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Direct nonlinear inversion of multiparameter 1D elastic
media using the inverse scattering series

Haiyan Zhang' and Arthur B. Weglein?

ABSTRACT

In the direct nonlinear inversion method and in algorithms for
1D elastic media, P-wave velocity, S-wave velocity, and density
are depth dependent. “Direct nonlinear” means that the method
uses explicit formulas that (1) input data and directly output
changes in material properties without the need for indirect pro-
cedures such as model matching, searching, optimization, or oth-
er assumed aligned objectives or proxies and that (2) the algo-
rithms recognize and directly invert the intrinsic nonlinear rela-
tionship between changes in material properties and the recorded
reflection wavefields. To achieve full elastic inversion, all com-
ponents of data (such as PP, SP, and SS data) are needed. The
method assumes that only data and reference medium properties

are input, and terms in the inverse series for moving mislocated
reflectors resulting from the linear inverse term are separated
from amplitude correction terms. Although in principle this di-
rect inversion approach requires all components of elastic data,
synthetic tests indicate that a consistent value-added result may
be achieved given only PP data measurements, as long as the PP
data are used to approximately synthesize the PS and SP compo-
nents. Further value would be derived from measuring all com-
ponents of the data as the method requires. If all components of
data are available, one consistent method can solve for all of the
second terms (the first terms beyond linear). The explicit nonlin-
ear inversion formulas provide an unambiguous data require-
ment message as well as conceptual and practical added value be-
yond both linear approaches and all indirect methods.

INTRODUCTION

The objective of seismic data processing is to use measured re-
flection data to determine the spatial locations or images of reflectors
and the changes in mechanical properties across the imaged reflec-
tors. There are many methods for achieving those two interrelated
goals, and all of them can be effective when their assumptions are
satisfied.

The standard methods used today in exploration seismology as-
sume knowledge of properties of the subsurface medium above the
reflector of interest. They also assume that a forward relationship re-
lates the angle-dependent PP reflection data to changes in properties
across the reflector. That relationship can be solved by linear forward
approximation (PP Bortfeld approximation) or by model matching,
full waveform inversion, iterative linear updating, or global search-
ing using the nonlinear forward PP Zoeppritz relationship (Sheriff
and Geldart, 1994). Because P-waves nonnormally incident on an
elastic interface can produce S-waves, and vice versa (converted
waves; Aki and Richards, 2002), the elastic data generally contain
four components: PP, PS, SP, and SS.

In this paper, we provide a new understanding and firmer founda-
tion for addressing the problem of finding the changes in physical
properties across a reflector as well as understanding the fundamen-
tal new algorithms that emerge from that framework. We begin by
defining the difference between direct and indirect algorithms. The
current methods (listed in the previous paragraph) for estimating
properties of target reflectors are indirect. Indirect inversion meth-
ods seek an aligned objective, cost function, or proxy in place of a di-
rect inverse solution. Indirect inverse methods start with a forward
problem and, one way or another, seek to solve the forward problem
in an inverse sense for changes in mechanical properties in terms of
input reflection data. Hence, the foundation of all current target iden-
tification methods is the forward or modeling problem, and the con-
comitant indirect inversion methods are based on model matching.

In contrast, the foundation of the method described here is a direct
inverse solution. That distinction and its implications, meaning, and
consequences are the central point here. The direct inverse target
identification method recognizes the innate nonlinear relationship
between the change in any (and every) mechanical property that
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changes at a reflector and the reflection data that emanate from that
reflector. It provides direct explicit relationships for the linear and
nonlinear approximation for those property changes in terms of mea-
sured reflection data. That process provides the data and algorithms
required for a direct nonlinear solution.

The equation for the linear estimate is the exact equation for the
linear estimate. The equation for the quadratic estimate is the exact
equation for the quadratic estimate, and so on for each higher term.
There is no search, no cost function, no model matching, but an order
by order in the data direct solution, where each step is exact for its in-
dicated order of approximation. The unambiguous message deliv-
ered by those exact linear and higher-order equations is that all com-
ponents of PP, SP, SS, and PS data are directly called upon and need-
ed in the direct inverse amplitude variation with offset (AVO) solu-
tion.

Communicating this conceptual and fundamental message con-
cerning direct and indirect methods and their distinction and signifi-
cant consequences is a major goal of this paper. A secondary goal is
to provide an approach to navigate the need for multicomponent data
when one has only towed-streamer PP measurements and the other
components are synthesized from the PP data. That synthesis falls
short of real measurements but is better than placing zeros where the
multicomponent data are called for.

This need for multicomponent data for the direct elimination of
free-surface and internal multiples in ocean-bottom and onshore ap-
plications was recognized in early work (Matson, 1997). These ap-
plications required a homogeneous elastic reference medium that
agreed with ocean-bottom or near-surface onshore properties. The
specific AVO problem that we address here has a known elastic half-
space (as the reference medium) over an unknown elastic half-space,
the simplest realistic model for amplitude analysis. We provide the
direct inverse solution to that simplest realistic 1D AVO model.
Hence, although it might seem to be a simple model, it has in fact had
a direct solution, and this direct inversion procedure differs from all
current AVO methods.

Our method derives from the only direct inverse method for multi-
dimensional acoustic, elastic, and anelastic media — the inverse
scattering series. The inverse scattering series is direct and it allows
all processing goals to be achieved directly in terms of only the data.

