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ABSTRACT

In the direct nonlinear inversion method and in algorithms for
1D elastic media, P-wave velocity, S-wave velocity, and density
are depth dependent. “Direct nonlinear” means that the method
uses explicit formulas that �1� input data and directly output
changes in material properties without the need for indirect pro-
cedures such as model matching, searching, optimization, or oth-
er assumed aligned objectives or proxies and that �2� the algo-
rithms recognize and directly invert the intrinsic nonlinear rela-
tionship between changes in material properties and the recorded
reflection wavefields. To achieve full elastic inversion, all com-
ponents of data �such as PP, SP, and SS data� are needed. The
method assumes that only data and reference medium properties
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re input, and terms in the inverse series for moving mislocated
eflectors resulting from the linear inverse term are separated
rom amplitude correction terms. Although in principle this di-
ect inversion approach requires all components of elastic data,
ynthetic tests indicate that a consistent value-added result may
e achieved given only PP data measurements, as long as the PP
ata are used to approximately synthesize the PS and SP compo-
ents. Further value would be derived from measuring all com-
onents of the data as the method requires. If all components of
ata are available, one consistent method can solve for all of the
econd terms �the first terms beyond linear�. The explicit nonlin-
ar inversion formulas provide an unambiguous data require-
ent message as well as conceptual and practical added value be-

ond both linear approaches and all indirect methods.
INTRODUCTION

The objective of seismic data processing is to use measured re-
ection data to determine the spatial locations or images of reflectors
nd the changes in mechanical properties across the imaged reflec-
ors. There are many methods for achieving those two interrelated
oals, and all of them can be effective when their assumptions are
atisfied.

The standard methods used today in exploration seismology as-
ume knowledge of properties of the subsurface medium above the
eflector of interest. They also assume that a forward relationship re-
ates the angle-dependent PP reflection data to changes in properties
cross the reflector. That relationship can be solved by linear forward
pproximation �PP Bortfeld approximation� or by model matching,
ull waveform inversion, iterative linear updating, or global search-
ng using the nonlinear forward PP Zoeppritz relationship �Sheriff
nd Geldart, 1994�. Because P-waves nonnormally incident on an
lastic interface can produce S-waves, and vice versa �converted
aves; Aki and Richards, 2002�, the elastic data generally contain

our components: PP, PS, SP, and SS.
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In this paper, we provide a new understanding and firmer founda-
ion for addressing the problem of finding the changes in physical
roperties across a reflector as well as understanding the fundamen-
al new algorithms that emerge from that framework. We begin by
efining the difference between direct and indirect algorithms. The
urrent methods �listed in the previous paragraph� for estimating
roperties of target reflectors are indirect. Indirect inversion meth-
ds seek an aligned objective, cost function, or proxy in place of a di-
ect inverse solution. Indirect inverse methods start with a forward
roblem and, one way or another, seek to solve the forward problem
n an inverse sense for changes in mechanical properties in terms of
nput reflection data. Hence, the foundation of all current target iden-
ification methods is the forward or modeling problem, and the con-
omitant indirect inversion methods are based on model matching.

In contrast, the foundation of the method described here is a direct
nverse solution. That distinction and its implications, meaning, and
onsequences are the central point here. The direct inverse target
dentification method recognizes the innate nonlinear relationship
etween the change in any �and every� mechanical property that
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hanges at a reflector and the reflection data that emanate from that
eflector. It provides direct explicit relationships for the linear and
onlinear approximation for those property changes in terms of mea-
ured reflection data. That process provides the data and algorithms
equired for a direct nonlinear solution.

The equation for the linear estimate is the exact equation for the
inear estimate. The equation for the quadratic estimate is the exact
quation for the quadratic estimate, and so on for each higher term.
here is no search, no cost function, no model matching, but an order
y order in the data direct solution, where each step is exact for its in-
icated order of approximation. The unambiguous message deliv-
red by those exact linear and higher-order equations is that all com-
onents of PP, SP, SS, and PS data are directly called upon and need-
d in the direct inverse amplitude variation with offset �AVO� solu-
ion.

Communicating this conceptual and fundamental message con-
erning direct and indirect methods and their distinction and signifi-
ant consequences is a major goal of this paper. A secondary goal is
o provide an approach to navigate the need for multicomponent data
hen one has only towed-streamer PP measurements and the other

omponents are synthesized from the PP data. That synthesis falls
hort of real measurements but is better than placing zeros where the
ulticomponent data are called for.
This need for multicomponent data for the direct elimination of

ree-surface and internal multiples in ocean-bottom and onshore ap-
lications was recognized in early work �Matson, 1997�. These ap-
lications required a homogeneous elastic reference medium that
greed with ocean-bottom or near-surface onshore properties. The
pecificAVO problem that we address here has a known elastic half-
pace �as the reference medium� over an unknown elastic half-space,
he simplest realistic model for amplitude analysis. We provide the
irect inverse solution to that simplest realistic 1D AVO model.
ence, although it might seem to be a simple model, it has in fact had
direct solution, and this direct inversion procedure differs from all
urrentAVO methods.

Our method derives from the only direct inverse method for multi-
imensional acoustic, elastic, and anelastic media — the inverse
cattering series. The inverse scattering series is direct and it allows
ll processing goals to be achieved directly in terms of only the data.

