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Abstract

In this paper, we examine the topic of whether multiples are sig-

nal or noise. A seismic event is considered ’signal’ if it intrinsically

useful for the purposes of petroleum exploration. Since migration and

migration-inversion are the methods used to extract subsurface infor-

mation from seismic reflection data (events), we review the different

wave propagation and imaging condition reside ingredients that be-

hind our migration methods. That examination identifies a migration

algorithm for locating and delineating targets in a finite volume with

two way propagating waves and with the most advanced and physi-

cally meaningful and amplitude interpretable of the various imaging

condition.

That migration algorithm allows an unequivocal response to the

question at whether multiples are signal or noise. It is obvious that

only primaries contribute to imaging. For an accurate discontinuous

velocity multiples don’t contribute to imaging, and for a continuous

velocity, they will cause false images. However, we also show that

when you have unrecorded primaries that multiples can be useful and

1

Page 1 of 66 GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

can provide an approximate image corresponding to the migration of

the missing primary. To perform the latter process requires a veloc-

ity model, and all velocity analysis methods (e.g., tomography, CIG

flatness, and FWI) assume that multiples have been removed.

Migration and migration velocity analysis require primaries, and

only primaries are migrated. Multiples can be useful to provide the

approximate image due to an unrecorded primary, but multiples need

to be removed for velocity analysis and as events they are never mi-

grated, that is they are not moved from their location in time to where

they belong as a structure map in space.

Introduction

To begin, ”signal” within the context of exploration seismology, and for the

purpose of this paper, refers to the events in seismic recorded data used

for extracting subsurface information. Migration and migration-inversion

are the methods used to determine subsurface information from recorded

seismic data. Methods that employ the wave equation for migration have

two ingredients: (1) a wave propagation concept and (2) an imaging con-

dition. Claerbout (1971) pioneered and developed three imaging conditions

for seismic migration. He combined these imaging conditions with one-way

wave propagation concepts to determine structure at depth. Claerbout’s

three landmark imaging conditions are: (1) the exploding reflector model,

(2) the space and time coincidence of up and down waves, and (3) the pre-

dicted coincident source and receiver experiment at depth, at time equals

zero. The third imaging condition stands alone for clarity and definitive-
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ness and in its potential to be extended (by Stolt and his colleagues) for

detailed angle dependent amplitude analysis at the target and for specular

and non-specular reflection. The third imaging condition predicts an actual

seismic experiment at depth, and that predicted experiment consists of all

the events that experiment would record, if you had a source and receiver

at that subsurface location. That experiment would have its own recorded

events, the primaries and multiples for that predicted experiment. Stolt and

his colleagues (Clayton and Stolt, 1981; Stolt and Weglein, 1985; Stolt and

Benson, 1986; Weglein and Stolt, 1999; Stolt and Weglein, 2012) then pro-

vided the extension, for one way waves, of the Claerbout source and receiver

experiment imaging condition (Imaging condition III) to allow for non co-

incident source and receiver at time equals zero, to realize both structural

and inversion objectives. Due to causality, the offset dependence, at time

equals zero, is highly localized about zero offset. The character of that sin-

gular function, sharply peaked in offset, is smooth in the Fourier conjugate

space of offset wave-number, where the extraction of angle dependent plane

wave reflection information naturally occurs. The latter extension and gen-

eralization produced migration-inversion (Stolt and Weglein, 1985), or first

determining where anything changed (migration) followed by what specifi-

cally changed (inversion) at the image location. Recently, several papers by

Weglein and his colleagues (Weglein et al., 2011a,b; Liu and Weglein, 2014)

provided the next step in the evolution of migration based on the Claerbout

predicted source and receiver experiment imaging condition (Imaging con-

dition III), extending the prediction of the source and receiver experiment

in a volume within which there are two way propagating waves. The latter
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method of imaging based on Imaging condition III for a medium with two

way propagating waves, plays a central role in the analysis of this paper. The

predicted experiment, in the volume is realized by calling upon Green’s the-

orem and a Green’s function that along with its normal derivative vanishes

on the lower portion of the closed surface.

All current RTM methods, for two way waves, are extensions and/or

variants of the second of Claerbout’s imaging conditions, and do not corre-

spond to Claerbout’s imaging condition III, a source and receiver experiment

at depth.

Migration of two-way propagating waves

One doesn’t have to look very far to find an example of the need for a

predicted experiment at depth at points in a volume where there is two

way wave propagation. Imaging from above or below a single horizontal

reflector requires that two way wave propagation and Claerbout’s predicted

experiment imaging condition. Predicting a source and receiver experiment

to locate and to determine the reflection coefficient from above, and, sepa-

rately, from below, a single reflector requires predicting a source and receiver

experiment inside a volume with two way propagating waves, two way wave

migration, since the reflection data is upgoing (to a source and receiver ex-

periment located) above the reflector and is downgoing (to that experiment

when the source and receiver are located) below the reflector. Of course,

the addition of, for example, multiples and/or diving waves also represent

examples of two way wave propagation in the region where you want to
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predict the seismic experiment at depth.

As we mentioned, migration methods that employ the wave equation

have two ingredients: (1) a wave propagation or prediction model and (2)

an imaging condition.

For the purposes of this discussion, we are going to adopt the Claer-

bout predicted coincident source and receiver experiment at time equals

zero imaging condition for its peerless clarity, generality and quantitative

information value. In the next section, we describe the evolution of the

prediction of the source and receiver experiment component of Claerbout

imaging condition III.

To predict the source and receiver experiment at

depth

The elastic well established mathematical physics foundation for predicting a

wavefield inside a volume from (measured) values on the surface surrounding

the volume was provided by Green (1828) as variants of what we now call

Green’s theorem. In the next several sections, we describe the evolution

and application of Green’s theorem for predicting the source and receiver

experiment at depth, since that is an essential step in tracing the realization

and application of Claerbout’s imaging condition III. In that evolution, we

will begin with: (1) the original infinite hemisphere volume model, then (2)

the reasoning, need for, and description of the finite volume model for one

way waves, and finally, (3) the need for and description of the finite volume

model prediction of the source and receiver experiment for two way waves.
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The material presented below on the evolution of the predicted source

and receiver experiment has been published previously in the cited refer-

ences. We cite and follow those references, but include that in this paper,

for: (1) ease of the references, and (2) to make this paper self contained,

and (3) because it plays such a critical role in Claerbout imaging III, which

in turn is essential to understand the new message that this paper is com-

municating.

The infinite hemispherical migration model

The earliest wave equation migration pioneers considered the subsurface

volume where the source and receiver experiment would be predicted as an

infinite hemispherical half space with known mechanical properties, whose

upper plane surface corresponded to the measurement surface, as in, e.g.,

Schneider (1978) and Stolt (1978). See Figure 1.

Those two papers each made a tremendous conceptual and practical

contribution to seismic imaging and exploration seismology. However, there

are several problems with the infinite hemispherical migration model. That

model assumes: (1) that all subsurface properties beneath the measurement

surface (MS) are known, and (2) that an anticausal Green’s function (e.g.,

Schneider (1978)), with a Dirichlet boundary condition on the measurement

surface, would allow measurements (MS) of the wavefield, P , on the upper

plane surface of the hemisphere to determine the value of P within the

hemispherical volume, V . The first assumption leads to the contradiction

that we have not allowed for anything that is unknown to be determined
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in our model, since everything within the closed and infinite hemisphere

is assumed to be known. Within the infinite hemispherical model there is

nothing and/or nowhere below the measurement surface where an unknown

scattering point or reflection surface can serve to produce reflection data

whose generating reflectors are initially unknown and being sought by the

migration process.