The question we ask is whether the inverse scattering series, with
all its potential and already-delivered dividend for removing free-
surface and internal multiples, can be pointed at the simplest AVO
problem that has no previous direct solution. Toward that end and fo-
cused goal, we assume that all multiples have been removed, the
overburden is known, and the depth of the single horizontal reflector
is given. Then we can ask for a direct inverse solution for the changes
in elastic properties across that one reflector. To get to that algorithm,
we formulate the direct elastic inverse scattering series in a 1D earth
and then isolate the direct AVO task by identifying and ignoring
tasks that are assumed to have been achieved, i.e., free-surface and
internal multiple removal and depth imaging of the location of the
reflector.

Hence, the formidable and new mathematics that deal with every-
thing that an elastic direct inversion method requires are developed
before identifying the part of the elastic inverse series that deals only
with direct AVO analysis. It is daunting to separate and isolate the
AVO-only terms from the tangle of other terms. However, there ap-
pears to be no other way to reach the direct nonlinear AVO-isolated
terms without starting with the overarching complete direct elastic
inverse scattering series.

THE INVERSE SCATTERING SERIES AND
ISOLATED TASK SUBSERIES

What makes the inverse scattering series powerful is the task-iso-
lated subseries, which is a subset of the entire series that acts as
though only one task is performed for that subset (Weglein et al.,
2003). All of these subseries act in a certain processing sequence So
that the total seismic data can be processed accordingly: (1) free-sur-
face multiple removal, (2) internal multiple removal, (3) depth imag-
ing without velocity, and (4) inversion or target identification. Be-
cause the entire process requires only reflection data and reference
medium information, it is reasonable to assume that these intermedi-
ate steps (i.e., all of the derived subseries associated with achieving
that objective) would be attainable with only the reference medium
and reflection data — no subsurface medium information is re-
quired.

The free-surface multiple removal and internal multiple attenua-
tion subseries are presented by Carvalho (1992), Aradjo (1994), We-
glein et al. (1997), and Matson (1997). Those two multiple proce-
dures are independent of model type, i.e., they work for acoustic,
elastic, and anelastic media. Studies on taking internal multiples
from attenuation to elimination are under way (Ramirez and We-
glein, 2005). The task-specific subseries associated with primary re-
flections (i.e., for imaging and inversion) also have been progressed.
One subseries is imaging without velocity for one parameter in 1D
and then 2D acoustic media (Weglein et al., 2002; Liu and Weglein,
2003; Shaw and Weglein, 2003, 2004; Shaw et al., 2003a, 2003b,
2004; Liu et al., 2004; Liu et al., 2005). A second subseries is direct
nonlinear inversion for multiparameter 1D acoustic and then elastic
media (Zhang and Weglein, 2005). Recent work (Innanen and We-
glein, 2004, 2005) suggests that some well-known seismic process-
ing tasks associated with resolution enhancement (i.e., Q-com-
pensation) can be accomplished within the task-separated inverse
scattering series framework. In this paper, we focus on direct nonlin-
ear inversion.

Specifically, the stages within the strategy for primary reflections
are as follows:

1) 1D earth with one parameter, velocity as a function of depth, a
normal incidence wave

2) 1D earth with one parameter varying (velocity as a function of
depth) offset data, one shot record

3) 2D earth with one parameter varying (velocity varying in x and
z), a suite of shot records

4) 1D acoustic earth with two parameters varying (velocity and
density), one propagation velocity, one shot record of PP data

5) 1D elastic earth, two elastic isotropic parameters and density
varying, two wavespeeds for P- and S-waves, shot records col-
lected for PP, PS, SP, and SS waves

Here, we add another step of direct nonlinear inversion and isolate
tasks specifically associated with primary reflectors to the 1D elastic
earth case (stage 5). Our model is elastic; a study with an acoustic
model is presented by Zhang and Weglein (2005). We take these
steps and learn to navigate through this complexity, steering it to-
ward useful and powerful algorithms.

However, more realism adds more complexity with more inverse
issues to be addressed. Following the task-separation strategy, we
ask ourselves, what kind of tasks should we expect in this more com-
plex, elastic setting? For the acoustic case, for example, the acoustic
medium supports only P-waves, so only one reference velocity (P-
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wave velocity) is involved. Therefore, when only one velocity is in-
correct (i.e., poorly estimated), there is only one mislocation for each
parameter and the imaging terms need to correct only this one mislo-
cation. When we extend our previous work on the two-parameter
acoustic case to the three-parameter elastic case, there will be four
mislocations because there are two reference velocities (P- and
S-wave velocities). Our reasoning is that the elastic medium sup-
ports P- and S-wave propagation, so both P- and S-wave velocities
are involved. When these velocities are incorrect, there are generally
four mislocations, one for each of the four possible combinations of
the two wrong velocities.

In this paper, we present a nonlinear inversion term for a three-pa-
rameter 1D elastic medium. We demonstrate that under the inverse
scattering series inversion framework, all components of the data are
needed to perform full elastic inversion. Where we do not have all
component data (i.e., only PP data are available), we obtain encour-
aging inversion results by constructing other components of data
from the PP data. This means we could perform elastic inversion by
using only pressure measurements (i.e., towed-streamer data).
Where all components of data are available, we provide a consistent
method to solve for second-order terms.

