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Abstract
This paper presents an overview and a detailed description of the key logic
steps and mathematical-physics framework behind the development of practical
algorithms for seismic exploration derived from the inverse scattering series.

There are both significant symmetries and critical subtle differences
between the forward scattering series construction and the inverse scattering
series processing of seismic events. These similarities and differences help
explain the efficiency and effectiveness of different inversion objectives. The
inverse series performs all of the tasks associated with inversion using the entire
wavefield recorded on the measurement surface as input. However, certain
terms in the series act as though only one specific task,and no other task, existed.
When isolated, these terms constitute a task-specific subseries. We present both
the rationale for seeking and methods of identifying uncoupled task-specific
subseries that accomplish: (1) free-surface multiple removal; (2) internal
multiple attenuation; (3) imaging primaries at depth; and (4) inverting for earth
material properties.

A combination of forward series analogues and physical intuition is
employed to locate those subseries. We show that the sum of the four task-
specific subseries does not correspond to the original inverse series since terms
with coupled tasks are never considered or computed. Isolated tasks are
accomplished sequentially and, after each is achieved, the problem is restarted
as though that isolated task had never existed. This strategy avoids choosing
portions of the series, at any stage, that correspond to a combination of tasks, i.e.,
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no terms corresponding to coupled tasks are ever computed. This inversion in
stages provides a tremendous practical advantage. The achievement of a task is
a form of useful information exploited in the redefined and restarted problem;
and the latter represents a critically important step in the logic and overall
strategy. The individual subseries are analysed and their strengths, limitations
and prerequisites exemplified with analytic, numerical and field data examples.

(Some figures in this article are in colour only in the electronic version)

1. Introduction and background

In exploration seismology, a man-made source of energy on or near the surface of the earth
generates a wave that propagates into the subsurface. When the wave reaches a reflector, i.e., a
location of a rapid change in earth material properties, a portion of the wave is reflected upward
towards the surface. In marine exploration, the reflected waves are recorded at numerous
receivers (hydrophones) along a towed streamer in the water column just below the air–water
boundary (see figure 1).

The objective of seismic exploration is to determine subsurface earth properties from the
recorded wavefield in order to locate and delineate subsurface targets by estimating the type
and extent of rock and fluid properties for their hydrocarbon potential.

The current need for more effective and reliable techniques for extracting information
from seismic data is driven by several factors including (1) the higher acquisition and drilling
cost, the risk associated with the industry trend to explore and produce in deeper water and
(2) the serious technical challenges associated with deep water, in general, and specifically
with imaging beneath a complex and often ill-defined overburden.

An event is a distinct arrival of seismic energy. Seismic reflection events are catalogued as
primary or multiple depending on whether the energy arriving at the receiver has experienced
one or more upward reflections, respectively (see figure 2). In seismic exploration, multiply
reflected events are called multiples and are classified by the location of the downward reflection
between two upward reflections. Multiples that have experienced at least one downward
reflection at the air–water or air–land surface (free surface) are called free-surface multiples.
Multiples that have all of their downward reflections below the free surface are called internal
multiples. Methods for extracting subsurface information from seismic data typically assume
that the data consist exclusively of primaries. The latter model then allows one upward
reflection process to be associated with each recorded event. The primaries-only assumption
simplifies the processing of seismic data for determining the spatial location of reflectors and the
local change in earth material properties across a reflector. Hence, to satisfy this assumption,
multiple removal is a requisite to seismic processing. Multiple removal is a long-standing
problem and while significant progress has been achieved over the past decade, conceptual
and practical challenges remain. The inability to remove multiples can lead to multiples
masquerading or interfering with primaries causing false or misleading interpretations and,
ultimately, poor drilling decisions. The primaries-only assumption in seismic data analysis
is shared with other fields of inversion and non-destructive evaluation, e.g., medical imaging
and environmental hazard surveying using seismic probes or ground penetrating radar. In
these fields, the common violation of these same assumptions can lead to erroneous medical
diagnoses and hazard detection with unfortunate and injurious human and environmental
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Figure 1. Marine seismic exploration geometry: ∗ and � indicate the source and receiver,
respectively. The boat moves through the water towing the source and receiver arrays and the
experiment is repeated at a multitude of surface locations. The collection of the different source–
receiver wavefield measurements defines the seismic reflection data.

Figure 2. Marine primaries and multiples: 1, 2 and 3 are examples of primaries, free-surface
multiples and internal multiples, respectively.

consequences. In addition, all these diverse fields typically assume that a single weak scattering
model is adequate to generate the reflection data.

Even when multiples are removed from seismic reflection data, the challenges for accurate
imaging (locating) and inversion across reflectors are serious, especially when the medium of
propagation is difficult to adequately define, the geometry of the target is complex and the
contrast in earth material properties is large. The latter large contrast property condition is by
itself enough to cause linear inverse methods to collide with their assumptions.

The location and delineation of hydrocarbon targets beneath salt, basalt, volcanics and
karsted sediments are of high economic importance in the petroleum industry today. For these
complex geological environments, the common requirement of all current methods for the
imaging-inversion of primaries for an accurate (or at least adequate) model of the medium above
the target is often not achievable in practice, leading to erroneous, ambivalent or misleading
predictions. These difficult imaging conditions often occur in the deep water Gulf of Mexico,
where the confluence of large hydrocarbon reserves beneath salt and the high cost of drilling
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(and, hence, lower tolerance for error) in water deeper than 1 km drives the demand for much
more effective and reliable seismic data processing methods.

In this topical review, we will describe how the inverse scattering series has provided the
promise of an entire new vision and level of seismic capability and effectiveness. That promise
has already been realized for the removal of free-surface and internal multiples. We will also
describe the recent research progress and results on the inverse series for the processing of
primaries. Our objectives in writing this topical review are:

(1) to provide both an overview and a more comprehensive mathematical-physics description
of the new inverse-scattering-series-based seismic processing concepts and practical
industrial production strength algorithms;

(2) to describe and exemplify the strengths and limitations of these seismic processing
algorithms and to discuss open issues and challenges; and

(3) to explain how this work exemplifies a general philosophy for and approach (strategy and
tactics) to defining, prioritizing, choosing and then solving significant real-world problems
from developing new fundamental theory, to analysing issues of limitations of field data,
to satisfying practical prerequisites and computational requirements.

The problem of determining earth material properties from seismic reflection data is an
inverse scattering problem and, specifically, a non-linear inverse scattering problem. Although
an overview of all seismic methods is well beyond the scope of this review, it is accurate to
say that prior to the early 1990s, all deterministic methods used in practice in exploration
seismology could be viewed as different realizations of a linear approximation to inverse
scattering, the inverse Born approximation [1–3]. Non-linear inverse scattering series methods
were first introduced and adapted to exploration seismology in the early 1980s [4] and practical
algorithms first demonstrated in 1997 [5].

All scientific methods assume a model that starts with statements and assumptions
that indicate the inclusion of some (and ignoring of other) phenomena and components of
reality. Earth models used in seismic exploration include acoustic, elastic, homogeneous,
heterogeneous, anisotropic and anelastic; the assumed dimension of change in subsurface
material properties can be 1D, 2D or 3D; the geometry of reflectors can be, e.g., planar,
corrugated or diffractive; and the man-made source and the resultant incident field must be
described as well as both the character and distribution of the receivers.

Although 2D and 3D closed form complete integral equation solutions exist for the
Schrödinger equation (see [6]), there is no analogous closed form complete multi-dimensional
inverse solution for the acoustic or elastic wave equations. The push to develop complete
multi-dimensional non-linear seismic inversion methods came from: (1) the need to remove
multiples in a complex multi-dimensional earth and (2) the interest in a more realistic model
for primaries. There are two different origins and forms of non-linearity in the description and
processing of seismic data. The first derives from the intrinsic non-linear relationship between
certain physical quantities. Two examples of this type of non-linearity are:

(1) multiples and reflection coefficients of the reflectors that serve as the source of the multiply
reflected events and

(2) the intrinsic non-linear relationship between the angle-dependent reflection coefficient at
any reflector and the changes in elastic property changes.

The second form of non-linearity originates from forward and inverse descriptions that are,
e.g., in terms of estimated rather than actual propagation experiences. The latter non-linearity
has the sense of a Taylor series. Sometimes a description consists of a combination of these
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two types of non-linearity as, e.g., occurs in the description and removal of internal multiples
in the forward and inverse series, respectively.

The absence of a closed form exact inverse solution for a 2D (or 3D) acoustic or elastic
earth caused us to focus our attention on non-closed or series forms as the only candidates for
direct multi-dimensional exact seismic processing. An inverse series can be written, at least
formally, for any differential equation expressed in a perturbative form.

This article describes and illustrates the development of concepts and practical methods
from the inverse scattering series for multiple attenuation and provides promising conceptual
and algorithmic results for primaries. Fifteen years ago, the processing of primaries was
conceptually more advanced and effective in comparison to the methods for removing
multiples. Now that situation is reversed. At that earlier time, multiple removal methods
assumed a 1D earth and knowledge of the velocity model, whereas the processing of primaries
allowed for a multi-dimensional earth and also required knowledge of the 2D (or 3D) velocity
model for imaging and inversion. With the introduction of the inverse scattering series for the
removal of multiples during the past 15 years, the processing of multiples is now conceptually
more advanced than the processing of primaries since, with a few exceptions (e.g., migration-
inversion and reverse time migration) the processing of primaries have remained relatively
stagnant over that same 15 year period. Today, all free-surface and internal multiples can
be attenuated from a multi-dimensional heterogeneous earth with absolutely no knowledge
of the subsurface whatsoever before or after the multiples are removed. On the other hand,
imaging and inversion of primaries at depth remain today where they were 15 years ago,
requiring, e.g., an adequate velocity for an adequate image. The inverse scattering subseries
for removing free surface and internal multiples provided the first comprehensive theory
for removing all multiples from an arbitrary heterogeneous earth without any subsurface
information whatsoever. Furthermore, taken as a whole, the inverse series provides a fully
inclusive theory for processing both primaries and multiples directly in terms of an inadequate
velocity model, without updating or in any other way determining the accurate velocity
configuration. Hence, the inverse series and, more specifically, its subseries that perform
imaging and inversion of primaries have the potential to allow processing primaries to catch
up with processing multiples in concept and effectiveness.

2. Seismic data and scattering theory

2.1. The scattering equation

Scattering theory is a form of perturbation analysis. In broad terms, it describes how a
perturbation in the properties of a medium relates a perturbation to a wavefield that experiences
that perturbed medium. It is customary to consider the original unperturbed medium as the
reference medium. The difference between the actual and reference media is characterized
by the perturbation operator. The corresponding difference between the actual and reference
wavefields is called the scattered wavefield. Forward scattering takes as input the reference
medium, the reference wavefield and the perturbation operator and outputs the actual wavefield.
Inverse scattering takes as input the reference medium, the reference wavefield and values
of the actual field on the measurement surface and outputs the difference between actual
and reference medium properties through the perturbation operator. Inverse scattering theory
methods typically assume the support of the perturbation to be on one side of the measurement
surface. In seismic application, this condition translates to a requirement that the difference
between actual and reference media be non-zero only below the source–receiver surface.
Consequently, in seismic applications, inverse scattering methods require that the reference
medium agrees with the actual at and above the measurement surface.
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For the marine seismic application, the sources and receivers are located within the water
column and the simplest reference medium is a half-space of water bounded by a free surface
at the air–water interface. Since scattering theory relates the difference between actual and
reference wavefields to the difference between their medium properties, it is reasonable that
the mathematical description begin with the differential equations governing wave propagation
in these media. Let

LG = −δ(r − rs) (1)

and

L0G0 = −δ(r − rs) (2)

where L, L0 and G, G0 are the actual and reference differential operators and Green functions,
respectively, for a single temporal frequency, ω, and δ(r−rs) is the Dirac delta function. r and
rs are the field point and source location, respectively. Equations (1) and (2) assume that the
source and receiver signatures have been deconvolved. The impulsive source is ignited at t = 0.
G and G0 are the matrix elements of the Green operators, G and G0, in the spatial coordinates
and temporal frequency representation. G and G0 satisfy LG = −1I and L0G0 = −1I, where
1I is the unit operator. The perturbation operator, V, and the scattered field operator, Ψs, are
defined as follows:

V ≡ L − L0, (3)

Ψs ≡ G − G0. (4)

Ψs is not itself a Green operator. The Lippmann–Schwinger equation is the fundamental
equation of scattering theory. It is an operator identity that relates Ψs, G0, V and G [7]:

Ψs = G − G0 = G0VG. (5)

In the coordinate representation, (5) is valid for all positions of r and rs whether or not
they are outside the support of V. A simple example of L, L0 and V when G corresponds to a
pressure field in an inhomogeneous acoustic medium [8] is

L = ω2

K
+ ∇ ·

(
1

ρ
∇

)
,

L0 = ω2

K0
+ ∇ ·

(
1

ρ0
∇

)
and

V = ω2

(
1

K
− 1

K0

)
+ ∇ ·

[(
1

ρ
− 1

ρ0

)
∇

]
, (6)

where K , K0, ρ and ρ0 are the actual and reference bulk moduli and densities, respectively.
Other forms that are appropriate for elastic isotropic media and a homogeneous reference begin
with the generalization of (1), (2) and (5) where matrix operators

G =
(

GPP GPS

GSP GSS

)
and

G0 =
(

GP
0 0

0 GS
0

)
express the increased channels available for propagation and scattering and

V =
(

V PP V PS

V SP V SS

)
is the perturbation operator in an elastic world [3, 9].
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2.2. Forward and inverse series in operator form

To derive the forward scattering series, (5) can be expanded in an infinite series through a
substitution of higher order approximations for G (starting with G0) in the right-hand member
of (5) yielding

Ψs ≡ G − G0 = G0VG0 + G0VG0VG0 + · · · (7)

and providing Ψs in orders of the perturbation operator, V. Equation (7) can be rewritten as

Ψs = (Ψs)1 + (Ψs)2 + (Ψs)3 + · · · (8)

where (Ψs)n ≡ G0(VG0)
n is the portion of Ψs that is nth order in V. The inverse series of (7)

is an expansion for V in orders (or powers) of the measured values of Ψs ≡ (Ψs)m. The
measured values of Ψs = (Ψs)m constitute the data, D. Expand V as a series

V = V1 + V2 + V3 + · · · (9)

where Vn is the portion of V that is nth order in the data, D.
To find V1, V2, V3, . . . and, hence, V, first substitute the inverse form (9) into the

forward (7)

Ψs = G0(V1 + V2 + · · ·)G0 + G0(V1 + V2 + · · ·)G0(V1 + V2 + · · ·)G0

+ G0(V1 + V2 + · · ·)G0(V1 + V2 + · · ·)G0(V1 + V2 + · · ·)G0 + · · · . (10)

Evaluate both sides of (10) on the measurement surface and set terms of equal order in the data
equal. The first order terms are

(Ψs)m = D = (G0V1G0)m, (11)

where (Ψs)m are the measured values of the scattered field Ψs. The second order terms are

0 = (G0V2G0)m + (G0V1G0V1G0)m, (12)

the third order terms are

0 = (G0V3G0)m + (G0V1G0V2G0)m + (G0V2G0V1G0)m + (G0V1G0V1G0V1G0)m (13)

and the nth order terms are

0 = (G0VnG0)m + (G0V1G0Vn−1G0)m + · · · + (G0V1G0V1G0V1 · · · G0V1G0)m. (14)

To solve these equations, start with (11) and invert the G0 operators on both sides of V1. Then
substitute V1 into (12) and perform the same inversion operation as in (11) to invert the G0

operators that sandwich V2. Now substitute V1 and V2, found from (11) and (12), into (13)
and again invert the G0 operators that bracket V3 and in this manner continue to compute
any Vn . This method for determining V1, V2, V3, . . . and hence V = ∑∞

n=1 Vn is an explicit
direct inversion formalism that, in principle, can accommodate a wide variety of physical
phenomena and concomitant differential equations, including multi-dimensional acoustic,
elastic and certain forms of anelastic wave propagation. Because a closed or integral equation
solution is currently not available for the multi-dimensional forms of the latter equations and
a multi-dimensional earth model is the minimum requirement for developing relevant and
differential technology, the inverse scattering series is the new focus of attention for those
seeking significant heightened realism, completeness and effectiveness beyond linear and/or
1D and/or small contrast techniques.