The second assumption, in early infinite hemispherical wave equation

migration, assumes that Green’s theorem with wavefield measurements on

the upper plane surface and using an anticausal Green’s function satisfying

a Dirichlet boundary condition can determine the wavefield within V . That

conclusion assumes that the contribution from the lower hemispherical sur-

face of S vanishes as the radius of the hemisphere goes to infinity. That is

not the case, as we explicitly demonstrate below. To examine the various

large radius hemispherical surface contributions to Green’s theorem wave

prediction in a volume, it is instructive to review the relationship between

Green’s theorem and the Lippmann-Schwinger scattering equation.

Green’s theorem review

We begin with a space and time domain Green’s theorem. Consider two

wavefields P and G0 that satisfy

(∇2 − 1

c2
∂2t )P (r, t) = ρ(r, t) (1)

7
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and

(∇2 − 1

c2
∂2t )G0(r, t, r

′, t′) = δ(r− r′)δ(t− t′), (2)

where we assume 3D wave propagation and the wavefield velocity c is a

constant. ρ is a general source, i.e., it represents both active sources (air

guns, dynamite, vibrator trucks) and passive sources (heterogeneities in the

earth). The causal solution to equation 1 can be written as

P (r, t) =

∫ t+

−∞
dt′
∫
∞
dr′ρ(r′, t′)G+

0 (r, t, r′, t′), (3)

where G+
0 is the causal whole space solution to equation 2 and t+ = t + ε

where ε is a small positive quantity. The integral from t+ to ∞ is zero due

to the causality of G+
0 (please see Morse and Feshbach, 1981, page 836).

Equation 3 represents the linear superposition of causal solutions G+
0 with

weights ρ(r′, t′) summing to produce the physical causal wavefield solution

to equation 1. Equation 3 is called the scattering equation and represents

an all space and all time causal solution for P (r, t). It explicitly includes all

sources and produces the field at all points of space and time. No additional

boundary or initial conditions are required in equation 3.

Now consider the integral

∫ t+

0
dt′
∫
V
dr′(P∇′2G0 −G0∇′2P )

=

∫ t+

0
dt′
∫
V
dr′∇′ · (P∇′G0 −G0∇′P ), (4)

8
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and we rewrite equation 4 using Green’s theorem

∫ t+

0
dt′
∫
V
dr′∇′ · (P∇′G0 −G0∇′P )

=

∫ t+

0
dt′
∫
S
dS′n̂ · (P∇′G0 −G0∇′P ). (5)

This is essentially an identity, within the assumptions on functions and

surfaces, needed to derive Green’s theorem. Now choose P = P (r′, t′) and

G0 = G0(r, t, r
′, t′) from equations 1 and 2. Then replace ∇′2P and ∇′2G0

from the differential equations 1 and 2.

∇′2G0 =
1

c2
∂′2t G0 + δ(r− r′)δ(t− t′) (6)

∇′2P =
1

c2
∂′2t P + ρ(r′, t′), (7)

and assume that the output variables (r, t) are in the intervals of integration:

r in V , t > 0. The left hand side of equation 4 becomes:

∫ t+

0
dt′
∫
V
dr′

1

c2
(P∂2t′G0 −G0∂

2
t′P ) + P (r, t)

−
∫ t+

0
dt′
∫
V
dr′ρ(r′, t′)G0(r, t, r

′, t′). (8)

The expression inside the first set of parentheses is a perfect derivative

9
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∂t′(P∂t′G0−G0∂t′P ) integrated over t′. The result is (for r in V and t > 0)

P (r, t) =

∫
V
dr′
∫ t+

0
dt′ρ(r′, t′)G0(r, t, r

′, t′)

− 1

c2

∣∣∣t+
t′=0

∫
V
dr′[P∂t′G0 −G0∂t′P ]

+

∫ t+

0
dt′
∫
S
dS′n̂ · (P∇′G0 −G0∇′P ). (9)

We assumed differential equations 6 and 7 in deriving equation 9 and G0 can

be any solution of equation 6 in the space and time integrals in equation 4,

causal, anticausal, or neither. Each term on the right hand side of equation 9

will differ with different choices of G0, but the sum of the three terms will

always be the same, P (r, t).

If we now choose G0 to be causal (= G+
0 ) in equation 9, then in the

second term on the right hand side the upper limit gives zero because G+
0

and ∂t′G
+
0 are zero at t′ = t+. The causality of G+

0 and ∂t′G
+
0 causes only

the lower limit t′ = 0 to contribute in

− 1

c2

∣∣∣t+
t′=0

∫
V
dr′[P∂t′G

+
0 −G

+
0 ∂t′P ]. (10)

If we let the space and time limits in equation 9 both become unbounded,

i.e., V →∞ and the t′ interval becomes [−∞, t+], and choose G0 = G+
0 , the

whole space causal Green’s function, then by comparing equations 3 and 9

we see that for r in V and t > 0 that

10
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∫ t+

−∞
dt′
∫
S
dS′n̂ · (P∇′G+

0 −G
+
0 ∇
′P )

− 1

c2

∣∣∣t+
−∞

∫
∞
dr′[P∂t′G

+
0 −G

+
0 ∂t′P ] = 0. (11)

V =∞ means a volume that spans all space, and∞−V means all points

in ∞ that are outside the volume V .

The solution for P (r, t) in equation 3 expresses the fact that if all of the

factors that both create the wavefield (active sources) and that subsequently

influence the wavefield (passive sources, e.g., heterogeneities in the medium)

are explicitly included in the solution as in equation 9, then the causal

solution is provided explicitly and linearly in terms of those sources, as

a weighted sum of causal solutions, and no surface, boundary or initial

conditions are necessary or required.

If all sources for all space and all time are explicitly included as in equa-

tion 3, then there is no need for boundary or initial conditions to produce the

physical/causal solution derived from a linear superposition of elementary

causal solutions.

In the (r, ω) domain equations 1 and 2 become

(∇2 + k2)P (r, ω) = ρ(r, ω) (12)

(∇2 + k2)G0(r, r
′, ω) = δ(r− r′), (13)

where
∫∞
−∞ P (r, t)eiωtdt = P (r, ω) and

∫∞
−∞G0(r, r

′, t)eiωtdt = G0(r, r
′, ω),

t′ is chosen to be zero in equation 2. The causal all space and temporal

11
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frequency solution analogous to equation 3 is

P (r, ω) =

∫
∞
dr′ρ(r′, ω)G+

0 (r, r′, ω), (14)

and Green’s second identity is

∫
V
dr′(P∇′ 2G0 −G0∇

′ 2P ) =

∮
S
dS′ n̂ · (P∇′G0 −G0∇′P ). (15)

Substituting ∇2G0 = −k2G0 + δ and ∇2P = −k2P + ρ in Green’s theorem

where
∫∞
−∞ P (r, t)eiωtdt = P (r, ω) we find

P (~r, ω)
~r in V

0
~r out V

 =

∫
V
dr′P (r′, ω)δ(r− r′)

=

∫
V
ρ(~r ′, ω)G0(~r, ~r

′, ω) d~r ′ +

∮
S

(P∇′G0 −G0∇′P ) · n̂ dS.

(16)

There are no initial conditions (temporal boundary conditions), since in r, ω

we have already explicitly included all time in Fourier transforming from t

to ω. The contributions from sources for all times are explicitly included

in the (~r, ω) formulation of Green’s Theorem, equation 16. In r, ω the only

issue is whether sources are inside or outside V . The Lippmann-Schwinger

equation (14) provides the causal physical solution for P for all r due to

the sources in all space. Equation 14 is the r, ω version of equation 3 and

must choose G0 = G+
0 (causal) to have P as the physical solution built

12
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from the superposition (and linearity of weighted elementary causal solution,

G+
0 (~r, ~r ′, ω)). In contrast, equation 16 (as in equation 9) will produce the

physical solution, P , with any solution for G0 that satisfies equation 13.