BACKGROUND FOR 2D ELASTIC INVERSION

In this section, we consider the inversion problem in two dimen-
sions for an elastic medium. We start with the displacement space;
then, for convenience (see, e.g., Aki and Richards, 2002), we change
the basis and transform the equations to PS space. Here, the way to
denote displacement space and PS space depends mainly on the ba-
sis function chosen in each space. In displacement space, we chose
the displacement field u as the basis function. In PS space, we chose
® as the basis function. The differential operator that describes the
wave propagation in the reference medium (L, defined below)
would be diagonal in PS space, and P- and S-wave-related operators
would be separated in each of the two nonzero elements. Finally, we
demonstrate the elastic inversion in the PS domain.

Displacement space

We begin with some basic equations in the displacement space
(Matson, 1997):

Lu=f, (1)
Lou = f, ()
LG =4, 3)
LyGy =6, “4)

where L and L, are the differential operators that describe the wave
propagation in the actual and reference medium, respectively; u and
f are the corresponding displacement and source terms; and G and
G, are the corresponding Green’s operators for the actual and refer-
ence medium. In the following, the quantities with a zero subscript
relate to the reference medium; those without a subscript relate to the
actual medium.

Closely following Weglein et al. (1997), Weglein et al. (2002),
and Weglein et al. (2003), defining the perturbation V = L, — L, we
find the Lippmann-Schwinger equation for the elastic media in the
displacement space:

Iterating this equation back into itself generates the Born series:
G= GO + G()VGO + G()VG()VGO + e (6)

We define the data D as the measured values of the scattered wave-
field G — G,. Then, on the measurement surface, we have

D= G()VGO + G()VG()VGO + oo (7)
Expanding V as a series in orders of D, we have

Here, the subscriptiin V; (i = 1,2,3,...) denotes the ith-order por-
tion of Vin the data. Substituting equation 8 into equation 7, evaluat-
ing equation 7, and setting terms of equal order in the data equal, the
following equations that determine Vy,V,,... from D and G, are ob-
tained:

D = G,V,G,, )

0= GOV2G0 + G()V]G()VIGQ,. N (10)

In the actual medium, the 2D elastic wave equation is (A. B. Weglein
and R. H. Stolt, personal communication, 1992)

1 0
Lu= 2( )
" [pw 01

N < 91yd; + dud; 31(7_2M)32+32M31>}[u1]
0oy — 2)9) + 91 0, 99y + 9y oy up
=f, (11)

where u = [ Z;] = displacement; p is density; y is P-wave modulus
=pa?, where @ =P-wave velocity; u = shear modulus =ppB?,
where B = S-wave velocity; o = temporal frequency (angular); 9,
and d, denote the derivative over x and z, respectively; and f is the
source term.

For constant (p,y,u) = (po, Yo-t0)s (@, 8) = (,B0), the opera-
tor L becomes

-~ (10 Yoot + mody  (vo— 1o)d10
Lo=| pow 2 2
01 (Yo = M0)3102  pod] + Y03
(12)
Then,
Vel,—L

[ apw2 + agﬁlayal + ﬁﬁazaﬂaz 81(01(2)(17 - ZBﬁaH)E)Z + B(z)aza#[)l :|
Tk az(a(zja,/ — 2ﬂ(2)aﬂ)61 + Bg&laﬂaz apou2 + af)azayaz + BgalaHGI

(13)
where a,=(p/py) — 1, a,=(y/yo) — 1, and a,= (/o) — 1 are
the three parameters we choose for the elastic inversion. Similar to
equation 8, a,, a,, and a,, can be expanded as

a,= a;') + aff) +a£)3) 4 e, (14)
ayzafyl)_l_ag/z)_l_ag?)_i_ e (15)
aﬂzaij)—kaf)-l-af)-k'“, (16)
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where the superscripts (1), (2), and (3) denote the linear, first nonlin-
ear or second term, and the third term, respectively.

For a 1D earth (i.e., where a,, a,, and a, are functions only of
depth z), equation 13 becomes

20 p2a . 2 2 \a s 2. .

) apwz + aga,d + Bora,d, (aga, — 2B5a,)d19> + Bdra,d,
0 2 2 2 2 2 2
dy(aga, —2B4a,)d; + Bya,dd, a,,a)2 + agdra,dy + Bpa,d

(17)

V= -

Transforming to PS space

P.
For convenience, we can change the basis fromu = [ if;] to ( ﬁs) to
allow L, to be diagonal:

d)P) l?’o(ﬁlul + 32”2)1
P = = . 18
<¢S o911y — dpuy) (18)

This can be written as

P
(¢ ):FOHu, (19)

where

dJ d 0
H=< ' 2) andF0=(yo )
—dy 9 0w

In the reference medium, the operator L, will be diagonal in the new
basis via a transformation

r
- —1p—-1_ 0
Lo=ILyI'T'y' = , (20)

0 r§

. a - .
where L, is L, transformed to PS space, [~ = g : r.,]z V-2is the

A A o
inverse matrix of I, L§ = w?/ a} + V2, L5 = 0?/ B3 + V2, and

FP
F:Hf=<FS>. 21)

Then, in the PS domain, equation 2 becomes
I:P 0 ¢P FP
0
0 [5)\¢ F

Because Go=L, ', let GF = (LF)~" and G = (L$)~". Then the dis-
placement G, in the PS domain becomes

. Gy 0
G0:F0HG0H71 = 0 . . (23)

0 S

GO

So, in the reference medium, after transforming from the displace-
ment domain to the PS domain, L, and G, become diagonal and there

are only direct P- and S-waves, which are separated in this case.
Multiplying equation 5 from the left by the operator I"II and
from the right by the operator I1 ', and using equation 23,

TIIGIT ™" = Gy + Gy(IIVII ™'y Y[ JIGIT ™!
= éo + éo‘/}é, (24)

where the displacement Green’s operator G is transformed to the PS
domain as

R éPP éPS
G=ryicn'={ __ (25)
GSP GSS
The perturbation V in the PS domain becomes
) VPP s
v=nvio-'ry'={( . | (26)
PSP ss

where the left superscripts of the matrix elements represent the type
of measurement and the right ones are the source type.