In the derivation of the inverse series equations (11)–(14) there is no assumption about
the closeness of G0 to G, nor of the closeness of V1 to V, nor are V or V1 assumed to be small
in any sense. Equation (11) is an exact equation for V1. All that is assumed is that V1 is the
portion of V that is linear in the data.
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If one were to assume that V1 is close to V and then treat (11) as an approximate solution
for V, that would then correspond to the inverse Born approximation. In the formalism of
the inverse scattering series, the assumption of V ≈ V1 is never made. The inverse Born
approximation inputs the data D and G0 and outputs V1 which is then treated as an approximate
V. The forward Born approximation assumes that, in some sense, V is small and the inverse
Born assumes that the data, (Ψs)m, are small. The forward and inverse Born approximations
are two separate and distinct methods with different inputs and objectives. The forward Born
approximation for the scattered field, Ψs, uses a linear truncation of (7) to estimate Ψs:

Ψs
∼= G0VG0

and inputs G0 and V to find an approximation to Ψs. The inverse Born approximation inputs
D and G0 and solves for V1 as the approximation to V by inverting

(Ψs)m = D ∼= (G0VG0)m.

All of current seismic processing methods for imaging and inversion are different
incarnations of using (11) to find an approximation for V [3], where G0 ≈ G, and that
fact explains the continuous and serious effort in seismic and other applications to build ever
more realism and completeness into the reference differential operator, L0, and its impulse
response, G0. As with all technical approaches, the latter road (and current mainstream
seismic thinking) eventually leads to a stage of maturity where further allocation of research
and technical resource will no longer bring commensurate added value or benefit. The inverse
series methods provide an opportunity to achieve objectives in a direct and purposeful manner
well beyond the reach of linear methods for any given level of a priori information.

2.3. The inverse series is not iterative linear inversion

The inverse scattering series is a procedure that is separate and distinct from iterative linear
inversion. Iterative linear inversion starts with (11) and solves for V1. Then a new reference
operator, L′

0 = L0+V1, impulse response, G ′
0 (where L′

0G ′
0 = −δ), and data, D′ = (G−G ′

0)m,
are input to a new linear inverse form

D′ = (G′
0V′

1G′
0)m

where a new operator, G′
0, has to then be inverted from both sides of V′

1. These linear steps are
iterated and at each step a new, and in general more complicated, operator (or matrix, Frechét
derivative or sensitivity matrix) must be inverted. In contrast, the inverse scattering series
equations (11)–(14) invert the same original input operator, G0, at each step.

2.4. Development of the inverse series for seismic processing

The inverse scattering series methods were first developed by Moses [10], Prosser [11] and
Razavy [12] and were transformed for application to a multi-dimensional earth and exploration
seismic reflection data by Weglein et al [4] and Stolt and Jacobs [13]. The first question in
considering a series solution is the issue of convergence followed closely by the question of
rate of convergence. The important pioneering work on convergence criteria for the inverse
series by Prosser [11] provides a condition which is difficult to translate into a statement on
the size and duration of the contrast between actual and reference media. Faced with that lack
of theoretical guidance, empirical tests of the inverse series were performed by Carvalho [14]
for a 1D acoustic medium. Test results indicated that starting with no a priori information,
convergence was observed but appeared to be restricted to small contrasts and duration of
the perturbation. Convergence was only observed when the difference between actual earth
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acoustic velocity and water (reference) velocity was less than approximately 11%. Since, for
marine exploration, the acoustic wave speed in the earth is generally larger than 11% of the
acoustic wave speed in water (1500 m s−1), the practical value of the entire series without a
priori information appeared to be quite limited.

A reasonable response might seem to be to use seismic methods that estimate the velocity
trend of the earth to try to get the reference medium proximal to the actual and that in turn
could allow the series to possibly converge. The problem with that line of reasoning was that
velocity trend estimation methods assumed that multiples were removed prior to that analysis.
Furthermore, concurrent with these technical deliberations and strategic decisions (around
1989–90) was the unmistakably consistent and clear message heard from petroleum industry
operating units that inadequate multiple removal was an increasingly prioritized and serious
impediment to their success.

Methods for removing multiples at that time assumed either one or more of the following:
(1) the earth was 1D, (2) the velocity model was known, (3) the reflectors generating the
multiples could be defined, (4) different patterns could be identified in waves from primaries and
multiples or (5) primaries were random and multiples were periodic. All of these assumptions
were seriously violated in deep water and/or complex geology and the methods based upon
them often failed to perform, or produced erroneous or misleading results.

The interest in multiples at that time was driven in large part by the oil industry trend to
explore in deep water (>1 km) where the depth alone can cause multiple removal methods based
on periodicity to seriously violate their assumptions. Targets associated with complex multi-
dimensional heterogeneous and difficult to estimate geologic conditions presented challenges
for multiple removal methods that rely on having 1D assumptions or knowledge of inaccessible
details about the reflectors that were the source of these multiples.

The inverse scattering series is the only multi-dimensional direct inversion formalism that
can accommodate arbitrary heterogeneity directly in terms of the reference medium, through
G0, i.e., with estimated rather than actual propagation,G. The confluence of these factors led to
the development of thinking that viewed inversion as a series of tasks or stages and to viewing
multiple removal as a step within an inversion machine which could perhaps be identified,
isolated and examined for its convergence properties and demands on a priori information and
data.

2.5. Subseries of the inverse series

A combination of factors led to imagining inversion in terms of steps or stages with intermediate
objectives towards the ultimate goal of identifying earth material properties. These factors are:

(1) the inverse series represents the only multi-dimensional direct seismic inversion method
that performs its mathematical operations directly in terms of a single, fixed, unchanging
and assumed to be inadequate G0, i.e., which is assumed not to be equal to the adequate
propagator, G;

(2) numerical tests that suggested an apparent lack of robust convergence of the overall series
(when starting with no a priori information);

(3) seismic methods that are used to determine a priori reference medium information, e.g.,
reference propagation velocity, assume the data consist of primaries and hence were (and
are) impeded by the presence of multiples;

(4) the interest in extracting something of value from the only formalism for complete direct
multi-dimensional inversion; and

(5) the clear and unmistakeable industry need for more effective methods that remove
multiples especially in deep water and/or from data collected over an unknown, complex,
ill-defined and heterogeneous earth.
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Each stage in inversion was defined as achieving a task or objective: (1) removing free-
surface multiples; (2) removing internal multiples; (3) locating and imaging reflectors in space;
and (4) determining the changes in earth material properties across those reflectors. The idea
was to identify, within the overall series, specific distinct subseries that performed these focused
tasks and to evaluate these subseries for convergence, requirements for a priori information, rate
of convergence, data requirements and theoretical and practical prerequisites. It was imagined
(and hoped) that perhaps a subseries for one specific task would have a more favourable attitude
towards, e.g., convergence in comparison to the entire series. These tasks, if achievable, would
bring practical benefit on their own and, since they are contained within the construction of
V1, V2, . . . in (12)–(14), each task would be realized from the inverse scattering series directly
in terms of the data, D, and reference wave propagation, G0.

At the outset, many important issues regarding this new task separation strategy were open
(and some remain open). Among them were

(1) Does the series in fact uncouple in terms of tasks?
(2) If it does uncouple, then how do you identify those uncoupled task-specific subseries?
(3) Does the inverse series view multiples as noise to be removed, or as signal to be used for

helping to image/invert the target?
(4) Do the subseries derived for individual tasks require different algorithms for different

earth model types (e.g., acoustic version and elastic version)?
(5) How can you know or determine, in a given application, how many terms in a subseries

will be required to achieve a certain degree of effectiveness?

We will address and respond to these questions in this article and list others that are outstanding
or the subject of current investigation.

How do you identify a task-specific subseries? The pursuit of task-specific subseries
used several different types of analysis with testing of new concepts to evaluate, refine and
develop embryonic thinking largely based on analogues and physical intuition. To begin, the
forward and inverse series, (7) and (11)–(14), have a tremendous symmetry. The forward
series produces the scattered wavefield, Ψs, from a sum of terms each of which is composed
of the operator, G0, acting on V. When evaluated on the measurement surface, the forward
series creates all of the data, (Ψs)m = D, and contains all recorded primaries and multiples.
The inverse series produces V from a series of terms each of which can be interpreted as the
operator G0 acting on the recorded data, D. Hence, in scattering theory the same operator G0

as acts on V to create data acts on D to invert data. If we consider

(G0VG0)m = (G0(V1 + V2 + V3 + · · ·)G0)m

and use (12)–(14), we find

(G0VG0)m = (G0V1G0)m − (G0V1G0V1G0)m + · · · . (15)

There is a remarkable symmetry between the inverse series (15) and the forward series (7)
evaluated on the measurement surface:

(Ψs)m = (G0VG0)m + (G0VG0VG0)m + · · · . (16)

In terms of diagrams, the inverse series for V, (15) can be represented as
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(the symbols × and � indicate a source and receiver, respectively) while the forward series
for the data, (Ψs)m ≡ D, can be represented as

This diagrammatic comparison represents opportunities for relating forward and inverse
processes.

The forward and inverse problems are not ‘inverses’ of each other in a formal sense—
meaning that the forward creates data but the inverse does not annihilate data: it inverts
data. Nevertheless, the inverse scattering task-specific subseries while inputting all the data,
D (in common with all terms in the inverse series), were thought to carry out certain actions,
functions or tasks on specific subsets of the data, e.g., free-surface multiples, internal multiples
and primaries. Hence, we postulated that if we could work out how those events were created
in the forward series in terms of G0 and V, perhaps we could work out how those events
were processed in the inverse series when once again G0 was acting on D. That intuitive
leap was later provided a somewhat rigorous basis for free-surface multiples. The more
challenging internal multiple attenuation subseries and the distinct subseries that image and
invert primaries at depth without the velocity model while having attracted some welcome and
insightful mathematical-physics rigour [15] remain with certain key steps in their logic based
on plausibility, empirical tests and physical intuition.

In [5], the objective and measure of efficacy is how well the identified internal multiple
attenuation algorithm removes or eliminates actual internal multiples. That is a difficult
statement to make precise and rigorous since both the creation (description) and removal
require an infinite number of terms in the forward and inverse series, respectively. The first
term in the series that removes internal multiples of a given order is identified as the internal
multiple attenuator (of that order) and is tested with actual analytic, numerical and field data to
determine and define (within the analytic example) precise levels of effectiveness. A sampling
of those exercises is provided in the section on multiple attenuation examples. In contrast, ten
Kroode [15] defines the internal multiple attenuation problem somewhat differently: how well
does the inverse scattering internal multiple attenuator remove an approximate internal multiple
represented by the first term in an internal multiple forward series. The latter is a significantly
different problem statement and objective from that of Weglein et al [5] but one that lends itself
to mathematical analysis. We would argue that the former problem statement presented by
Weglein et al [5], while much more difficult to define from a compact mathematical analysis
point of view, has merit in that it judges its effectiveness by a standard that corresponds to
the actual problem that needs to be addressed: the removal of internal multiples. In fact,
judging the efficacy of the internal multiple attenuator by how well it removes the ‘Born
approximation’ to internal multiples rolls the more serious error of travel time prediction in the
latter forward model into the removal analysis with a resulting discounting of the actual power
of the internal multiple attenuator in removing actual internal multiples. The leading order
term in the removal series, that corresponds to the inverse scattering attenuation algorithm, has
significantly greater effectiveness and more robust performance on actual internal multiples
than on the Born approximation to those multiples. As the analytic example in the later
section demonstrates, the inverse scattering attenuator precisely predicts the time for all internal
multiples and approximates well the amplitude for P–P data, without any need whatsoever for
estimating the velocity of the medium. The forward Born approximation to internal multiple
data will have timing errors in comparison with actual internal multiples; hence analysing and
testing the attenuator on those approximate data brings in issues due to the approximation of
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Figure 3. The marine configuration and reference Green function.

the forward data in the test that are misattributed to the properties of the attenuator. Tests such
as those presented in [16, 17] and in the latter sections of this article are both more realistic
and positive for the properties of the attenuator when tested and evaluated on real, in contrast
to approximate, internal multiples.

In fact, for internal multiples, understanding how the forward scattering series produces an
event only hints at where the inverse process might be located. That ‘hint’, due to a symmetry
between event creation and event processing for inversion, turned out to be a suggestion,
with an infinite number of possible realizations. Intuition, testing and subtle refinement of
concepts ultimately pointed to where the inverse process was located. Once the location was
identified, further rationalizations could be provided, in hindsight, to explain the choice among
the plethora of possibilities. Intuition has played an important role in this work,which is neither
an apology nor an expression of hubris, but a normal and expected stage in the development
and evolution of fundamentally new concepts. This specific issue is further discussed in the
section on internal multiples.

3. Marine seismic exploration

In marine seismic exploration sources and receivers are located in the water column. The
simplest reference medium that describes the marine seismic acquisition geometry is a half-
space of water bounded by a free surface at the air–water interface. The reference Green
operator, G0, consists of two parts:

G0 = Gd
0 + GFS

0 , (17)

where Gd
0 is the direct propagating, causal, whole-space Green operator in water and GFS

0 is
the additional part of the Green operator due to the presence of the free surface (see figure 3).
GFS

0 corresponds to a reflection off the free surface.
In the absence of a free surface, the reference medium is a whole space of water and Gd

0 is
the reference Green operator. In this case, the forward series equation (7) describing the data is
constructed from the direct propagating Green operator, Gd

0, and the perturbation operator, V.
With our choice of reference medium, the perturbation operator characterizes the difference
between earth properties and water; hence, the support of V begins at the water bottom. With
the free surface present, the forward series is constructed from G0 = Gd

0 + GFS
0 and the same

perturbation operator, V. Hence, GFS
0 is the sole difference between the forward series with and

without the free surface; therefore GFS
0 is responsible for generating those events that owe their

existence to the presence of the free surface, i.e., ghosts and free-surface multiples. Ghosts are
events that either start their history propagating up from the source and reflecting down from
the free surface or end their history as the downgoing portion of the recorded wavefield at the
receiver, having its last downward reflection at the free surface (see figure 4).
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Figure 4. Examples of ghost events: (a) source ghost, (b) receiver ghost and (c) source–receiver
ghost.

In the inverse series, equations (11)–(14), it is reasonable to infer that GFS
0 will be

responsible for all the extra tasks that inversion needs to perform when starting with data
containing ghosts and free-surface multiples rather than data without those events. Those
extra inverse tasks include deghosting and the removal of free-surface multiples. In the section
on the free-surface demultiple subseries that follows, we describe how the extra portion of the
reference Green operator due to the free surface, GFS

0 , performs deghosting and free-surface
multiple removal.

Once the events associated with the free surface are removed, the remaining measured
field consists of primaries and internal multiples. For a marine experiment in the absence of a
free surface, the scattered field, Ψ′

s, can be expressed as a series in terms of a reference medium
consisting of a whole space of water, the reference Green operator, Gd

0, and the perturbation,
V, as follows:

Ψ′
s = Gd

0VGd
0 + Gd

0VGd
0VGd

0 + Gd
0VGd

0VGd
0VGd

0 + · · ·
= (Ψ′

s)1 + (Ψ′
s)2 + (Ψ′

s)3 + · · · . (18)

The values of Ψ′
s on the measurement surface, D′, are the data, D, collected in the absence of

a free surface; i.e., D′ consists of primaries and internal multiples:

D′ = D′
1 + D′

2 + D′
3 + · · · . (19)

D′ is the data D without free-surface events. Unfortunately, the free-space Green function,
Gd

0, does not separate into a part responsible for primaries and a part responsible for internal
multiples. As a result, a totally new concept was required and introduced to separate the tasks
associated with Gd

0 [5].
The forward scattering series (18) evaluated on the measurement surface describes data

and every event in those data in terms of a series. Each term of the series corresponds to a
sequence of reference medium propagations, Gd

0, and scatterings off the perturbation, V. A
seismic event represents the measured arrival of energy that has experienced a specific set of
actual reflections, R, and transmissions, T , at reflectors and propagations, p, governed by
medium properties between reflectors. A complete description of an event would typically
consist of a single term expression with all the actual episodes of R, T and p in its history. The
classification of an event in D′ as a primary or as an internal multiple depends on the number
and type of actual reflections that it has experienced. The scattering theory description of any
specific event in D′ requires an infinite series necessary to build the actual R, T and p factors
in terms of reference propagation, Gd

0, and the perturbation operator, V. That is, R, T and
p are non-linearly related to Gd

0 and V. Even the simplest water bottom primary for which
G0 = Gd

0 requires a series for its description in scattering theory (to produce the water bottom
reflection, R, from an infinite series, non-linear in V ). We will illustrate this concept with
a simple example later in this section. Hence, two chasms need to be bridged to determine
the subseries that removes internal multiples. The first requires a map between primary and
internal multiples in D′ and their description in the language of forward scattering theory,
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Figure 5. The 1D plane-wave normal incidence acoustic example.