Equation 14 can be written as:

∫
V
ρG+

0 +

∫
∞−V

ρG+
0 . (17)

For r in V , the second term on the right hand side of equation 16 (with

choosing G0 = G+
0 in equation 16) equals the second term in equation 17,

i.e.,

∫
∞−V

dr′ρG+
0 =

∮
S
dS′n̂ · (P∇′G+

0 −G
+
0 ∇
′P ). (18)

Thus, the first term in equation 17 gives contribution to P , for r in V due

to sources in V , and the second term in equation 17 gives contribution to

P , for r in V due to sources not in V . With G0 = G+
0

∮
S
dS′n̂ · (P∇′G+

0 −G
+
0 ∇
′P ), (19)

provides the contribution to the field, P , inside V due to sources outside the

volume V .

What about the large |r| contribution of the surface integral to the field

inside the volume? We use Green’s theorem to predict that the contribution

to the physical/causal solution P in V from the surface integral in Green’s

13
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theorem, in general, and also

∮
S
{P ∂G

+
0

∂n
−G+

0

∂P

∂n
}dS, (20)

vanishes as |r| → ∞ and in contrast the contribution to P in V from

∮
S
{P ∂G

−
0

∂n
−G−0

∂P

∂n
}dS, (21)

does not vanish as |r| → ∞.

We begin with equation 16

P (~r, ω)
~r in V

0
~r out V

 =

∫
V
dr′ρ(r′, ω)G±0 (r, r′, ω) +

∮
S
dS′{P ∂G

±
0

∂n
−G±0

∂P

∂n
} (22)

with G0 either causal G+
0 or anticausal G−0 . Taking the limit |r| → ∞,

then for G0 = G+
0 in 22, the contribution from the second term on the right

hand side of equation 22 to P in V must go to zero, following a comparison

with

P (r, ω) =

∫
∞
dr′ρ(r′, ω)G+

0 (r, r′, ω), (23)

(the Lippmann-Schwinger equation). However, with G0 = G−0 , and as |r| →

14
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∞,

∮
S→∞

dS′{P ∂G
−
0

∂n
−G−0

∂P

∂n
}+

∫
V→∞

dr′ρ(r′, ω)G−0 (r, r′, ω)

=

∫
V→∞

dr′ρ(r′, ω)G+
0 (r, r′, ω) + 0, (24)

so

∮
S→∞

{P ∂G
−
0

∂n
−G−0

∂P

∂n
}dS

=

∫
∞

[G+
0 (r, r′, ω)−G−0 (r, r′, ω)]ρ(r′, ω)dr′ 6= 0 (25)

for all ~r. Hence, the large distance surface contribution to the physical

field, P , within V with the surface values of the physical field P and ∂P/∂n

and an anticausal Green’s function G−0 will not vanish as |r| → ∞. As we

mentioned earlier, this will be chosen to be one of the two problems with

the infinite hemisphere model of seismic migration.

Although

P (r, ω) =

∫
∞
dr′ρ(r′, ω)G−0 (r, r′, ω), (26)

would be a solution to equations 12 for all r, it would not be the causal/physical

solution to equations 12. And hence, in summary the contribution to the

causal/physical solution for P (r, ω) for r in V from

∫
S
dS′

(
P
dG+

0

dn
−G+

0

dP

dn

)
, (27)
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goes to zero as |R| → ∞ where P and dP/dn corresponds to physical/causal

boundary values of P and dP/dn, respectively. Physical measurements of

P and dP/dn on S are always causal/physical values. The integral

∫
S
dS′

(
P
dG−0
dn
−G−0

dP

dn

)
, (28)

does not go to zero for anti-causal, G−0 , and causal/physical P and dP/dn.

The latter fact bumps up against a key assumption in the infinite hemisphere

models of migration. That combined with the fact the infinite hemisphere

model assumes the entire subsurface, down to “infinite” depth is known,

suggests the need for a different model. That model is the finite volume

model (see, e.g., Weglein et al., 2011a,b).

Finite volume model for migration

The finite model for migration assumes that we know or can adequately

estimate earth medium properties (e.g., velocity) down to the reflector we

seek to image. The finite volume model assumes that beneath the sought

after reflector the medium properties are, and will remain, unknown. The

“finite volume model” corresponds to the volume within which we assume

the earth properties are known and within which we predict the wavefield

from surface measurements. We have addressed the two issues of the infinite

hemisphere model, i.e., (1) the assumption we know the subsurface to all

depths and (2) the contribution from the lower surface of the closed surface

(as |r| → ∞) to the surface integral with an anticausal Green’s function has
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no contribution to the field being predicted in the volume.

The finite volume model removes both of the problematic assumptions

behind the infinite hemisphere model. However, we are now dealing with a

finite volume V , and with a surface S, consisting of upper surface SU , lower

surface SL and walls, SW (Figure 2). We only have measurements on SU .

In the following sections on: (1) Green’s theorem for one-way propagation;

and (2) Green’s theorem for two-way propagation we show how the choice

of Green’s function allows the finite volume migration model to be realized.

The construction of the Green’s function that can accommodate two-way

propagation in V , from contributions only on SU , is a new contribution

(Weglein et al., 2011a,b) that allows Claerbout Imaging III to be realized

in a volume with two-way propagating waves. That places RTM on a firm

wave theoretical Green’s theorem basis, for the first time, with algorithmic

consequence and with a clear mathematical physics understanding of the

amplitude of the RTM image. The new Green’s function is neither causal,

anticausal, nor a combination of causal and/or anticausal Green’s functions.

In the important paper by Amundsen (1994), a finite volume model for

wavefield prediction is developed which requires knowing (i.e., predicting

through solving an integral equation) for the wavefield at the lower surface.

In parts I and II we show that for one and two-way propagation, respectively,

that with a proper and distinct choice of Green’s function, in each case,

that absolutely no wavefield measurement information on the lower surface

is required or needs to be estimated/predicted. Below, we review how to

choose the Green’s functions that allow for two-way propagation (for RTM

application) without the need for measurements on the lower boundary of
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the closed surface in Green’s theorem.

Finite volume model for migration (Claerbout Imag-

ing Condition III): Green’s theorem for predicting

the source and receiver experiment for one way

waves

Consider a 1D upgoing plane wavefield P = Re−ikz propagating upward

through the 1D homogeneous volume without sources between z = a and

z = b (Figure 3). The wave P inside V can be predicted from

P (z, ω) =
∣∣∣b
z′=a
{P (z′, ω)

dG0

dz′
(z, z′, ω)−G0(z, z

′, ω)
dP

dz′
(z′, ω)} (29)

with a Green’s function, G0, that satisfies

(
d2

dz′ 2
+ k2

)
G0(z, z

′, ω) = δ(z − z′) (30)

for z and z′ in V . To be more precise in our language, we want to predict

what a receiver at depth would record in terms of what a surface receiver

records. We can easily show that for an upgoing wave, P = Re−ikz, that

if one chooses G0 = G+
0 (causal, eik|z−z

′|/(2ik)), the lower surface (i.e.

z′ = b) constructs P in V and the contribution from the upper surface

vanishes. On the other hand, if we choose G0 = G−0 (anticausal solution

e−ik|z−z
′|/(−2ik)), then the upper surface z = a constructs P = Re−ikz

in V and there is no contribution from the lower surface z′ = b. The
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effective sources (P (b), P ′(b)) on the lower surface z′ = b with a causal

Green’s function, G+
0 , will produce a wave moving away from the source at

z = b, hence upward in the region between a < z < b. At the upper

surface z′ = a, the anticausal G−0 will produce waves moving towards the

source at z = a and hence moving upward for a < z < b. Also, using the

anticausal Green’s function, G−0 , takes the wavefield (and its derivative) at

z = a, and predict where it was previously at earlier time. For an upwave

at z = a, that prediction of where it was previously is between z = a and

z = b.