Similarly, applying the PS transformation to the entire inverse se-
ries gives

‘/}:‘/}1+‘>2+‘73+"'. (27)
It follows from equations 24 and 27 that

= é()‘/}l éo, (28)

(WS

éo‘}zéo = - éo‘/}]éo‘}]éo,..., (29)

R BPP [)PS
D=\ | .
DSP PSS

are the data in the PS domain.

where

LINEAR INVERSION OF A 1D ELASTIC MEDIUM

We now look at the linear terms in the inverse series. Writing
equation 28 in matrix form,
(DPP DPS) Gh oo\ [ v‘fs) G oo

>

b pss) \o o a3/\iw v/ \o 6
(30)
leads to four equations:
D = GV Gy, (31)
D" = GEVSGS, (32)
D = GSVSPGY, (33)



Downloaded 01/10/19 to 129.7.106.11. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

Direct nonlinear elastic inversion wCD19

S — GIVISGS, (34)

For z, =z, =0, Fourier transforming equations 31-34 from the
(%,,253X,23w) domain to the (k,,z,:k,.2,;0) domain, we get the fol-
lowing four equations relating the linear components of the three
elastic parameters and the four data types (Zhang, 2006):

D™ (k0 — ky0;0)

1 K 1 K>
— 2|1 28 ) A _ Zg
= 4(1 Vz)ap ( 2Vg) 4(1 + V;)

xaD(— 2v)+—g'80—~“)(—2v) (35)

7 (vi + k) ag
DPS(Vg977g)
1k, & B3
— |28 Zg A _ _ —k +
4<Vg 7 a, (—vy—my) — e (Ve 7,)
2
x(l - —L)d;)( 7,) (36)
VeTlg
DS*(v,,7m,)
1k, k Bi
== 4 22 )z0_, _ +
4(Vg ng)‘lp( Ve = Mg + 2w’ ko(ve + 7m,)
k2
><<1 - —L)aﬁp(—ug —7,), (37)
Vel
Bss(kg’ﬂg)

1<1 Eﬁ.)%l)( 27.)
= — — — a p— 7’
4 772 P 4
2 2 2
B ng-i-kg_ Zkg
477§ 77§+k§

}aﬁk—zny, (38)

where v} + k; = (0?/ ag) and 7, + k; = (w?/ By).

As shown by Zhang and Weglein (2005), when the work on the
two-parameter acoustic case is extended to the three-parameter elas-
tic case, it is not just adding one more parameter — more issues are
involved. Even for the linear case, the linear solutions found in equa-
tions 35-38 are much more complicated than those of the acoustic
case. For instance, four sets of linear parameter estimates are pro-
duced from the four components of the data. Also, generally four dis-
tinct reflector mislocations arise from the two reference velocities
(P- and S-wave velocities).

For the P-wave incidence on a 1D single interface case (see
Figure 1), using k;/ v} = tan? 6 and k;/ (v + k;) = sin® 6, where 0
is the P-wave incident angle, equation 35 becomes

~ 1
D (v,0) = =7 (1 — tan’ 0)a\(—2v,)

1
-+’ 0)@)(=2v,)

2B2%sin® 6
+ T —a (< 2v,). (39)

o
Equation 39 is used for the numerical test in the next section. It
seems straightforward to use the data at three angles to obtain the lin-
ear inversion of a,, a,,, and a,,, and this is what we do. However, this
requires a whole new understanding of the definition of the data, a
point discussed by Weglein (2007).

DIRECT NONLINEAR INVERSION
OF A 1D ELASTIC MEDIUM

We next look at the second-order terms in the inverse series. Writ-
ing equation 29 in matrix form,

oo\ g\ (ér o o
o e/l ve/lo a)” No

o o (ep o \(or i) (e o
VAU TAV VAT

b}

(40)
leads to four equations:
GRVEPGE = — GRVRPGEVRGE — GRMSGSTSTGE, (a1)
GoVy* Gy = —GiVI'GiViSGy — GoViPGovi Gy, (42)
GSVSTGE = — GRVPGRVIRGE — GSVSSGSVTGr, (43)
GIVSSGS = — GRVPGRVISGS — GSVRSGSVsses.  (aa)

Because V¥ relates to DFP, VFS relates to DS, and so on, all compo-
nents of the data will be coupled in the nonlinear elastic inversion.
‘We cannot perform the full direct nonlinear inversion without know-
ing all components of the data.

Incident P-wave RSP RPP

ao: ﬁO'pO
Ay, ﬁ1'p1

TPP

Figure 1. Response of an incident P-wave on a planar elastic inter-
face. Parameters «, 3, and p, are the P-wave velocity, S-wave ve-
locity, and density of the upper layer, respectively; a, 8, and p, de-
note the P-wave velocity, S-wave velocity, and density of the lower
layer; and R*?, RSP, T*?, and 75" denote the coefficients of the reflect-
ed P-wave, the reflected S-wave, the transmitted P-wave, and the
transmitted S-wave, respectively (Foster et al., 1997).
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However, in some situations (e.g., the towed-streamer case), we
do not have all components of data available. A particular nonlinear
approach presented in the next section side steps part of this com-
plexity and addresses our typical lack of all components of elastic
data. In it, we use D™ as the fundamental data input, perform a re-
duced form of nonlinear elastic inversion, and concurrently ask,
What beyond-linear value does this simpler framework add? We will
see from the numerical tests presented in the following section.