Gd
0 and V; the second requires a map between the construction of internal multiple events in

the forward series and the removal of these events in the inverse series.
The internal multiple attenuation concept requires the construction of these two

dictionaries: one relates seismic events to a forward scattering description, the second relates
forward construction to inverse removal. The task separation strategy requires that those two
maps be determined. Both of these multi-dimensional maps were originally inferred using
arguments of physical intuition and mathematical reasonableness. Subsequently, Matson [18]
provided a mathematically rigorous map of the relationship between seismic events and the
forward scattering series for 1D constant density acoustic media that confirm the original
intuitive arguments. Recent work by Nita et al [19] and Innanen and Weglein [20] extends
that work to prestack analysis and absorptive media, respectively. The second map, relating
forward construction and inverse removal, remains largely based on its original foundation.
Recently, ten Kroode [15] presented a formal mathematical analysis for certain aspects of a
forward to inverse internal multiple map (discussed in the previous section) based on a leading
order definition of internal multiples and assumptions about the symmetry involved in the
latter map. For the purpose of this article, we present only the key logical steps of the original
arguments that lead to the required maps. The argument of the first map is presented here;
the second map, relating forward construction and inverse removal, is presented in the next
section.

To understand how the forward scattering series describes a particular event, it is useful
to recall that the forward series for D′ is a generalized Taylor series in the scattering operator,
V [21]. But what is the forward scattering subseries for a given event in D′? Since a specific
event consists of a set of actual R, T and p factors, it is reasonable to start by asking how these
individual factors are expressed in terms of the perturbation operator. Consider the simple
example of one dimensional acoustic medium consisting of a single interface and a normal
incidence plane wave, eikz , illustrated in figure 5.

Let the reference medium be a whole space with acoustic velocity, c0. The actual and
reference differential equations describing the actual and reference wavefields, P and P0, are[

d2

dz2
+

ω2

c2(z)

]
P(z, ω) = 0

and [
d2

dz2
+

ω2

c2
0

]
P0(z, ω) = 0,

where c(z) is the actual velocity.
The perturbation operator, V, is

V = L − L0 = ω2

c2(z)
− ω2

c2
0

.
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Characterize c(z) in terms of c0 and the variation in index of refraction, α:

1

c2(z)
= 1

c2
0

[1 − α(z)].

In the lower half-space,

1

c2
1

= 1

c2
0

[1 − α1],

α1 essentially represents the change in the perturbation operator at the interface (within a
constant factor of −ω2/c2

0). The reflection and transmission coefficients and the transmitted
wave propagating in the lower half-space are

R01 = c1 − c0

c1 + c0
,

T01 = 2c1

c1 + c0

and

P1 = T01 exp

(
i
ω

c1
z

)
= T01 p1.

Using

c1 ≡ c0

(1 − α1)1/2
∼= c0

[
1 +

1

2
α1 + O(α1)

]
,

these R, T and p quantities are expandable as power series in the perturbation, α1:

R01 = 1
4α1 + O(α1),

T01 = 1 + O(α1),

p1 = exp

(
i
ω

c1
z

)
= exp

(
i
ω

c0
z

)
+ O(α1)

= p0 + O(α1).

Thus, to lowest order in an expansion in the local perturbation, the actual reflection is
proportional to the local change in the perturbation, the transmission is proportional to 1 and
the actual propagation is proportional to the reference propagation. An event in D′ consists of
a combination of R, T and p episodes. The first term in the series that contributes to this event
is determined by collecting the leading order contribution (in terms of the local change in the
perturbation operator) from each R, T and p factors in its history. Since the mathematical
expression for an event is a product of all these actual R, T and p factors, it follows that the
lowest order contribution, in the powers of the perturbation operator, will equal the number
of R factors in that event. The fact that the forward series, (18), is a power series in the
perturbation operator allows us to identify the term in (19) that provides the first contribution
to the construction of an event. Since by definition all primaries have only one R factor, their
leading contribution comes with a single power of the perturbation operator from the first term
of the series for D′. F
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Figure 6. The left-hand member of this diagram represents a first order internal multiple; the
right-hand member illustrates the first series contribution from D′

3 towards the construction of the
first order internal multiple. α1 and α2 − α1 are the perturbative contributions at the two reflectors;
c0, c1 and c2 are acoustic velocities where (1/c2

2) = (1/c2
0)(1 − α2) and (1/c2

1) = (1/c2
0)(1 − α1).

Figure 7. A diagram representing a portion of D′
3 that makes a third order contribution to the

construction of a primary.

How do we separate the part of the third term in the forward series that provides a third
order contribution to primaries from the portion providing the leading term contribution to
first order internal multiples? The key to the separation resides in recognizing that the three
perturbative contributions in D′

3 can be interpreted in the forward series as originating at the
spatial location of reflectors. For a first order internal multiple the leading order contribution
(illustrated on the right-hand member of figure 6) consists of perturbative contributions that can
be interpreted as located at the spatial location (depth) of the three reflectors where reflections
occur. For the example in figure 6, the three linear approximations to R12, R10 and R12, that
is, α2 − α1, α1 and α2 − α1, are located at depths z1, z2 and z3 where z1 > z2 and z3 > z2.
In this single layer example z1 is equal to z3. In general, D′

3 consists of the sum of all three
perturbative contributions from any three reflectors at depths z1, z2 and z3. The portion of
D′

3 where the three reflectors satisfy z1 > z2 and z3 > z2 corresponds to the leading order
construction of a first order internal multiple involving those three reflectors. The parts of D′

3
corresponding to the three perturbative contributions at reflectors that do not satisfy both of
these inequalities provide third order contributions to the construction of primaries. A simple
example is illustrated in figure 7.

The sum of all the contributions in D′
3 that satisfy z1 > z2 and z3 > z2 for locations of

the three successive perturbations is the sum of the leading contribution term for all first order
internal multiples. The leading order term in the removal series for internal multiples of first
order is cubic or third order in the measured data, D′. In the inverse series, ‘order’ means order
in the data, not an asymptotic expansion and/or approximation. Similarly, second, third, . . .,
nth order internal multiples find their initial contribution in the fifth, seventh, . . ., (2n + 1)th
term of the forward series. We use the identified leading order contribution to all internal
multiples of a given order in the forward series to infer a map to the corresponding leading
order removal of all internal multiples of that order in the inverse series.

The forward map between the forward scattering series (7) and (8) for (Ψs)m and the
primaries and multiples of seismic reflection data works as follows. The scattering series
builds the wavefield as a sum of terms with propagations G0 and scattering off V. Scattering
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Figure 8. A s cattering series description of primaries and internal multiples: P1—primary with one
reflection; P2—primary with one reflection and onetransmission; P3—primary with one reflectionand a self-interaction; M1—first order internal multiple (one downward reflection); M2—secondorder internal multiple (two downward reflections).occurs in all directions from the scattering pointVand the relative amplitude in a givendirection is determined by the isotropy (or anisotropy) of the scattering operator. A scatteringoperator being anisotropic is distinct from physical anisotropy; the latter means that the wavespeed in theactual medium at a point is a function of the direction of propagation of thewave at that point. A two parameter, variable velocityand density, acoustic isotropic mediumhas a n a nisotropic scattering operator (see (6)). In any case, since primaries and multiplesare defined in terms of reflections, we propose that primaries and internal multiples will bedistinguished by the number of reflection-like scatterings in their forward description, figure 8.A refl ection-like scattering occurs when the incident wave moves away from the measurementsurface towards the scattering point and the wave emerging from the scattering point movestowards the measurement surface.Every reflection event in seismic data requires contributions from an infinite number ofterms in the scattering theorydescription. Even with water velocity as the reference, and forevents where the actual propagation medium is water, then the simplest primaries, i.e., thewater bottom reflection, require an infinitenumber of contributions to takeG0andVintoG0andR,whereVandRcorrespond to the perturbation operator and reflection coefficient at thewater bottom, respectively. For a primary originating below the water bottom, the series hastodeal with issues beyond turning the local value ofVinto the local reflection coefficient,R.In the latter case, the reference Green function,G0,nolonger corresponds to the propagationdown to and back from the reflector (G	=G0)and the terms in the series beyond the firstare required to correct for timing errors and ignored transmission coefficients, in addition totakingVintoR.The remarkable fact is that all primaries are constructed in the forward series by portionsof every term in the series. The contributing part has one and only one upward reflection-like scattering. Furthermore, internal multiples of a given order have contributions from allterms that have exactly a number of downward reflection-like scatterings corresponding to theorderofthatinternal multiple. The order of the internal multiple is defined by the number ofdownward reflections, independent of the location of the reflectors (see figure 8).
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Figure 9. Maps for inverse scattering subseries. Map I takes seismic events to a scattering series
description: D(t) = (Ψs)m consists of primaries and multiples; (Ψs)m = D(t) represents a
forward series in terms of G0 and V. Map II takes forward construction of events to inverse
processing of those events: (G0VG0)m = (G0V1G0)m − (G0V1G0V1G0)m + · · ·.

All internal multiples of first order begin their creation in the scattering series in the portion
of the third term of (Ψs)m with three reflection-like scatterings. All terms in the fourth and
higher terms of (Ψs)m that consist of three and only three reflection-like scatterings plus any
number of transmission-like scatterings (e.g., event (b) in figure 8) and/or self-interactions
(e.g., event (c) in figure 8) also contribute to the construction of first order internal multiples.

Further research in the scattering theory descriptions of seismic events is warranted
and under way and will strengthen the first of the two key logic links (maps) required for
developments of more effective and better understood task-specific inversion procedures.

4. The inverse series and task separation: terms with coupled and uncoupled tasks

As discussed in section 3, GFS
0 is the agent in the forward series that creates all events that come

into existence due to the presence of the free surface (i.e., ghosts and free-surface multiples);
when the inverse series starts with data that include free-surface-related events and, then
inversion has additional tasks to perform on the way to constructing the perturbation, V (i.e.,
deghosting and free-surface multiple removal); and, for the marine case, the forward and
inverse reference Green operator, G0, consists of Gd

0 plus GFS
0 . These three arguments taken

together imply that, in the inverse series, GFS
0 is the ‘removal operator’ for the surface-related

events that it created in the forward series.
With that thought in mind, we will describe the deghosting and free-surface multiple

removal subseries. The inverse series expansions, equations (11)–(14), consist of terms
(G0VnG0)m with G0 = Gd

0 + GFS
0 . Deghosting is realized by removing the two outside

G0 = Gd
0 + GFS

0 functions and replacing them with Gd
0. The Green function Gd

0 represents a
downgoing wave from source to V and an upgoing wave from V to the receiver (details are
provided in section 5.4).

The source and receiver deghosted data, D̃, are represented by D̃ = (Gd
0V1Gd

0)m. After the
deghosting operation, the objective is to remove the free-surface multiples from the deghosted
data, D̃.

The terms in the inverse series expansions, (11)–(14), replacing D with input D̃, contain
both Gd

0 and GFS
0 between the operators Vi . The outside Gd

0 s only indicate that the data have
been source and receiver deghosted. The inner Gd

0 and GFS
0 are where the four inversion tasks

reside. If we consider the inverse scattering series and G0 = Gd
0 + GFS

0 and if we assume
that the data have been source and receiver deghosted (i.e., Gd

0 replaces GFS
0 on the outside

contributions), then the terms in the series are of three types:

Type 1: (Gd
0Vi GFS

0 V j GFS
0 VkGd

0)m

Type 2: (Gd
0Vi GFS

0 V j Gd
0VkGd

0)m

Type 3: (Gd
0Vi Gd

0V j Gd
0VkGd

0)m.
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We interpret these types of term from a task isolation point of view. Type 1 terms have only
GFS

0 between two Vi , V j contributions; these terms when added to D̃ remove free-surface
multiples and perform no other task. Type 2 terms have both Gd

0 and GFS
0 between two Vi , V j

contributions; these terms perform free-surface multiple removal plus a task associated with
Gd

0. Type 3 have only Gd
0 between two Vi , V j contributions; these terms do not remove any

free-surface multiples.
The idea behind task separated subseries is twofold:

(1) isolate the terms in the overall series that perform a given task as if no other tasks exist
(e.g., type 1 above) and

(2) do not return to the original inverse series with its coupled tasks involving GFS
0 and Gd

0,
but rather restart the problem with input data free of free-surface multiples, D′.

Collecting all type 1 terms we have

D′
1 ≡ D̃ = (Gd

0V1Gd
0)m (11′)

D′
2 = −(Gd

0V1GFS
0 V1Gd

0)m (12′)
D′

3 = −(Gd
0V1GFS

0 V1GFS
0 V1Gd

0)m

− (Gd
0V1GFS

0 V2Gd
0)m

− (Gd
0V1GFS

0 V2Gd
0)m (13′)

....

D′
3 can be simplified as

D′
3 = +(Gd

0V1GFS
0 V1GFS

0 V1Gd
0)m

(this reduction of (13′) is not valid for type 2 or type 3 terms). D′ = ∑∞
i=1 D′

i are the
deghosted and free-surface demultipled data. The new free-surface demultipled data, D′,
consist of primaries and internal multiples and an inverse series for V = ∑∞

i=1V′
i where V′

i
is the portion of V that is i th order in primaries and internal multiples. Collecting all type 3
terms:

D′ = (Gd
0V′

1Gd
0)m (11′′)

(Gd
0V ′

2Gd
0)m = −(Gd

0V′
1Gd

0V′
1Gd

0)m (12′′)
(Gd

0V ′
3Gd

0)m = −(Gd
0V′

1Gd
0V′

1Gd
0V′

1Gd
0)m

− (Gd
0V′

1Gd
0V ′

2Gd
0)m

− (Gd
0V′

2Gd
0V′

1Gd
0)m (13′′)

....

When the free surface is absent, Gd
0 creates primaries and internal multiples in the forward

series and is responsible for carrying out all inverse tasks on those same events in the inverse
series.

We repeat this process seeking to isolate terms that only ‘care about’ the responsibility
of Gd

0 towards removing internal multiples. No coupled task terms that involve both
internal multiples and primaries are included. After the internal multiples attenuation task
is accomplished we restart the problem once again and write an inverse series whose input
consists only of primaries. This task isolation and restarting of the definition of the inversion
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procedure strategy have several advantages over staying with the original series. Those
advantages include the recognition that a task that has already been accomplished is a form of
new information and makes the subsequent and progressively more difficult tasks in our list
considerably less daunting compared to the original all-inclusive data series approach. For
example, after removing multiples with a reference medium of water speed, it is easier to
estimate a variable background to aid convergence for subsequent tasks whose subseries might
benefit from that advantage. Note that the V represents the difference between water and earth
properties and can be expressed as V = ∑∞

i=1 Vi and V = ∑∞
i=1 V′

i . However, Vi 	= V′
i since

Vi assumes that the data are D (primaries and all multiples) and V′
i assumes that the data are

D′ (primaries and only internal multiples). In other words, V1 is linear in all primaries and
free-surface and internal multiples, while V′

1 is linear in all primaries and internal multiples
only.

5. An analysis of the earth model type and the inverse series and subseries

5.1. Model type and the inverse series

To invert for medium properties requires choosing a set of parameters that you seek to identify.
The chosen set of parameters (e.g., P and S wave velocity and density) defines an earth model
type (e.g., acoustic, elastic, isotropic, anisotropic earth) and the details of the inverse series
will depend on that choice. Choosing an earth model type defines the form of L, L0 and V. On
the way towards identifying the earth properties (for a given model type), intermediate tasks
are performed, such as the removal of free-surface and internal multiples and the location of
reflectors in space.

It will be shown below that the free-surface and internal multiple attenuation subseries not
only do not require subsurface information for a given model type, but are even independent
of the earth model type itself for a very large class of models. The meaning of model type-
independent task-specific subseries is that the defined task is achievable with precisely the
same algorithm for an entire class of earth model types. The members of the model type
class that we are considering satisfy the convolution theorem and include acoustic, elastic and
certain anelastic media.

