shot
gather (Weglein et al., 2002; Zhang and Weglein, 2005, 2006;
Zhang, 2007). The input (measurements of P and its normal
derivative) requires over/under cables. Similarly, Green’s the-
orem source deghosting uses

P′SR(r
′
g,r
′
s,ω) =

∫

sources
dS n̂·

[P′R(r
′
g,r,ω)∇G+

0 (r,r
′
s,ω)−G+

0 (r,r
′
s,ω)∇P′R(r

′
g,r,ω)], (5)

where the input (P′R and its normal derivative) requires over/under
sources, and the integration is for a common receiver gather. If
we have a single cable measuring P and we can estimate the
isotropic wavelet A(ω), we can receiver deghost by first com-
puting

P′(r′g,rs,ω) = A(ω)GDD
0 (r′g,rs,ω)+

∫

m.s.
dS n̂ ·P(r,rs,ω)∇GDD

0 (r,r′g,ω) (6)

∂P′

∂ z′g
(r′g,rs,ω) = A(ω)

∂GDD
0

∂ z′g
(r′g,rs,ω)+

∫

m.s.
dS n̂ ·P(r,rs,ω)∇

∂GDD
0

∂ z′g
(r,r′g,ω). (7)

Equation 7 is the derivative of equation 6, and GDD
0 is a “dou-

ble Dirichlet” Green’s function constructed to vanish on both
the free surface and measurement surface (Osen et al., 1998;
Tan, 1999). In this case, the outputs of equations 6 and 7 are
the inputs to equation 4. Similarly, in the absence of over/under
sources, source deghosting is accomplished by substituting the
output of equation 4 into equations 6 and 7 (but without the
terms containing the wavelet), then their outputs become the
inputs to equation 5.

THE EFFECT OF ACQUISITION DESIGN

Green’s theorem requires the wavefield P and its normal deriva-
tive Pn on the measurement surface as the input. In marine
exploration, an over/under cable has been used to obtain data
at two depths. Here we study some practical issues when per-
forming Green’s theorem for wave separation using over/under
cable acquisition.

The depth difference between the cables
Since the wavefield P is the recorded data, the normal deriva-
tive needs to be calculated in the case of a geophone in the
marine environment. When using an over/under cable, an easy
way to calculate the normal derivative is to subtract the data
of the upper cable from the data of the lower cable and then
divide by their depth difference, i.e.,

dP( z1+z2
2 )

dz
=

P(z2)−P(z1)

z2− z1
. (8)

As the above equation shows, the normal derivative of P is at
the depth (z1 + z2)/2, rather than at z1 or z2, where wavefield

P is measured. This mismatch may affect the wave separation
results.

In our synthetic tests using the reflectivity method, we first
used a 1D acoustic model with the source at 5m and two ca-
bles, one at a depth of 45m and one at 50m. (The cables were
placed unrealistically deep to better illustrate the results.) Thus
the two cables are separated by 5m. Using Green’s theorem,
the scattered wave Ps is predicted at 20m, and P0 is predicted at
80m, as shown in Figure 1. Next, we reduced the depth differ-
ence between the two cables to 1m (one cable at 49m, the other
at 50m), and in that case Green’s theorem gives the predicted
Ps at 20m and P0 at 80m as shown in Figure 2. (The cables
were placed unrealistically close again to better illustrate the
results.) From these two results, we can clearly see that when
the depth difference is 5m, as in Figure 1, there are several
residuals left in both cases of P0 and Ps, while in Figure 2, the
predicted results are clean. This indicates that reducing the dif-
ference in cable depths can significantly increase the accuracy
of wave separation results, since the depth of Pn now better
matches with the depth of P in the Green’s theorem integral.

The depth of the predicted wave
Other factors may affect the estimated results. The actual ex-
periment shows that the choice of the predicted cable depth can
change the quality of the result. Figure 3 shows the choice of
different depths when predicting the scattered wave Ps. Here
we define the depth difference between the predicted cable and
the measurement surface as 4z. We also define the interval
between traces as 4x. As we can see, the predicted result
has many residuals when4z is very small compared with4x.
Only when 4z is at least half of 4x are the predicted results
acceptable. Likewise, Figure 4 shows the predicted results of
P0 at different depths. We again got the similar conclusion that
only when the depth difference between the predicted cable
and the actual cable is larger than 1/2 of the interval between
traces, does the predicted direct wave have few residuals.

DEGHOSTING SEAM DATA

We applied Green’s theorem to the SEAM data set generated
based on a deepwater Gulf of Mexico earth model (The SEG
Advanced Modeling Corporation (SEAM), 2011). We used the
special SEAM classic data set modeled to simulate dual sensor
acquisition by recording the pressure wavefield at two different
depths, 15 and 17m respectively. This dual sensor data con-
sisted of nine sail lines for an equivalent wide azimuth towed
streamer survey. Given the low frequency of the data (less than
30Hz) and the source and receiver depths of 15m and 17m,
the ghost reflections overlap/interfere with non-ghost events,
and successful deghosting would correspond to a change in
the wavelet shape. The result is shown in Figure 5. In the right
panel, we see there is no source notch to fill; the first source
notch is at 44Hz which lies above the source frequency range
(1–30Hz).
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(a) (b) 

Figure 1: Using an over/under cable with a 5m depth differ-
ence. (a) Ps predicted at 20m, (b) P0 predicted at 80m.

(a) (b) 

Figure 2: Using an over/under cable with a 1m depth differ-
ence. (a) Ps predicted at 20m, (b) P0 predicted at 80m.

FREE SURFACE MULTIPLE REMOVAL

ISS free-surface multiple elimination method has the ability to
predict accurately the phase and amplitude of multiples if its
pre-requisites (wavelet and deghosted data) are satisfied. Fig-
ures 6(a) and 6(b) are the input data with and without ghosts,
respectively. Inputting them into ISS free-surface multiple elim-
ination algorithm, Figures 6(c) and 6(d) are their correspond-
ing free-surface multiple predictions. After subtracting from
the input data, Figures 6(e) and 6(f) show the results after free-
surface multiple removal. If the input data are not deghosted,
ISS free-surface multiple removal method can predict the ex-
act phase but only approximate amplitude of multiples. After
deghosting, we can see that all free-surface multiples are pre-
dicted exactly and through a simple subtraction; they are all
well eliminated and most importantly primaries are not touched,
as shown in Figure 6(f).

CONCLUSIONS

The ISS multiple removal algorithms require their input data
to be deghosted and to have an estimate of the wavelet, each of
which can be accomplished with distinct forms of Green’s the-

(a) (b) 

(c) (d) 

Figure 3: Predicted Ps when: (a) 4z =1/8 4x, (b) 4z =1/4
4x, (c) 14z =1/24x, and (d)4z =4x.

(a) (b) 

(d) (c) 

Figure 4: Predicted P0 when: (a) 4z =1/8 4x, (b) 4z =1/4
4x, (c) 14z =1/24x, and (d)4z =4x.
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Figure 5: SEAM data, shot 131373: recorded data at 17m (top
panel), receiver deghosted at 10m (second panel), source and
receiver deghosted at 10m (third panel). Note the collapsed
wavelets in the second and third panels. Frequency spectra
(bottom panel): red=P at 17m, blue=receiver deghosted at
10m, green=source and receiver deghosted at 10m. The spec-
trum uses a window of 201 traces (232-432) by 0.6s (1.4-2.0).
The first source notch is at 44Hz which lies above the source
frequency range (1–30Hz). Note the shift of the spectrum to-
wards lower frequencies (which may be of interest to FWI).
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Figure 6: (a)&(b) Input data with and without ghosts; (c)&(d)
corresponding free-surface multiple prediction; (e)&(f) After
free-surface multiple removal through a simple subtraction.

orem. The effects of (1) the difference in the depth between the
over cable and the under cable, and (2) the choice of the loca-
tion of the predicted reference wave or scattered wave relative
to the cable are studied. The tests show that to get useful wave
separation results, the depth difference between the two cables
should be quite small, and we choose to predict the wave at
least 1/2 4x from the cable. The importance of deghosting
before free surface multiple removal is also shown.
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The multiple attenuation toolbox: Progress, challenges and open issues
Arthur B. Weglein, M-OSRP/Physics Dept./University of Houston

SUMMARY

This paper describes recent progress in attenuating free surface
and internal multiples for marine and on-shore plays. While
there is much to celebrate within the multiple attenuation tool-
box, with recent progress and improved capability, there are
also significant fundamental open issues and practical chal-
lenges that remain to be addressed.