D only approach

Assuming only DFP are available, we first compute the linear solu-
tion fora!", a, and '}’ from equation 35. Then, substituting the so-
lution into equations 36 and 37, we synthesize the other components
of data, DS and D", required for equation 41. Finally, using the giv-
en D and the synthesized data, we perform the nonlinear elastic in-
version, getting the following second-order (first term beyond lin-
ear) elastic inversion solution from equation 41:

(1 — tan® 9)0(2>(Z) + (1 + tan’ B)a(z)(z) — 8b% sin? ‘961(2)(Z)

e (y”(z)a(1 (z)

1 2 (1\[a? tan® 0
+=| (1= tan* 0) - —( )(ao 1) —
2 Cc+1 ,80 cos” 0
(1) 2 432 29
X [a,’(2)] 4b[tan6 C+1< )( )
o2
X tan* 6 a;])(z)aful)(z) + 2b4<tan2 0 — 3_(2))
0
2 1o}
{2sm 49———(ﬂ l)tanzﬁ}
c+i1c\p?
1 1
_ = (D)
2(00549)a7 @
z

X fdz'[agl)(z’) — aﬁ,l)(z')]

0

- ——(tan 0 — Da) )P +

x[a(2)]

z
1 4 oy (1) () W)
- 5(1 —tan” 0)a,’'(2) | d7'[a,’(z") — a,’(z")]
0

+ 4p? tan® GaLI)'(z)jdz'[a(y')(z’) - aﬁ,l)(z’)]

z
2 1({a?
+——<a——1>tan f(tan® 6 — C)bzf

Bo |

m((c 1)Z'+2z) gy 22
Dy (C+1) c+l1cC

2 2
X (a_(z, — 1)tan2 H(tan2 0 — a—g)b“fdz’
Bo B |

C—1)z' +2
Xag)(”#)

(C+1)
2 1{af
X a(l)(Z ) + ——<ﬂ 1>tan2 f(tan> 6 + C)
c+1c\B2
xbzfdz’ax)(z')
0
. (C+1) c+12C

Z

2
@
X (/3_(2) - 1)tan 6(tan® 6 + l)fdz’ay)(z')

0
(C— 1z + 2z>
N\ e e
”z( (C+1) ’ “3)
where a)(((C =1z’ +22)/(C+ 1) =d[a’(((C = 1)z’
+22)/(C+ 1))]/dz, b= B/ ay, and C=n,v,

= (V1 — b%sin? 0)/(b\1 — sin? 0).

The first five terms on the right side of equation 45 are inversion
terms; they contribute to parameter predictions. The other terms on
the right side of the equation are imaging terms. These arguments are
the same as those for the acoustic case presented by Zhang and We-
glein (2005). For one interface model, because we choose the upper
layer as the reference medium, there is no imaging task. The only
task is inversion. In this case, all of the integration terms on the right
side of equation 45 are zero and only the first five terms can be non-
zero. Thus, we conclude that the integration terms (which care about
duration) are imaging terms, and the first five terms are inversion
terms.

The inversion and imaging terms (especially the imaging terms)
become much more complicated after extending the acoustic case
(Zhang and Weglein, 2005) to the elastic case. The integrand of the
first three integral terms is the first-order approximation of the rela-
tive change in P-wave velocity. The derivatives a( 2 ( ,and a( V' in
front of those integrals are acting to correct the wrong locatlons
caused by the inaccurate reference P-wave velocity. The other four
terms with integrals are zero as 8, — 0 because in this case C— .

We now test this approach numerically. For a single-interface 1D
elastic medium case as shown in Figure 1, similar to the acoustic
case, we use the analytic data (Clayton and Stolt, 1981; Weglein et
al., 1986)

2iv,a

~ e
D™ (v,,0) = R™(6) (46)
dmiv,
for the numerical tests. In this expression, a is the depth of the inter-
face and the specific form of the reflection coefficient R* is as given
by Foster et al. (1997). Substituting equation 46 into equation 39,
Fourier transforming equation 39 over 2v,, and fixing z > a and 0,
we have
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(1 — tan® 6’)a;31)(z) + (1 + tan® H)a(yl)(Z) -

X a,)(z) = 4R™(0)H(z — a),

where H is the Heaviside step function. In this section, we numeri-
cally test the direct inversion approach on four models:

e Model 1 — shale (20% porosity) over oil sand (10% porosity):
po=2.32 g/cm?, p; =2.46 g/cm’; ap = 2627 m/s, a; = 4423

m/s; Bo= 1245 m/s, B, = 2939 m/s.

*  Model 2 — shale (20% porosity) over oil sand
(20%  porosity):  po=2.32 g/cm?, p,
=227 g/em’; ay=2627 m/s, a; = 3251
m/s; Bo= 1245 m/s, B, = 2138 m/s.

e Model 3 — shale (20% porosity) over oil sand
(30% porosity): po=2.32 g/cm?, p,; = 2.08
g/cm?; @y = 2627 m/s, a; = 2330 m/s; B,
= 1245 m/s, B, = 1488 m/s.