The question we ask is whether the inverse scattering series, with
ll its potential and already-delivered dividend for removing free-
urface and internal multiples, can be pointed at the simplest AVO
roblem that has no previous direct solution. Toward that end and fo-
used goal, we assume that all multiples have been removed, the
verburden is known, and the depth of the single horizontal reflector
s given. Then we can ask for a direct inverse solution for the changes
n elastic properties across that one reflector. To get to that algorithm,
e formulate the direct elastic inverse scattering series in a 1D earth

nd then isolate the direct AVO task by identifying and ignoring
asks that are assumed to have been achieved, i.e., free-surface and
nternal multiple removal and depth imaging of the location of the
eflector.

Hence, the formidable and new mathematics that deal with every-
hing that an elastic direct inversion method requires are developed
efore identifying the part of the elastic inverse series that deals only
ith direct AVO analysis. It is daunting to separate and isolate the
VO-only terms from the tangle of other terms. However, there ap-
ears to be no other way to reach the direct nonlinear AVO-isolated
erms without starting with the overarching complete direct elastic
nverse scattering series.
THE INVERSE SCATTERING SERIES AND
ISOLATED TASK SUBSERIES

What makes the inverse scattering series powerful is the task-iso-
ated subseries, which is a subset of the entire series that acts as
hough only one task is performed for that subset �Weglein et al.,
003�. All of these subseries act in a certain processing sequence so
hat the total seismic data can be processed accordingly: �1� free-sur-
ace multiple removal, �2� internal multiple removal, �3� depth imag-
ng without velocity, and �4� inversion or target identification. Be-
ause the entire process requires only reflection data and reference
edium information, it is reasonable to assume that these intermedi-

te steps �i.e., all of the derived subseries associated with achieving
hat objective� would be attainable with only the reference medium
nd reflection data — no subsurface medium information is re-
uired.

The free-surface multiple removal and internal multiple attenua-
ion subseries are presented by Carvalho �1992�, Araújo �1994�, We-
lein et al. �1997�, and Matson �1997�. Those two multiple proce-
ures are independent of model type, i.e., they work for acoustic,
lastic, and anelastic media. Studies on taking internal multiples
rom attenuation to elimination are under way �Ramírez and We-
lein, 2005�. The task-specific subseries associated with primary re-
ections �i.e., for imaging and inversion� also have been progressed.
ne subseries is imaging without velocity for one parameter in 1D

nd then 2D acoustic media �Weglein et al., 2002; Liu and Weglein,
003; Shaw and Weglein, 2003, 2004; Shaw et al., 2003a, 2003b,
004; Liu et al., 2004; Liu et al., 2005�. A second subseries is direct
onlinear inversion for multiparameter 1D acoustic and then elastic
edia �Zhang and Weglein, 2005�. Recent work �Innanen and We-

lein, 2004, 2005� suggests that some well-known seismic process-
ng tasks associated with resolution enhancement �i.e., Q-com-
ensation� can be accomplished within the task-separated inverse
cattering series framework. In this paper, we focus on direct nonlin-
ar inversion.

Specifically, the stages within the strategy for primary reflections
re as follows:

� 1D earth with one parameter, velocity as a function of depth, a
normal incidence wave

� 1D earth with one parameter varying �velocity as a function of
depth� offset data, one shot record

� 2D earth with one parameter varying �velocity varying in x and
z�, a suite of shot records

� 1D acoustic earth with two parameters varying �velocity and
density�, one propagation velocity, one shot record of PP data

� 1D elastic earth, two elastic isotropic parameters and density
varying, two wavespeeds for P- and S-waves, shot records col-
lected for PP, PS, SP, and SS waves

Here, we add another step of direct nonlinear inversion and isolate
asks specifically associated with primary reflectors to the 1D elastic
arth case �stage 5�. Our model is elastic; a study with an acoustic
odel is presented by Zhang and Weglein �2005�. We take these

teps and learn to navigate through this complexity, steering it to-
ard useful and powerful algorithms.
However, more realism adds more complexity with more inverse

ssues to be addressed. Following the task-separation strategy, we
sk ourselves, what kind of tasks should we expect in this more com-
lex, elastic setting? For the acoustic case, for example, the acoustic
edium supports only P-waves, so only one reference velocity �P-
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ave velocity� is involved. Therefore, when only one velocity is in-
orrect �i.e., poorly estimated�, there is only one mislocation for each
arameter and the imaging terms need to correct only this one mislo-
ation. When we extend our previous work on the two-parameter
coustic case to the three-parameter elastic case, there will be four
islocations because there are two reference velocities �P- and
-wave velocities�. Our reasoning is that the elastic medium sup-
orts P- and S-wave propagation, so both P- and S-wave velocities
re involved. When these velocities are incorrect, there are generally
our mislocations, one for each of the four possible combinations of
he two wrong velocities.

In this paper, we present a nonlinear inversion term for a three-pa-
ameter 1D elastic medium. We demonstrate that under the inverse
cattering series inversion framework, all components of the data are
eeded to perform full elastic inversion. Where we do not have all
omponent data �i.e., only PP data are available�, we obtain encour-
ging inversion results by constructing other components of data
rom the PP data. This means we could perform elastic inversion by
sing only pressure measurements �i.e., towed-streamer data�.
here all components of data are available, we provide a consistent
ethod to solve for second-order terms.