Since in exploration seismology the reflection data is typically upgoing,

once it is generated at the reflector, and we only have measurements at the

upper surface z′ = a, we choose an anticausal Green’s function G−0 in one-

way wave prediction in the finite volume model. If ,in addition, we want to

remove the need for dP/dz′ at z′ = a we can impose a Dirichlet boundary

condition on G−0 , to vanish at z′ = a. The latter Green’s function is labeled

G−D0 ,

G−D0 = − e−ik|z−z
′|

2ik
−

(
−e
−ik|zI−z′|

2ik

)
, (31)

where zI is the image of z through z′ = a. It is easy to see that zI = 2a− z

and that

P (z) = − dG−D0

dz′
(z, z′, ω)

∣∣∣
z′=a

P (a) = e−ik(z−a)P (a), (32)

in agreement with a simple Stolt FK phase shift for predicting an upward
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propagating wave in a volume, that is between a < z < b in terms of the

wavefield at z = a. Please note that P (z, ω) = −dG−D0 /dz′(z, z′, ω)|z′=aP (a, ω)

back propagates P (z′ = a, ω), not G−D0 . The latter thinking that G−D0 back

propagates (or G+D
0 forward propagates) data is a fundamental mistake/flaw

in many seismic back propagation migration and inversion theories (and

in feedback multiple attenuation methods), that harkens back to the his-

torically earlier and qualitative Huygens principle concepts that preceded

Green’s theorem and (as is clear in this example) can lead to amplitude

issues and errors.

The Green’s theorem 3D generalization that predicts an experiment with

both sources and receivers at depth for a one way propagating wavefield in

the volume is as follows:

∫
dG−D0

dzs
(x′s, y

′
s, z
′
s, xs, ys, zs;ω)

×

[∫
dG−D0

dzg
(x′g, y

′
g, z
′
g, xg, yg, zg;ω)D(x′g, y

′
g, z
′
g, x
′
s, y
′
s, z
′
s;ω)dx′gdy

′
g

]
dx′sdy

′
s

= M(xs, ys, zs, xg, yg, zg;ω)

= M(xm, ym, zm, xh, yh, zh;ω), (33)

where xg +xs = xm, yg + ys = ym, zg + zs = zm, xg −xs = xh, yg − ys = yh,

and zg− zs = zh. In the space and time domain, equation 33 corresponds to

“uncollapsed migration”, M(xm, ym, zm, xh, yh, zh = 0; t = 0) that extends

and generalizes the original Imaging Condition III, to non-zero offset at time

equals zero. The retaining of kh information (rather than stacking over kh,

for xh = 0, hence, uncollapsed) allows for imaging and subsequent AVO
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analysis in a multi-D subsurface (see e.g. Clayton and Stolt (1981), Stolt

and Weglein (1985), Weglein and Stolt (1999)).

For one way propagating wavefields in the finite volume, choosing an

anticausal Green’s function allows only wavefield measurements on the upper

surface to be sufficient to predict the wavefield in the volume. For two way

propagating wavefields in a finite volume an anticausal Green’s function will

not allow for measurements on the upper surface to be sufficient to predict

the wavefield in the volume. The Green’s function for two-way propagation

that will eliminate the need for data at the lower surface of the closed Green’s

theorem surface is found by finding a general solution to the Green’s function

for the medium in the finite volume model and imposing both Dirichlet and

Neumann boundary conditions at the lower surface.

Predicting the source-receiver experiment at depth

where the velocity configuration is c(x, y, z)

For a receiver predicted at a point (x, y, z) for determining P (x, y, z, xs, ys, zs, ω),

call on the Green’s function, G0, that satisfies

{
∇′ 2 +

ω2

c2(x′, y′, z′)

}
G0(x

′, y′, z′, x, y, z, ω)

=δ(x− x′)δ(y − y′)δ(z − z′) (34)
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for a source at (x, y, z). P is the physical/causal solution satisfying

{
∇′ 2 +

ω2

c2(x′, y′, z′)

}
P (x′, y′, z′, xs, ys, zs, ω)

=A(ω)δ(x′ − xs)δ(y′ − ys)δ(z′ − zs). (35)

As a first step, we want to predict P for a point (x, y, z) in the volume V , for

the actual/original source at (xs, ys, zs). For (x, y, z) in V , arrange for G0

and ∇′G0 · n̂′ to be zero for (x′, y′, z′) on the lower surface SL and the walls

SW of the finite volume. The solution for G0 in V and on S can be found by a

numerical modeling algorithm where the “source” is at (x, y, z) and the field,

G0, and ∇G0 · n̂ at (x′, y′, z′) are both imposed to be zero on SL and SW .

Once that model is run for a source at (x, y, z) for G0(x
′, y′, z′, x, y, z, ω) [for

every eventual predicted receiver point, (x, y, z), for P ] where G0 satisfies

Dirichlet and Neumann conditions for (x′, y′, z′) on SL and SW we output

G0(x
′, y′, z′, x, y, z, ω) for (x′, y′, z′) on SU (the measurement surface).

With that G0, use Green’s theorem to predict the receiver experiment

at depth (with the original/actual source at (xs, ys, zs))

P (x, y, z, xs, ys, zs, ω)

=

∫
Sg

{
∂GDN0

∂z′
(x, y, z, x′, y′, z′, ω)P (x′, y′, z′, xs, ys, zs, ω)

− ∂P

∂z′
(x′, y′, z′, xs, ys, zs, ω)GDN0 (x, y, z, x′, y′, z′, ω)

}
dx′dy′, (36)

where z′ = fixed depth of the cable and (xs, ys, zs) = fixed location of the

source. Sg is the upper (measurement) surface containing receivers for a
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fixed shot on the measurement surface. This predicts the receiver at (x, y, z),

a point below the measurement surface in the volume V (for a source on

the upper (measurement) surface) in terms of measurements on the upper

surface, Su.

Now predict the experiment corresponding to both the receiver and the

source at depth, by invoking reciprocity and performing a Green’s theorem

surface integral over sources

P (xg, yg, z, x, y, z, ω)

=

∫
Ss

{
∂GDN0

∂zs
(x, y, z, xs, ys, zs, ω)P (xg, yg, z, xs, ys, zs, ω)

− ∂P

∂zs
(xg, yg, z, xs, ys, zs, ω)GDN0 (x, y, z, xs, ys, zs, ω)

}
dxsdys. (37)

Ss is the upper (measurement) surface consisting of shots for a predicted

receiver point at depth. The original/actual receiver locations on the upper

surface are labeled (x′, y′, z′) and the coordinates of the predicted receiver at

depth is now relabeled (xg, yg, z) in equation 37, whereas it was (x, y, z) in

equation 36. P (xg, yg, z, x, y, z, ω) is the field corresponding to a predicted

receiver at (xg, yg, z) and the source to (x, y, z) and change to midpoint offset

P (xm, xh, ym, yh, zm, zh = 0, ω) and

∫
Ss

∫ ∫
dxs dys dω

{
∂GDN0

∂zs
(x, y, z, xs, ys, zs, ω)P (xg, yg, z, xs, ys, zs, ω)

− ∂P

∂zs
(xg, yg, z, xs, ys, zs, ω)GDN0 (x, y, z, xs, ys, zs, ω)

}
,(38)

and Fourier transform over xm, xh, ym, yh to find P̃ (kxm , kxh , kym , kyh , kzm , zh =
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0, t = 0). Equation 38 corresponds to Claerbout imaging condition III mi-

gration for a general v(x, y, z) velocity configuration, within a volume that

allows two way wave propagation in terms of data only on the upper surface.

Summary of wave equation migration for one way

and two way propagating waves

Green’s theorem based migration and migration-inversion require velocity

information for location and velocity, density, absorption. . . for amplitude

analyses at depth. When we say the medium is “known,” the meaning of

known depends on the goal: migration or migration-inversion. Backpropa-

gation and imaging each evolved and then extended/generalized and merged

into migration-inversion (Figure 4).