INTRODUCTION

Multiple removal is a longstanding problem in exploration seis-
mology. Although methods for removing multiples have ad-
vanced and have become more effective, the concomitant in-
dustry trend toward more complex exploration areas and diffi-
cult plays has at times outpaced advances in multiple-attenuation
capability. The topic of multiples, and the need for developing
ever more effective methods for their removal, remains high in
terms of industry interest, priority and research investment.

We advocate a tool-box approach and orientation for under-
standing: (1) overall multiple attenuation capability, and (2)
the place and role that each method within the toolbox plays
within the spectrum of different capabilities and responses, and
(3) how to choose the method that’s a best match for the user’s
application and objective. In this paper, we present a status
report on the multiple attenuation toolbox and the open and
prioritized issues yet to be addressed.

THE MULTIPLE ATTENUATION TOOLBOX

Among the current methods within the multiple attenuation
toolbox, we will focus on: (1) Radon transform, (2) DEL-
PHI feedback methods, and (3) the inverse scattering series ap-
proach. These methods were chosen because they each repre-
sent different assumptions and knowledge of subsurface prop-
erties, and the reflectors that have generated the multiples.

As we move from Radon, to feedback, to inverse scattering
series (for free surface and internal multiples), the need for
subsurface information and user intervention decreases and the
commensurate cost increases. The cost-effective and appropri-
ate choice depends on the complexity of the geology, the data,
and your processing objective. If one can well estimate the
velocity of primaries and there is sufficient moveout between
primaries and multiples then Radon methods are often the in-
dicated choice (Foster and Mosher, 1992; Trad et al., 2002,
2003; Nowak and Imhof, 2006; Abbad et al., 2011). If the free
surface multiples are isolated (and temporally distinct from
primaries) the SRME (from DELPHI) plus Radon followed
by adaptive subtraction is an effective strategy. The DEL-
PHI approach to internal multiple attenuation (Berkhout and
Palthe, 1980; Berkhout and Verschuur, 1997; Berkhout, 1999;
Berkhout and Verschuur, 2005b,a; Kelamis and Verschuur, 2000;

Kelamis et al., 2002, 2006b, 2008; Luo et al., 2007; Verschuur
et al., 1992) requires some information about the generators of
internal multiples and will be a cost-effective choice when that
criteria can be satisfied. The inverse scattering series (ISS) for
free surface multiples predicts the amplitude and phase of free
surface multiples at all offsets, doesn’t require a Radon trans-
form or adaptive subtraction and can eliminate the multiple in
the presence of proximal or interfering events (Carvalho et al.,
1992; Weglein et al., 2003). The latter is more costly than:
(1) Radon, and (2) SRME (DELPHI) combined with Radon
followed by adaptive subtraction, but can be the cost effective
choice when the surgical removal of free surface multiples that
are proximal to primaries or other multiples of different orders
is the goal. Inverse scattering series methods for removing in-
ternal multiples (see, e.g., Araújo et al. (1994); Weglein et al.
(2003)) require no subsurface information or interpretive inter-
vention, cost more than Radon or feedback loop methods, but
are the appropriate and indicated choice under the most com-
plex and daunting geologic and data conditions, and when one
is interested in predicting the amplitude and phase of multi-
ples at all offsets. The latter elimination provides the surgi-
cal removal of multiples without injuring primaries. Choos-
ing the appropriate tool for the specific exploration play and
application is how we advocate using the current capability
within the multiple attenuation toolbox. In fact, if your data
set and prospect objectives can be accommodated by Radon,
then it would be contraindicated to use a method that is more
than necessary and will not provide a return on the added in-
vestment. Progress and future advances in capability will add
to (and facilitate) the choices within the toolbox and broaden
the circumstances under which multiples can be effectively re-
moved without damaging primaries. The expanded and en-
hanced toolbox empowers those interested in paying more to
access more capability to have that opportunity. Advances in
computer capability always mitigate the cost factor. The use of
different methods within the toolbox has varied over time, as
industry trends and portfolio move from the readily accessible
to the more complex and challenging plays.

OFFSHORE AND ONSHORE MULTIPLE REMOVAL:
PROGRESS AND OPEN ISSUES

In offshore exploration, the industry trend to explore in deep
water, with even a flat horizontal water bottom and a 1D sub-
surface, immediately caused many traditional and useful sig-
nal processing/statistical-based multiple-removal methods to
bump up against their assumptions, break down, and to fail.
The confluence of (1) high drilling costs in deepwater plays,
(2) specific deepwater challenges (e.g., shallow subsea haz-
ards), (3) the need to develop fields with fewer wells, (4) the
complex and rapidly laterally varying overburden and bound-
aries/target and (5) the record of drilling dry holes, drives the
need for greater capability for removing marine free-surface
and internal multiples, as well as improving methods of imag-
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ing.

Marine field data tests have demonstrated that under complex
data and subsurface conditions that the ISS methods demon-
strate their mettle and delivery. The ISS algorithms were re-
cently employed on offshore Brazil data in Ferreira (2011) (see
Figure 2). One of the conclusions of the latter study with Petro-
bras was “no other method was able to show similar effective-
ness in attenuating the internal multiples generated by the salt
layers”.

Reflection 

Coefficient Depth (m) 

375 

535 .45 

.50 

910 .80 

Synthetic model, constant velocity 

Downward reflection point (DRP) 

(a)

(b) (c)

Figure 1: Hidden reflector example: (a) Synthetic Model; (b)
Shot record; (c) Shot record after an accurate amplitude and
phase prediction of free surface multiple elimination. This ex-
ample shows that the ISS free surface algorithm doesn’t re-
quire a residual Radon or adaptive step. Note that the energy
minimization criteria fails in this example. (Example provided
courtesy of Bill Dragoset.)

Moving onshore, the estimation and removal of land internal
multiples can make the toughest marine-multiple problem pale
in comparison. The presence of proximal and interfering pri-

(a)

(b)

(c)

(d)

Figure 2: Stack before (a) and after (b) free surface multiple
removal; common offset sections before (c) and after (d) inter-
nal multiple attenuation (Ferreira, 2011).
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maries and internal multiples of different orders can occur in
marine situations, but their frequent occurrence for land inter-
nal multiples raises the priority and interest in both the ampli-
tude and phase fidelity of prediction. Developing an alternative
to energy-minimizing-based adaptive subtraction techniques is
also a priority and pressing need. For example, in Kelamis
et al. (2006a), Fu et al. (2010), Luo et al. (2011), Weglein et al.
(2011), and Kelamis et al. (2013), the basic cause of the land
multiple-removal challenge in Saudi Arabia is identified as a
series of complex, thin layers encountered in the near surface.
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Figure 3: The left column is data and processing with ghosts
in the data , and the right column is data and processing with
ghosts removed. (a) and (b) are input data, (c) and (d) are free
surface multiple predictions, and (e) and (f) after free surface
multiple removal through a simple subtraction. Comparing (e)
and (f) shows the residual if we do not remove ghosts.