In this section, we provide a more general and complete formalism for the inverse series,
and especially the subseries, than has appeared in the literature to date. That formalism allows
us to examine the issue of model type and inverse scattering objectives. When we discuss the
imaging and inversion subseries in section 8, we use this general formalism as a framework
for defining and addressing the new challenges that we face in developing subseries that
perform imaging at depth without the velocity and inverting large contrast complex targets.
All inverse methods for identifying medium properties require specification of the parameters to
be determined, i.e., of the assumed earth model type that has generated the scattered wavefield.
To understand how the free-surface multiple removal and internal multiple attenuation task-
specific subseries avoid this requirement (and to understand under what circumstances the
imaging subseries would avoid that requirement as well), it is instructive to examine the
mathematical physics and logic behind the classic inverse series and see precisely the role that
model type plays in the derivation.

References for the inverse series include [4, 10, 12, 13]. The inverse series paper by
Razavy [12] is a lucid and important paper relevant to seismic exploration. In that paper, Razavy
considers a normal plane wave incident on a one dimensional acoustic medium. We follow
Razavy’s development to see precisely how model type enters and to glean further physical
insight from the mathematical procedure. Then we introduce a perturbation operator, V,
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F i g ure10.T h e s catteringexperiment:aplanewave i ncidentupontheperturbation,α . g e n e r a l e n o u g h i n s t r u c t u r e t o a c c o m m o d a t e t h e e n t i r e c l a s s o f e a r t h m o d e l t y p e s u n d e r

c o n s i d e r a t i o n . Fin a l l y , i f a p r o c e s s ( i . e . , a s u b s e r i e s ) c a n b e p e r f o r m e d w i t h o u t s p e c i f y i n g h o wV d e p e n d s o n t h e e a r t h p r o p e r t y c h a n g e s ( i . e . , w h a t s e t o f e a r t h p r o p e r t i e s a r e a s s u m e d t o v a r y i n s i d eV ) , thentheprocessitselfisindep e n d e n t o f e a r t h m o d e l t y p e . 3 7 2 . I n v e r s e s e r i e s f o r a 1 D a c o u s t i c c o n s t a n t d e n s i t y m e d i u m Startwiththe1Dvariablevelocity,constan t d e n s i t y a c o u s t i c w a v e e q u a t i o n , w h e r ec ( z ) isthewavespe e d a n d � ( z , t )isapressurefieldatlocationz a t t i m e t . T h e e q u a t i o n t h a t � ( z , t ) satisfiesis( ∂ 2

∂ z 2 − 1c 2 ( z ) ∂ 2∂ t 2 )

� ( z , t ) = 0 ( 2 0 ) a n d a f t e r a t e m p o r a l F o u r i e r t r a n s f o r m ,t → ω ,

( d 2

d z 2 +

ω 2

c 2 ( z ) )

� ( z , ω ) = 0. ( 2 1 ) Chara c t e r i z e t h e v e l o c i t y c o n fi g u r a t i o n c ( z ) intermsofar e f e r e n c e v e l o c i t y , c 0 , a n d p e r t u r b a t i o n , α : 1

c 2 ( z )

= 1

c 2 0 ( 1 − α (z ) ) . ( 2 2 ) T h e e x p e r i m e n t c o n s i s t s o f a p l a n e w a v e e i k z w h e r ek = ω / c 0 inc i d e n t u p o n α (z ) f r o m t h e l e f t ( seefig u r e 1 0 ) . A s s u m e h e r e t h a tα h a s c o m p a c t s u p p o r t a n d t h a t t h e i n c i d e n t w a v e a p p r o a c h e sα f r o m t h e s a m e s i d e a s t h e s c a t t e r e d fi e l d i s m e a s u r e d . L e t b ( k) d e n o t e t h e o v e r a l l r e fl e c t i o n c o e f fi c i e n t f o r α (z ) . I t i s d e t e r m i n e d f r o m t h e r e fl e c t i o n d a t a a t a g i v e n f r e q u e n c y ω. T h e n e i k z a n d b ( k) e − i k z a r e t h e i n c i d e n t a n d t h e r e fl e c t e d wave s r e s p e c t i v e l y . R e w r i t e ( 2 1 ) a n d ( 2 2 ) a n d t h e i n c i d e n t w a v e b o u n d a r y c o n d i t i o n a s a n integrale q u a t i o n : � ( z , ω )= e i k z + 12 i k

∫ e i k | z − z ′ | k 2 α (z ′ ) � ( z ′ , ω ) dz ′ ( 2 3 ) a n d d e fi n e t h e s c a t t e r e d fi e l d� s : � s ( z , ω )≡ � (z , ω )− e i k z . Also,definethe T m a t r ix:

T ( p , k ) ≡

∫ e − i p z α (z ) � ( z ,k ) d z ( 2 4 )
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and the Fourier sandwich of the parameter, α:

α(p, k) ≡
∫

e−ipzα(z)eikz dz.

The scattered field, �s, takes the form

�s(z, ω) = b(k)e−ikz (25)

for values of z less than the support of α(z). From (23) to (25) it follows that

T (−k, k)
k

2i
= b(k). (26)

Multiply (23) by α(z) and then Fourier transform over z to find

T (p, k) = α(p, k) − k2
∫ ∞

−∞
α(p, q)T (q, k)

q2 − k2 − iε
dq (27)

where p is the Fourier conjugate of z and use has been made of the bilinear form of the Green
function. Razavy [12] also derives another integral equation by interchanging the roles of
unperturbed and perturbed operators, with L0 viewed as a perturbation of −V on a reference
operator L:

α(p, k) = T (p, k) + k2
∫ ∞

−∞
T ∗(k, q)T (p, q)

q2 − k2 − iε
dq. (28)

Finally, define W (k) as essentially the Fourier transform of the sought after perturbation, α:

W (k) ≡ α(−k, k) =
∫ ∞

−∞
e2ikzα(z) dz (29)

and recognize that predicting W (k) for all k produces α(z).
From (28), we find, after setting p = −k,

W (k) = α(−k, k) = T (−k, k) + k2
∫ ∞

−∞
T ∗(k, q)T (−k, q)

q2 − k2 − iε
dq. (30)

The left-hand member of (30) is the desired solution, W (k), but the right-hand member requires
both T (−k, k) that we determine from 2ib(k)/k and T ∗(k, q)T (−k, q) for all q .

We cannot directly determine T (k, q) for all q from measurements outside α—only
T (−k, k) from reflection data and T (k, k) from transmission data. If we could determine
T (k, q) for all q , then (30) would represent a closed form solution to the (multi-dimensional)
inverse problem. If T (−k, k) and T (k, k) relate to the reflection and transmission coefficients,
respectively, then what does T (k, q) mean for all q?

Let us start with the integral form for the scattered field

�s(z, k) = 1

2π

∫ ∫
eik′(z−z′)

k2 − k ′2 − iε
dk ′ k2α(z′)�(z′, k) dz ′ (31)

and Fourier transform (31) going from the configuration space variable, z, to the wavenumber,
p, to find

�s(p, k) =
∫ ∫

δ(k ′ − p)e−ik′ z′

k2 − k ′2 − iε
dk ′ k2α(z′)�(z′, k) dz′ (32)

and integrate over k ′ to find

�s(p, k) = k2

k2 − p2 − iε

∫
e−ipz′

α(z′)�(z′, k) dz′. (33)
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The integral in (33) is recognized from (24) as

�s(p, k) = k2 T (p, k)

k2 − p2 − iε
. (34)

Therefore to determine T (p, k) for all p for any k is to determine �s(p, k) for all p and any
k (k = ω/c0). But to find �s(p, k) from �s(z, k) you need to compute∫ ∞

−∞
e−ipz�s(z, k) dz, (35)

which means that it requires �s(z, k) at every z (not just at the measurement surface, i.e., a
fixed z value outside of α). Hence (30) would provide W (k) and therefore α(z), if we provide
not only reflection data, b(k) = T (−k, k)2i/k, but also the scattered field, �s, at all depths, z.

Since knowledge of the scattered field, �s (and, hence, the total field), at all z could be
used in (21) to directly compute c(z) at all z, there is not much point or value in treating (30)
in its pristine form as a complete and direct inverse solution.

Moses [10] first presented a way around this dilemma. His thinking resulted in the inverse
scattering series and consisted of two necessary and sufficient ingredients: (1) model type
combined with (2) a solution for α(z) and all quantities that depend on α, order by order in the
data, b(k).

Expand α(z) as a series in orders of the measured data:

α = α1 + α2 + α3 + · · · =
∞∑

n=1

αn (36)

where αn is nth order in the data D. When the inaccessible T (p, k), |p| 	= |k|, are ignored, (30)
becomes the Born–Heitler approximation and a comparison to the inverse Born approximation
(the Born approximation ignores the entire second term of the right-hand member of (30)) was
analysed in [22].

It follows that all quantities that are power series (starting with power one) in α are also
power series in the measured data:

T (p, k) = T1(p, k) + T2(p, k) + · · · , (37)

W (k) = W1(k) + W2(k) + · · · , (38)

α(p, k) = α1(p, k) + α2(p, k) + · · · . (39)

The model type (i.e., acoustic constant density variable velocity in the equation for
pressure) provides a key relationship for the perturbation, V = k2α:

α(p, k) = W

(
k − p

2

)
(40)

that constrains the Fourier sandwich, α(p, k), to be a function of only the difference between k
and p. This model type, combined with order by order analysis of the construction of T (p, k)

for p 	= k required by the series, provides precisely what we need to solve for α(z).
Starting with the measured data, b(k), and substituting W = ∑

Wn , T = ∑
Tn from (37)

and (38) into (30), we find
∞∑

n=1

Wn(k) = 2i

k
b(k) + k2

∫
dq

q2 − k2 − iε

( ∞∑
n=1

T ∗
n

∞∑
n=1

Tn

)
. (41)

To first order in the data, b(k), k > 0 (note that b∗(+k) = b(−k), k > 0), equation (41)
provides

W1(k) = 2i

k
b(k) (42)
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and (42) determines W1(k) for all k. From (42) together with (29) to first order in the data

W1(k) = α1(−k, k) =
∫ ∞

−∞
α1(z)e2ikz dz, (43)

we find α1(z). The next step towards our objective of constructing α(z) is to find α2(z).
From W1(k) we can determine W1(k − p)/2 for all k and p and from (40) to first order in

the data

α1(p, k) = W1

(
k − p

2

)
, (44)

which in turn provides α1(p, k) for all p, k. The relationship (44) is model type in action as seen
by exploiting the acoustic model with variable velocity and the constant density assumption.

Next, (28) provides to first order α1(p, k) = T1(p, k) for all p and k. This is the critically
important argument that builds the scattered field at all depths, order by order, in the measured
values of the scattered field. Substituting the α1, T1 relationship into (30), we find the second
order relationship in the data:

W2(k) = k2
∫ ∞

−∞
dq

q2 − k2 − iε
T ∗

1 (k, q)T1(−k, q) (45)

and

W2(k) =
∫ ∞

−∞
e2ikzα2(z) dz. (46)

After finding α2(z) we can repeat the steps to determine the total α order by order:

α = α1(z) + α2(z) + · · · .
Order by order arguments and the model type allow

T1(p, k) = α1(p, k)

for all p and k, although, as we observed, the higher order relationships between Ti and αi are
more complicated:

T2(p, k) 	= α2(p, k)

T3(p, k) 	= α3(p, k)

...

Tn(p, k) 	= αn(p, k).

From a physics and information content point of view, what has happened? The data D
collected at e.g. z = 0, �s(z = 0, ω) determine b(k). This in turn allows the construction of
T (p, k), where k = ω/c0 for all p order by order in the data. Hence the required scattered
wavefield at depth, represented by T (p, k) for all p, (30), is constructed order by order, for a
single temporal frequency, ω, using the model type constraint. The data at one depth for all
frequencies are traded for the wavefield at all depths at one frequency. This observation, that
in constructing the perturbation, α(z), order by order in the data, the actual wavefield at depth
is constructed, represents an alternate path or strategy for seismic inversion (see [23]).

If the inverse series makes these model type requirements for its construction, how do the
free-surface removal and internal multiple attenuation subseries work independently of earth
model type? What can we anticipate about the attitude of the imaging and inversion at depth
subseries with respect to these model type dependence issues?
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5.3. The operator V for a class of earth model types

Consider once again the variable velocity, variable density acoustic wave equation(
ω2

K
+ ∇ · 1

ρ
∇

)
P = 0 (47)

where K and ρ are the bulk modulus and density and can be written in terms of reference
values K0 and ρ0, and perturbations a1 and a2:

1

K
= 1

K0
(1 + a1)

1

ρ
= 1

ρ0
(1 + a2)

L0 = ω2

K0
+ ∇ · 1

ρ0
∇ (48)

V = ω2

K0
a1(r) +

(
∇ · a2(r)

ρ0
∇

)
. (49)

We will assume a 2D earth with line sources and receivers (the 3D generalization is
straightforward). A Fourier sandwich of this V is

V (p, k; ω) =
∫

e−ip·rVeik·r dr = ω2

K0
a1(k − p) +

k · p
ρ0

a2(k − p) (50)

where p and k are arbitrary 2D vectors. The Green theorem and the compact support of a1

and a2 are used in deriving (50) from (49). For an isotropic elastic model, (50) generalizes for
VPP (see [3, 24, 25]):

V PP(p, k; ω) = ω2

K0
a1(k − p) +

k · p
ρ0

a2(k − p) − 2β2
0

ω2
|k × p|2a3(k − p) (51)

where a3 is the relative change in shear modulus and β0 is the shear velocity in the reference
medium.

The inverse series procedure can be extended for perturbation operators (50) or (51), but
the detail will differ for these two models. The model type and order by order arguments still
hold. Hence the 2D (or 3D) general perturbative form will be

V (p, k; ω) = V1(p, k; ω) + · · ·
where p and k are 2D (or 3D) independent wavevectors that can accommodate a set of earth
model types that include acoustic, elastic and certain anelastic forms. For example:

• acoustic (constant density):

V = ω2

α2
0

a1,

• acoustic (variable density):

V = ω2

α2
0

a1 + k · k′a2,

• elastic (isotropic, P–P):

V = ω2

α2
0

a1 + k · k′a2 − 2
β2

0

ω2
|k × k′|2a3,

where α0 is the compressional wave velocity, a1 is the relative change in the bulk modulus, a2

is the relative change in density and a3 is the relative change in shear modulus.
What can we compute in the inverse series without specifying how V depends on

(a1), (a1, a2), . . .? If we can achieve a task in the inverse series without specifying what
parameters V depends on, then that task can be attained with the identical algorithm
independently of the earth model type.
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5.4. Free-surface multiple removal subseries and model type independence

In (11)–(14), we presented the general inverse scattering series without specifying the nature
of the reference medium that determines L0 and G0 and the class of earth model types that
relate to the form of L, L0 and V. In this section, we present the explicit inverse scattering
series for the case of marine acquisition geometry. This will also allow the issue of model type
independence to be analysed in the context of marine exploration.

The reference medium is a half-space, with the acoustic properties of water, bounded by
a free surface at the air–water interface, located at z = 0. We consider a 2D medium and
assume that a line source and receivers are located at (xs, εs) and (xg, εg), where εs and εg are
the depths below the free surface of the source and receivers, respectively.

The reference operator, L0, satisfies

L0G0 =
(∇2

ρ0
+

ω2

K0

)
G0(x, z, x ′, z′; ω)

= −δ(x − x ′){δ(z − z′) − δ(z + z′)}, (52)

where ρ0 and K0 are the density and bulk modulus of water, respectively. The two terms in the
right member of (52) correspond to the source located at (x ′, z′) and the image of this source,
across the free surface, at (x ′,−z′), respectively; (x, z) is any point in 2D space.

The actual medium is a general earth model with associated wave operator L and Green
function G. Fourier transforming (52) with respect to x , we find[

1

ρ0

d2

dz2
+

q2

ρ0

]
G0(kx, z, x ′, z′; ω) = − 1

(2π)1/2
e−ikx x′ {δ(z − z′) − δ(z + z′)}. (53)

The causal solution of (53) is

G0(kx, z, x ′, z′; ω) = ρ0√
2π

e−ikx x′

−2iq
(eiq|z−z′ | − eiq|z+z′ |), (54)

where the vertical wavenumber, q , is defined as

q = sgn(ω)

√
(ω/c0)2 − k2

x,

and c0 is the acoustic velocity of water:

c0 = √
K0/ρ0.