For one-way wave propagation the double downward continued data, D

is

D(at depth) =

∫
Ss

∂G−D0

∂zs

∫
Sg

∂G−D0

∂zg
DdSg dSs, (39)

where D in the integrand = D(on measurement surface), ∂G−D0 /∂zs = an-

ticausal Green’s function with Dirichlet boundary condition on the mea-

surement surface, s = shot, and g = receiver. For two-way wave double

24

Page 24 of 66GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

downward continuation:

D(at depth) =

∫
Ss

[
∂GDN0

∂zs

∫
Sg

{
∂GDN0

∂zg
D +

∂D

∂zg
GDN0

}
dSg

+ GDN0

∂

∂zs

∫
Sg

{
∂GDN0

∂zg
D +

∂D

∂zg
GDN0

}
dSg

]
dSs, (40)

where D in the integrands = D(on measurement surface). GDN0 is neither

causal nor anticausal. GDN0 is not an anticausal Green’s function; it is not

the inverse or adjoint of any physical propagating Green’s function. It is the

Green’s function needed for WEM RTM, that is RTM based on Claerbout

Imaging Condition III. GDN0 is the Green’s function for the model of the

finite volume that vanishes along with its normal derivative on the lower

surface and the walls. If we want to use the anticausal Green’s function of

the two-way propagation with Dirichlet boundary conditions at the mea-

surement surface then we can do that, but we will need measurements at

depth and on the vertical walls. To have the Green’s function for two-way

propagation that doesn’t need data at depth and on the vertical sides/walls,

that requires a non-physical Green’s function that vanishes along with its

derivative on the lower surface and walls. Green’s functions called upon

in Green’s theorem applications for migration are auxiliary functions and

are specific point source wavefield solutions that satisfy the medium prop-

erties in the finite volume, and whose other properties are chosen for the

convenience of the application. The commitment within Green’s theorem

applications is for the physical wavefield, P (x, y, z, xs, ys, zs), to relate to the

physical reality and to have physical properties and boundary conditions.
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In the next section, we take another step closer to our goal and objective.

Having established a Claerbout imaging III methodology (please see equa-

tions 38 and 40) for a medium (a finite volume) with two way propagating

waves, we are in a position to predict source and receiver experiments at

depth and then a Claerbout III imaging result for data consisting of pri-

maries and multiples. For the 1D layered medium, and a normal incident

wave that we are examining, the data (consisting of primaries and inter-

nal multiples) and the predicted source and receiver experiment at depth

results and the migration algorithm’s results are analytic, transparent and

the conclusions unambiguous. The role of recorded primaries and multi-

ples in contributing first to the predicted source and receiver experiment

at depth, and then to the (Claerbout Imaging III) coincident source and

receiver experiment at time equals zero provides a definitive response to

whether or not multiples contribute to seismic imaging. Understanding the

physics behind the mathematics for the case of primaries and internal mul-

tiples, allows for an immediate set of similar conclusions to be drawn for the

role of free surface multiples in migration. In the section below, we provide

the explicit Green’s theorem source and receiver at depth prediction and

then Claerbout III imaging for a general layered medium where the veloc-

ity and density vary and where the data consists of primaries and internal

multiples.
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Green’s theorem wavefield prediction in a 1D lay-

ered medium with velocity and density variation

First, let us assume the wave propagation problem in a (one dimensional)

volume V bounded by a shallower depth a and deeper depth b to be governed

by the differential equation:

{
∂

∂z′
1

ρ(z′)

∂

∂z′
+

ω2

ρ(z′)c2(z′)

}
D(z′, ω) = 0, (41)

where a ≤ z ′ ≤ b is the depth, and ρ(z′) and c(z′) are the density and

velocity fields, respectively. In exploration seismology, we let the shallower

depth a be the measurement surface where the seismic acquisition takes

place (please see equation 29). The volume V is the finite volume defined in

the “finite volume model” for migration, the details of which can be found

in Weglein et al. (2011a). We measure D at the measurement surface z′ = a,

and the objective is to predict D anywhere between the shallower surface

and another surface with greater depth, z′ = b. This can be achieved via

the solution of the wave-propagation equation in the same medium by an

idealized impulsive source or Green’s function:

{
∂

∂z′
1

ρ(z′)

∂

∂z′
+

ω2

ρ(z′)c2(z′)

}
G0(z, z

′, ω) = δ(z − z′), (42)

where z is the location of the source, and a < z ′ < b and z increases in a

downward direction. Abbreviating G0(z, z
′, ω) as G0, the solution for D in

the interval a < z < b is given by Green’s theorem (the generalization of
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equation 29 for the case of variable velocity and density):

D(z, ω) =
1

ρ(z′)

{
D(z′, ω)

∂G0

∂z′
−G0

∂D(z′, ω)

∂z′

}∣∣∣∣z′=b

z′=a

, (43)

where a and b are the shallower and deeper boundaries, respectively, of the

volume to which the Green’s theorem is applied. It is identical to equa-

tion (43) of Weglein et al. (2011a), except for the additional density contri-

bution to the Green’s theorem. Interested readers may find the derivation

of equation (43) in section 2 of Liu and Weglein (2014).

Note that in equation (43), the field values on the closed surface of

the volume V are necessary for predicting the field value inside V . The

surface of V contains two parts: the shallower portion z′ = a and the

deeper portion z′ = b. In seismic exploration, the data at z′ = b is not

available. For example, one of the significant artifacts of the current RTM

procedures is caused by this phenomenon: there are events necessary for

accurate wavefield prediction that reach z′ = b but never return to z′ = a,

as is demonstrated in Figure 5. The solution, based on Green’s theorem

without any approximation, was first published in Weglein et al. (2011a)

and Weglein et al. (2011b). The basic idea is summarized below.

Since the wave equation is a second-order differential equation, its gen-

eral solution has a great deal of freedom/flexibility. In other words, for a

wave equation with a specific medium property, there are an infinite num-

ber of solutions. This freedom in choosing the Green’s function has been

taken advantage of in many seismic-imaging procedures. For example, the

most popular choice in wavefield prediction is the physical solution G+
0 . In
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downward continuing a one way propagating upgoing wavefield to a point

in the subsurface, the anti-causal solution G−0 is often used in equation 43

(as we have shown in the earlier sections, i.e., equations 31 and 32).

Weglein et al. (2011a,b) show that (with the G−0 choice), the contribu-

tion from z′ = B will be zero under one way wave assumptions, and only

measurements are required at z′ = A. For two way propagating waves, G−0

will not make the contribution for z′ = B vanish. However, if both G0 and

∂G0/∂z
′ vanish at the deeper boundary z′ = b, where measurements are

not available, then only the data at the shallower surface (i.e., the actual

measurement surface) is needed in the calculation. We use GDN0 to de-

note the Green’s function with vanishing Dirichlet and Neumann boundary

conditions at the deeper boundary.

Predicting the source and receiver at depth in a 1D

layered medium

The original Green’s theorem in equation (43) is derived to predict the

wavefield (i.e., receivers) in the subsurface. It can also be used to predict the

sources in the subsurface by taking advantage of reciprocity: the recording

is the same after the source and receiver locations are exchanged.

Assuming we have data on the measurement surface: D(zg, zs) (the ω

dependency is ignored), we can use GDN0 (z, zg) to predict it from the receiver
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depth zg to the target depth z:

D (z, zs) =
1

ρ(zg)

{
∂D (zg, zs)

∂zg
GDN0 (z, zg)−D (zg, zs)

∂GDN0 (z, zg)

∂zg

}
.

