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Summary

The inverse scattering series (ISS) is a comprehensive
multidimensional theory for processing and inverting
seismic reflection data, that may be task-separated such
that meaningful sub-problems of the seismic inverse
problem may be accomplished individually, each without
an accurate velocity model. We describe a task-separated
subseries of the ISS geared towards accurate location in
depth of reflectors, in particular the mechanisms of the
series that act in multiple dimensions. We show that
some 2D ISS imaging terms have analogs in previously
developed 1D ISS imaging theory (e.g., Weglein et
al., 2002; Shaw, 2005) and others do not; the former
are used to create a 2D depth-only imaging prototype
algorithm which is tested on synthetic salt-model data,
and the latter are used to discuss ongoing research into
reflector location activity within the series that acts
only in the case of lateral variation and the presence of,
e.g., diffraction energy in the data. Numerical tests are
encouraging and show clear added value.

Introduction

The inverse scattering series (ISS) is a direct, non-linear
inverse procedure for the reconstruction of an unknown
spatial distribution of multidimensional medium param-
eters in terms of only measurements of a reflected wave
field. The history of its investigation as a tool for the
processing and inversion of seismic data, and the devel-
opment of the task-separated treatment of the ISS, is de-
tailed by Weglein et al. (2003). The ISS had been cast to
individually carry out what are externally defined to be
classical objectives of seismic data processing and inver-
sion: (1) elimination of free surface multiples, (2) attenu-
ation of internal multiples, (3) location in depth of rapid
variations of medium parameters (imaging), and (4) de-
termination of the parameter changes at those locations
(inversion). Recent work on task (4) of the ISS can be
found in, e.g., (Zhang and Weglein, 2005). The ISS ex-
pands the desired output as an infinite series in terms of
only the data and a chosen (often very simple) reference
Green’s function, thus each of the above tasks is carried
out without an accurate input velocity model.

Task (3) above, the problem of non-linear, ISS-based
imaging (Weglein et al., 2002; Shaw et al., 2004) in a
constant-density acoustic medium, has been earlier posed
and described for the 1D pre-stack case by Shaw (2005).
We point out that those cases are, however, 1D results
due to a fully multidimensional theory. In this paper we
extend the construction of direct non-linear imaging algo-

rithms to media with lateral and vertical variation (early
results of this research are also discussed by Liu et al.,
2005). The extension produces both terms that are clear
analogs to those generated in the 1D case, and terms that
are unique to the 2D environment. Those that have a 1D
analog follow patterns recognizable from earlier research,
and therefore map to potential 2D algorithms, applica-
ble numerically, that work to correctly locate reflectors in
depth while leaving errors due to lateral variation, and is-
sues such as diffractions, largely intact. We demonstrate
the added value of this type of algorithm on two synthetic
models including a 2D salt model. Those that do not have
1D analogs are discussed as low-order terms in new, fully
2D subseries, which (although not yet sufficiently devel-
oped for inclusion in an algorithm) have activity locally
wherever purely 2D effects (e.g., diffractions) are found
in the data, and are expected to operate to correct the
location error and artifacts remaining beyond the depth
problem.

In this paper, we begin with a brief review of the ISS,
followed by a discussion of the form of the linear inverse
in the presence of a line source in a homogeneous ref-
erence medium; this linear inverse is the input to the
non-linear terms of the ISS. The patterns of the imaging
terms of the ISS are next described; several second-order
terms deemed to be responsible for 2D reflector location
tasks are presented and described, including those with
and those without 1D analogs. The imaging prototype
algorithm terms are then derived from the former in a
kh = 0 setting (kh is the offset-conjugate wavenumber;
see Clayton and Stolt (1981) for more detailed definition),
additionally incorporating terms which will become pro-
nounced for large contrast velocity models. The result is
a depth-only 2D subseries, that performs 1D-like correc-
tions at each lateral correction. This prototype algorithm,
with alternate forms suitable for varying degrees of model
contrast, is then numerically tested on a salt model.