BACKGROUND FOR 2D ELASTIC INVERSION

In this section, we consider the inversion problem in two dimen-
ions for an elastic medium. We start with the displacement space;
hen, for convenience �see, e.g., Aki and Richards, 2002�, we change
he basis and transform the equations to PS space. Here, the way to
enote displacement space and PS space depends mainly on the ba-
is function chosen in each space. In displacement space, we chose
he displacement field u as the basis function. In PS space, we chose

as the basis function. The differential operator that describes the
ave propagation in the reference medium �L0, defined below�
ould be diagonal in PS space, and P- and S-wave-related operators
ould be separated in each of the two nonzero elements. Finally, we
emonstrate the elastic inversion in the PS domain.

isplacement space

We begin with some basic equations in the displacement space
Matson, 1997�:

Lu� f, �1�

L0u� f, �2�

LG�� , �3�

L0G0�� , �4�

here L and L0 are the differential operators that describe the wave
ropagation in the actual and reference medium, respectively; u and
are the corresponding displacement and source terms; and G and
0 are the corresponding Green’s operators for the actual and refer-

nce medium. In the following, the quantities with a zero subscript
elate to the reference medium; those without a subscript relate to the
ctual medium.

Closely following Weglein et al. �1997�, Weglein et al. �2002�,
nd Weglein et al. �2003�, defining the perturbation V�L0�L, we
nd the Lippmann-Schwinger equation for the elastic media in the
isplacement space:
G�G0�G0VG . �5�

terating this equation back into itself generates the Born series:

G�G0�G0VG0�G0VG0VG0� ¯ . �6�

e define the data D as the measured values of the scattered wave-
eld G�G0. Then, on the measurement surface, we have

D�G0VG0�G0VG0VG0� ¯ . �7�

xpanding V as a series in orders of D, we have

V�V1�V2�V3� ¯ . �8�

ere, the subscript i in Vi �i�1,2,3, . . . � denotes the ith-order por-
ion of V in the data. Substituting equation 8 into equation 7, evaluat-
ng equation 7, and setting terms of equal order in the data equal, the
ollowing equations that determine V1,V2,. . . from D and G0 are ob-
ained:

D�G0V1G0, �9�

0�G0V2G0�G0V1G0V1G0, . . . . �10�

n the actual medium, the 2D elastic wave equation is �A. B. Weglein
nd R. H. Stolt, personal communication, 1992�

Lu����2�1 0

0 1
�

�� �1� �1��2��2 �1�� �2���2��2��1

�2�� �2���1��1��2 �2� �2��1��1
���u1

u2
�

� f, �11�
here u� � u2

u1	�displacement; � is density; � is P-wave modulus
��2, where � �P-wave velocity; ��shear modulus ��� 2,
here � �S-wave velocity; � � temporal frequency �angular�; �1

nd �2 denote the derivative over x and z, respectively; and f is the
ource term.

For constant ��,� ,��� ��0,� 0,�0�, ��,� �� ��0,� 0�, the opera-
or L becomes

L0���0�2�1 0

0 1
��� � 0�1

2��0�2
2 �� 0��0��1�2

�� 0��0��1�2 �0�1
2�� 0�2

2 �� .

�12�

hen,

V�L0�L

���0� a��2��0
2�1a��1�� 0

2�2a��2 �1��0
2a� �2� 0

2a���2�� 0
2�2a��1

�2��0
2a� �2� 0

2a���1�� 0
2�1a��2 a��2��0

2�2a��2�� 0
2�1a��1

�,

�13�
here a� ��� /�0��1, a� ��� /� 0��1, and a� ��� /�0��1 are

he three parameters we choose for the elastic inversion. Similar to
quation 8, a�, a� , and a� can be expanded as

a� �a�
�1��a�

�2��a�
�3�� ¯ , �14�

a� �a�
�1��a�

�2��a�
�3�� ¯ , �15�

a��a�
�1��a�

�2��a�
�3�� ¯ , �16�
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here the superscripts �1�, �2�, and �3� denote the linear, first nonlin-
ar or second term, and the third term, respectively.

For a 1D earth �i.e., where a�, a� , and a� are functions only of
epth z�, equation 13 becomes

V���0� a��2��0
2a��1

2�� 0
2�2a��2 ��0

2a� �2� 0
2a���1�2�� 0

2�2a��1

�2��0
2a� �2� 0

2a���1�� 0
2a��1�2 a��2��0

2�2a��2�� 0
2a��1

2 � .