With G0 given by (54), the linear form, (11), can be written as

D(kg, εg, ks, εs; ω) = ρ2
0

qgqs
sin(qgεg) sin(qsεs)V1(kg, qg, ks, qs; ω), (55)

where V (kg, ks, ω) = V1(kg, ks, ω) + V2(kg, ks, ω) + · · · and kg, ks are arbitrary two
dimensional vectors defined as

kg = (kg,−qg), ks = (ks, +qs).

The variable kz is defined as

kz = −(qg + qs),

where

qg = sgn(ω)

√
(ω/c0)2 − k2

g, (56)

and

qs = sgn(ω)

√
(ω/c0)2 − k2

s . (57)
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The first term in the inverse series in two dimensions (11′) in terms of deghosted data, D̃
is

D

(e2iqgεg − 1)(e2iqsεs − 1)
= Gd

0V1Gd
0 = D̃(kg, εg, ks, εs; ω). (58)

Using the bilinear form for Gd
0 on both sides of V1 in (58) and Fourier transforming both sides

of this equation with respect to xs and xg we find

eiqgεg eiqsεs
V1(kg, ks; ω)

qgqs
= D̃(kg, εg, ks, εs; ω) (59)

where kg and ks are now constrained by |kg| = |ks| = ω/c0 in the left-hand member of (59).
In a 2D world, only the three dimensional projection of the five dimensional V1(p, k; ω)

is recoverable from the surface measurements D(kg, εg, ks, εs; ω) which is a function of
three variables, as well. It is important to recognize that you cannot determine V1 for a
general operator V1(r1, r2; ω) or V1(k′, k; ω) from surface measurements and only the three
dimensional projection of V1(k′, k; ω) with |k| = |k′| = ω/c0 is recoverable. However, this
three dimensional projection of V1 is more than enough to compute the first order changes,
a1

i (r), for a given earth model type in any number of two dimensional earth model parameters
(a1

i is the first order approximation to ai(r)). After solving for a1
1(r), a1

2(r), a1
3(r), . . ., you

could then use a1
1, a1

2, a1
3, . . . to compute V1(k′, k, ω) for all k′, k and ω. This is the direct

extension of the first step of the Moses [10] procedure where model type is exploited.
V2 is computed from V1 using (12):

(G0V2G0)m = −(G0V1G0V1G0)m (60)

and is written in terms of the general V1 form

V2(k′
g, ks, ω) = − 1

2π

∫ ∫ ∫ ∫
e−ik′

g·r1 V1(r1, r2, ω)G0(r2, r3; ω)

× V1(r3, r4; ω)eiks·r4 dr1 dr2 dr3 dr4

= −
∫ ∫

V1(k′
g, r2, ω)G0(r2, r3, ω)V1(r3, ks, ω) dr2 dr3. (61)

Expressing G0 as a Fourier transform over x2 − x3, we find

G0(x2 − x3, z2, z3; ω) = 1√
2π

∫
dk G0(k, z2, z3; w)eik(x2−x3) (62)

and

G0(k, z2, z3; ω) = 1√
2π

∫
e−ikx dx G0(x, z2, z3; ω). (63)

For G0 = Gd
0, (63) reduces to

Gd
0(k, z2, z3; ω) = −eiq|z2−z3|

2iq
(64)

where

q =
√(

ω

c0

)2

− k2.

For the marine case where there is a free surface, the Green function G0 satisfies(
∇2 +

ω2

c2
0

)
G0 = −(δ(r2 − r3) − δ(r2 − ri

3)) (65)
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Figure 11. An illustration of k and k′.

and a Fourier transform over x2 − x3 yields(
d2

dz2
2

− k2
x +

ω2

c2
0

)
G0 = −(δ(z2 − z3) − δ(z2 − zi

3)) (66)

where zi
3 is the image across the free surface of z3 (with the free surface at z = 0, zi

3 = −z3).
The causal solution to (66) is

G0(kx, z2, z3, ω) = −eiq|z2−z3| − eiq|z2+z3|

2iq
= Gd

0 + GFS
0 .

The contribution to V2 from the additional portion of the Green function due to the free
surface, GFS

0 = eiq|z2+z3 |
2iq , will be from (61)

1√
2π

V2(kg, ks, ω) =
∫

V1(kg, r2; ω) dr2 ·
∫ ∫

dk
eiq|z2+z3|

2iq
eik(x2−x3)V1(r3, ks; ω) dr3. (67)

Using the convention

V1(k1,−k2; ω) ≡ 1

2π

∫
e−ik1·r1 V1(r1, r2; ω)eik2·r2 dr1 dr2

where k1 ≡ kout = (kg,−qg) and k2 ≡ kin = (ks, qs). The portion of V2 due to GFS
0 has the

form
√

2π

∫
dk

1

2iq
V1(kg,−qg, k, q, ω)V1(k,−q, ks, qs, ω) = V FS

2 (kg,−qg, ks, qs, ω) (68)

where k′ ≡ kout and k ≡ kin (figure 11).
The portion of V2 due only to GFS

0 , VFS
2 , is computable with V1(kg, ks; ω) where

|kg| = |ks| = ω/c0, which is directly related to D̃ without assumptions concerning the
relationship between V1 and relative changes in earth material properties. It is that portion of
the inverse series that forms the free-surface demultiple subseries. Therefore, the free-surface
demultiple algorithm is independent of the earth model type for the class of models we are
considering. The class of models are those for which the general form, V (k, k′, ω), is sufficient
to describe the perturbation in the wavenumber, temporal frequency domain, and includes all
elastic and certain anelastic models. If portions with |k′| 	= ω/c0 were required, then a model
type constraint to compute those components would be required—this is not the case.

A summary of the free-surface demultiple algorithm (from [5, 14]) is as follows:

(1) The data, D, are computed by subtracting the reference field, G0 = Gd
0 + GFS

0 , from the
total field, G, on the measurement surface.
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(2) Compute the deghosted data, D̃ where D̃ = D/[(e2iqgεg − 1)(e2iqsεs − 1)], from D and the
source and receiver deghosting factors in the k–ω domain, Gd

0/G0 = 1/(e2iqε − 1). qs,
qg and εs, εg are the vertical wavenumbers and the depths below the free surface of the
source and receiver, respectively.

(3) The series for deghosted and free-surface demultipled data, D′, is given in terms of the
deghosted data D′

1 as follows:

D′
n(kg, ks, ω) = 1

iπρ0 B(ω)

∫ ∞

−∞
dk qeiq(εg+εs) D′

1(kg, k, ω)D′
n−1(k, ks, ω),

n = 2, 3, 4, . . . , (69)

and

D′(kg, ks, ω) =
∞∑

n=1

D′
n(kg, ks, ω) (70)

where D′(kg, ks, ω) ≡ D′(kg, εg, ks, εs, ω), B(ω) and ρ0 are the source signature and
reference density, respectively. The data D′ consist of deghosted primaries and internal
multiples only and D′

1 = D̃. Hence, D′ represents the deghosted data without free-
surface multiples. The mathematical details of (69) and (70) follow from (11′)–(13′) and
are provided in [14] and [5]. Equations (69) and (70) are the prestack multi-dimensional
generalizations of the one dimensional, normal incidence free-surface-elimination map
presented in the appendix of [26].

A rigorous integral equation formulation relating data with free surface events to data
without those events is derived by Fokkema and van den Berg [27]. A series expansion
solution of the latter integral equation agrees exactly with the inverse scattering free-surface
multiple removal subseries represented by (69) and (70). A feedback loop method for free-
surface multiple removal was also described by Berkhout [28]. The differences between the
inverse subseries for free-surface multiple removal and the feedback method are discussed in
the section on data examples.

6. Internal multiple attenuation

6.1. The subseries that attenuates internal multiples

In the previous section, we described how to achieve the goal of separating the removal of
surface multiples from the other three tasks of inversion. We now address the more difficult
issue of separating the task of attenuating internal multiples from the last two goals of migration
and inversion of primaries.

When we separated surface multiples from the other three goals we were able to isolate
a portion of the Green function, G0, namely GFS

0 , whose purpose in the forward and inverse
series was to produce and remove, respectively, events due to the presence of the free surface.
Unfortunately, for internal multiples, we do not have that relatively straightforward road to
follow.

If we attempt to repeat the reasoning that proved useful with surface multiples, we seek an
example that has neither free-surface nor internal multiples. We can imagine a problem where
we have two half-spaces; that is, we wish to invert a model that has only a single horizontal
reflector. In that case, the scattered field, the primary, requires for its description a complete
forward scattering series in terms of Gd

0 and the exact perturbation, V. The inverse series for V
in terms of the data, the primary, requires the full series and Gd

0. The lesson, from this single
reflector example, is that the complete Gd

0 is required in the inverse series when the only tasks
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are locating reflectors and estimating parameters. Hence, we cannot separate Gd
0 into an extra

part that exists only in the presence of internal multiples, but which is not present when internal
multiples are absent. Thus, a fundamentally different approach is required for the attenuation
of internal multiples.

We next present the logical path that leads to this new approach. The forward series
generates primaries and internal multiples through the action of Gd

0 on V. The inverse series
constructs V from the action of Gd

0 on the recorded data. The action of Gd
0 on data must

remove internal multiples on the way to constructing V. In an earlier section, we presented an
analysis and interpretation of the forward series and, specifically, how Gd

0 generates primaries
and internal multiples of a given order. However, before we focus on the internal multiple
issue, it is important to note an essential difference between the scattering theory pictures of
free-surface and internal multiple generation.

Given data, D′, without free-surface events, the forward series generates data, D, with
free-surface events by the action of GFS

0 on D′. Each term in that series generates one order
of free-surface multiple—that is, all events that have reflected from the free surface a given
number of times. The modelling that GFS

0 provides is an exact description of a wave propagating
in the water and reflecting from the free surface. Hence, GFS

0 generates in the forward series
and removes in the inverse series one order of free-surface multiple with each term.

The situation for primaries and internal multiples is quite different. For those events, we
adopt a point-scatterer model, and every term in that forward series contributes to (but does not
by itself fully describe) either primary or internal multiples. Each primary or internal multiple
requires an infinite series for its construction. We adopt the simpler surface reflection model
when describing wave phenomena associated with reflectors at or above the measurement
surface; we adopt the point-scatterer model for waves associated with subreceiver/source
structure. The former is our model of choice when we have accurate or nearly accurate
information about velocities and structure and the latter is our model when that information is
unavailable or unreliable.

The location and properties of the free surface are captured in GFS
0 and it is that specific

and well-defined free surface reflection experience (or its absence) which allows free-surface
multiples to be separated from primaries and internal multiples with one term creating (in the
forward series) and one term removing (in the inverse series) all events that have experienced
the free surface a given number of times. The number of GFS

0 factors in a term in the
subseries (12′), (13′) corresponds to the order of free-surface multiples that it removes. The
internal multiples have (by definition) all of their downward reflections below the free surface
and since we assume absolutely no subsurface information those reflectors are assumed to be
completely unknown in both location and character.

This makes the problem of distinguishing the generation (and removal) of internal
multiples from primaries more difficult in terms of direct propagation through water, Gd

0, and
the difference between earth and water properties, V. As mentioned earlier, a series is required
to generate any primary or any internal multiple in terms of Gd

0 and V and new concepts are
required to distinguish the forward subseries for constructing primaries from the subseries for
internal multiples and then to conjecture on how to separate the tasks that act on these events
in the inverse series.

It is no surprise that the first term in the forward series that constructs and first term in
the inverse series that eliminates internal multiples of a given order are approximate. The
efficiency of the first term in the removal subseries of internal multiples is remarkably higher
than the first term in the forward creation; e.g., it takes an infinite series to get the important
time prediction (phase) of any internal multiple in the forward series (in terms of Gd

0 and V)
whereas, as we will demonstrate, the first term in the removal series (of an internal multiple
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(a) (b)

Figure 12. The leading term contribution to the generation of first order internal multiples is
represented in (a) and suggests the leading term contribution, in the inverse series, to the removal
of first order internal multiples represented in (b). Gd

0, V and V1 are the whole-space Green function,
the perturbation operator and the ‘migrated data-like’ first order approximation to V, respectively.

of a given order) predicts the time precisely and approximates well the amplitude (in terms
of Gd

0 and D′) of all multiples of that order—from all reflectors at all depths at once. The
efficiency of the first term of the inverse subseries for internal multiple elimination accounts
for its practical value and impact.

The fact that generating primaries and internal multiples of a given order requires an
infinite series suggests that an infinite series of terms, each involving operations with Gd

0 on
D′, is required to remove internal multiples of a given order. The particular inverse scattering
subseries for attenuating all internal multiples, described here, chooses only the leading and
most significant contribution from the removal series of each order of multiple, forming a
series that attenuates well, rather than eliminates, all internal multiples.

In our earlier discussion of the forward series for primaries and internal multiples we
argued that primaries are constructed starting with the first term in the series and that first
order internal multiples have their leading contribution in the third term. Similarly, second
order internal multiples are generated by contributions starting with the fifth term in the forward
series. In general, nth order internal multiples have contributions from all terms starting at
term 2n + 1. In addition, the portion of the third term that starts to build the first order internal
multiple was distinguished from the part that has a third order contribution to constructing
primaries. The leading term contribution to constructing a class of multiples in the forward
series suggests the leading term contribution for their removal in the inverse series (figure 12).

The first two terms in the forward series do not contribute to generating first order internal
multiples. Similarly, it is argued that the first two terms in the inverse series do not contribute
to their removal. The mathematical realization of figure 12(a) is the leading contribution to
the generation of first order internal multiples; it suggests the corresponding mathematical
expression for the leading order attenuation of those multiples. To realize, or algorithmically
capture the physics associated with figure 12(b), select the portion of the third term of the
inverse series with z1 > z2 and z3 > z2.

With this purpose in mind we examine V3, the third term in the inverse series. In contrast
with the subseries generated by GFS

0 , for free-surface multiple attenuation (13′), the three
terms in V3 do not sum to a single term when the inverse series is generated with the direct
propagating Green function, Gd

0. From the fact that GFS
0 can be viewed as the Green function

due to an image source above the free surface and is therefore outside the volume, it follows
that for all z, z′ inside the volume (i.e., below the free surface) GFS

0 satisfies the homogeneous
differential equation(∇2

ρ0
+

ω2

K0

)
GFS

0 = 0.
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The fact that GFS
0 satisfies a homogeneous differential equation leads in turn to the mathematical

simplification

(Gd
0V1GFS

0 V1GFS
0 V1Gd

0)m = −(Gd
0V1GFS

0 V2Gd
0)m

= −(Gd
0V2GFS

0 V1Gd
0)m. (71)

In computing (71), GFS
0 does not require an off-shell k 	= k′ contribution since its effective

source (the image source) is, by definition, outside the volume supporting V1 and V2 and,
hence, outside the integrals that compute terms in that particular subseries. This gives another
way to understand why the free-surface demultiple algorithm is automatically model type
independent. Model type was needed by Razavy [12] to provide T1(k, p) for k 	= p. Since
GFS

0 never requires k 	= p in its integrations with V1, it does not depend upon the inverse series
model type argument to generate this subseries. Hence the free-surface multiple removal
subseries is independent of the earth model type. In contrast, Gd

0 satisfies the inhomogeneous
differential equation(∇2

ρ0
+

ω2

K0

)
Gd

0 = −δ(z − z′)δ(x − x ′).

From (13′′) and using Gd
0, we have:

(Gd
0V3Gd

0) = −(Gd
0V1Gd

0V2Gd
0) − (Gd

0V2Gd
0V1Gd

0) − (Gd
0V1Gd

0V1Gd
0V1Gd

0)

= (Gd
0V31Gd

0) + (Gd
0V32Gd

0) + (Gd
0V33Gd

0), (72)

where

V31 ≡ −V1Gd
0V2, (73)

V32 ≡ −V2Gd
0V1, (74)

and

V33 ≡ −V1Gd
0V1Gd

0V1. (75)

In contrast to the case for GFS
0 , these three terms V31, V32 and V33 make distinct contributions.