Fu et al. (2010) concluded that “Their (ISS internal multiple
algorithm) performance was demonstrated with complex syn-

0.4

0.6

0.8

1.0

1.2

1.4

T
im

e(
s)

200 400 600 800
Trace Number

(a)

0.85

0.90

0.95

1.00

1.05

1.10

1.15

T
im

e(
s)

401
Trace Number

(b)

0.4

0.6

0.8

1.0

1.2

1.4
T

im
e(

s)

200 400 600 800
Trace Number

(c)

0.85

0.90

0.95

1.00

1.05

1.10

1.15

T
im

e(
s)

401
Trace Number

(d)

0.4

0.6

0.8

1.0

1.2

1.4

T
im

e(
s)

200 400 600 800
Trace Number

(e)

0.85

0.90

0.95

1.00

1.05

1.10

1.15

T
im

e(
s)

401
Trace Number

(f)

Figure 4: In the left column, (a) is the input data set (two
primaries and first-order internal multiple), (c) is the internal
multiple prediction without deconvolving the wavelet, and (e)
is the internal multiple prediction with deconvolution of the
wavelet. The right hand column shows only the first-order in-
ternal multiple (corresponding zero-offset traces). We see that
removing the wavelet moves both the amplitude and shape of
the predicted first-order internal multiple to the actual.

thetic and challenging land field data sets with encouraging re-
sults, where other internal multiple suppression methods were
unable to demonstrate similar effectiveness.”

In general, strong reflectors at any depths are significant sources
of internal multiples, especially where geologic bodies with
different seismic properties are in contact. Typical examples
are alternating sequences of sedimentary rocks, salt layers, basaltic
layers or coal seams, which can give rise to short-period inter-
nal multiples.
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PREDICTION AND SUBTRACTION

Multiple removal is often described as a two-step procedure:
prediction and subtraction. The subtraction step is meant to
try to compensate for any algorithmic compromises, or real
world conditions, outside the physical framework behind the
prediction. In multiple-removal applications, the subtraction
step frequently takes the form of energy-minimizing adaptive
subtraction. The idea is that a section of data (or some tem-
porally local portion of data) without multiples has less en-
ergy than the data with multiples. One often hears that the
problem with multiple attenuation is not the prediction but
the subtraction. In fact, the real problem is excessive reliance
on the adaptive subtraction to solve too many problems, with
an energy-minimizing criteria that can be invalid or fail with
proximal or overlapping events. The breakdown of the energy-
minimization adaptive subtraction criteria itself can occur pre-
cisely when the underlying physics behind, e.g., high-end in-
verse scattering series multiple prediction (that it is intended to
serve) will have its greatest strength and will undermine rather
than enhance the prediction. (Please see Figure 1.) Statis-
tics based non-energy minimization adaptive subtraction ap-
proaches are presented in Liu and Dragoset (2013) and Kaplan
and Innanen (2008). The latter reports showed encouraging
results. Weglein (2012) presents a non-energy minimization
adaptive criteria that is derived from, and aligned with, the
properties of the free surface algorithm. We would encour-
age further research and development of fundamentally new
adaptive criteria to address this outstanding and high priority
issue.

Progress to take the algorithm for internal multiple attenuation
towards elimination is reported in W. Herrera (Herrera et al.,
2013) and Y. Zou (Zou et al., 2013). The latter work developed
ideas first suggested in Ramı́rez and Weglein (2009). When
there are two or more internal multiple generators, the leading
order internal multiple attenuator can generate spurious events.
C. Ma (Ma et al., 2013) and H. Liang (Liang et al., 2013) have
provided algorithms with all the advantages of the leading or-
der attenuator but without the artifacts.

P. Terenghi (Terenghi et al., 2012) developed and H. Ayadi
(Ayadi et al., 2013) tested a method that mitigates the com-
putational challenge of 3D ISS internal multiple attenuation.
Musil and Kostov (2008) describe a 2.5D free surface multi-
ple elimination algorithm. Extending the latter technique to
internal multiples would be worthwhile.

PREREQUISITES

The currently most effective multiple attenuation methods re-
quire a reasonable source signature and deghosting, and Green’s
theorem methods have been developed for that purpose (see
Zhang and Weglein (2005); Zhang and Weglein (2006); and
Mayhan et al. (2011)).

We cite references here that demonstrate the impact of Green’s
theorem deghosting on free surface multiple elimination (Fig-
ure 3), and the wavelet deconvolution on internal multiple pre-

diction (Figure 4) (Yang et al., 2013). L. Amundsen (Amund-
sen, 1993; Ikelle and Amundsen, 2005) pioneered P+Vz deghost-
ing, and J. Zhang (Weglein et al., 2002; Zhang and Weglein,
2005, 2006; Zhang, 2007) pioneered and J. Mayhan (May-
han et al., 2011, 2012; Mayhan and Weglein, 2013) developed
Green’s theorem deghosting algorithms. Advances in acquisi-
tion (e.g., dual sensor or over/under cables) have allowed these
Green’s theorem methods and subsequent processing to reach
their potential.

SUMMARY

The toolbox approach views the collection of available meth-
ods for attenuating multiples and recognizes that each method
has strengths and limitations and, for a given prospect and
play, that one chooses the appropriate method from a cost-
effectiveness perspective. It is always important to keep in
mind that in the broader perspective and ultimate considera-
tion within the cost-effectiveness calculation and driver, that
the cost of seismic processing is dwarfed by the cost saving
from avoiding drilling dry holes.

There is a documented shift and trend in the changing rela-
tive emphasis of, e.g., Radon, Feedback, and Inverse Scatter-
ing Series methods that is attributable and closely tied to the
trend and changes in the exploration and production strategies,
interests and portfolios of petroleum producers and companies
that provide services. Those same influences and factors de-
termine the priority of open issues and the pressing need to
address them.
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Summary

In Weglein et al. (2010) an update and status report were
provided on the progress on the inverse scattering series
(ISS) direct depth imaging without the velocity model.

In that report, results on synthetics with sufficient realism
indicated that field data tests were warranted. This
paper documents those first field data tests. These
first early tests are encouraging and indicate that ISS
direct depth imaging on field data is possible. The next
steps on the road between viable and providing relevant
and differential added value to the seismic tool-box are
described and discussed.

Introduction / Background

All currently applied direct depth imaging methods
and indirect imaging concepts firmly believe that depth
and velocity are inextricably linked. That cornerstone
of all current imaging means that any direct imaging
method requires an accurate velocity model to produce
an accurate image in depth.

It is essential to understand the significance of the term
‘direct’ in ‘direct depth imaging’. Given an accurate
velocity model, all current leading-edge imaging methods
(e.g., Kirchhoff, FK, Beam and RTM) are able to directly
output the depth (the actual spatial configuration) of
reflectors.

Indirect imaging methods (e.g., flat common image
gathers, differential moveout, CFP, CRS and ‘path
integral’ approaches) seek to satisfy a property or
condition that an image with an accurate velocity would
satisfy. Those properties are necessary conditions, but
not sufficient, and hence satisfying the indirect proxy for
an adequate velocity model is not equivalent to knowing
the velocity and direct depth imaging. Hence, satisfying
these indirect criteria is no guarantee, and can lead to the
correct depth or to any one of a set of incorrect depths.
The latter truth is rarely (if ever) spoken and even rarer to
find mentioned in print. Most importantly, these indirect
approaches fervently believe that a direct depth imaging
method would require and demand a velocity model, and
that there is absolutely no way around it, and that depth
and velocity are inextricably connected. That thinking is
clear, and 100% correct within the framework of current
imaging concepts and methods.

However, that thinking is superseded by the new broader
framework for imaging provided by the ISS.

Amundsen et al. 2005, 2006, 2008 have developed direct
inversion methods for 1D acoustic and elastic media. The
ISS is the only direct inversion for both a 1D and a
multi-D acoustic, elastic and anelastic earth.

In addition to being direct and applicable and applied for
a multi-D earth, the ISS (Weglein et al. (2003)) allows
for all processing objectives (including multiple removal
and depth imaging) to be achieved directly and without
subsurface information.

In the same ‘direct’ sense, that current imaging methods
can directly output the spatial configuration of reflectors
with a velocity model, ISS imaging algorithms can
directly output the correct spatial configuration without
the velocity model. It is the only method with that
capability.

The ISS subseries for direct depth imaging communicates
that depth and velocity are not inextricably linked.

The ISS provides a new superseding theory that views
the current velocity-depth relationship and framework
as a special limiting case, as quantum mechanics and
relativity view classical physics as a limiting and special
case, within a new comprehensive and broader platform
and framework.