�17�

ransforming to PS space

For convenience, we can change the basis from u� � u2

u1	 to � �S
�

P

� to
llow L0 to be diagonal:

����P

�S ���� 0��1u1��2u2�

�0��1u2��2u1� � . �18�

his can be written as

��P

�S ��	 0
 u, �19�

here


 �� �1 �2

��2 �1
� and 	 0��� 0 0

0 �0
� .

n the reference medium, the operator L0 will be diagonal in the new
asis via a transformation

L̂0�
 L0
 �1	 0
�1��L̂0

P 0

0 L̂0
S
�, �20�

here L̂0 is L0 transformed to PS space, 
 �1�� �1 ��2

�2 �1 ���2 is the
nverse matrix of 
 , L̂0

P��2 /�0
2��2, L̂0

S��2 /� 0
2��2, and

F�
 f��FP

FS � . �21�

hen, in the PS domain, equation 2 becomes

�L̂0
P 0

0 L̂0
S
���P

�S ���FP

FS � . �22�

ecause G0 �L0
�1, let Ĝ0

P� �L̂0
P��1 and Ĝ0

S� �L̂0
S��1. Then the dis-

lacement G0 in the PS domain becomes

Ĝ0�	 0
 G0
 �1��Ĝ0
P 0

0 Ĝ0
S
� . �23�

o, in the reference medium, after transforming from the displace-
ent domain to the PS domain, L and G become diagonal and there
0 0
re only direct P- and S-waves, which are separated in this case.
Multiplying equation 5 from the left by the operator 	 0
 and

rom the right by the operator 
 �1, and using equation 23,

	 0
 G
 �1� Ĝ0� Ĝ0�
 V
 �1	 0
�1�	 0
 G
 �1

� Ĝ0� Ĝ0V̂Ĝ, �24�

here the displacement Green’s operator G is transformed to the PS
omain as

Ĝ�	 0
 G
 �1��ĜPP ĜPS

ĜSP ĜSS
� . �25�

he perturbation V in the PS domain becomes

V̂�
 V
 �1	 0
�1��V̂PP V̂PS

V̂SP V̂SS
�, �26�

here the left superscripts of the matrix elements represent the type
f measurement and the right ones are the source type.

Similarly, applying the PS transformation to the entire inverse se-
ies gives

V̂� V̂1� V̂2� V̂3� ¯ . �27�

t follows from equations 24 and 27 that

D̂� Ĝ0V̂1Ĝ0, �28�

Ĝ0V̂2Ĝ0�� Ĝ0V̂1Ĝ0V̂1Ĝ0, . . . , �29�

here

D̂��D̂PP D̂PS

D̂SP D̂SS
�

re the data in the PS domain.

LINEAR INVERSION OF A 1D ELASTIC MEDIUM

We now look at the linear terms in the inverse series. Writing
quation 28 in matrix form,

�D̂PP D̂PS

D̂SP D̂SS
���Ĝ0

P 0

0 Ĝ0
S
��V̂1

PP V̂1
PS

V̂1
SP V̂1

SS
��Ĝ0

P 0

0 Ĝ0
S
�,

�30�

eads to four equations:

D̂PP� Ĝ0
PV̂1

PPĜ0
P, �31�

D̂PS� Ĝ0
PV̂1

PSĜ0
S, �32�

D̂SP� Ĝ0
SV̂1

SPĜ0
P, �33�
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D̂SS� Ĝ0
SV̂1

SSĜ0
S. �34�

or zs�zg�0, Fourier transforming equations 31–34 from the
xs,zs;xg,zg;�� domain to the �ks,zs;kg,zg;�� domain, we get the fol-
owing four equations relating the linear components of the three
lastic parameters and the four data types �Zhang, 2006�:

D̃PP�kg,0;�kg,0;��

��
1

4
�1�

kg
2

�g
2�ã�

�1���2�g��
1

4
�1�

kg
2

�g
2�

�ã�
�1���2�g��

2kg
2� 0

2

��g
2�kg

2��0
2 ã�

�1���2�g�, �35�

D̃PS��g,
g�

��
1

4
� kg

�g
�

kg


g
�ã�

�1����g�
g��
� 0

2

2�2kg��g�
g�

��1�
kg

2

�g
g
�ã�

�1����g�
g�, �36�

D̃SP��g,
g�

�
1

4
� kg

�g
�

kg


g
�ã�

�1����g�
g��
� 0

2

2�2kg��g�
g�

��1�
kg

2

�g
g
�ã�

�1����g�
g�, �37�

D̃SS�kg,
g�

��
1

4
�1�

kg
2


g
2�ã�

�1���2
g�

��
g
2�kg

2

4
g
2 �

2kg
2


g
2�kg

2�ã�
�1���2
g�, �38�

here � g
2�kg

2� ��2 /�0
2� and 
 g

2�kg
2� ��2 /� 0

2�.
As shown by Zhang and Weglein �2005�, when the work on the

wo-parameter acoustic case is extended to the three-parameter elas-
ic case, it is not just adding one more parameter — more issues are
nvolved. Even for the linear case, the linear solutions found in equa-
ions 35–38 are much more complicated than those of the acoustic
ase. For instance, four sets of linear parameter estimates are pro-
uced from the four components of the data.Also, generally four dis-
inct reflector mislocations arise from the two reference velocities
P- and S-wave velocities�.

For the P-wave incidence on a 1D single interface case �see
igure 1�, using kg

2 /� g
2� tan2 � and kg

2 / �� g
2�kg

2��sin2 � , where �
s the P-wave incident angle, equation 35 becomes

D̃PP��g,� ���
1

4
�1� tan2 � �ã�

�1���2�g�

�
1

4
�1� tan2 � �ã�

�1���2�g�
�
2� 0

2 sin2 �

�0
2 ã�

�1���2�g� . �39�

quation 39 is used for the numerical test in the next section. It
eems straightforward to use the data at three angles to obtain the lin-
ar inversion of a�, a� , and a�, and this is what we do. However, this
equires a whole new understanding of the definition of the data, a
oint discussed by Weglein �2007�.