The first two terms, (Gd
0V31Gd

0) and (Gd
0V32Gd

0), in the right member can be shown [29]
to always contain a refraction-like (i.e., not reflection-like) scattering component and are
thus not involved with the task of removing internal multiples. We define a reflection-like
scattering (or inverse scattering) as one that changes its propagation direction with respect
to the measurement surface after the interaction with V (or V1). Refraction-like scattering
contributions in V3 contribute to the other inversion tasks (migration and inversion) that act on
primaries. The third term on the right-hand side,

(Gd
0V33Gd

0) = −(Gd
0V1Gd

0V1Gd
0V1Gd

0),

can be broken up into four parts corresponding to the four diagrams in figure 13.
Choose the portion of (Gd

0V33Gd
0)m corresponding to figure 13(d); a diagram that

represents a contribution to multiple reflection attenuation. (Gd
0V31Gd

0)m and (Gd
0V32Gd

0)m

do not support a diagram of the figure 13(d) variety and therefore were not selected for that
task. The mathematical and algorithmic realizations of figure 13(d) take place on requiring
a lower–higher–lower relationship between the successive vertical locations of the data in
the integral. Using this criterion, the appropriate portion of each of the odd terms in the
series is selected. The generalization of the diagram found in figure 13(d) is used to select
the appropriate portion of the leading order contribution to removing higher order internal
multiples.
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(a)

(c) (d)

(b)

Figure 13. Diagrams corresponding to different portions of 
sGd
0V1Gd

0V1Gd
0V1Gd

0
g. Only (d),
with z1 > z2 and z2 < z3, contributes to the attenuation of first order internal multiples (see also
figure 12(b)).

6.2. Internal multiple attenuation and model type dependence

For the direct propagating Green function, Gd
0, we have from (64)

−eiq|z2−z3|

2iq
= − 1

2π

∫ ∞

−∞
eiq ′(z2−z3)

q2 − q ′2 + iε
dq ′

and separating the integral into a principal value and a contribution from contours around the
poles q ′ = ±q we obtain

1

q2 − q ′2 + iε
= PV

(
1

q2 − q ′2

)
+ iπδ(q ′2 − q2)

= PV

(
1

q2 − q ′2

)
+

1

2π

(
iπ

1

2|q|(δ(q
′ − q) + δ(q ′ + q))eiq ′(z2−z3)

)
.

This contour around the pole contribution leads to∫ ∞

−∞
dk

[
V1(kg,−qg, k, q)V1(k, q, ks, qs)

2iq
+

V1(kg,−qg, k,−q)V1(k,−q, ks, qs)

2iq

]

and is computable directly from V1(kg, qg, ks, qs).
The portion of V2 that depends on the principal value part of the contribution to Gd

0 is not
computable from �s(xg, εg, xs, εs, ω) without assuming a model type; hence it was excluded
from the computation. Since the internal multiple algorithm derives from the analogous iπδ

contributions from the V1V1V1 or V33 (see (75)) contribution from the third term in the series
(equation (13′′)),∫

dk dk ′
[

V1(kg,−qg, k, q)V1(k, q, k ′,−q ′)V1(k ′,−q ′, ks, qs)

(2iq)(2iq ′)
+ · · ·

]

is once again computable directly from surface data without assumption of model type.
An important point to recognize in deriving the internal multiple algorithm, not emphasized

in previous publications, is that although the ‘W’ or lower–higher–lower relationship from the
forward series provides a guide for the examination of a similar diagram in the inverse, to
actually realize an internal multiple algorithm, the quantity taken through the diagram was not
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V1 but rather b1: the effective data generated by a single frequency plane-wave incident field
given by

b1(kg, εg, ks, εs, qg + qs) = (−2iqs)D′(kg, εg, ks, εs, ω) = V1(kg, qg, ks, qs, ω)

−2iqg
.

This was originally deduced through empirical evaluation and testing of different candidate
quantities (e.g. a first and natural guess of taking V1 through ‘W’ does not lead to an attenuation
algorithm) that, in turn, allow different subdivisions of the V33 term in terms of a ‘W’
diagram [5, 29].

The fact that b1 results in localized incident and scattered (reflected) wavefronts in every
dimension (without the wake behind the wavefront in the 1D and 2D impulse response
represented by D′) is the only and best understanding or hint we have for this fact to date. That
is, it seemed that the internal multiple attenuation algorithm favoured a quantity to be taken
through the ‘W’ diagram that in every dimension would correspond to a scattered field with all
spike-like or localized events. Neither V1 nor D′ satisfies that criterion in every dimension, but
−2iqs D′ does. Hence, the forward construction and inverse removal ‘W’ diagram symmetry for
the internal multiple went only so far and the fact that b1 is the quantity that when transformed
to (kg, qg, z) and broken into lower–higher–lower contributions results in the internal multiple
algorithm remains partly intuitive and empirical in its foundation and invites further physical
interpretation and mathematical analysis. A deeper comprehension of the workings of the
inverse series will also benefit the current research on imaging and inverting primaries.

The internal multiple attenuation algorithm operates in a 1D, 2D or 3D earth and is
independent of the model type because it derives from a algorithm depending on the portion
of V1 and V3 that only requires |kg| = |ks| = ω/c0.

The inverse scattering series is not computable for a general operator of the form V(p, k, ω)

where the vectors p and k have the same dimension as the subsurface, e.g., they are three
dimensional vectors for a three dimensional earth, but are otherwise independent of each other
and ω. However, the subseries of the inverse series for V(p, k, ω) that results from only the
iπδ contributions, where |p| = |k| = ω/c0, is directly computable without assuming a model
type. When seeking model type-independent algorithms (as is the case for the free-surface
demultiple algorithm), you either demonstrate that the principal value contribution is zero,
or in the case of the internal multiple attenuation algorithm you choose from the beginning
only the portion of the inverse series to task subdivide that is independent of model type. A
model type-independent task-specific subseries provides a selection criterion for seeking and
isolating certain terms and ignoring others.

We anticipate that the refraction-like inverse-scattering contributions that play a role in
imaging primaries at depth and progressing from internal multiple attenuation to elimination
will be model type independent when either the measured wavefield contains both reflection and
transmission data (e.g., surface reflection and vertical seismic profiles) or when transmission
data can be constructed from reflection data. The fourth task, that of earth mechanical properties
identification, will certainly require specification of what set of parameters you seek to identify
and will therefore be model-type specific. That three of the four tasks associated with inversion
would be model-type independent speaks to the conceptual and practical value of that approach
and strategy.

6.3. Internal multiple attenuation algorithm

The first term in the internal multiple attenuation subseries is the data, D′, consisting of
primaries and internal multiples. The second term in this series comes from a portion of the
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third term in the inverse series ((72) and (75)). This portion of the third term,

b3(kg, ks, qg + qs) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dk1 e−iq1(εg−εs) dk2 eiq2(εg−εs)

×
∫ ∞

−∞
dz1 ei(qg+q1)z1b1(kg, k1, z1)

∫ z1

−∞
dz2 ei(−q1−q2)z2 b1(k1, k2, z2)

×
∫ ∞

z2

dz3 ei(q2+qs)z3 b1(k2, ks, z3), (76)

is chosen to satisfy z1 > z2 and z2 < z3. b1 is defined in terms of the original prestack data
with free-surface multiples eliminated, D′, and is defined by

D′(kg, ks, ω) = (−2iqs)
−1 B(ω)b1(kg, ks, qg + qs) (77)

where B(ω) is the source signature and, once again, b1 represents the data that would result
from a single frequency incident plane wave. The data with internal multiples attenuated, DIM,
are

DIM(kg, ks, ω) = (−2iqs)
−1 B(ω)

∞∑
n=0

b2n+1(kg, ks, qg + qs) (78)

where DIM contains the primaries with their wavelet. A recursive relationship that
generalizes (78) and provides b2n+1 in terms of b2n−1 for n = 1, 2, 3, . . . is given in [29]
as

b2n+1(kg, ks, qg + qs) = 1

(2π)2n

∫ ∞

−∞
dk1 e−iq1(εg−εs)

×
∫ ∞

−∞
dz1 ei(qg+q1)z1b1(kg, k1, z1)A2n+1(k1, ks, z1),

n = 1, 2, 3, . . . , (79)

where

A3(k1, ks, z1) =
∫ ∞

−∞
dk2 eiq2(εg−εs)

∫ z1

−∞
dz2 ei(−q1−q2)z2 b1(k1, k2, z2)

×
∫ ∞

z2

dz3 ei(q2+qs)z3b1(k2, ks, z3)

and

A2n+1(k1, ks, z1) =
∫ ∞

−∞
dk2 eiq2(εg−εs)

∫ z1

−∞
dz2 ei(−q1−q2)z2 b1(k1, k2, z2)

×
∫ ∞

−∞
dk3 e−iq3(εg−εs)

∫ ∞

z2

dz3 ei(q2+q3)z3

× b1(k2, k3, z3)A2n−1(k3, ks, z3), n = 2, 3, 4, . . . .

As we mentioned, the full series for V can have restrictive convergence properties (see,
e.g., [14]). In contrast, numerical tests indicate that the internal multiple attenuation subseries
in (79) always converges and is insensitive to missing low frequency information [29–31].

Free-surface multiple attenuation methods operate one temporal frequency at a time
(see (69) and (70)); in contrast, the attenuation of an internal multiple from a single frequency
of data requires data at all frequencies (see (78) and (79)). This requirement derives from
the integral over temporal frequency in the transform of qg + qs to z. With band-limited data
this transform is only approximate; nevertheless, the truncated integral remains effective at
attenuating multiples. As in the case of the free-surface multiple removal algorithm, each term
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in the series in (78) attenuates a given order of internal multiple and prepares the higher order
internal multiples for the higher order demultiple terms in the series. Since eikz zb1(kg, ks, ω)

is a downward continuation of shots and receivers to depth z in the reference medium and
subsequent integration over kz is a simple constant Jacobian away from integration over ω

(t = 0 imaging condition), it follows that b1(kg, ks, z) corresponds to uncollapsed migration
[3, 32]. Indeed, the algorithm can be interpreted as a sequence of these uncollapsed migrations
restricted to lower–higher–lower pseudo-depths.

Pseudo-depth and migration are terms often used in exploration geophysics. Pseudo-
depth refers to the location of an image derived using the background reference velocity.
Since the reference velocity is constant (water), pseudo-depth is essentially vertical travel
time. Migration refers to the imaging process where subsurface reflectors are ‘migrated’
from the incorrect to the correct location. Uncollapsed migration is a generalization of the
original migration concept; sources and receivers are downward continued to a common depth
level z, time is evaluated at zero and information at xg 	= xs is retained. The latter retention of
xg 	= xs distinguishes uncollapsed migration from migration; it provides local angle-dependent
reflection coefficients rather than the angle-averaged reflection coefficient of the traditional
xg = xs imaging condition (see [32]).

The process of obtaining a primaries-only data set starts with D: a data set with free-surface
and internal multiples and primaries. D is then input into the free-surface demultiple algorithm
to produce D′, which is then used as input to the internal multiple attenuation algorithm to
output data that contain primaries.

7. Analytic, numerical and field data examples of free-surface and internal multiple
attenuation

7.1. Purposeful perturbation

As we have described, the combination of the apparent lack of robust convergence of the entire
inverse series, without a level of a priori information that is generally not achievable, and the
recognition that it nevertheless represented the only complete inversion formalism for multi-
dimensional acoustic and elastic waves motivated the search for task-specific subseries that
would have more favourable properties. At the same time, another issue that these task-specific
and well-converging subseries faced was how many terms would be required in practice to
achieve a certain level of effectiveness towards the specific task associated with that subseries.
The concept of purposeful perturbation was developed to address the latter issue.

The idea is to identify the specific purpose or role that each term within a task-specific
subseries performs independent of the subsurface or target over which the recorded data were
collected.

The terms of the series perform uncoupled and coupled tasks; the task-specific subseries
perform isolated, uncoupled tasks. We define the purposeful perturbation concept as knowledge
of precisely what each term within a given task-specific subseries is designed to accomplish.
For example, a term in the inverse scattering subseries for eliminating free-surface multiples
removes precisely one order of free-surface multiple completely independent of the depth of
the water or any other property or characteristic of the earth.

7.2. 1D free-surface demultiple algorithm (example of purposeful perturbation)

If the subseries that we isolate accomplishes one of the four broad tasks (described in
section 2.5), then purposeful perturbation further determines and defines the specific role or
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Figure 14. An illustration of the free-surface multiple removal series: (a) data without a free
surface, (b) the total upgoing field in the presence of a free surface RFS and (c) the series for RFS
in terms of R.

subtask that individual terms in that subseries perform in completing the overall task associated
with that subseries. For example, if you estimate the range of depths of potential hydrocarbon
reservoirs in a given setting and the depth to the water bottom is known, then you have a good
way to determine the highest order of water bottom multiple that you need to be concerned
with and precisely the number of terms in the free-surface demultiple subseries ((69) and (70))
that can accomplish that objective.

For the simplest illustration of this purposeful perturbation concept, consider the
generation of free-surface multiples for a 1D earth, whose primary reflections and internal
multiples have a response R(ω); and, where the free surface is characterized by a reflection
coefficient of −1 for a pressure wavefield (see figure 14).

For source and receiver deghosted data and a source wavelet with unit amplitude, the
upgoing field in the presence of a free surface RFS is able to be written in terms of R(ω) by
imagining (see figure 14 (c)) the wave first leaving the source moving down into the earth; that
incident unit pressure wave generates a reflected response from the earth, R(ω), consisting
of primaries and internal multiples. This in turn propagates as a train up through the water
column until it hits the free surface, where it experiences a −1 reflection coefficient and heads
down through the water columns as −R(ω) and is incident upon the earth as a long ‘wavelet’.
The impulse response of the earth R(ω) times this effective downgoing ‘wavelet’, −R(ω),
produces a new wave moving up from the earth through the water column towards the free
surface. This process continues and results in the total upgoing wave in the presence of the free
surface, RFS(ω), in terms of the primary and internal multiple wavefield, R(ω), as follows:

RFS = R − R2 + R3 − · · ·
= R

1 + R
. (80)

Each term in (80) generates all free-surface multiples of a given order independent of any
detail of the subsurface. The order of a free-surface multiple corresponds to the number of
times that event has experienced a reflection at the free surface. Since each successive term
in (80) comes from one additional reflection at the free surface, it generates one additional
order of free-surface multiple. If you were interested in creating free-surface multiples up to a
given order, then understanding the purpose of each term in (80) allows you to know precisely
how many terms that objective would require. Solving (80) for the data without free-surface
multiples, R, we have

R = RFS

1 − RFS

= RFS + R2
FS + R3

FS + · · · . (81)
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The first term in (81), RFS, is the upgoing portion of the reflection data that contains all
primaries, internal multiples and free-surface multiples. When the second term, R2

FS, is added
to RFS two things happen: (1) all free-surface multiples that have reflected once (and only
once) from the free surface are removed and (2) all higher order free-surface multiples are
altered in preparation for higher terms, e.g., R3

FS, to remove them order by order, as well. This
well-defined action of the terms in the free-surface demultiple series is totally independent of
any water bottom or subsurface detail (of course, within an assumed 1D, 2D or 3D dimension
of the earth variation).

This is an example of purposeful perturbation; and it has enormous practical significance.
For example, if you estimate that for a given depth of water and target, only a certain order
of multiples could be troublesome, then you know precisely how many terms in the series
you need to use in your processing algorithm for that data. Equation (81) is the 1D normal
incidence special case of the general multi-dimensional inverse scattering subseries for free-
surface multiple removal (69) and (70) (see also [5, 14]).

Equation (81) is the 1D antecedent of (11′) to (13′), (69) and (70) for free-surface multiple
removal. Several observations about equations (80) and (81) are worth noting. First, the
role of GFS

0 , the extra portion of G0 due to the free surface is played by the (−1) reflection
coefficient in deriving (80) and its inverse (81). Second, the forward construction series was
a guide (and in this simple instance, more than a guide) to the inverse process. Only the free-
surface reflection coefficient (−1) terms enter (i.e., GFS

0 ) confirming the forward and removal
series (80) and (81), respectively. Focusing on only this single task, we see that no coupled
terms in GFS

0 , Gd
0 appear in the analogous and transparently simple (80) and (81), which is

consistent with, and supports, the strategy that we described for the generalized algorithm that
derives from the multi-dimensional inverse series.

Regarding some practical issues, if instead of a unit incident pulse a wavelet A(ω) was
the source signature, then (80) would become

RFS = A(ω)R

1 + R
(82)

and (81) becomes

R =
RFS

A(ω)

1 − RFS
A(ω)

= RFS

A(ω)
+

(
RFS

A(ω)

)2

+ · · · (83)

and, hence, the wavelet is a critical requirement for the free-surface multiple removal and all
subseries application (see, e.g., [33–35]).