The new broader framework for imaging reduces to
current imaging algorithms when the velocity model is
adequate, and most amazingly it determines on its own for
any particular data set, or portion of a data set, whether
the new framework is needed, or whether the current
conventional imaging framework will suffice. The new
imaging framework determines if its services are called
upon, and then and only then, will it activate the new
ISS imaging framework terms and call them into action.

All current leading edge migration methods, such as,
beam, Kirchhoff and RTM, are linear. In contrast, the
ISS direct depth imaging without the velocity algorithm is
a non-linear relationship between data and the wavefield
at depth.

ISS task specific subseries for multiple removal,
depth imaging and direct non-linear AVO

Each and every term and portion of any term within
the ISS is computed directly in terms of data. All tasks
associated with inversion (e.g., multiple removal, depth
imaging, non-linear direct AVO, and Q compensation)
are each contained within the series. Hence, these
individual tasks are each achievable directly in terms
of data, without subsurface information. Every seismic
processing objective is carried out as a subseries of
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the ISS, and operates without subsurface information,
by involving distinct non-linear communication of the
recorded seismic data. Only the ISS communicates that
all seismic objectives can be achieved in basically the
same way that free surface multiples are removed.

The free surface and internal multiple removal subseries
have not only been shown to be viable but have also
demonstrated added value and stand alone capability for
predicting the amplitude and phase of multiples (See, e.g.,
Luo et al. 2011; Weglein and Dragoset 2005; Fu et al.
2010), in particular, demonstrated under complex marine
and on-shore circumstances. In this paper, we examine
for the first time the issue of ISS depth imaging viability
on field data.

All conventional imaging methods require knowledge of
the velocity model to determine the spatial locations
of reflectors. Hence, the ISS series project began
by assuming that only the velocity was variable and
unknown. Figures 1-3 illustrate the ISS imaging results
for an earth in which only velocity varies. The algorithms
are described in Liu (2006); Liu et al. (2005); Zhang et al.
(2007).

Imaging methods that require the velocity use only the
phase of the data to determine depth. In contrast, all ISS
tasks achieve their goals without subsurface information
by using both the amplitude and phase of seismic data.
The latter difference requires the exclusion of events from
imaging subseries that do not relate to or contribute
towards the task of depth imaging. Reflections that
correspond to density only changes must be precluded
from exclusively depth imaging tasks. The ISS depth
imaging in an acoustic earth where Vp and density (and
for an elastic earth with Vp, Vs and density), can all vary
and all are initially (and remain, completely) unknown
was formulated and the results were summarized in
Weglein et al. (2010).

The impact of data limitations on
ISS subseries

Table 1 summarizes the dependence/sensitivity of
different ISS subseries on seismic bandwidth. As the
latter table indicates, there is an increased dependency
as we progress from the ISS free surface multiple case
to the depth imaging subseries where (in the current
“box-moving” formulation) the absence of low frequency
in the data can have a deleterious effect on the ability of
the ISS to move from the original linear incorrect depth
image to the correct depth.

There are many other issues that need to be taken into
consideration in developing practical ISS depth imaging
algorithms. Among these issues are: (1) have the
appropriate number and types of terms from the inverse
series been included to match the imaging challenge
due to the difference between the actual and reference
velocity, and the duration of that difference; and (2) have
the density only reflections been excluded from the ISS
depth imaging algorithm. All of these issues need to
be addressed to have the ISS depth imaging algorithm

produce an accurate depth section. The moveout becomes
flat and the imaging series directly produces a flat
common image gather (CIG) at the correct depth.

In contrast to all current imaging methods where CIG
flatness is a necessary but not a sufficient condition for
depth imaging accuracy, the CIG flatness is a by-product
of ISS imaging, and a necessary and sufficient indication
that depth has been found. It’s a direct depth finding
machine, and when it stops it is done. With ISS imaging
CIG flatness is an indication that a direct method is done,
not an in-direct proxy for velocity used to find the depth,
where for the latter conventional use it is necessary but
not sufficient for depth location.

The overriding requirement and number one issue for
field data application of ISS depth imaging is being
able to address the sensitivity to missing low frequency
components in the data (or low vertical wave number).
If that low frequency sensitivity is not addressed, then
gathering or not gathering appropriate and necessary ISS
imaging terms or excluding density only reflections will
not matter, and will be of no practical consequence.
Hence, addressing the bandwidth issue for ISS imaging
is the number one priority, the make or break issue
for field data application, viability and delivery of its
promise of high impact differential added value. A
regularization scheme has been developed in Liu and
Weglein (2009) to directly address that low frequency
challenge. The purpose of this paper is to examine
whether this regularization method will allow the ISS
imaging algorithms to be effective and work on field data.
Therefore, with this first field data examination, we relax
all of the other requirements for ISS depth imaging and
consider the field data as though it were generated by a
velocity only varying earth. Within that parallel world
where only velocity varies, the ISS depth imaging will
need to address the band-limited nature of field data, and
also will require having enough ISS imaging terms (within
an acoustic velocity only varying subsurface assumption)
to be effective for accurately locating reflectors.

In Figure 4, we present an acoustic model with no density
variations and the water speed migration for the data
from that model. Figure 5 (a) shows the inverse scattering
imaging series ideal result, with full band-width data.
In (b), the data has been altered by a sine squared
taper up to 10Hz which damped the low frequency
information and the ISS imaging without regularization
is ineffective. In (c), with the regularization applied, the
ISS depth imaging successfully corrects the data move-out
and reveals the correct depth.

A similar approach is followed for a CMP gather selected
from the Kristin data-set (Figure 7, Majdanski et al.
(2010)). Figure 8 (a) shows a water-speed migration of
the data in Figure 7, while Figure 8 (b) shows the ISS
imaging result after regularization.

Event 1 is the water bottom primary, event 2 is the
subwater bottom primary, event 3 is the internal multiple
between event 1 and 2 and event 4 is a third primary.
Event 4, the third primary has a moveout with a water

Inverse scattering series depth imaging

© 2012 SEG DOI  http://dx.doi.org/10.1190/segam2012-0850.1
SEG Las Vegas 2012 Annual Meeting Page 2

D
ow

nl
oa

de
d 

03
/2

2/
13

 to
 1

29
.7

.1
6.

11
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Weglein & et al Direct depth imaging without velocity

speed migration.

It turns out that event 1, the water-bottom primary,
represents a density change but no velocity change.
Hence, the layer below the water-bottom has the same
acoustic velocity as water. Further, the first order internal
multiple (event 3) in that first sub-water-bottom layer
also has a water-speed move out. Hence, events 1, 2, and
3 all have flat CIGs with a water-speed FK Stolt migration
(Figure 6). Event 4 has move-out due to a velocity change
at the base of the first sub-water-bottom reflector.

With a regularized ISS depth imaging the result for the
image of event 4 is a shifted and CIG flat output. Hence,
the ISS depth imaging is working on the very shallow
subsea-bottom portion of the Kristin data set within the
context of a velocity only varying earth. The shifted ISS
image and flat CIG of event 4, the third primary, indicates
that bandwidth issues have been addressed, and sufficient
capture of ISS imaging terms are within the ISS imaging
algorithm. If for this field data set and ISS depth imaging
test, either one of these conditions (addressing bandwidth
sensitivity and adequate inclusion of ISS imaging terms)
were a remaining and outstanding issue, then event 4
would not have moved and produced a flat CIG. The
success of this test is thus defined. A more detailed and
comprehensive analysis behind the logic and conclusions
of this paper will appear in Weglein et al. (2012). The
next steps are to apply the regularized ISS depth imaging
to an acoustic variable velocity and density model for
the very shallow and sub-water-bottom reflectors, and
a Vp, Vs and density varying elastic earth model for
the deeper reflectors, to preclude density only reflections,
and for outputting actual depth. The M-OSRP imaging
research team is engaged in moving from the current
news and report that demonstrates field data viability
for ISS imaging to providing added value. The ultimate
goal is to have ISS imaging match the efficacy that ISS
free surface and internal multiple removal have provided
for the removal of coherent noise, and to extend that
capability for extracting information from signal (the
collection of all primaries).