DIRECT NONLINEAR INVERSION
OF A 1D ELASTIC MEDIUM

We next look at the second-order terms in the inverse series. Writ-
ng equation 29 in matrix form,

�Ĝ0
P 0

0 Ĝ0
S
��V̂2

PP V̂2
PS

V̂2
SP V̂2

SS
��Ĝ0

P 0

0 Ĝ0
S
����Ĝ0

P 0

0 Ĝ0
S
�

��V̂1
PP V̂1

PS

V̂1
SP V̂1

SS
��Ĝ0

P 0

0 Ĝ0
S
��V̂1

PP V̂1
PS

V̂1
SP V̂1

SS
��Ĝ0

P 0

0 Ĝ0
S
�,

�40�

eads to four equations:

ˆ
0
PV̂2

PPĜ0
P��Ĝ0

PV̂1
PPĜ0

PV̂1
PPĜ0

P� Ĝ0
PV̂1

PSĜ0
SV̂1

SPĜ0
P, �41�

ˆ
0
PV̂2

PSĜ0
S��Ĝ0

PV̂1
PPĜ0

PV̂1
PSĜ0

S� Ĝ0
PV̂1

PSĜ0
SV̂1

SSĜ0
S, �42�

ˆ
0
SV̂2

SPĜ0
P��Ĝ0

SV̂1
SPĜ0

PV̂1
PPĜ0

P� Ĝ0
SV̂1

SSĜ0
SV̂1

SPĜ0
P, �43�

ˆ
0
SV̂2

SSĜ0
S��Ĝ0

SV̂1
SPĜ0

PV̂1
PSĜ0

S� Ĝ0
SV̂1

SSĜ0
SV̂1

SSĜ0
S. �44�

ecause V̂1
PP relates to D̂PP, V̂1

PS relates to D̂PS, and so on, all compo-
ents of the data will be coupled in the nonlinear elastic inversion.
e cannot perform the full direct nonlinear inversion without know-

ng all components of the data.

0 0 0

, 11 1

α ,,

SPIncident P-wave R PPR

PPT
SPT

β ρ

α ,β ρ

θ

igure 1. Response of an incident P-wave on a planar elastic inter-
ace. Parameters �0, � 0, and �0 are the P-wave velocity, S-wave ve-
ocity, and density of the upper layer, respectively; �1, � 1, and �1 de-
ote the P-wave velocity, S-wave velocity, and density of the lower
ayer; and RPP, RSP, TPP, and TSP denote the coefficients of the reflect-
d P-wave, the reflected S-wave, the transmitted P-wave, and the
ransmitted S-wave, respectively �Foster et al., 1997�.
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However, in some situations �e.g., the towed-streamer case�, we
o not have all components of data available. A particular nonlinear
pproach presented in the next section side steps part of this com-
lexity and addresses our typical lack of all components of elastic
ata. In it, we use D̂PP as the fundamental data input, perform a re-
uced form of nonlinear elastic inversion, and concurrently ask,
hat beyond-linear value does this simpler framework add? We will

ee from the numerical tests presented in the following section.

ˆ PP only approach

Assuming only D̂PP are available, we first compute the linear solu-
ion for a�

�1�, a�
�1�, and a�

�1� from equation 35. Then, substituting the so-
ution into equations 36 and 37, we synthesize the other components
f data, D̂PS and D̂SP, required for equation 41. Finally, using the giv-
n D̂PP and the synthesized data, we perform the nonlinear elastic in-
ersion, getting the following second-order �first term beyond lin-
ar� elastic inversion solution from equation 41:

�1� tan2 � �a�
�2��z�� �1� tan2 � �a�

�2��z��8b2 sin2 � a�
�2��z�

��
1

2
�tan4 � �1��a�

�1��z�	2�
tan2 �

cos2 �
a�

�1��z�a�
�1��z�

�
1

2
��1� tan4 � ��

2

C�1
� 1

C
���0

2

� 0
2 �1� tan2 �

cos2 �
�

� �a�
�1��z�	2�4b2�tan2 � �

2

C�1
� 1

2C
���0

2

� 0
2 �1�

� tan4 ��a�
�1��z�a�

�1��z��2b4�tan2 � �
�0

2

� 0
2�

� �2 sin2 � �
2

C�1

1

C
��0

2

� 0
2 �1�tan2 ��

� �a�
�1��z�	2�

1

2
� 1

cos4 �
�a�

�1���z�

�

0

z

dz��a�
�1��z���a�

�1��z��	

�
1

2
�1� tan4 � �a�

�1���z�

0

z

dz��a�
�1��z���a�

�1��z��	

�4b2 tan2 � a�
�1���z�


0

z

dz��a�
�1��z���a�

�1��z��	

�
2

C�1

1

C
��0

2

� 0
2 �1�tan2 � �tan2 � �C�b2


0

z

dz�

� a�z

�1�� �C�1�z��2z

�C�1� �a�
�1��z���

2

C�1

2

C

���0
2

� 0
2 �1�tan2 ��tan2 � �

�0
2

� 0
2�b4


0

z

dz�

�a�z

�1� � �C�1�z��2z

�C�1� �
� a�

�1��z���
2

C�1

1

C
��0

2

� 0
2 �1�tan2 � �tan2 � �C�

� b2

0

z

dz�a�
�1��z��

� a�z

�1�� �C�1�z��2z

�C�1� ��
2

C�1

1

2C

���0
2

� 0
2 �1�tan2 � �tan2 � �1�


0

z

dz�a�
�1��z��

� a�z

�1�� �C�1�z��2z

�C�1� �, �45�

here a�z
�1����C�1�z��2z� / �C�1���d�a�

�1����C�1�z�
2z� / �C�1��	 /dz, b�� 0 /�0, and C�
 g /� g

��1�b2 sin2 � � / �b�1�sin2 � �.
The first five terms on the right side of equation 45 are inversion

erms; they contribute to parameter predictions. The other terms on
he right side of the equation are imaging terms. These arguments are
he same as those for the acoustic case presented by Zhang and We-
lein �2005�. For one interface model, because we choose the upper
ayer as the reference medium, there is no imaging task. The only
ask is inversion. In this case, all of the integration terms on the right
ide of equation 45 are zero and only the first five terms can be non-
ero. Thus, we conclude that the integration terms �which care about
uration� are imaging terms, and the first five terms are inversion
erms.

The inversion and imaging terms �especially the imaging terms�
ecome much more complicated after extending the acoustic case
Zhang and Weglein, 2005� to the elastic case. The integrand of the
rst three integral terms is the first-order approximation of the rela-

ive change in P-wave velocity. The derivatives a�
�1��, a�

�1��, and a�
�1�� in

ront of those integrals are acting to correct the wrong locations
aused by the inaccurate reference P-wave velocity. The other four
erms with integrals are zero as � 0→0 because in this case C→�.

We now test this approach numerically. For a single-interface 1D
lastic medium case as shown in Figure 1, similar to the acoustic
ase, we use the analytic data �Clayton and Stolt, 1981; Weglein et
l., 1986�

D̃PP��g,� ��RPP�� �
e2i�ga

4� i�g
�46�

or the numerical tests. In this expression, a is the depth of the inter-
ace and the specific form of the reflection coefficient RPP is as given
y Foster et al. �1997�. Substituting equation 46 into equation 39,
ourier transforming equation 39 over 2� g, and fixing z � a and � ,
e have
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�1� tan2 � �a�
�1��z�� �1� tan2 � �a�

�1��z��8
� 0

2

�0
2 sin2 �

� a�
�1��z��4RPP�� �H�z�a�, �47�

here H is the Heaviside step function. In this section, we numeri-
ally test the direct inversion approach on four models:

Model 1 — shale �20% porosity� over oil sand �10% porosity�:
�0�2.32 g /cm3, �1�2.46 g /cm3; �0�2627 m /s, �1�4423
m /s; � 0�1245 m /s, � 1�2939 m /s.
Model 2 — shale �20% porosity� over oil sand
�20% porosity�: �0�2.32 g /cm3, �1

�2.27 g /cm3; �0�2627 m /s, �1�3251
m /s; � 0�1245 m /s, � 1�2138 m /s.
Model 3 — shale �20% porosity� over oil sand
�30% porosity�: �0�2.32 g /cm3, �1�2.08
g /cm3; �0�2627 m /s, �1�2330 m /s; � 0

�1245 m /s, � 1�1488 m /s.
Model 4 — oil sand over wet sand, 20% poros-
ity throughout: �0�2.27 g /cm3, �1�2.32
g /cm3; �0�3251 m /s, �1�3507 m /s; � 0

�2138 m /s, � 1�2116 m /s.

To test and compare methods, we modeled the
op of sand reflection for oil sands with porosities
f 10%, 20%, and 30%. Models 1–3 used the
ame shale overburden, and they were designed
o that model 1 had a class IAVO response, model
had a class II AVO response, and model 3 had a

lass III AVO response. An oil-water contact
odel was also constructed for the 20% porosity

and �model 4�.
Among these four models, model 3, the high-

orosity �30%� model, is typical of a weakly con-
olidated, shallow reservoir sand. Pore fluids
ave a large impact on the seismic response. Den-
ity, P-wave velocity, and the � /� ratio of the oil
and are lower than the density, P-wave velocity,
nd � /� ratio of the overlying shale. Conse-
uently, there is a significant decrease in density
nd P-wave bulk modulus and an increase in
hear modulus at the shale-oil-sand interface.

Model 2, the moderate-porosity �20%� model,
epresents deeper, more compacted reservoirs
han model 3. Pore fluids have a large impact on
eismic response, but the fluid effect is less than
hat of the high-porosity case. The overlying
hale has high density compared to the reservoir
and, but the P-wave velocity of the oil sand ex-
eeds that of the shale. Consequently, impedance
ontrast is reduced and S-wave information be-
omes more important for detecting the reservoir.