* Model4— oil sand over wet sand, 20% poros-
ity throughout: p,=2.27 g/cm?, p, =2.32
g/em?; @y = 3251 m/s, a, = 3507 m/s; B
=2138 m/s, 8, =2116 m/s.

To test and compare methods, we modeled the
top of sand reflection for oil sands with porosities
of 10%, 20%, and 30%. Models 1-3 used the
same shale overburden, and they were designed
so that model 1 had a class [AVO response, model
2 had a class I AVO response, and model 3 had a
class III AVO response. An oil-water contact
model was also constructed for the 20% porosity
sand (model 4).

Among these four models, model 3, the high-
porosity (30%) model, is typical of a weakly con-
solidated, shallow reservoir sand. Pore fluids
have a large impact on the seismic response. Den-
sity, P-wave velocity, and the «/ § ratio of the oil
sand are lower than the density, P-wave velocity,
and a/ B ratio of the overlying shale. Conse-
quently, there is a significant decrease in density
and P-wave bulk modulus and an increase in
shear modulus at the shale-oil-sand interface.

Model 2, the moderate-porosity (20%) model,
represents deeper, more compacted reservoirs
than model 3. Pore fluids have a large impact on
seismic response, but the fluid effect is less than
that of the high-porosity case. The overlying
shale has high density compared to the reservoir
sand, but the P-wave velocity of the oil sand ex-
ceeds that of the shale. Consequently, impedance
contrast is reduced and S-wave information be-
comes more important for detecting the reservoir.

Model 1, the low-porosity (10%) model, repre-
sents a deep, well-consolidated reservoir sand.
Pore fluids have little effect on the seismic re-
sponse of the reservoir sand. It is difficult to dis-
tinguish oil sands from brine sands on the basis of
seismic response. Impedance of the sand is higher
than impedance of the shale.

Direct nonlinear elastic inversion wcCD21
5(2) Model 4 represents an oil-water contact in a sand of 20% porosity.
8— sin” @ At a fluid contact, density and P-wave velocity increase across the
%o boundary between the oil zone and the wet zone. Because pore fluids
(47) have no affect on shear modulus, there is no change in shear modu-

lus.

Using these four models, we can calculate the corresponding R™?
as a function of the incident angle. Then, choosing three angles, 6,
6,, and €3, we can get the linear solutions for ag”, a(y”, and aﬂ) from

equation 47 and the solutions for a7, ', and 4}’ from equation 45.

The results of these calculations are shown in Figures 2—13. The
left plot in each figure shows the results for the first order, and the

Figure 2. Model 1: shale (20% porosity) over oil sand (10% porosity), with parameters
noted in the text. The exact value of a, is 0.06 (bold black line). The linear approximation
a!! (left) and the sum of linear and first nonlinear approximations a' + a (right) corre-
spond to different sets of angles 6, and 0, (degrees).
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SN Tl

—— - =
OO0 (o N00O

1O~

Figure 3. Model 1, same as Figure 2. The exact value of a, is 2.01 (bold black line). The
linear approximation a(y” (left) and the sum of linear and first nonlinear approximations
a'}) + a7 (right) correspond to different sets of angles 6, and 6, (degrees).

N
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RN

(1)
a,
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Figure 4. Model 1, same as Figure 2. The exact value of a,, is 4.91 (bold black line). The

linear approximation aﬁj) (left) and the sum of linear and first nonlinear approximations

aﬂ) + af) (right) correspond to different sets of angles 8, and 6, (degrees).
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Figure 5. Model 2: shale (20% porosity) over oil
sand (20% porosity), with parameters noted in the
text. The exact value of a, is — 0.022 (bold black
line). The linear approximation ! (left) and the
sum of linear and first nonlinear approximations
al) + a?) (right) correspond to different sets of an-
gfes 6, and 60, (degrees).

Figure 6. Model 2, same as Figure 5. The exact val-
ue of a, is 0.498 (bold black line). The linear ap-
proximation a(.,') (left) and the sum of linear and first
nonlinear approximations a\’ + a' (right) corre-
spond to different sets of angles 6, and 6, (de-
grees).

Figure 7. Model 2, same as Figure 5. The exact val-
ue of a,, is 1.89 (bold black line). The linear approx-
imation a;') (left) and the sum of linear and first
nonlinear approximations a\}’ + a7 (right) corre-
spond to different sets of angles 6, and 6, (de-
grees).

Figure 8. Model 3: shale (20% porosity) over oil
sand (30% porosity), with parameters noted in the
text. The exact value of a, is —0.103 (bold black
line). The linear approximation a!!’ (left) and the
sum of linear and first nonlinear approximations
a!' + a7 (right) correspond to different sets of an-

gfes 0, and 60, (degrees).

Figure 9. Model 3, same as Figure 8. The exact val-
ue of a, is —0.295 (bold black line). The linear ap-
proximation a(y') (left) and the sum of linear and first
nonlinear approximations a'’ + a' (right) corre-
spond to different sets of angles #; and 6, (de-
grees).
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Figure 10. Model 3, same as Figure 8. The exact

g-g‘; : 8.23 value of a,,is 0.281 (bold black line). The linear ap-
0.50 0.50 proximation a;” (Ieft) and the sum of linear and first
9% 9% nonlinear approximations a'}’ + a7 (right) corre-
944 ‘o 044 spond to different sets of angles 6, and 6, (de-
0.40 040 grees).

i v

034 034

i il

i i

Figure 11. Model 4: oil sand over wet sand, 20%
porosity throughout, with parameters noted in the
text. The exact value of a, is 0.022 (bold black
line). The linear approximation a!’ (left) and the
sum of linear and first nonlinear approximations

al) + a?) (right) correspond to different sets of an-

gfes 0, and 60, (degrees).