Conclusions

In this paper, we have shown that the ISS depth
imaging algorithm can address the most serious practical
limitation/challenge field data will place on ISS depth
imaging: that is, limitations in seismic bandwidth. With
this accomplished, the further steps to extend these tests
to variable density and velocity acoustic and elastic media
are achievable, and realizing that is within the sphere of
issues we can influence and make happen. The most
significant difference between synthetic data and field
data for ISS depth imaging has been examined and
addressed.
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Figures

Fig. 1: The fault shadow zone model.

Fig. 2: The water speed pre-stack FK Stolt migration for the
data from the fault shadow model.

Fig. 3: The inverse scattering series image (with partial capture
of ISS imaging capability) for the fault shadow model.
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Fig. 4: Figure (a) shows the acoustic model we are testing
for evaluating the dependence of ISS on seismic bandwidth.
Figure (b) is the water speed FK Stolt migration, the red lines
represent the true location of the reflectors.

(a) (b) (c)

θ

z

Fig. 5: This figure illustrates the imaging result for a velocity
varying only earth model. Figure (a) shows ISS imaging with
data which has low frequency information. Figure (b) shows
ISS imaging with band-limited data. Figure (c) shows the
imaging result with the regularization being applied. This ISS
imaging bandwidth issue is documented in Shaw (2005).Summary
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Fig. 6: This figure summarizes the results of the initial ISS
depth imaging tests on the very shallow, near ocean bottom
section of the Kristin data.

Dependence on temporal Specific subseries
frequency content of the data

None Free surface multiple
Very mild Internal mulitple

Some Depth imaging

Table 1: This table shows the dependence of ISS specific
subseries on temporal frequency content of the data.
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Fig. 7: The CMP gather we tested from Kristin data.
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Fig. 8: For the Kristin data test: Figure (a) shows water speed
migration. The red line indicate water speed migration image
for event 4. Figure (b) shows ISS imaging result. The red line
shows ISS image for event 4.
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Accommodating the source (and receiver) array in free-surface multiple elimination algorithm: im-
pact on interfering or proximal primaries and multiples
Jinlong Yang∗, James D. Mayhan, Lin Tang and Arthur B. Weglein, M-OSRP, University of Houston

SUMMARY

Free-surface multiple elimination (FSME) algorithm (Car-
valho, 1992; Weglein et al., 1997) is modified and extended
to accommodate a source (and receiver) array with a radiation
pattern. That accommodation can provide added value com-
pared to previous methods that assumed a single point source
(air-gun) for the fidelity of amplitude and phase prediction of
free surface multiples at all offsets. For the source-array data,
if all prerequisites are provided, the new algorithm has the the-
oretical capability of predicting the exact phase and amplitude
of multiples, and in principle removing them through a simple
subtraction. Green’s theorem method can provide all its data
requirements: (1) removing the reference wavefield, (2) esti-
mation of source wavelet and radiation pattern, and (3) source
and receiver deghosting. Green’s theorem method is consis-
tent with the new FSME algorithm. They are both multidi-
mensional and do not require any subsurface information. The
new FSME algorithm is tested on a 1D acoustic model, and
the results indicate that the new algorithm enhances the multi-
ple prediction when the data and experiment are caused by an
array rather than a single air-gun.

INTRODUCTION

In marine seismic exploration, multiple removal is a classic
long-standing problem. Various methods (e.g., Carvalho, 1992;
Verschuur et al., 1992; Weglein et al., 1997, 2003; Berkhout
and Verschuur, 1999; Dragoset et al., 2008) have been devel-
oped to either attenuate or eliminate free-surface multiples,
and each method has different assumptions, advantages, and
limitations. Among these methods, the inverse scattering se-
ries (ISS) FSME method (Carvalho, 1992; Weglein et al., 1997)
does not need any subsurface information, which is a big ad-
vantage, especially under conditions of complex geology. The
ISS method predicts the free-surface multiples accurately, while
the feedback-loop method (Verschuur et al., 1992) only pro-
vides approximate predictions because it ignores the obliquity
factor and retains the source-side ghost. Therefore, the ISS
method can remove the free-surface multiples through a sim-
ple subtraction, and most importantly it preserves primary en-
ergy (e.g., Carvalho, 1992; Araújo, 1994; Weglein et al., 1997),
while the feedback-loop method has to remove the multiples
adaptively using certain criteria (energy minimization, for ex-
ample). The energy minimization criterion works well when
there are no overlapping or proximal primaries and multiples
in the input data. If primaries and multiples are overlapping
and destructively interfering, the energy minimization crite-
rion can be invalid or fail and the adaptive subtraction will not
work very well.

To predict free-surface multiples precisely, the ISS method

has certain data requirements: (1) removal of the reference
wavefield, (2) an estimation of the source wavelet and radia-
tion pattern, and (3) source and receiver deghosting. Green’s
theorem wave separation methods that are consistent with the
ISS method have been applied to provide these three criteria,
since they are both multidimensional wave theoretic prepro-
cessing methods and do not need any subsurface information.
Green’s theorem methods offer a flexible framework for de-
riving a number of useful algorithms due to the freedom of
choosing a reference medium. When choosing air-water as the
reference medium, the reference wavefield and the scattered
wavefield can be seperated, and the source wavelet and radia-
tion pattern can be estimated (Weglein and Secrest, 1990; We-
glein et al., 2002). When choosing the whole space of water
as the reference medium, the ghosts can be removed. Green’s
theorem methods have been pioneered by J. Zhang (Weglein
et al., 2002; Zhang and Weglein, 2005, 2006; Zhang, 2007)
and developed by J. Mayhan (Mayhan et al., 2011, 2012; May-
han and Weglein, 2013). If all the prerequisites are provided,
Zhang (2007) has shown that the ISS FSME algorithm can pre-
dict free-surface multiples accurately for a point-source data
and remove them from the data without the need of adaptive
subtraction.

However, for source-array data, the ISS FSME algorithm is not
sufficient because this method assumes a single point source.
In other words, the source has no variation of amplitude or
phase with take-off angle. Nevertheless, in towed marine ac-
quisition, a source array is commonly used to increase the
power of the source, broaden the bandwidth, and cancel the
random noise. The source array exhibits directivity in take-off
angle (Loveridge et al., 1984). That directivity is an issue for
AVO analysis and removing or attenuating multiples. In seis-
mic processing, it is essential that we characterize the source
(and receiver) array’s effect on any seismic processing meth-
ods. Therefore, to improve the accuracy of the predicted multi-
ples, the ISS FSME algorithm is extended by accommodating
a source array. That accommodation can enhance the fidelity
of amplitude and phase prediction of free surface multiples at
all offsets.

THEORY

The ISS FSME algorithm is a fully data-driven algorithm and
does not require any subsurface information. It has the ability
to accurately predict the free-surface multiples order-by-order
and then remove them through a simple subtraction. The ISS
FSME algorithm for an isotropic point source in a 2D case is
given by (Carvalho, 1992; Weglein et al., 1997, 2003):

D′n(kg,ks,ω)

= 1
iπA(ω)

∫
dkD′1(kg,k,ω)qeiq(εg+εs)D′n−1(k,ks,ω), (1)



Free-surface multiple removal

where kg, ks and ω represent the Fourier conjugates of receiver,
source, and time, respectively. εg and εs are the receivers’
and sources’ depth below the free surface, respectively. The
obliquity factor q is given by q = sgn(ω)

√
ω2/c2

0− k2, and
c0 is the reference velocity. The FSME algorithm only re-
quires the source signature A(ω) and source and receiver side
deghosted data D′1(kg,k,ω) as its input. The free-surface mul-
tiples are predicted order-by-order and then added together
give the deghosted and free-surface demultipled data D′(kg,ks,ω)
=
∑∞

n=1 D′n(kg,ks,ω).