Model 1, the low-porosity �10%� model, repre-
ents a deep, well-consolidated reservoir sand.
ore fluids have little effect on the seismic re-
ponse of the reservoir sand. It is difficult to dis-
inguish oil sands from brine sands on the basis of
eismic response. Impedance of the sand is higher
han impedance of the shale.
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Model 4 represents an oil-water contact in a sand of 20% porosity.
t a fluid contact, density and P-wave velocity increase across the
oundary between the oil zone and the wet zone. Because pore fluids
ave no affect on shear modulus, there is no change in shear modu-
us.

Using these four models, we can calculate the corresponding RPP

s a function of the incident angle. Then, choosing three angles, � 1,
2, and � 3, we can get the linear solutions for a�

�1�, a�
�1�, and a�

�1� from
quation 47 and the solutions for a�

�2�, a�
�2�, and a�

�2� from equation 45.
The results of these calculations are shown in Figures 2–13. The

eft plot in each figure shows the results for the first order, and the
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igure 5. Model 2: shale �20% porosity� over oil
and �20% porosity�, with parameters noted in the
ext. The exact value of a� is �0.022 �bold black
ine�. The linear approximation a�
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Figure 10. Model 3, same as Figure 8. The exact
value of a� is 0.281 �bold black line�. The linear ap-
proximation a�

�1� �left� and the sum of linear and first
nonlinear approximations a�

�1��a�
�2� �right� corre-

spond to different sets of angles � 1 and � 2 �de-
grees�.
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Figure 11. Model 4: oil sand over wet sand, 20%
porosity throughout, with parameters noted in the
text. The exact value of a� is 0.022 �bold black
line�. The linear approximation a�

�1� �left� and the
sum of linear and first nonlinear approximations
a�

�1��a�
�2� �right� correspond to different sets of an-

gles � 1 and � 2 �degrees�.
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Figure 12. Model 4, same as Figure 11. The exact
value of a� is 0.19 �bold black line�. The linear ap-
proximation a�

�1� �left� and the sum of linear and first
nonlinear approximations a�

�1��a�
�2� �right� corre-

spond to different sets of angles � 1 and � 2 �de-
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Figure 13. Model 4, same as Figure 11. The exact
value of a� is 0.001 �bold black line�. The linear ap-
proximation a�

�1� �left� and the sum of linear and first
nonlinear approximations a�

�1��a�
�2� �right� corre-

spond to different sets of angles � 1 and � 2 �de-
grees�.



r
F
a

p
W
c
fl
a
a
e
f
fi

R
e
r
s
p
w

c
p
e
r
b
c
s
d

U
e

t
3
D

w

T
t
s

n

w

a

b

c

d

F
u

WCD24 Zhang and Weglein

D
ow

nl
oa

de
d 

01
/1

0/
19

 to
 1

29
.7

.1
06

.1
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

ight plot shows the results for the first order plus the second order. In
igures 2–13, we illustrate the results for different sets of angles � 1

nd � 2. The third angle � 3 is fixed at zero.
The numerical results indicate that the second-order solutions

rovide improvements over the linear solutions for all four models.
hen the second term is added, the results approach much more

losely the corresponding exact values, and the surfaces become
atter over a larger range of angles. But the degrees of improvement
re different for each model. How accurately D̂PP synthesizes D̂PS

nd D̂SP determines the degree of benefit provided by the nonlinear
lastic approach. To synthesize the other components of the data
rom the D̂PP component �e.g., D̂SP�, for one interface example we
rst wrote equation 37 to the similar form of equation 47 in terms of
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igure 14. Comparison between synthesized values and actual val-
es of RSP for �a� model 1, �b� model 2, �c� model 3, and �d� model 4.
SP �the reflection coefficient shown in Figure 1�. We then substitut-
d the linear solutions from equation 47 in the equation for RSP to de-
ive RSP. How accurately RSP was synthesized for the four models is
hown in Figure 14. All of the synthesized values in the figure were
redicted using the linear results from equation 47. The actual values
ere calculated from the Zoeppritz equations.
In principle, the 2D elastic nonlinear direct inversion requires all

omponents of data. However, in this section, we introduced an ap-
roach that requires only D̂PP and approximately synthesizes the oth-
r required components. Based on this approach, we derived the di-
ect nonlinear elastic inversion solution. Value is added to the results
y the addition of the nonlinear inversion terms. Although D̂PP alone
an provide useful nonlinear direct inversion results, further value
hould be derived from field measurements of all components of the
ata that the method requires.

sing all components of data — Full direct nonlinear
lastic inversion

Using all components of data, one consistent method to solve for
he second-order terms is to first use the linear solutions of equations
5–38. We get the linear solution for a�

�1�, a�
�1�, and a�

�1� in terms of D̂PP,
ˆ PS, D̂SP, and D̂SS as follows:

�a�
�1�

a�
�1�

a�
�1� 
� �OTO��1OT�

D̂PP

D̂PS

D̂SP

D̂SS

, �48�

here the matrix O is

�
�

1

4
�1�

kg
PP2

�g
PP2� �

1

4
�1�

kg
PP2

�g
PP2� 2� 0

2kg
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�0
2��g

PP2�kg
PP2�

�
1

4
� kg
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�g
PS �

kg
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g
PS� 0 �

� 0
2

2�2kg
PS��g

PS�
g
PS��1�

kg
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�g
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g

PS�
1

4
� kg
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SP �

kg
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g
SP� 0

� 0
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�g
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�
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4
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kg
SS2


g
SS2� 0 �� kg

SS2�
g
SS2

4
g
SS2 �

2kg
SS2

kg
SS2�
g

SS2� 
 .