Background

In operator form, the differential equations describing
wave propagation in an actual and a reference medium
can be written as

LG = −I L0G0 = −I (1)

where L, L0 and G, G0 are the actual and reference dif-
ferential and Green’s operators, respectively, for a single
temporal frequency (ω) and I is the identity operator.
The perturbation V is defined as V = L0 − L. The
Lippmann-Schwinger equation, G = G0 + G0V G, may
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be expanded to form the forward scattering series:

G−G0 = G0V G0 + G0V G0V G0 + · · · . (2)

As detailed by Weglein et al. (2003), the representation of
V = V1+V2+V3+ · · · in equation 2 as an infinite series in
orders of the measured scattered wave field G−G0, gives
rise to the ISS when like orders are equated:

D = G−G0 = G0V1G0

0 = −G0V2G0 −G0V1G0V1G0

0 = −G0V3G0 −G0V1G0V2G0 −G0V2G0V1G0

−G0V1G0V1G0V1G0,
(3)

etc. For a constant density acoustic reference medium
characterized by wavespeed c0, the relationship between
the perturbation and the velocity is: c2

0V/ω2 = α(z),
where α(z) = 1−c2

0/c2(z). Through the use of a variety of
changes of integration variable and instances of integra-
tion by parts, Shaw (2005) identifies a portion of the ISS
sum α = α1 +α2 +α3 + · · · that acts only to alter the lo-
cations of the discontinuities of the linear inverse α1 from
the wrong depth to the correct depth. First we consider
the leading-order imaging subseries and its closed-form
(c.f. Shaw et al., 2004):

αIM (z) =
∞∑

n=0

(−1/2)n

n!
dnα1/dzn

(
z∫
0

α1(z
′)dz′

)n

= α1

(
z − 1

2

z∫
0

α1(z
′)dz′

)

(4)
The terms in the series above have two characteristics:
they involve (1) derivatives of the linear inverse with re-
spect to the coordinate in which the reflector location is
being corrected, and (2) they are weighted by a depth
integral of the same linear inverse. We proceed with a
study of related forms in the more complex 2D case.

Equations for multidimensional imaging

Equations 3 can be solved for 2D constant density acous-
tic media, in which the single perturbation parameter,

α(x, z) = 1− c2
0/c2(x, z), (5)

is the essential quantity. In the ISS representation our
objective is solved for as an infinite series, α(x, z) =
α1(x, z) + α2(x, z) + α3(x, z) + · · · . The first term (the
linear inverse) is expressible in terms of the data via the
solution of the first equation in (3) (e.g., Clayton and
Stolt, 1981):

˜̃α1(km, kz) = − 4k2
z

k2
z + k2

m

˜̃
D

(
km,

c0kz

2

√
1 +

k2
m

k2
z

)
, (6)

in the midpoint conjugate (km) and depth conjugate (kz)
domains with the restriction kh = 0; the data quantity

is computed from wave field information on the measure-
ment surface:

˜̃
D (km, ω) =

∞∫

−∞

dxm

∞∫

−∞

dt

∞∫

−∞

dxh (7)

×ei(ωt−kmxm)D
(
xm +

xh

2
, xm − xh

2
, t

)

where the data in the integrand are considered in the
source and receiver coordinates: D(xg, xs, t). With this
computation of the linear inverse, in lateral and depth
coordinates, we next turn to the non-linear terms of the
ISS, and express them as operations on α1(x, z), applying
an integration-by-parts strategy similar to that resulting
in 1D forms (e.g., Weglein et al., 2002) to extract terms
with the imaging-like aspect visible in equation (4). Solv-
ing the second equation in (3) for α2(x, z), and manip-
ulating the results accordingly, produces, amongst other
terms (Liu et al., 2005), two which we label (a) and (b):

α
(a)
2 (x, z) = −1

2

∂α1(x, z)

∂z

z∫

0

α1(x, z′)dz′, and (8)

α
(b)
2 (x, z) = −1

2

∂α1(x, z)

∂x

z∫

0

z′∫

0

∂α1(x, z′′)
∂x

dz′. (9)

Term (a) has a direct 1D analogy (c.f. the discussion
of eqn. 4), and term (b) has no such analogy, but both
exhibit the salient characteristics of ISS non-linear imag-
ing. Equation (8) involves a first derivative of α1 with
respect to depth weighted by the integral of α1 down to
that depth. The term in equation (9), meanwhile, has the
expected hallmarks of a lateral corrector at second order,
involving a first derivative with respect to the lateral co-
ordinate, weighted by the depth integral of the rate of
change of α1. Notice that this term will vanish if the lin-
ear inverse does not vary laterally. We surmise that this
term is the first in an infinite series correcting the lateral
error in the linear inverse.