For source-array data, the ISS FSME algorithm can only pre-
dict multiples approximately. To incorporate the source array,
the FSME algorithm is extended from a single point source to
a source array with a radiation pattern, as follows:

D′n(kg,ks,ω)

= 1
iπ
∫

dk
ρ(k,q,ω)

D′1(kg,k,ω)qeiq(εg+εs)D′n−1(k,ks,ω), (2)

where ρ(k,q,ω) is the projection of source signature in the
f -k domain and k2 + q2 = ω2/c2

0. The projection of source
signature ρ(k,q,ω) can be directly achieved from the refer-
ence wavefield that is separated from the measured data by us-
ing Green’s theorem method (Weglein and Secrest, 1990) by
choosing air-water as its reference medium.

The key point is to obtain the projection of source signature
ρ(k,q,ω) from the reference wavefield. We assume that the
source array is invariant from one shot to the next. In other
words, the geometry or the distribution of the source array re-
mains for each shot. The direct reference wavefield Pd

0 for a
2D case can be expressed as an integral of the direct reference
Green’s function Gd

0 over all air-guns in an array,

Pd
0 (x,z,xs,zs,ω)

=
∫

dx′dz′ρ(x′,z′,ω)Gd
0(x,z,x

′+ xs,z′+ zs,ω), (3)

where (x,z) and (xs,zs) are the prediction point and source
point, respectively. (x′,z′) is the distribution of the source with
respect to the source locator (xs,zs). Using the bilinear form
of Green’s function and Fourier transforming over x, we obtain
the relationship between ρ and Pd

0 as

Pd
0 (k,z,xs,zs,ω) = ρ(k,q,ω)

eiq|z−zs|

2iq
eikx. (4)

Since k2 +q2 = ω2/c2
0, q is not a free variable, hence, we can

not obtain ρ(x,z,ω) in space-frequency domain by taking an
inverse Fourier transform on ρ(k,q,ω). However, the projec-
tion of the source signature ρ(k,q,ω) can always be achieved
directly from the direct reference wavefield Pd

0 in the f -k do-
main, where the variable k or q represent the amplitude varia-
tions of the source signature with angles. Ikelle et al. (1997)
also proposed a similar quantity A(k,ω), the inverse source
wavelet, and solved it indirectly using the energy minimiza-
tion criterion.

Substituting the projection of the source signature ρ(k,q,ω)
into the inverse scattering free-surface removal subseries, the
new FSME algorithm (equation 2) can be derived (Yang and
Weglein, 2012). The new algorithm accommodates a source

(and receiver) array and can provide added value for the fi-
delity of amplitude and phase prediction of free surface mul-
tiples at all offsets. The new FSME algorithm is fully multi-
dimensional and does not require any subsurface information.
Therefore, it is consistent with Green’s theorem methods that
provide all the data requirements. The new FSME algorithm
(equation 2) is also consistent with the previous FSME algo-
rithm (equation 1) when the source array reduces to a point
source.

NUMERICAL TESTS

In this section, we will show numerical tests of the free-surface
multiple removal for the source-array data with overlapping
or interfering primaries and multiples. The numerical tests
are based on a 1D acoustic model with varying velocity and
constant density, as shown in Figure 1. The model has one

Figure 1: One-dimensional acoustic constant-density medium.

shallow reflector at 90m, hence, the primary is interfering and
overlapping with the free-surface multiples. The depths of the
source and receiver are 13m and 18m, respectively. Using the
Cagniard-de Hoop method, the synthetic data are generated by
a source array (Figure 2) that contains nine air-guns in one
line with 24m range. The advantage of the Cagniard-de Hoop

Figure 2: Source array with nine air-guns.

method is that we can accurately calculate any specific event
we are interested in, so that we can compare it with the results
predicted by the FSME algorithm. Here, we assume that the
source array only varies laterally with identical source signa-
tures, but the assumption is not necessary in the ISS FSME
theory.

The tests are organized as follows: We first preprocess the gen-
erated source-array data using Green’s theorem methods. After
data preprocessing, we input the data into the previous FSME
(equation 1) and the new FSME (equation 2) algorithms to
predict and remove free-surface multiples and compare their
results.

Data preprocessing by using Green’s theorem methods

Figure 3(a) illustrates the data set generated by a source ar-
ray with nine air-guns using the Cagniard-de Hoop method.
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For simplicity, only the primary and the first-order free-surface
multiple and their corresponding ghosts are generated. As we
discussed above, Green’s theorem methods are consistent with
the new FSME method, because they are multidimensional
and do not require any subsurface information. Furthermore,
Green’s theorem methods do not care about the source dis-
tribution, hence, the source-array data can be preprocessed by
Green’s theorem methods to satisfy the data requirement of the
FSME algorithm. When choosing the air-water as the refer-
ence medium, Green’s theorem wave separation method sep-
arates the total wavefield P (Figure 3(a)) into two parts: the
reference wavefield P0 (Figure 3(b)) and the scattered wave-
field Ps (Figure 4(a)). After wave separation, Green’s the-
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Figure 3: Wave separation and deghosting

orem deghosting method is needed to deghost the reference
wavefield and the scattered wavefield by choosing the whole
space of water as its reference medium. Figure 3(c) shows
the direct reference wavefield Pd

0 by deghosting the reference
wavefield P0. It can be seen that most of far offset energies
are recovered. Figures 3(d), 3(e), and 3(f) represent the wig-
gle plots of the zero-offset traces. We can see that the ref-
erence wavefield is separated and its ghost is removed very
well. From the spectra plots, we can see that the low fre-
quency information is boosted, as shown in Figures 3(g), 3(h),
and 3(i). Figures 4(b) and 4(c) illustrate the scattered wave-
field Ps after removing the receiver-side ghosts and source &
receiver ghosts, respectively. Figures 4(d), 4(e), and 4(f) are
the wiggle plots of the zero-offset traces and Figures 4(g),

4(h), and 4(i) are their corresponding spectra plots. The notch
at c0/2d = 1500/(2 ∗ 18) ≈ 42Hz is removed after receiver
side deghosting. Both receiver side deghosting and source side
deghosting recover more low frequency information and do not
touch the primary.
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Figure 4: Deghosting the scattered wavefield

Free-surface multiple removal

With all data requirements satisfied, we input them into the
previous FSME (equation 1) and the new FSME (equation 2)
algorithms to predict and remove free-surface multiples and
compare their results. The source and receiver side deghosted
data (Figure 4(c)) are reploted in Figure 5(a) to show more de-
tails. Figure 5(b) is its corresponding wiggle plot for a small
window (times from 1.0s to 1.4s and traces from 1330 to 1420);
we can see that the primary and the first-order free-surface
multiple are overlapping when the offset exceeds approximately
1000m. Furthermore, in Figure 5(b) it can be seen that they
are destructively overlapping. Therefore, the adaptive subtrac-
tion method can be invalid or fail for this kind of situation,
because the method is based on the energy minimization crite-
rion, which assumes that the energy of the data will be mini-
mized after the multiples are removed. However, in this case,
the energy increases after removal of the multiples.

First, we apply the previous FSME algorithm (equation 1) to
predict free-surface multiples. It predicts phase accurately but
an approximate amplitude. After removing the free-surface
multiple, Figure 5(c) shows that most multiples are removed,
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but there are still some residual multiples. Whether this result
is valuable or not depends on the objective. If the amplitude is
not critical, then this method is sufficient. For cases like AVO
analysis and inversion, in which amplitude is important, such
residual multiples could produce errors in the prediction.
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Figure 5: The left column are the input data and after free-
surface multiple removal using the previous and new FSME
algorithms. The right column are their corresponding wiggle
plots for a small window (times from 1.0s to 1.4s and traces
from 1330 to 1420).