(44)

Taking the ∂
∂zs

operation on equation (44), we have a similar procedure

to predict ∂D(zg, zs)/∂zs to the subsurface:

∂D (z, zs)

∂zs
=

1

ρ(zg)

{
∂2D (zg, zs)

∂zg∂zs
GDN0 (z, zg)−

∂D (zg, zs)

∂zs

∂GDN0 (z, zg)

∂zg

}
.

(45)

Equations 44 and 45 are the 1D versions of equations 36 and 37.

With equations (44) and (45), we predict the data D and its partial

derivative over zs to the subsurface location z. According to reciprocity,

D (z, zs) = E (zs, z), where E (zs, z) is resulted from exchanging the source

and receiver locations in the experiment to generate D at the subsurface.

The predicted data E (zs, z) can be considered as the recording of receiver

at zs for a source located at z.

For this predicted experiment, the source is located at depth z, according

to the Green’s theorem, we can downward continue the recording at zs to

any depth shallower than or equal to z.

In seismic migration, we predict E (zs, z) at the same subsurface depth z
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Depth Range Velocity Density

(−∞, a1) c0 ρ0
(a1, a2) c1 ρ1
(a2,∞) c2 ρ2

Table 1: The properties of an acoustic medium with two reflectors, at depth
a1 and a2.

with GDN0 (z, zs) to have an experiment with coincident source and receiver:

E (z, z) =
1

ρ(zs)

{
∂E (zs, z)

∂zs
GDN0 (z, zs)− E (zs, z)

∂GDN0 (z, zs)

∂zs

}
,

=
1

ρ(zs)

{
∂D (z, zs)

∂zs
GDN0 (z, zs)−D (z, zs)

∂GDN0 (z, zs)

∂zs

}
. (46)

Equation 46 is the 1D version of equation 38.

If zs < zg and we assume the data is deghosted, the ∂
∂zs

operation on

D(zg, zs) is equivalent to multiplying −ik, in this case, equation (46) can be

further simplified:

E (z, z) = − 1

ρ(zs)D(z, zs)

{
∂GDN0 (z, zs)

∂zs
+ ikGDN0 (z, zs)

}
. (47)

Analytic examples (for a 1D layered medium)

As an example, for a 2-reflector model (with an ideal impulsive source lo-

cated at zs, the depth of receiver is zg > zs, the geological model is listed in

Table 1), the data and its various derivatives can be expressed as:
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D(zg, zs) =

ρ0x
−1

2ik

{
y + αy−1

}
,

∂D(zg, zs)

∂zg
=
ρ0
2
x−1

{
y − αy−1

}
,

∂D(zg, zs)

∂zs
= −ρ0

2
x−1

{
y + αy−1

}
,

∂2D(zg, zs)

∂zg∂zs
=
ρ0k

2i
x−1

{
y − αy−1

}
,

(48)

where x = eikzs , y = eikzg , σ = eikz, α = eik(2a1)
(
R1 + (1−R2

1)β
)
, and β =

∞∑
n=0

(−1)nRn1R
n+1
2 eik1(2n+2)[a2−a1]. And R1 = c1ρ1−c0ρ0

c1ρ1+c0ρ0
, and R2 = c2ρ2−c1ρ1

c2ρ2+c1ρ1

are the reflection coefficients from geological boundaries.

The predicted experiment above the first reflector for Claer-

bout Imaging Condition III

For z < a1, the boundary values of the Green’s function are:

GDN0 (z, zg) = ρ0
eik(z−zg)−eik(zg−z)

2ik = ρ0
σy−1−σ−1y

2ik ,

GDN0 (z, zs) = ρ0
σx−1−σ−1x

2ik ,

∂GDN
0 (z,zg)
∂zg

= ρ0
σy−1+σ−1y

−2 ,

∂GDN
0 (z,zs)
∂zs

= ρ0
σx−1+σ−1x

−2 .

(49)

After substituting equation (48) into equation (47), we have:

E(z, z) =
1 + eik(2a1−2z)

(
R1 + (1−R2

1)β
)

2ik/ρ0
. (50)

The result above can be Fourier transformed into the time domain to
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have:

E(z, z, t)

−ρ0c0/2
=H(t) +R1H (t− t1) + (1−R2

1)

×
∞∑
n=0

(−1)nRn1R
n+1
2 H (t− t1 − (2n+ 2)t2) , (51)

where t1 = 2a1−2z
c0

and t2 = (a2−a1)
c1

. Balancing out the −ρ0c0
2 factor∗, the

data after removing the direct wave is denoted as D̂(z, t) = −2
ρ0c0

E(z, z, t)−

H(t):

D̂(z, t) =R1H (t− t1)

+ (1−R2
1)
∞∑
n=0

(−1)nRn1R
n+1
2 H (t− t1 − (2n+ 2)t2) . (52)

We take the imaging condition as first letting z → a1 through values

smaller that a1, and then (subsequently) taking the limit as t → 0+, that

is, approaching zero from positive values, we find:

lim
t→0+

(
lim
z→a−1

D̂(z, t)

)
= R1, (53)

where

a−1 = a1 − ε1 ε1 > 0,

0+ = 0 + ε2 ε2 > 0,
(54)

and we obtained the image of the first reflector at the actual depth a1 with

the correct reflection coefficient as amplitude.

∗This factor is present in the incident wave, i.e., causal Green’s function for a homo-
geneous medium with density ρ0 and velocity c0.
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Predicting the source and receiver experiment between the

first and second reflectors

For a1 < z < a2, we have:

GDN0 (z, zg) = [(R1λ− λ−1)µ+ (λ−R1λ
−1)µ−1]/[2ik1(1 +R1)/ρ1],

∂GDN0 (z, zg)

∂zg
= [(R1λ− λ−1)µ− (λ−R1λ

−1)µ−1]/[2k1(1 +R1)/(kρ1)],

(55)

where λ = eik1(z−a1), µ = eik(zg−a1), k1 = ω
c1

. Substituting equation (55)

into equation (48), and transforming the aforementioned result into the time

domain, we have:

E(z, z, t)/(−ρ1c1/2) = H(t) + 2
∞∑
n=1

(−1)nRn1R
n
2H{t− [2n(a2 − a1)/c1]}

+

∞∑
n=0

(−1)n+1Rn+1
1 Rn2H{t− [2z + 2na2 − 2(n+ 1)a1]/c1}

+
∞∑
n=0

(−1)nRn1R
n+1
2 H{t− [2(n+ 1)a2 − 2na1 − 2z]/c1}. (56)

Balancing out the −ρ1c1/2 factor, the data after removing the direct

wave is denoted as D̂(z, t) = −2
ρ1c1

E(z, z, t)−H(t):

D̂(z, t) =2

∞∑
n=1

(−1)nRn1R
n
2H{t− [2n(a2 − a1)/c1]}

+
∞∑
n=0

(−1)n+1Rn+1
1 Rn2H{t− [2z + 2na2 − 2(n+ 1)a1]/c1}

+

∞∑
n=0

(−1)nRn1R
n+1
2 H{t− [2(n+ 1)a2 − 2na1 − 2z]/c1}, (57)
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and after taking the t = 0+ imaging condition, we have:

D̂(z, t) =


−R1 if (z = a1 + ε1)

0 if (a1 < z < a2)

R2 if (z = a2 − ε2)

, (58)

where ε1, ε2 → 0 and then t → 0+. Note that in the previous section, i.e.,

to image above the first reflector at a1, we obtain the amplitude R1 when z

approach a1 from above. In this section we image below the first reflector

at a1, the amplitude of the image is −R1 when z approaches a1 from below,

as it should.

Predicting the source and receiver experiment below the sec-

ond reflector

For z > a1, the boundary value of the Green’s function is:

GDN0 (z, zg) =
1

2ik2(1 +R1)(1 +R2)/ρ2
(59)

× {[ν−1(R2λ− λ−1) +R1ν(λ−R2λ
−1)]µ+ [R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)]µ−1},

where λ = eik2(z−a2), µ = eik(zg−a1), and ν = eik1(a2−a1), k2 = ω/c2.