A similar process of purposeful perturbation occurs (and has been identified) for the
internal multiple removal series. Understanding the specific purpose of each term within an
overall task reveals what has (and has not) been achieved for a given finite number of terms
providing a critically important practical guide for field data application as well as mitigating
issues of overall convergence and rate of convergence.

7.3. 1D analytic example of the internal multiple attenuation algorithm

The 2D internal multiple algorithm is described in (76)–(79). The first term in this series is

b(kg, ks, qg + qs) = −2iqs D′(kg, ks, ω)

where D′ represents the data resulting from an impulsive source and after free-surface multiple
removal. The second term in this series is b3, given by
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Figure 15. A one dimensional model with two interfaces.

b3(kg, ks, qg + qs) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dk1 eiq1(εs−εg) dk2 eiq2(εg−εs)

×
∫ ∞

−∞
dz1 ei(qg+q1)z1b1(kg,−k1, z1)

∫ z1

−∞
dz2 ei(−q1−q2)z2 b1(k1,−k2, z2)

×
∫ ∞

z2

dz3 ei(q2+qs)z3 b1(k2,−ks, z3).

The first two terms in the internal multiple attenuation series attenuate all first order internal
multiples. For a 1D earth and a normal incidence plane wave, (76) reduces to

b3(k) =
∫ ∞

−∞
dz1 eikz1 b(z1)

∫ z1

∞
dz2 e−ikz2 b(z2)

∫ ∞

z2

dz3 eikz3 b(z3). (84)

To explicitly demonstrate how the internal multiple attenuation algorithm works and to
examine its properties, we will consider the simplest model that can produce an internal
multiple. For the model shown in figure 15 the reflection data due to an impulsive incident
wave δ(t − z

c ) are

D′(t) = R1δ(t − t1) + T01 R2T10δ(t − t2) + · · ·
where t1, t2, R1, R2 are the two way times and reflection coefficients from the two reflectors
and T01 and T10 are the coefficients of transmission between model layers 0 and 1 and 1 and 0,
respectively;

D′(ω) = R1eiωt1 + T01 R2T10eiωt2 + · · · (85)

where D′(ω) is the temporal Fourier transform of D′(t).
Note that the (−2iqs) factor that multiplies D′ in the internal multiple theory is not required

in this example since we assume that the incident wave is an impulsive plane wave. The role
of (−2iqs) is to transform an incident (or reference field) G0 into a plane wave in the Fourier
domain. The input into the internal multiple algorithm is b: data with primaries and internal
multiples. This is also the first term in the multiple attenuation series, thus b1 = b and

bIM(k) = b1(k) + b3(k) + b5(k) + · · · .
The vertical wavenumber is

kz =
√

(ω/c0)2 − k2
xg

+
√

(ω/c0)2 − k2
xs

and for a 1D medium and a normal incident wave it is kz = 2 ω
c0

and

b(kz) = D(ω). (86)

The reflection data from (85) and (86) are expressed in terms of kz:

b(kz) = R1 exp

(
i

(
2ω

c0

)(
c0t1

2

))
+ T01 R2T10 exp

(
i

(
2ω

c0

)(
c0t2

2

))
+ · · · (87)
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and define the pseudo-depths z1 and z2 in the reference medium as

z1 ≡ c0t1
2

,

z2 ≡ c0t2
2

.

The input data are now expressed in terms of k = kz and z1 and z2 as

b(k) = R1eikz1 + T01 R2T10eikz2 + · · · (88)

ready for the internal multiple algorithm.
Substitute the data from (88) into the algorithm in (84). After transforming from k = kz

to z,

b(z) =
∫ ∞

−∞
e−ikzb(k) dk. (89)

The first integral in (84) towards computing b3 is∫ ∞

z′
2+ε1

dz′
3 eikz′

3(R1δ(z
′
3 − z1) + R′

2δ(z
′
3 − z2) + · · ·) (90)

where

R′
2 ≡ T01 R2T10

where ε1 is a small positive parameter chosen to ensure that the ‘W’ diagram is strictly lower–
higher–lower and avoids the lower than or equal to contribution. In actual seismic field data
application the parameter ε is chosen to be the width of the source wavelet and attests to the fact
that subresolution (i.e., thin bed multiples) will not be attenuated. The integral (90) evaluates
to

H (z1 − (z′
2 + ε1))R1eikz1 + H (z2 − (z ′

2 + ε1))R′
2eikz2

where H is the Heaviside or step function.
The second integral in (84) is∫ z′

1−ε2

−∞
(R1δ(z

′
2 − z1) + R′

2δ(z
′
2 − z2))(H (z1 − (z ′

2 + ε1))R1eikz1

+ H (z2 − (z ′
2 + ε1))R′

2eikz2 )e−ikz′
2 dz′

2

= R2
1 H ((z ′

1 − ε2) − z1)H (z1 − (z1 + ε1))eikz1 e−ikz1

+ R1 R′
2 H ((z ′

1 − ε2) − z2)H (z1 − (z2 + ε1))eikz1 e−ikz2

+ R1 R′
2 H ((z ′

1 − ε2) − z1)H (z2 − (z1 + ε1))eikz2 e−ikz1

+ (R′
2)

2 H ((z ′
1 − ε2) − z2)H (z2 − (z2 + ε1))eikz2 e−ikz2 (91)

where ε2 is a positive parameter with the same purpose as ε1 and all the underlined terms are
zero.

The third and last integral is

b3(k) =
∫ ∞

−∞
dz′

1 e−ikz′
1(R1δ(z

′
1 − z1) + R′

2δ(z
′
1 − z2))

× (R1 R′
2 H ((z ′

1 − ε2) − z1)H (z2 − (z1 + ε1))eikz2 e−ikz1 )

= eikz1 R2
1 R′

2 H (−ε2)H (z2 − z1 + ε1)eikz2 e−ikz1

+ eikz2 R1(R′
2)

2 H (z2 − z1 − ε2)H (z2 − z1 − ε1)eikz2 e−ikz1

and the underlined term is zero.
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Figure 16. Subevents for an internal multiple.

Since

R′
2 = T01 R2T10,

the prediction is

b3(k) = R1 R2
2 T 2

01T 2
10e2ikz2 e2ikz2 e−ikz1

and

b3(t) = R1 R2
2 T 2

01T 2
10δ(t − (2t2 − t1)).

From the example it is easy to compute the actual first order internal multiple precisely:

−R1 R2
2 T01T10δ(t − (2t2 − t1)).

Hence the prediction of time is perfect and the amplitude of the prediction has an extra power
of T01T10, thus defining exactly the difference between the attenuation represented by b3 and
elimination. Since T01T10 is less than one, the method will always attenuate internal multiples.
Furthermore, the residual after adding b1 to b3 has the same sign as the multiple. Hence, the
internal multiple algorithm has well-defined amplitude prediction properties. If R1 = 1/4 (a
large reflection coefficient) then T01T10 = 15/16. Therefore even with large R1, T01T10 is still
not far from 1 which explains the remarkable efficiency of the leading order term for removing
first order multiples. It produces the precise timing of all internal multiples of first order,
independent of where the upward and downward reflections occur and approximates well
their amplitudes (always less than the actual); the precise relationship between the internal
multiple amplitude and the b3 prediction is quantified. Since the difference in amplitude is
related to transmission information, the internal multiple predictor could also provide indirect
but potentially useful overburden transmission estimates. Hence, while it is accurate to say
that the internal multiple attenuation algorithm does not predict the exact amplitude, it is not
accurate to say that no significant useful amplitude information is predicted by the internal
multiple attenuation algorithm. In fact, for internal multiples of entirely P-wave histories,
their amplitudes are typically reduced by 80–95%. Further terms beyond the first in the
internal multiple elimination subseries would result in an algorithm that eliminates rather than
attenuates internal multiples.

A diagrammatic example also serves to illustrate how the timing of internal multiples is
predicted. In figure 16 we show an internal multiple (dashed line), SABCR. Primaries SABE,
DBCR and DBE have a phase relationship with the internal multiple SABCR such that

(SABE)time + (DBCR)time − (DBE)time = (SABCR)time.
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Figure 17. A 2D synthetic model (top). The left panel (bottom) shows a common offset display
from the synthetic data set created using the model. The middle panel (bottom) shows the predicted
internal multiples and the right-hand panel (bottom) is the result after subtracting the predicted
multiples from the input data set.

Hence, if the overall data contain three events such that two are longer time events and if the
sum of the time of the two longer events minus one smaller time event corresponds to the time
of the event under investigation, the event is an internal multiple and, if so, it is removed. The
algorithm also predicts well the amplitude and thus can distinguish between a multiple and a
temporally coincident primary at any given offset. This is the reason the third term in the inverse
series, that involves three D(t) data terms, starts the process of internal multiple removal and
why the ‘W’ diagram (see figure (16)) is at the heart of the internal multiple prediction from the
data procedure; and, finally, why the time prediction of all internal multiples is accurate. The
signs of the phases in the three exponentials in (76) are consistent with this timing relationship.

7.4. Synthetic and field data examples

Figure 17 shows an example of the internal multiple attenuation series algorithm applied to a
2D synthetic data set. From left to right, the three panels show the input data, the predicted
internal multiples and the result of inverse scattering internal multiple attenuation, respectively.
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Figure 18. The left panel is a stack of a field data set from the Gulf of Mexico. The right panel is
the result of inverse-scattering free-surface multiple removal. Data are courtesy of WesternGeco.
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Figure 19. A cartoon illustrating the events that are used by the algorithm to predict free-surface
multiples.

Figures 18–20 illustrate the free-surface and internal multiple attenuation algorithms
applied to a data set from the Gulf of Mexico over a complex salt body. Seismic imaging
beneath salt is a challenging problem due to the complexity of the resultant wavefield. In
figure 18, the left panel is a stacked section of the input data and the right panel shows the
result of the inverse scattering free-surface multiple removal algorithm. Figure 19 is a cartoon
that illustrates the events that are used by the algorithm to predict the free-surface multiples
in the data. Figure 20 illustrates the internal multiple attenuation method applied to the same
Gulf of Mexico data set. An internal multiple that has reverberated between the top of the salt
body and the water bottom is well attenuated through this method. The cartoon in figure 21
illustrates the subevents that are used by the algorithm to predict the internal multiples.

A number of practical prerequisites need to be satisfied to realize successful results on
field data. First, the spatial sampling of the data needs to be done with sufficient aperture
and density to ensure accuracy of the multiple predictions. Missing near offsets (the source–
receiver distance) are often a problem encountered in normal data acquisition and these offsets
need to be estimated or extrapolated. Current marine acquisition design collects mainly a
narrow azimuth of data. Hence, this limits the application of the demultiple algorithms to 2D.
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Figure 20. An example of inverse-scattering internal multiple attenuation from the Gulf of Mexico.
Data are courtesy of WesternGeco.
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Figure 21. A cartoon illustrating the events that are used by the algorithm to predict a subsalt
internal multiple.

A more complete sampling of the wavefield enables full 3D implementation of these algorithms.
Presentations at recent international exploration meetings indicate that several oil and
service companies are currently performing full 3D application of free-surface multiple
removal.

Another key practical issue is obtaining an accurate estimate of the source time function
or source wavelet. A wide suite of methods for estimating this wavelet exist. The wavelet
estimation method in common use today for multiple attenuation seeks to turn the algorithm’s
very need for the wavelet into its own indicator that the criterion is satisfied. This strategy
requires that a distinguishing property of reflection data with multiples compared to data
without multiples is first identified. Then the wavelet is sought such that after applying the
demultiple algorithm, the condition of multiple-free data is satisfied. The current realization
of that thinking begins by arguing that data without multiples have fewer events than data with
multiples and hence less energy; therefore, seek the wavelet that produces a minimal energy
for the multiple attenuation output. A 1D energy criterion was introduced and different single
term approaches [33, 35] and multiple term global search algorithms [36] were developed. An
overview of current approaches to that issue is presented by Matson [37]. In some way, the 1D
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energy minimization methods for finding the wavelet represent a weak link in how free-surface
and internal multiple attenuation is applied in practice. The methods for finding the wavelet
are not as physically complete (and effective) as the multiple removal methods that they are
meant to serve. For example, the free-surface and internal multiple attenuation methods have
no problem with interfering events; but the removal of a multiple proximal to and destructively
interfering with a primary could cause the energy to rise (rather than fall) with the removal of
the multiple. New methods (e.g., [38–41]) are being developed for predicting the wavelet that
are as complete as, and on a conceptual and effectiveness par with, the inverse series multiple
attenuation procedures that they are meant to serve.

Often the series is truncated to only a single multiple prediction term and an adaptive
wavelet estimation scheme is used to adaptively subtract the internal multiples from the input
data. For internal multiples, numerical tests indicate that it is more difficult to estimate the
wavelet post-internal multiple prediction. This is due to the fact that the 1D minimum energy
criterion is often invalid and too blunt an instrument for the subtlety of internal multiples
and complex free-surface multiples. Fortunately, the two processes require the same wavelet;
thus the wavelet estimated for the free-surface multiple attenuation step will often suffice for
internal multiple attenuation, as was the case in the field data example shown here. Currently,
compromises made with truncated series algorithms, too great a dependence on adaptive
parameters and less than adequate measurement coverage are all inhibiting the full power of
these methods from being realized. With multi-term series applications, improved predicted
wavelets and a full 3D point receiver acquisition, we anticipate that the inverse scattering
demultiple methods will reach their full practical potential.

7.5. Inverse scattering series and the feedback methods for attenuating multiples

Removing multiples from seismic reflection data is a long-standing problem that has
experienced significant progress over the past ten years, but still has open issues to address.
An overview of the landscape of techniques can be found in [42] and several collaborative
works with members of the Delphi group (e.g., [43, 44]). Berkhout, Verschuur and the
Delphi group developed a free-surface and interface feedback procedure for describing free-
surface multiples and primaries and internal multiples and also for attenuating free-surface
and internal multiples, respectively. The inverse scattering approach uses the free surface for
free-surface multiples and a point-scatterer model for primaries and internal multiples. The
inverse-scattering free surface demultiple method is conceptually complete, whereas the free-
surface feedback approach represents certain compromises that involve the obliquity factor
and source deghosting that place an added burden on the adaptive wavelet, especially at large
distances from the source along the receiver line. The feedback method provides an effective
and efficient method for attenuating internal multiples when the reflector that generates the
downward reflection can be isolated. The inverse scattering series approach provides the
most comprehensive method for attenuating all free-surface and internal multiples with no
subsurface information whatsoever and no event picking, velocity analysis or interpretive
intervention.

The inverse scattering series methods provide significant added value when the subsurface
is complex, when reflectors are dipping, corrugated or diffractive, when events are subtle and
partly coincident in time and when the interest is in removing all internal multiples. Issues that
involve the practical prerequisites of these series solutions are all important and methods for
satisfying those prerequisites include source signature estimation, areal coverage of surface
measurements and deghosting. Considerable resources are currently devoted to addressing
and improving the satisfaction of these prerequisites.
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Figure 22. The relationship between qg, kg and θ .

8. Inverse subseries for imaging and inversion at depth without an accurate velocity
model for large contrast complex targets

Initial analysis for identifying the imaging and inversion tasks associated with primaries
within the series has recently been reported by Weglein et al [45]. Starting with the acoustic
equation (6) and defining

1

K
= 1

K0
(1 + α),

1

ρ
= 1

ρ0
(1 + β)

for a one dimensional variable velocity and density acoustic medium with point sources and
receivers at depth εs and εg, respectively, (11′′) becomes

D̃(qg, θ, εg, εs) = −ρ0

4
e−iqg(εs+εg)

[
1

cos2 θ
α̃1(−2qg) + (1 − tan2 θ)β̃1(−2qg)

]
(92)

where the subscripts s and g denote source and receiver respectively and qg, θ and k = ω/c0

are shown in figure 22 and have the following relations:

qg = qs = k cos θ,

kg = ks = k sin θ.