Next, the new FSME algorithm (Equation 2) is used to pre-
dict free-surface multiples. It can predict both amplitude and
phase accurately for the source-array data at all offsets. Af-
ter a simple subtraction, all the multiples are eliminated com-
pletely, as shown in Figure 5(e). Therefore, the new FSME
algorithm works very well for the source-array data that have
interfering events. Comparing Figures 5(f) and 5(d), we can

see that the primary is still affected by the residual multiple
in Figure 5(d), while in Figure 5(f), the primary remains un-
touched as the original primary. Figure 6 illustrates the detail
of comparison for one trace at offset = 1800m. After removing
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Figure 6: Red: the original primary in the input data; Blue:
after multiple removal using the previous FSME algorithm;
Green dash: after multiple removal using the new FSME al-
gorithm.

free-surface multiple using the new algorithm, the primary is
the same as the original one in the input data, while using the
previous algorithm, the primary (Figure 5(d)) is a little weaker
than the original primary, and this amplitude error will seri-
ously affect AVO analysis.

CONCLUSIONS

A new FSME algorithm is proposed and tested on source-array
data that have interfering primaries and multiples. The new
FMSR algorithm accommodates a source (and receiver) array
and can provide added value compared to previous methods for
the fidelity of amplitude and phase prediction of free surface
multiples at all offsets. If all prerequisites are provided, the
new FSME algorithm, in principle, has the ability to predict
free-surface multiples precisely, and removing them through
a simple subtraction. All prerequisites can be achieved using
Green’s theorem methods by choosing different reference me-
dia. The new FSME algorithm is consistent with Green’s the-
orem methods. They are both multidimensional and do not
need any subsurface information. The numerical tests show
that for source-array data, the previous isotropic source FSME
algorithm can only predict phase accurately but amplitude ap-
proximately. This amplitude error can seriously affect the pre-
diction results, such as AVO analysis and inversion, when a
multiple intersects a primary. The new FSME algorithm could
accommodate array data and eliminate free-surface multiples
without damaging primaries.
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A new method to eliminate first order internal multiples for a normal incidence plane wave on a 1D
earth
Yanglei Zou, Arthur B. Weglein, M-OSRP/Physics Dept./University of Houston

SUMMARY

A new method to remove internal multiples has been derived
under 1D normal incidence. This new method is a step further
from the inverse scattering series(ISS) internal-multiple atten-
uator(IMA) to an eliminator under 1D normal incidence. In
the procedure of the method, it constructs the reflection coef-
ficients in order to remove the extra transmission coefficients
of the events and then constructs a new function based on the
reflection coefficients. This method may be relevant and pro-
vide value when primaries and internal multiples interfere with
each other in both on-shore and off-shore data under near 1D
circumstances. This method does not seek higher order terms
in the ISS to construct an algorithm that eliminate first order
internal multiples generated by all reflectors.

INTRODUCTION

The inverse scattering series(ISS) allows specific seismic pro-
cessing objectives, such as free-surface-multiple removal and
internal-multiple removal to be achieved directly in terms of
data, without any subsurface estimation of the earths proper-
ties.

For internal-multiple removal, the Inverse Scattering Series
Internal-Multiple Attenuator(IMA) can predict correct time and
well-understood amplitude for all internal multiples without
any subsurface information. The IMA can remove internal
multiples more effectively by using energy minimization adap-
tive subtraction (EMAS). However, events may interfere with
each other in both on-shore and off-shore seismic data. In these
cases, the EMAS criteria may fail. For example, when a pri-
mary destructively interferes with an internal multiple and the
real energy of the primary is greater than the interfering event,
the EMAS will not only remove the internal multiple but also
touch the primary. The EMAS criteria is to remove one event
in the interfering events and obtain the minimum data energy.
However, in this example, the criteria fails as the real primary
has greater energy.

Predicting the correct amplitude of the internal multiples is an
effective way of avoiding the limitations of EMAS. W.Herrera
and A.B.Weglein(2012) and has derived a subseries that can e-
liminate all first order internal multiples generated at the shal-
lowest reflector and can further attenuate deeper internal mul-
tiples. The present work is a step further from the IMA to an
eliminator under 1D normal incidence. The method is derived
based on the analytic expressions of the data under 1D normal
incidence. And in the procedure of the method, it determines
the reflection coefficients in order to remove the extra trans-
mission coefficients of the events and constructing a new func-
tion based on the reflection coefficients. This method may be
relevant and provide value when primaries and internal mul-

tiples destructively interfering with each other in 1D normal
incidence data.

INTERNAL MULTIPLE ATTENUATOR(IMA) AND AT-
TENUATION FACTOR(AF) UNDER 1D NORMAL INCI-
DENCE

The 1D normal incidence version of IMA given by Araújo
(1994) Weglein et al. (1997) is presented as follows:

bIM
3 (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε2

−∞
dz′e−ikz′b1(z′)

×
∫ ∞

z′+ε1

dz′′eikz′′b1(z′′). (1)

To demonstrate the mechanism of the internal multiple atten-
uation algorithm and to examine its properties, Weglein et al.
(2003) considered the simplest two-layer model that can pro-
duce an internal multiple. For this model, the reflection data
caused by an impulsive incident wave δ (t− z

c ) is:

D′(t) = R1δ (t− t1)+T01R2T10δ (t− t2)+ · · · (2)

where t1, t2 and R1, R2 are the two way times and reflection
coefficients from the two reflectors,respectively; and T01 and
T10 are the coefficients of transmission between model layers
0 and 1 and 1 and 0, respectively.

D′(ω) = R1eiωt1 +T01R2T10eiωt2 + · · · . (3)

whereD′(ω) is the temporal Fourier transform of D′(t). Make
a water speed migration with:z1 =

c0t1
2 z2 =

c0t2
2 .

The input data can now be expressed in terms of k = kz, z1 and
z2:

b(k) = R1eikz1 +T01R2T10eikz2 + · · · (4)

The date is now ready for the internal multiple algorithm. Sub-
stituting b(k) into the algorithm, we derive the prediction in the
time domain:

b3t = R1R2
2T 2

01T 2
10δ (t− (2t2− t1)) (5)

From the example it is easy to compute the actual first order
internal multiple precisely:

−R1R2
2T01T10δ (t− (2t2− t1)) (6)

Therefore, the time prediction is precise, and the amplitude of
the prediction has an extra power of T01T10 which is called the
Attenuation Factor(AF), thus defining exactly the difference
between the attenuation represented by b3 and elimination.

To derive a general formula for the amplitude prediction of the
algorithm, A.C.Ramı́rez and A.B.Weglein (2005) analyzed a
model with n layers and respective velocities Cn, n is an inte-
ger. By using the definitions R1 =R′1, R′N =RN

∏N−1
i=1 (Ti−1,iTi,i−1)
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and Einsteins summation, the reflection data from a normal in-
cident spike wave we obtain the following:

D(t) = R′nδ (t− tn)+ internal multiples (7)

The generalized prediction of the attenuator is obtained by the
following:

bIM
3 (k) = R′iR

′
jR
′
keikzi eikz j eikzk (8)

which in the time domain becomes

bIM
3 (k) = R′iR

′
jR
′
kδ (t− (ti + tk− t j)) (9)

By evaluating Equation (9) for different values of i, j and k
the amplitude prediction of first order internal multiples is ob-
tained and can be generalized for any amount of layers in a 1D
model. Compared with the real amplitude of internal multiples
in the data, we can obtain the AF(Figure 1 shows an example
of the Attenuation Factor).

Figure 1: an example of the Attenuation Factor of a first or-
der internal multiple generated at the second reflector. The
red terms in this figure show the extra transmission coef-
ficients. The Attenuation Factor in this example is AF2 =
(T01T10)

2T12T21

The attenuation factor, AFj, in the prediction of internal multi-
ples is given by the following:

AFj =





T0,1T1,0 ( j = 1)∏N−1

i=1
(T 2

i−1,iT
2

i,i−1)Tj, j−1Tj−1, j (1< j < J)

(10)
The attenuation factor AFj can also be performed by using re-
flection coefficients:

AFj =





1−R2
1 ( j = 1)

(1−R2
1)

2(1−R2
2)

2 · · ·(1−R2
j−1)

2(1−R2
j)

(1< j < J)

(11)

The subscript j represents the generating reflector, and J is the
total number of interfaces in the model. The interfaces are
numbered starting with the shallowest location.