The result of the predicted experiment can be expressed as:

E(z, z) =(ρ2/2ik2)[1−R2e
ik2(2z−2a2) + (1−R2

2)eik2(2z−2a2)

×
∞∑
n=0

(−1)n+1Rn+1
1 Rn2e

ik1(2n+2)(a2−a1)]. (60)
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The time domain counterpart of the equation above is:

E(z, z, t) = −(ρ2c2/2){H(t)−R2H[t− (2z − 2a2)/c2] (61)

+ (1−R2
2)H[t− (2z − 2a2)/c2 − (2n+ 2)(a2 − a1)/c1].

Balancing out the −ρ2c2/2 factor, the data after removing the direct

wave is denoted as D̂(z, t) = (−2/ρ2c2)E(z, z, t)−H(t):

D̂(z, t) =−R2H[t− (2z − 2a2)/c2]

+ (1−R2
2)H[t− (2z − 2a2)/c2 − (2n+ 2)(a2 − a1)/c1], (62)

and after taking the t = 0+ imaging condition, we have:

D̂(z, t) =

 −R2 if (z = a2 + ε)

0 if (a2 < z)
, (63)

where ε→ 0+. Note that in the previous section, i.e., to image between

the first and second reflectors, we obtain the amplitude R2 when z approach

a2 from above. In this section we image below the second reflector at a2,

the amplitude of the image is −R2 when z approaches a2 from below, as it

should. Please see Figure 6.

This analysis allows us to see how the recorded events contribute to the

image for source and receiver experiments above and below each reflector.

Multiples: do they contribute to the image?
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How do the recorded events (primaries and free surface and internal

multiples) contribute to: (1) the predicted source and receiver experiment at

depth and (2) the image at depth that locates and identifies the reflector (the

reflection coefficient)?. In this section, we examine, follow and report (for

the latter two way-wave wave migration examples) how the individual events

(primaries, free surface multiples and internal multiples) each contribute

to: (1) the predicted coincident source and receiver experiment at each

depth, and then (2) the time equals zero imaging condition evaluation of

that experiment.

The example we present provides for the first time an analysis that

starts with and follows how surface recorded data (with primaries and free

surface and internal multiples) influences and contributes to the subse-

quent coincident source and receiver experiment at depth and then imag-

ing at each depth level, and specifically: (1) how each individual recorded

event in the surface data is involved and contributes to the new individual

“events” of the predicted source and receiver experiment at each different

depth, and then (2) what happens to the recorded surface event’s individ-

ual contribution for the predicted experiment at each depth and then how

the surface recorded events contribute when applying the time equals zero

imaging condition. Please see three cases we examine in the three videos

(http://mosrp.uh.edu/events/event-news/multiples-signal-noise-a-clear-example-

with-a-definitive-conclusion) and corresponding slide snapshots. In the three

examples a unit amplitude plane wave is normal incident on a one-D earth.

The first case (please see Figures 7-9) is the example of a single reflector

and a single primary, with no free surface or internal multiples. That single
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primary is the sole contributor to the events in the experiment above and

below that single reflector. When the time equals zero condition is applied,

the recorded primary is the only recorded event contributing to the experi-

ment at depth and to the image, both below and above the reflector. For the

case of primaries and internal multiples, the detailed mathmatical analysis

based on the new two way (Claerbout Imaging III) migration behind these

figures is found in equation 49 - 63, in the previous section.

The second case has a single primary and a free surface multiple (please

see Figures 10-12). The predicted experiment above the reflector has two

surface event contributions, from the primary and the free surface multi-

ple. When the time equals zero imaging condition is applied then only the

recorded primary contributes to the image. Below the reflector the pre-

dicted experiment has two events, a primary that has a downward reflection

at the reflector, and a primary from the source to the free surface and then

down to the predicted receiver. The original free surface multiple in the

recorded data became a primary in the predicted experiment below the re-

flector. Hence, the primary and free surface multiple in the recorded data

became two primaries for the experiment below the reflector. However, once

the time equals zero imaging condition is applied to the predicted experi-

ment, only the recorded primary contributes to the image and the recorded

multiple does not.

In the third case (please see Figures 13-17), we consider a subsurface

with two reflectors and two recorded primaries and one internal multiple.

As you focus on the history that each individual event in the recorded data

follows and then contributes to, first in the experiment at depth and then
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to the image at each depth, you reach the following conclusion. Recorded

primaries and free surface multiples and internal multiples all contribute

to events for the predicted experiment at depth. Sometimes multiples in

the recorded data even become primaries in the predicted experiment at

depth. However, only the recorded primaries contribute to the image at

every depth. If you removed the multiples in the recorded data, the coin-

cident source and receiver experiment at depth would change, but once the

t = 0 imaging condition is applied, the image’s location at the correct depth

or its amplitude, the reflection coefficient, will not be affected. If, in these

examples, your data consisted of only multiples, you would have no image

at any depth.

Hence, for the purposes of imaging and inversion, primaries are signal

and multiples are not. Multiples are not evil, or bad or irresponsible, but

as events they are simply not needed for locating and identifying targets.

The methods that seek to use multiples today as “signal” are really seek-

ing to approximate images due to primaries that have not been recorded,

due to limitations in acquisition, and to address the subsequent limited il-

lumination that missing primaries can cause. They are not really using the

multiple itself as an event to be followed into the subsurface for imaging

purposes. The figure (18) illustrates the idea.

Assume a multiple is recorded, and a long offset primary that is a sub-

event is also recorded. The idea is to extract and predict the image due to

an unrecorded primary, smaller offset, from the recorded multiple and the

recorded longer offset primary. All the various incarnations that are using

multiples as “signal” are actually, and entirely after removing a recorded
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longer offset primary to have the output as a shorter offset unrecorded pri-

mary. It’s the missing image of unrecorded primaries that the method is

seeking to produce and to utilize.

The recipe of taking the multiples back in time and the primaries forward

in time and arranging for Imaging Condition II (not III) produces that

output. However, that procedure is not migrating the multiples, in the

sense of the multiple as an event.

In a Recent Advances and the Road Ahead presentation, “Multiples: sig-

nal or noise?”, Weglein (2014) (please see https://vts.inxpo.com/scripts/

Server.nxp?LASCmd=L:0&AI=1&ShowKey=21637&LoginType=0&InitialDisplay=

1&ClientBrowser=0&DisplayItem=NULL&LangLocaleID=0&RandomValue=1415030021699)

showed a field data example, from PGS, where there was clear added-value

demonstrated from beyond actual primaries, plus the approximate images of

primaries predicted from multiples, compared to the image from the original

primaries.

There is another issue: in order to predict a free surface or internal

multiple, the primary sub-events that constitute the multiple must be in the

data, for the multiple prediction method to recognize an event as a multiple.

If the short offset primary is not recorded, the multiple that is composed of

the short and long offset multiple will not be predicted as a multiple. That

issue and basic contradiction within the method is recognized by those who

practice this method, and instead of predicting the multiple, they use all

the events in the recorded data, primaries and multiples, and the multiples

can be useful for predicting approximate images of missing primaries but

the primaries in the data will cause artifacts. There are other artifacts that
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also come along with this method that have been noted in the literature.

The reality of today’s methods for using multiples to predict missing “pri-

maries” are aimed at structural improvement, at best, and are not claiming,

seeking or delivering the amplitude and phase fidelity of the predicted pri-

mary. Those who go so far as to advocate using fewer sources and/or more

widely separated cables because recorded multiples can produce “something

like” a missing primary need to understand the deficits and costs including

generating artifacts, less effectiveness with deeper primaries and the ampli-

tude fidelity of the predicted primary. Whether the tradeoff makes sense

ought to depend on, in part, the depth of the target, the type of play, and

whether a structural interpretation or amplitude analysis is planned within

a drilling program and decision.