Figure 12. Model 4, same as Figure 11. The exact
value of a, is 0.19 (bold black line). The linear ap-
proximation a(y') (left) and the sum of linear and first
nonlinear approximations a'’ + a7 (right) corre-
spond to different sets of angles #; and 6, (de-
grees).

Figure 13. Model 4, same as Figure 11. The exact
value of a,,is 0.001 (bold black line). The linear ap-
proximation a!’ (left) and the sum of linear and first
nonlinear approximations a\}’ + a7 (right) corre-
spond to different sets of angles 6, and 6, (de-
grees).
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right plot shows the results for the first order plus the second order. In
Figures 2—13, we illustrate the results for different sets of angles 6,
and 6,. The third angle 65 is fixed at zero.

The numerical results indicate that the second-order solutions
provide improvements over the linear solutions for all four models.
When the second term is added, the results approach much more
closely the corresponding exact values, and the surfaces become
flatter over a larger range of angles. But the degrees of improvement
are different for each model. How accurately D™ synthesizes DS
and DS determines the degree of benefit provided by the nonlinear
elastic approach. To synthesize the other components of the data
from the D™ component (e.g., D), for one interface example we
first wrote equation 37 to the similar form of equation 47 in terms of

a) 0.05
0
~0.05
W 01}
& -015+
—-0.2 S . . . 1
~0.25} i
-0.3 . . . 1
035} S —

_04 I I I I I I

— RSPactual
- - - R%"synthesized||

b

) 8'05 ‘ —— RSPactual
-0.05

5 -0.1

& —0.15
02 b T e i
-0.25} B
_0.3 L B N N
-0.35} b

—0.4 . | : : . | . . .
0 5 10 15 20 25 30 35 40 45 50

- - - R%"synthesized

Zhang and Weglein

RSP (the reflection coefficient shown in Figure 1). We then substitut-
ed the linear solutions from equation 47 in the equation for RS to de-
rive RSP, How accurately RS? was synthesized for the four models is
shown in Figure 14. All of the synthesized values in the figure were
predicted using the linear results from equation 47. The actual values
were calculated from the Zoeppritz equations.

In principle, the 2D elastic nonlinear direct inversion requires all
components of data. However, in this section, we introduced an ap-
proach that requires only DPand approximately synthesizes the oth-
er required components. Based on this approach, we derived the di-
rect nonlinear elastic inversion solution. Value is added to the results
by the addition of the nonlinear inversion terms. Although DFP alone
can provide useful nonlinear direct inversion results, further value
should be derived from field measurements of all components of the
data that the method requires.

Using all components of data — Full direct nonlinear
elastic inversion

Using all components of data, one consistent method to solve for
the second-order terms is to first use the linear solutions of equations
35-38. We get the linear solution fora!, a'}’, and .}’ in terms of D",

¢) 005

~0.05[
-01 |
% -0.15f
702 |-
~025¢
703 L
-0.35]

— RSPactual
- - - R%"synthesized

—0.4 . . . . | |
0

d) o005

~0.05f
701 L
% -0.15f
—-0.2 +
-0.25}
-03 |
-0.35]

— RSPactual
- - - RSPsynthesized|

—0.4 ‘ ‘ ‘ ‘ ‘ ‘
0

40 45 50

Figure 14. Comparison between synthesized values and actual val-
ues of RSP for (a) model 1, (b) model 2, (c) model 3, and (d) model 4.

009 . w
DPS, DS and DSS as follows:
5PP
(1)
ap APS
1 _
a, |=©'0)" "ol |, (48)
o D
K -
DSS
where the matrix O is
1 2 1 &2 2 82PP?
7_(17 PP2 I\t 2 ﬁfz) PP2
4 " 4 v, ao(vg +k, )
PS PS 2 Ps2
_l(ég_+££_) 0 _ﬁkPS(VPS_‘_ 7’?5)<1 __k£_>
4 V:s 7755 St Ve s Vl;S ”:s
sP P 2 SP2
l l_{a_+£s_ 0 ﬁksp( SP SP) 1__k.L
4\ P T St e T s 5P
1(1 ksgsg) . {ks:sz + S5 2k5§2 g]
T\ T Tsse - Ss2 T ss2 52
4 8 47]5’ ké’ + 8
(49)

The superscripts PP, PS, SP, and SS on the wavenumbers are consis-
tent with those on the data D, and O is the transpose of O. The super-
script — 1 denotes the inverse of the matrix O’O.