A NEW IDEA TO ELIMINATE INTERNAL MULTIPLES
UNDER 1D NORMAL INCIDENCE

The discussion above demonstrates that all first order internal
multiples generated at the same reflector have the same AF. In
order to predict correct amplitude of first order internal multi-
ples directly in terms of data, a new term in the second integral

of IMA can be developed to remove the AF and make the func-
tion an eliminator. The function must be developed from

bIM
3 (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε2

−∞
dz′e−ikz′b1(z′)

×
∫ ∞

z′+ε1

dz′′eikz′′b1(z′′) (12)

to

bIM
E (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε2

−∞
dz′e−ikz′F [b1(z′)]

×
∫ ∞

z′+ε1

dz′′eikz′′b1(z′′) (13)

For the 1D normal incidence, b1(z) is the water speed migra-
tion of the data. It is expressed as follows:

b1(z) =R1δ (z− z1)+R′2δ (z− z2)+R′3δ (z− z3)+ · · ·
+R′nδ (z− zn)+ · · · (14)

The F [b1(z)] should have the form as the following:

F [b1(z′)] =
R1

AFj=1
δ (z′− z1)+

R′2
AFj=2

δ (z′− z2)+ · · ·

+
R′n

AFj=n
δ (z′− zn)+ · · ·

=
R1δ (z′− z1)

1−R2
1

+
R′2δ (z′− z2)

(1−R2
1)

2(1−R2
2)

+ · · ·

+
R′nδ (z′− zn)

(1−R2
1)

2(1−R2
2)

2 · · ·(1−R2
n−1)

2(1−R2
n)

+ · · · (15)

By using reverse engineering,Y.Zou(2013) derived the F [b1(z)]
directly in terms of data:

F [b1(z)] = lim
ε ′→0

c(z)
∫ z+ε

z−ε c(z′′)dz′′
∫ z+ε

z−ε b1(z′)dz′{1− [
∫ z+ε

z−ε c(z′′)dz′′]2}+ ε ′
(16)

c(z) =
b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz′′c(z′′)

(17)

To derive the F [b1(z)] function from b1(z), c(z) must first be
solved in equation (17). Thereafter, c(z) is integrated into E-
quation (16). And take F [b1(z)] into equation (13), we will get
the new equation.

First type of equation approximation
Equation (17) is an integral equation:

c(z) =
b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz′′c(z′′)

Generally, this kind of equation does not have analytical so-
lutions; hence, an approximation must be made for equation



Internal Multiple Removal

(17). The simplest approximation is presented as follows:

c(z)1T =
b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz′′c(z′′)

≈b1(z)
1−0
≈b1(z) (18)

Integrate c(z)1T into equation (16). And take F [b1(z)] into
equation (13), we will get the first type of equation approxi-
mation. It can be shown that this first kind approximation can
predict correct amplitude for all first order internal multiples
generated at the shallowest reflector and can further attenuate
deeper internal multiples.

Second type of equation approximation
A more accurate approximation is presented as follows:

c(z)2T =
b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz′′c(z′′)

≈ b1(z)

1−
∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz′′b1(z′′)

(19)

Integrate c(z)2T into Equation (16). And take F [b1(z)] into
equation (13), we will get the second type of equation approx-
imation. This type of approximation can predict the correct
amplitude for all first order internal multiples generated at the
shallowest and next shallowest reflectors and can further atten-
uate deeper internal multiples.

And we can again replace the c(z) in the denominator by equa-
tion(19) to get a better approximation, for 1D normal incidence
data, all these three approximations are presented as follows:

c(z)1T =R1δ (z− z1)+R′2δ (z− z2)+R′3δ (z− z3)

+R′4δ (z− z4)+ · · · (20)

c(z)2T =R1δ (z− z1)+
R′2

1−R2
1

δ (z− z2)+
R′3

1−R2
1−R′22

δ (z− z2)

+
R′4

1−R2
1−R′22 −R′23

δ (z− z4)+ · · ·

=R1δ (z− z1)+R2δ (z− z2)+
R′3

1−R2
1−R′22

δ (z− z2)

+
R′4

1−R2
1−R′22 −R′23

δ (z− z4)+ · · · (21)

c(z)3T = R1δ (z− z1)+R2δ (z− z2)+
R′3

1−R2
1−R′2

R′2
1−R2

1

δ (z− z3)

+
R′4

1−R2
1−R′2

R′2
1−R2

1
−R′3

R′3
1−R2

1−R′22

δ (z− z4)+ · · ·

=R1δ (z− z1)+R2δ (z− z2)+R3δ (z− z3)

+
R′4

1−R2
1−R′2

R′2
1−R2

1
−R′3

R′3
1−R2

1−R′22

δ (z− z4)+ · · ·

(22)

We can see the first event has correct amplitude in c(z)1T , the
first two events have correct amplitude in c(z)2T and the first
three events have correct amplitude in c(z)3T . In those equa-
tions, the reflection coefficients of first several layers have been
correctly constructed and reflection coefficients of deeper lay-
ers have been better constructed. That means in the procedure,
the reflection coefficients have been constructed in order to re-
move extra transmission coefficients from the middle integral.

Only primaries are considered as the input in deriving all these
equations. However, for these two types of approximations,
the conclusion is still valid when we consider real data which
contains both primaries and internal multiples as input. By
using these approximations to predict the amplitude of inter-
nal multiples generated at the shallowest and next shallowest
reflectors, in F [b1(z)], only the part of the data preceding the
second primary is used. Considering that the internal multiples
do not arrive prior to the second primary, that part of the data
remains the same when only primaries or both primaries and
internal multiples are considered.

NUMERICAL EXAMPLES

This section presents a numerical example that shows the result
of the original IMA and the two types of equation approxima-
tion of the new equation.

Figure 2 and 3 show the model used in this study and the 1D
normal incidence input data, respectively. We will do follow-
ing comparison of the part of the data in the red rectangular
shown in figure 3.

The output of IMA in Figure 4 clearly shows that all multiples
are predicted with the correct time and approximate amplitude.
Figure 5, which displays the first type of equation approxima-
tion of the new function, shows that all internal multiples with
a downward reflection at the shallowest reflector (IM212,IM312
and IM213)are removed. And in Figure 6,we can see all inter-
nal multiples generated at the shallowest and the next shallow-
est reflectors (IM212,IM312,IM213 and IM323) are removed by
the second type of equation approximation.

In the figure 4,5 and 6:

P3 is the Third primary. IM212,IM213,IM312 are internal multi-
ples with a downward reflection at the shallowest reflector.The
three numbers in the subscript refer to the historical number of
reflectors in the internal multiples. For example, IM212 is a first
order internal multiple with two upward reflection at the sec-
ond reflector and a downward reflection at the first(shallowest)
reflector. IM323 is a internal multiple with a downward reflec-
tion at the next shallowest reflector. The spurious event is an
false event generated by IM212,P3 and IM212, which exist in
every figure. (A method for removing the spurious events have
been discovered by Ma et al. (2012) Liang et al. (2012)).
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Figure 2: Model

Figure 3: Input data(1D normal incidence)

Figure 4: Output of the ISS-IMA

Figure 5: Output of the first type of equation approximation

Figure 6: Output of the second type of equation approximation

CONCLUSION

1.A new method to remove internal multiples has been derived
under 1D normal incidence. In the procedure of the method,
it constructs the reflection coefficients in order to remove the
extra transmission coefficients and then constructs a new func-
tion based on the reflection coefficients.

2.Two different types of equation approximation are also pre-
sented: (1) The first type of equation approximation can pre-
dict the correct amplitude of all first order internal multiples
generated at the shallowest reflector. (2)The second type of e-
quation approximation can predict the correct amplitude of all
first order internal multiples generated at the shallowest and
next shallowest reflectors. Depending on the goals, different
types of approximation can be made, and we can achieve each
specific goal by using the corresponding equation approxima-
tions. In practise, the elimination (not attenuation) method of
internal multiples may be relevant and provide value when pri-
maries and internal multiples interfere with each other in both
on-shore and off-shore data under near 1D circumstances.

3.This equation and its approximations:
(a)not generate any more events than IMA.
(c)not touch primaries.
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