�49�
he superscripts PP, PS, SP, and SS on the wavenumbers are consis-

ent with those on the data D̂, and OT is the transpose of O. The super-
cript �1 denotes the inverse of the matrix OTO.

If the arguments of a�
�1� and a�

�1� in equations 35–38 are equal, we
eed

�2�g
PP���g

PS�
g
PS���g

SP�
g
SP��2
g

SS,

�50�

hich leads to �Figure 15�

2
�

�0
cos � PP�

�

�0
�1�

�0
2

� 0
2 sin2 � PS�

�

� 0
cos � PS

�
�

�0
cos � SP�

�

� 0
�1�

� 0
2

�0
2 sin2 � SP

�2
�

�
cos � SS. �51�
0
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rom expression 51, given � PP, we can find the corresponding angles
PS, � SP, and � SS, which appear in O:

� PS�cos�1�4b2 cos2 � PP�1�b2

4b cos � PP �, �52�

� SP�cos�1�4b2 cos2 � PP�1�b2

4b2 cos � PP �, �53�

� SS�cos�1�b cos � PP�, �54�

here b�� 0 /�0. Then, we can similarly get the solution for a�
�2�,

�
�2�, and a�

�2� in terms of a�
�1�, a�

�1�, and a�
�1�:

�a�
�2�

a�
�2�

a�
�2� 
� �OTO��1OTQ, �55�

here Q is in terms of a�
�1�, a�

�1�, and a�
�1�. Based on this idea, the form

f the nonlinear solution for equation 41 is the same as equation 45.
n the �ks,zs;kg,zg;�� domain, we get the other three solutions for
quations 42–44. The solution for equation 42 is
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igure 15. Different incident angles for different wave types.



w
Z
t
a

T

r
d
t
e
a
c
d

a
s

WCD26 Zhang and Weglein

D
ow

nl
oa

de
d 

01
/1

0/
19

 to
 1

29
.7

.1
06

.1
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

here details about the other terms with integrals are provided by
hang �2006�. Similarly, for the right side of the following two equa-

ions, we also show only the inversion terms; the terms with integrals
re not given in detail.

The solution for equation 43 is
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he solution for equation 44 is
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After we solve all four of the second-order equations, our future
esearch will be to perform numerical tests with all components of
ata available. In principle, D̂PS and D̂SP differ only by a minus sign;
herefore, they do not provide independent equations. However, giv-
n the practical difficulties associated with noise and with acquiring
nd processing converted wave data, it is almost certain that practi-
al benefits will accrue from using data that would otherwise be re-
undant.

DISCUSSION

The standardAVO methods used today are all indirect, seeking an
ligned objective cost function, or proxy, in place of a direct inverse
olution. Although such methods are sometimes useful, there are
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mbiguities and conceptual and practical pitfalls associated with vi-
lating the fundamental physics provided by direct nonlinear inver-
ion. The use of indirect methods ought to indicate that direct meth-
ds are unavailable. When direct methods are available, they are the
referred choice in all fields of problem solving; they provide the
learest solutions and give us confidence in the algorithms we use
nd the input data required.

The inverse scattering series provides the ability to directly image
nd directly nonlinearly invert across a dipping and specular or dif-
ractive boundary, all without subsurface information. Further tests
nd analysis of the concepts presented here are being pursued and
ill be the subject of future publications.
The 1D elastic formulation tested here is only a small part of the

apability of the concepts presented. The assumptions and limita-
ions of the specific algorithm tested in this paper are that �1� the
arth has variation only in depth, �2� multiples have been removed,
3� the medium above the single horizontal reflector is known, and
4� reflection data with accurate reflection coefficients are available
s input to the inversion. Although this is a strict list of assumptions,
he tests nevertheless represent the first direct inversion of the for-
ard Zoeppritz equations. Our algorithm requires further testing in a
etroleum development environment, where surface seismic data
re tied to well measurements and where the procedure can be con-
ucted using reflection data away from the well.

Our direct AVO inversion method, in this series of initial tests,
hares with other AVO applications many of the typical assump-
ions, such as knowledge of the overburden, lack of multiples, true-
mplitude reflection data, and a horizontal reflector. Those assump-
ions and limitations will be relaxed and removed in future work.

CONCLUSIONS

We have developed a framework and an algorithm that can be
sed for identifying exploration targets more accurately. Elastic
onlinear direct inversion requires all components of seismic data.
n this paper, we have analyzed an algorithm that inputs only PPdata.
lthough PP data alone can provide useful nonlinear direct inver-

ion results when we use the PP data to synthesize PS, SP, and SS
omponents, further value should be derived from measuring all
omponents of data in the field.

If all components are available, our method consistently solves
or all second-order terms. Further tests using all components of the
ata �in a 2D world� are under way, which we will compare to our re-
ults with real PP data and synthesized PS, SP, and SS data compo-
ents.
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