By the way, this entire wave equation migration analysis (Claerbout

Imaging Condition III) is ultimately based on the idea from Green (1828)

that to predict a wave (an experiment) inside a volume you need to know

the properties of the medium in the volume.

There is an alternative view: The inverse scattering series methods com-

municates that all processing objectives can be achieved directly and with-

out subsurface information. The inverse scattering series treat multiples as a

form of coherent noise, and provide distinct subseries to remove free surface

and internal multiples before the inverse scattering subseries for imaging

and inversion achieve their goals using only primaries Weglein et al. (2003)

and Weglein et al. (2012). If the inverse scattering series needed multiples

to perform migration and inversion, it would not have provided subseries

that remove those multiply reflected events. With a velocity model (wave
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equation migration) or without a velocity model (inverse scattering series

imaging) only primaries are signal , in the sense that they are the events

need to locate and delineate targets. If you want to consider a multiple as

a conditional ’signal’, that can at times enhance imaging, there is no harm

in that. But to say that multiples are being migrated, and/or are the same

footing as primaries, is simply not ture and relates more to marketing, than

to a realistic view of the role that primaries and multiples play in seismic

exploration. A complete set of recorded primaries, processed with a wave

theory migration (versus asymptotic or ray migration) would not need or

benefit from multiples. Multiples need to be removed before performing a

velocity analysis using, e.g., tomography, CIG flatness or FWI. And a veloc-

ity model is required by all the methods that seek to use multiples to enhance

imaging. Another question: what if the assumed unrecorded primary event

in the method is actually recorded. Will the image of the recorded primary

and the image of the approximate version of the recorded primary from the

multiple damaged the image of the actual primary, that has been assumed

to not have been recorded?

Conclusions

Hence, primaries are signal and multiples can be useful, at times, for pre-

dicting the image of missing primaries. But it’s primaries that are signal,

that we use for structure and inversion.

Primaries are signal for all methods that seek to locate and identify

targets.

The above three examples assumed you had an accurate discontinu-
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ous velocity and density model. Given an accurate discontinuous velocity

and density model, and data with primaries and multiples, then we have

convincingly demonstrated that only primaries contributed to the images at

every depth. If you predicted the source and receiver experiment at depth

with a smooth velocity, it is possible to correctly locate (but not invert)

each recorded primary event—but with a smooth velocity model every free

surface and internal multiple will then produce a false image/artifact/event.

If you removed the multiples first you can correctly locate structure from

recorded primaries using a smooth velocity model.

Hence, we conclude that the inability, in practice, to provide an accurate

discontinuous velocity model is why multiples need to be removed before

imaging. That reality has been the case, is the case, and will remain true

for the foreseeable future. Multiples need to be removed before velocity

analysis and they need to be removed before imaging.

Many things are useful for creating primaries: money, the seismic boat,

the air-guns, the observer, the cable, computers, etc., but we don’t call all

useful things signal.

Methods to provide a more complete set of primaries are to be supported

and encouraged. Those methods include: (1) advances in and more com-

plete acquisition, (2) interpolation and extrapolation methods, and (3) using

multiples to predict missing primaries. However, a recorded primary is still

the best and most accurate way to provide a primary, and the primary is

the seismic signal.

A multiple can be useful, at times, for providing an unrecorded synthe-

sized primary that is a subevent of the multiple. Given a data set consist-
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ing of: (1) the recorded primaries, (2) the synthesized primaries, (3) the

free surface multiples, and (4) internal multiples, the practical necessity of

using a smooth continuous velocity for migration demands that all multi-

ples be removed before migration. In exploration seismology, migration and

migration-inversion are methods we employ to locate and identify structure.

Claerbout Imaging Condition III is the most definitive and quantitative mi-

gration concept and procedure. This paper demonstrated that Claerbout

Imaging Condition III clearly communicates that primaries are signal and

multiples are noise. The original and intuitive migration idea that takes

events in time traces to the location of structure in space, only has meaning

for primaries. The most sophisticated and physically well-founded migra-

tion theory, beased on Claerbout Imaging Condition III, agrees with that

assessment and conclusion.

Acknowledgements

M-OSRP sponsors are thanked for their encouragement and support. The

author would like to thank Nizar Chemingui, Dan Whitmore and Alejan-

dro Valenciano (PGS), Robert H. Stolt (ConocoPhillips, retired), Clement

Kostov and Richard Coates (Schlumberger), Scott Morton (Hess) and Fred

Hoffman (Shell, retired) for constructive and worthwhile discussions that

benefited this paper. The author gratefully acknowledges PGS for show-

ing how multiples can be used to predict unrecorded primaries, and Lundin

Malaysia and PETRONAS for showrights. I would like to thank Yi Luo and

Tim Keho (Saudi Aramco) and David Monk and Bill Goodway (Apache

44

Page 44 of 66GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Corp.) for stimulating and useful discussions that motivated and benefited

this paper. The author would also thank Fang Liu, Chao Ma, Jim Mayhan,

Jinlong Yang and Yanglei Zou for assistance in preparing this paper.

References

Amundsen, L., 1994, The propagator matrix related to the Kirchhoff-

Helmholtz integral in inverse wavefield extrapolation: Geophysics, 59,

1902–1910.

Claerbout, J. F., 1971, Toward a unified theory of reflector mapping: Geo-

physics, 36, 467–481.

Clayton, R. W., and R. H. Stolt, 1981, A Born-WKBJ inversion method for

acoustic reflection data: Geophysics, 46, 1559–1567.

Green, G., 1828, An essay on the application of mathematical analysis to

the theories of electricity and magnetism: Privately published. (Avail-

able at http://babel.hathitrust.org/cgi/pt?id=hvd.yl131n;view=

1up;seq=9).

Liu, F., and A. B. Weglein, 2014, The first wave equation migration RTM

with data consisting of primaries and internal multiples: theory and 1D

examples: Journal of Seismic Exploration, 23, 357–366.

Morse, P. M., and H. Feshbach, 1981, Methods of theoretical physics: Fes-

hbach Publishing, LLC. (Original publication 1953 by The McGraw-Hill

Companies, Inc.).

Schneider, W. A., 1978, Integral formulation for migration in two and three

dimensions: Geophysics, 43, 49–76.

45

Page 45 of 66 GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Stolt, R. H., 1978, Migration by Fourier transform: Geophysics, 43, 23–48.

Stolt, R. H., and A. K. Benson, 1986, Seismic migration: theory and prac-

tice: Geophysical Press.

Stolt, R. H., and A. B. Weglein, 1985, Migration and inversion of seismic

data: Geophysics, 50, 2458–2472.

——–, 2012, Seismic imaging and inversion: Application of linear inverse

theory: Cambridge University Press.

Weglein, A. B., 2014, Multiples: Signal or noise?: 84th Annual International

Meeting, SEG, Expanded Abstracts, 4393–4399.
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Figures

Figure 1: The infinite hemispherical migration model. The measurement

surface is denoted by MS.

Figure 2: A finite volume model.

Figure 3: 1D upgoing plane wavefield.

Figure 4: Backpropagation model evolution.

Figure 5: Green’s theorem predicts the wavefield at an arbitrary depth z

between the shallower depth a and deeper depth b.

Figure 6: Imaging with primaries and internal multiples. A double

Green’s theorem is utilized with the data, and a Green’s function that along

with its normal derivative vanishes on the lower surface (and on the walls,

in multi-D). That is what wave-equation migration means for waves that are

two-way propagating in the medium.

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Figure 11:

Figure 12:

Figure 13:

Figure 14:

Figure 15:
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Figure 16:

Figure 17:

Figure 18:
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