If the arguments of aﬁ)” and aﬂ) in equations 35-38 are equal, we
need

A, PP_ _PS_ _PS_ _ SP_ _SP_ _ _SS
2Vg ] g Ve Mg 2773’

(50)
which leads to (Figure 15)

[ 2
w oy w
—\/l—= sin? 7S + — cos A™S
Qg a B Bo

w
2— cos O™ =

0
1) 1) ,82
=—cos 5P + — 1——gsi205P
a Bo a
w
=2— cos 6. (51)

0
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From expression 51, given 6%, we can find the corresponding angles

0", 657, and 058, which appear in O:
1 k 5 5
- Ag—z(kg+CVg)+ —
2 2 pPP 2 C+1/8n, ¢
bs _,| 4b*cos® 0" +1 b &
6" = cos P , (52) 1 k 1
4b cos 0 +— |2 (VP + D) - | —
2 g g
C+1 87;ng 2C
4b* cos? 07 — 1 + b?
65F = cos ™ 1{ , (53) 1 ke o 2y |1, (D072 1
4b* cos 6™ Tt 877gV§(kg+ Cvy) |[a,"@)]) — >
SS _ o1 PP 1 21 1
0 cos” (b cos 6'), (54) N )'B—S—;kg(kz — )+ (_
C+1/a; 4v, § 8 2
where b = B¢/ ap. Then, we can similarly get the solution for aﬁ,z), 5 ) )
a\),anda} intermsof a\, 4!, and a}: 1 ) 1 (k [ 2@,{3) n By k.
C+1 477sz gag a; a% 2v,
() 2 2
a 1 1 \k,(k,+ v7) 1
4 (1) (1) - 8\g g —
Xa,’'(z)a.,’(z) + ( + ) - (
a | = (0'0)~'0'Q, (55) w @y 0 [ 2 C+1) 8y 2
() 2 2
Ay _ 1 )kg(kg + ) }a(l)(z)a(l)(z) _ {(l
2 P Y
where Q is in terms of @', a!)’, and a'}. Based on this idea, the form c+1 87,7, 2
of the nonlinear solution for equation 41 is the same as equation 45. 1 1 ﬁ% ; 5 s 3(2)
In the (k,,z,:k,,2,;0) domain, we get the other three solutions for —— B 3_2Ck‘ + vk, —4Ck,—
a8 C+1/)4npv:\ a5 ¢ &% 8 w?
equations 42—44. The solution for equation 42 is MgV 0
2 2
1 1 1
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C+1/38 NgVg 2 Figure 15. Different incident angles for different wave types.
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where details about the other terms with integrals are provided by
Zhang (2006). Similarly, for the right side of the following two equa-
tions, we also show only the inversion terms; the terms with integrals
are not given in detail.

The solution for equation 43 is

2
A o+ B e 1-

4\vy 7y s7g

_ 1 _ 2 5B0 (
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1 1
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The solution for equation 44 is

1 K K+ 7 2k2
—Z(l — 2)61(2 (z) — { g4 5E - k2+g 2 af)(z)z
778 778 8

1 2 2 o 1 [ :80 2,2
_{8 4<8kg 7, E>__4 2<B —4— 2 gkg
0 0
1
Bl {k (Bocz_ 1)
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1 1 k
- {8—772(772 — k) + Ekz(c - 1)}[6121)(1)]2 + {—&
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1 By o ) 5B 0
(C+1){ ( 2¢ 1 wzkg(c

— 1)] }aﬁj)(z)ag)(z) + other terms with integrals.

(58)

After we solve all four of the second-order equations, our future
research will be to perform numerical tests with all components of
data available. In principle, D" and D differ only by a minus sign;
therefore, they do not provide independent equations. However, giv-
en the practical difficulties associated with noise and with acquiring
and processing converted wave data, it is almost certain that practi-
cal benefits will accrue from using data that would otherwise be re-
dundant.

DISCUSSION

The standard AVO methods used today are all indirect, seeking an
aligned objective cost function, or proxy, in place of a direct inverse
solution. Although such methods are sometimes useful, there are
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ambiguities and conceptual and practical pitfalls associated with vi-
olating the fundamental physics provided by direct nonlinear inver-
sion. The use of indirect methods ought to indicate that direct meth-
ods are unavailable. When direct methods are available, they are the
preferred choice in all fields of problem solving; they provide the
clearest solutions and give us confidence in the algorithms we use
and the input data required.

The inverse scattering series provides the ability to directly image
and directly nonlinearly invert across a dipping and specular or dif-
fractive boundary, all without subsurface information. Further tests
and analysis of the concepts presented here are being pursued and
will be the subject of future publications.

The 1D elastic formulation tested here is only a small part of the
capability of the concepts presented. The assumptions and limita-
tions of the specific algorithm tested in this paper are that (1) the
earth has variation only in depth, (2) multiples have been removed,
(3) the medium above the single horizontal reflector is known, and
(4) reflection data with accurate reflection coefficients are available
as input to the inversion. Although this is a strict list of assumptions,
the tests nevertheless represent the first direct inversion of the for-
ward Zoeppritz equations. Our algorithm requires further testing in a
petroleum development environment, where surface seismic data
are tied to well measurements and where the procedure can be con-
ducted using reflection data away from the well.

Our direct AVO inversion method, in this series of initial tests,
shares with other AVO applications many of the typical assump-
tions, such as knowledge of the overburden, lack of multiples, true-
amplitude reflection data, and a horizontal reflector. Those assump-
tions and limitations will be relaxed and removed in future work.

CONCLUSIONS

We have developed a framework and an algorithm that can be
used for identifying exploration targets more accurately. Elastic
nonlinear direct inversion requires all components of seismic data.
In this paper, we have analyzed an algorithm that inputs only PP data.
Although PP data alone can provide useful nonlinear direct inver-
sion results when we use the PP data to synthesize PS, SP, and SS
components, further value should be derived from measuring all
components of data in the field.

If all components are available, our method consistently solves
for all second-order terms. Further tests using all components of the
data (in a 2D world) are under way, which we will compare to our re-
sults with real PP data and synthesized PS, SP, and SS data compo-
nents.
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