The above analysis leads to two main conclusions. First,
the presence, in the multi-D case, of an exact reproduc-
tion of the 1D depth imaging engine, as terms that are
zeroth order in ∂α1/∂x (and the tendency of the imag-
ing terms of the ISS to behave like nested, or cascaded
Taylors series), suggests that we consider the vertical and
lateral imaging problem as being akin to a series expan-
sion about the purely vertical imaging problem. Lateral
corrector terms that are of low order should be effective
when applied to problems involving slow lateral variabil-
ity; rapid lateral variations will evidently require terms
of higher-order in ∂α1/∂x. Second, this re-appearance of
the same patterns as those found in the 1D case allow for
the same summations to closed-form that exists in 1D sce-
narios. Hence, a single expression that is the zeroth order
lateral corrector and the leading order depth corrector for
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the 2D case may be derived (c.f. equation (4)):

αLOIS(x, z) = α1


x, z − 1

2

z∫

0

α1(x, z′)dz′


 . (10)

This is a depth corrector that involves the same engine
as in the 1D case, but with a different quantity under
scrutiny at each x. We refer to the quantity above as
“leading-order imaging subseries” (LOIS) to conform with
descriptions of the 1D imaging algorithm. Leading order
refers to the fact that the subseries coefficients are ap-
proximated as the integral of the first power of α1 only
(Shaw, 2005). Similarly, then, to the imaging mechanism
of Shaw’s analysis, equation (10) can achieve accurate lo-
cation of reflectors in depth for media of low- to moderate-
velocity contrast.

We have had occasion to study idealized Earth models
whose constrast levels have been of a size too large for the
leading order mechanisms alone to be used; this has led
to some effort at incorporation of a greater complement
of the reflector location terms within the ISS, as part of
a new (but still partial) “higher-order” imaging without
inversion formula. Innanen (2005) describes a capture of
these terms within a 1D milieu that couples the imaging
and inversion problem. Bringing that location capabil-
ity to the 2D task-separated algorithm, a non-trivial de-
velopment outside the scope of this paper, leads to the
algorithm form:

αHOIS(x, z) = α1


x, z − 1

2

z∫

0

α1(x, z′)dz′

1− 0.25α1(x, z′)


 .

(11)
Either of eqns. (10) or (11), with the linear inverse of eqn.
(6) as input, may be computed numerically to explore the
capability of this partial ISS imaging algorithm.

Numerical examples

We present an example of the 2D imaging algorithms of
the previous sections, i.e., in eqns (6) and (11). Fig 1
illustrates the salt model. The data are created using
a fourth-order finite difference scheme, with a temporal
sampling rate of 2ms and a lateral spatial sampling rate
of 5m. The source signature is the first derivative of a
Gaussian (peak frequency of 28Hz). The resultant data
are used as described above to compute the linear in-
verse associated with a homogeneous reference medium
of wavespeed c0 = 1500m/s. First, the linear term α1 is
calculated from data according to equation (6), then the
imaging algorithm is calculated via equation (11), and
the first derivative in depth of the result is displayed in
Figure 3.

In the salt model example, the depth-only 2D imaging al-
gorithm can be seen to produce a target reflection location
close to that of the actual, correct target. The correction
of the depth issues of the location problem is visible, as is
the absence of correction on the purely lateral/2D issues

(e.g., the remnant diffraction energy visible on the flanks
of the salt body). Emphasizing that in generating this
example the algorithm was accorded no velocity informa-
tion before or during the calculation, we regard this as a
very encouraging result.

Conclusions

We present an extension of the velocity-independent
imaging methods of the ISS to accommodate media that
vary laterally as well as in depth. Those prototype meth-
ods, which in 2D have some terms with 1D analogs and
some without, call for specific and reasonably straightfor-
ward non-linear data activity, with the former of which we
demonstrate very encouraging numerical examples on 2D
synthetic data generated over a salt model. Ongoing re-
search is geared towards finding and grouping terms that
are more specifically present for lateral/2D processing is-
sues, and studying the structure of the algorithm in a
framework generalizing beyond kh = 0.
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Fig. 1: The geometry and velocity of each layer in the salt
model.

Fig. 2: Left: shot gather with xs = −2000(m). Right: shot
gather with xs = 2000(m). In both shot gathers, conflicting
hyperbolas are present which will cause ambiguities in velocity
analysis.

Fig. 3: Salt model linear imaging results, having taken the par-

tial derivative of the linear term over depth
(

∂α1
∂z

)
(the pur-

pose of this partial derivative is to make the reflectors clearer
in the section). In the linear image, only the water bottom
was correctly imaged by the whole-space water velocity, and
the bottom reflector was more that 1km away from its correct
location.

Fig. 4: Large contrast imaging subseries prototype algorithm
output given the input in Figure 3. The actual locations of the
reflectors are indicated. The second reflector (including the
top salt) was correctly imaged. The third reflector (including
the salt bottom was imaged very close to their actual locations.
Outside the salt flank, the locations of the fourth reflector was
moved much closer to its actual location. A dashed polygon (in
orange) is overlayed around the portion of the fifth reflector
below the salt.
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