Similarly the solution for α2(z) and β2(z) as a function of α1(z) and β1(z) can be obtained
from (12′′) as

1

cos2 θ
α2(z) + (1 − tan2 θ)β2(z) = − 1

2 cos4 θ
α2

1(z) − 1

2
(1 + tan4 θ)β2

1 (z)

+
tan2 θ

cos2 θ
α1(z)β1(z) − 1

2 cos4 θ
α′

1(z)
∫ z

0
dz′ [α1(z

′) − β1(z
′)]

+ 1
2 (tan4 θ − 1)β ′

1(z)
∫ z

0
dz′ [α1(z

′) − β1(z
′)]. (93)

For a single reflection between two acoustic half-spaces where the upper half-space
corresponds to the reference medium the data consist of primaries only and the inversion
tasks they face are simply locating the reflector and inverting for acoustic property changes
across the reflector. When the primary data from this two half-space model are substituted
into (92) and (93), then the two terms involving integrals on the right-hand side become zero.
If the model allowed a second reflector and two primary wavefields, then those same terms
involving the integrals would not be zero. From an inversion point of view, the primary from



Topical Review R73

′

Figure 23. Five terms in the leading order imaging subseries. The solid black curve shows the
actual perturbation α and the dashed red curve shows α1, the first approximation to α. The blue
curves show the leading order imaging subseries terms. The cumulative sum of these imaging
terms is shown in figure 24.

the second reflector has more required inversion tasks to perform (in comparison with the first
primary), since the first event actually travelled through the reference medium. In addition to
estimating changes in earth material properties, the second primary will be imaged where it
is placed by the reference medium. From this type of observation and the detailed analysis
in [45] and [46], it is deduced that the last two terms in (93) assist in moving the second
(deeper) primary to its correct location and the first three terms of (93) are associated with
improving the linear inversion in (92), including mitigating the effect of not having removed
the influence of transmission through the shallower reflector on the deeper reflector and the
subsequent non-linear inversion of the deeper primary.

The terms on the right-hand side of (93) have two objectives. For a primary from the
shallower reflector, the first objective is to start the non-linear process of turning the reflection
coefficient of that event into the earth property changes α and β. The reflection coefficient
is a non-linear series in α and β; and, conversely, α and β are themselves non-linear series
in the reflection coefficient. For the simple horizontal reflector between two elastic half-
spaces, that forward non-linear relationship is expressed by the Zoeppritz equations (see [47]).
Methods for inverting that relationship are either linear direct or based on non-linear indirect
(modelling) with global search matching engines [48]. The inverse series represents the
only multi-dimensional direct non-linear inversion for medium properties without iteration or
assumptions about the dimension or geometry of the target. For the second (deeper) primary,
the first objective is more complicated, since the event amplitude is a function of both the
reflection coefficient at the second reflector and the transmission coefficient downward through
and upward past the first reflector. This first objective is accomplished by the first three terms on
the right-hand side of (93). The communication between the two events allowed in, e.g., α2

1 can
be shown to allow the reflection coefficient of the shallower reflector to work towards removing
the transmission coefficients impeding the amplitude of the second event from inverting for
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Figure 24. The cumulative sum of five terms in the leading order imaging subseries. The solid
black curve shows the perturbation α and the red curve shows the first approximation to α or the first
term in the inverse series, α1. The blue curve shows the cumulative sum of the imaging subseries
terms; e.g. in panel (ii) the sum of two terms in the subseries is shown and in panel (v) the sum of
five terms in the subseries is displayed.

Figure 25. A one dimensional acoustic model.

local properties at the second reflector. Hence, specific communications between primaries
from different reflectors work together to remove the extraneous transmission coefficients on
deeper primaries that are suffering from being given the wrong imaging velocity.

Similarly, the integral terms on the right-hand side of (93) represent a recognition that the
reference velocity will give an erroneous image and asks for an integral of α1 − β1, the linear
approximation to the change in acoustic velocity, from the onset of α1 − β1 down to the depth
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displayed as a function of two angles for the same example as in
figure 26 where the exact value of

α is 0.292.

needing the imaging help. Two important observations. (1) When the actual velocity does not
change across an interface, R

(θ) is not a function of

θ and from (92) it can be shown that

α

1

−

β

1

=

(

�V

V

)

1

=

0

.

Therefore, when the actual velocity does not change then the linear approximation to the change
in velocity is zero. Therefore, wh

en the velocity is equal to the reference across all reflectors

(e.g., when density changes but not velocity) then these equations do not correct the location
where the reference velocity lo

cates those events, which in that case is correct. (2) The error
in locating reflectors caused by an error in velocity depends on both the size of the error and
the duration of the error. Hence, the integral of α

1

−

β

1

represents an amplitude and duration
correction to the originally mislocated primary. A gen

eral principle is that when an inversion
task has a duration aspect for the problem being addressed, the response has an integral over
a measure of that error in the solution. The inverse series empowers the primary events in the
data to ‘speak to themselves’ for non-linear inversion and to ‘speak to each other’ to deal with
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Figure 28. β1 displayed as a function of two angles. The graph on the right is a contour plot of
the graph on the left. In this example, the exact value of β is 0.09.

Figure 29. The sum β1 + β2 displayed as a function of two angles for the same example as in
figure 28 where the exact value of β is 0.09.

the effect of erroneous velocity on amplitude analysis for either location or inversion tasks. The
analogous ‘discussion between events’ for multiple removal is described in the conclusions.

Figures 23 and 24 illustrate the imaging portion of the inverse series for a 1D constant
density, variable velocity acoustic medium. The depth to which the reference velocity images
the second reflector is zb′ = 136 m. The band-limited singular functions of the imaging
subseries act to extend the interface from zb′ to zb (figure 23). The cumulative sum of
these imaging subseries terms is illustrated in figure 24. After summing five terms the
imaging subseries has converged and the deeper reflector has moved towards its correct depth
zb = 140 m.

Figures 26–29 are a comparison of linear and non-linear predictions for a two parameter
acoustic medium and for the 1D single interface example illustrated in figure 25. Figure 26
shows α1 as a function of two different angles of incidence for a chosen set of acoustic
parameters. Figure 27 shows the sum α1 + α2 and demonstrates a clear improvement as
an estimate for α, for all precritical angles. Figure 29 illustrates similar improvements for the
second parameter, the relative change in density β, over the linear estimate given in figure 28.
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Table 1. Summary of task-specific subseries.

Task Properties

Free-surface mul-
tiple elimination

One term in the subseries predicts precisely the time and amplitude of
all free-surface multiples of a given order independently of the rest of
the history of the event. Order is defined as number of times the multiple
has a downward reflection at the free surface.

Internal multiple
attenuation

One term in the inverse series predicts the precise time and approximate
amplitude of all internal multiples of a given order. The order of an
internal multiple is defined by the number of downward reflections from
any subsurface reflector at any depth.

Imaging at depth
without the accu-
rate velocity

The first term in the series corresponds to current migration or migration-
inversion. To achieve a well-estimated depth map requires further terms
in the imaging subseries directly in terms of an inaccurate velocity model.
A priori velocity estimation will aid the rate of convergence.

Inversion at depth
without the exact
overburden

The first term in the subseries corresponds to current linear amplitude
analysis. Improvement to linear estimates of earth property changes
and accounting for inadequate overburden requires further terms in the
series. Tests indicate rapid convergence for the first non-linear parameter
estimation objective.

Early analysis and tests are encouraging and demonstrate the intrinsic potential for the
task-specific inverse subseries to perform imaging at the correct depth [49] and improving upon
linear estimation of earth material properties [50], without the need for an accurate velocity
model. Furthermore, numerical tests indicate: (1) that the imaging subseries converges for
velocity errors that are large in amplitude and duration; and (2) rapid improvement in estimates
of earth material properties beyond the current industry standard linear amplitude analysis.

9. Conclusions and summary

We have described the historical development and a methodology for deriving direct multi-
dimensional non-linear seismic data processing methods from the inverse scattering series.
To date, the inverse scattering series have yielded subseries for free-surface and internal
multiple attenuation, imaging primaries at depth and inverting for earth material properties.
The hallmark of these methods is their ability to achieve their objective directly in terms of
incomplete or inaccurate a priori subsurface information and without ever iterating or updating
that input or assuming that it is proximal to actual properties.

The development features an interplay between an understanding of the forward scattering
process and task separation in the inverse scattering series. The forward series begins with
the reference propagator, G0, and the perturbation operator, V(r, ω), the difference between
actual and reference medium properties as a function of space, r, and frequency ω. The inverse
series inputs data, D(rg, rs, t), a function of time and the reference propagator, G0.

Since the forward series inputs the perturbation, V(r, ω), and rapid variation of V
corresponds to the exact spatial location of reflectors, it follows that space is the domain
of comfort of the forward series. In contrast, the computation of the time of arrival of any (and
every) seismic event for which the actual medium propagation is not described by G0 requires
an infinite series to obtain the correct time from the forward series. In this respect, time is the
domain of discomfort for the forward series for seismic events.
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For the inverse series, the input is data in time D(rg, rs, t) and processes that involve
transforming D(rg, rs, t) to another function of time, e.g., the data without free-surface
multiples D′(rg, rs, t), are simpler to achieve than tasks such as imaging primaries in space
that require a map from time to space (i.e., D(rg, rs, t) to V(r, ω)). Hence, time is the domain
of comfort for the inverse series. Emphasizing this point, the correct time (and amplitude) for
constructing any internal multiple requires an infinite number of terms in the forward series
whereas the prediction of the precise time and well-approximated amplitude for every internal
multiple occurs in the first term of the inverse (removal) subseries for that order of multiple,
totally independently of the depths of the reflectors that generate the multiple.

In addition, if accurate a priori information can be provided for the localization and
separation of a given task where the task is defined in terms of separating events that have a
well-defined experience from those events that have not, then further efficiency can derive from
subseries that involve time to time maps, for example, in the case where a free-surface reflection
coefficient (or GFS

0 ) is supplied for the task of removing the ghosts and free-surface multiples.
In the latter case, one term in the free-surface multiple removal subseries precisely predicts
the time and amplitude of all multiples of that order. In table 1, we summarize the amount
of effort required to achieve a certain level of effectiveness for each of the four task-specific
subseries.

The strategy is to accomplish one task at a time, in the order listed, and then restart
the problem as though the just completed task never existed. This is advantageous in
that it avoids the terms associated with coupled tasks in the inverse series. Furthermore,
carrying these tasks out in sequence can enhance the ability of subsequent tasks to reach
their objective. For example, the free-surface and internal multiple algorithms do not require
(or benefit from) accurate a priori information. However, the removal of free-surface and
internal multiples significantly improves our ability to estimate the overburden velocity model
and subsequently aids the efficacy and efficiency of the imaging and inversion subseries for
primaries.

Since the rate of convergence, for both multiple removal subseries, does not benefit from
anything closer to the earth than water speed and the costs of the algorithms quickly increase
with complexity of the reference medium, the idea is to perform these tasks with efficient,
constant water velocity reference propagation.

In tackling the next step, the approach is to restart the problem assuming that certain
data issues have already been addressed. For example, after free-surface and internal multiple
removal, we restart the problem assuming a primary-only data set resulting in an inverse series
that requires proximal velocity information and consequently more complex and more costly
subseries for tasks that benefit from that additional information.

If you do not like the strategy of ‘isolate a task and then restart the problem’ and you
want to be a purist and start and end with one inverse scattering series, then you would need
a single complex reference medium that would allow the toughest task to have an opportunity
to succeed. There are two issues with the latter approach:

(1) the proximal velocity can be difficult to obtain when troublesome multiples are in your
input data; and

(2) the single all-encompassing series is an ‘all or nothing’ strategy that does not allow for
stages to succeed and provide benefit when the overall series or its more ambitious goals
are beyond reach.

Although both primaries and multiples have experienced the subsurface and, hence, carry
information encoded in their character, the indisputable attitude or orientation of the inverse
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scattering series (the only currently known multi-dimensional direct inversion method for
acoustic and elastic media) is to treat multiples as coherent noise to be removed and treat
primaries as the provider of subsurface information. That does not mean that one could
never use multiples in some inclusive rather than exclusive method that seeks to exploit the
information that both primaries and multiples contain. It simply means that an inclusive theory,
starting with realistic a priori information, does not currently exist and, further, that the inverse
series definitely and unambiguously adopts the exclusive view: multiples are considered noise
that it removes while primaries are the signal with useful subsurface information.

While it certainly follows from the mathematics of (11)–(14) that it is possible to directly
achieve seemingly impossible inversion objectives from data with only a reference medium
propagator that is assumed to be not equal to G and hence inadequate, there is also value
in providing an understanding from an information content point of view (see also [5]).
What basically happens in each task-specific subseries is that specific conversations take place
between events in the data as a whole that allow, e.g., multiple prediction or accurate depth
imaging to take place without an accurate velocity model. ‘Non-linear in the data’ is the key
and means that quadratic terms enter the picture (data times data, at least) and that allows
different events to have multiplicative communication.

For example, if you provide the medium in detail you can readily determine through
modelling whether any event in the data is a primary or multiple. However, if you provide
only an isolated event, without the medium properties, then there is no way to determine
whether it is a primary or multiple; in fact it can be either for different models. So how does
the inverse series work out whether the event is a primary or multiple without any subsurface
information? Since it is a series, there is a ‘conversation’ set up with other events and then a
yes or no as to whether an event is a primary or multiple is completely achievable without any
information about the medium.

In the subseries for imaging at depth without an accurate velocity, the first term is the
current state-of-the-art migration with your best estimated velocity model and places each
event exactly where that input reference velocity dictates. All current imaging methods are
linear in the data, and once the velocity model is chosen, the collection of all primaries (from
all reflectors) as a whole are not asked their ‘view’ or ‘opinion’ of the input velocity nor are
they allowed to ‘discuss’ it amongst themselves.

The second term in the inverse series, e.g. (93), has integral terms that start to move
the incorrectly imaged events resulting from the linear migration step towards their correct
location. There is a quadratic dependence on the data, allowing multiplicative conversations
between primary events from two different reflectors, and they are empowered to have an
opinion about the input velocity. If they decide together that (at least) one of the events has
been provided with a velocity model that is inconsistent with those two events, then the troubled
event (usually deeper) asks for assistance from a shallower event to help it use its amplitude,
and the difference of their arrival times, to move the deeper primary towards its correct location.
Furthermore, and perhaps most important, when the first term beyond current best practice
is computed, the quadratic term immediately and unambiguously judges the adequacy of the
input velocity. If the result of the first non-linear conversation between primaries (represented
by the terms with integrals in the imaging series) is a determination that the velocity is adequate,
then the imaging series stops, and returns a zero value for the correction to spatial location
sending the message that the data all together judge the velocity as adequate and to proceed
with current linear migration for locating reflectors in space. There is no mindless (and costly)
perturbation about no change in depth—rather a clear signal to stop the imaging series. This is
another important example of purposeful perturbation. The term containing

∫
(α1 − β1)dz in

(93) exists to correct depth imaging for incorrect input velocity, but first determines whether
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its function is required by a conversation between all the primaries about the adequacy of the
velocity expressed through α1 − β1. As we explained, α1 − β1 will be computed as zero when
the velocity is adequate.

When the velocity is determined to be adequate, the inversion subseries that predicts
changes in earth material properties will provide added value beyond current industry practice
for arbitrary geometry of target and small or large changes in elastic properties and density
across the target. When the velocity is determined to be inadequate, those same non-linear
inversion objectives are achieved directly in terms of the inadequate velocity model. Hence,
the inverse series and the task-specific subseries represent a fundamentally new capabity for
imaging and inverting primaries, as they had earlier provided for the removal of multiples.

In progressing from migration to migration-inversion [3, 32] one addressed not just where
the reflector is located in space but also what material properties changed across that imaged
reflector. One issue in making that step is the need to consider both the amplitude as well as
the phase of the back-propagating wave in the estimated reference medium. When the ability
to estimate the reference medium is far from adequate and migration-inversion is performed
in the reference medium as a first step in the imaging subseries, then the bar on the migration-
inversion is higher still (in comparison to migration-inversion when the reference is adequate
and the latter is the final product) requiring a need for fidelity on phase, amplitude and spectral
content. The imaging subseries expects the complete and correct migration-inversion in the
incorrect medium. Since the relationships between variables and their Fourier conjugates
are markedly different in, e.g., wave, coherent state and asymptotic migration techniques, we
would expect a preference for wave theory migration and an appropriate sampling and coverage
of surface recording that preserves, e.g., all kg components in a given xg.

Serious conceptual and practical hurdles in the theoretical evolution, algorithm
development and robust industrial application had to be overcome to bring the inverse scattering
multiple attenuation subseries methods to their current state of efficacy. We anticipate that in
bringing the subseries for imaging and inverting primaries through that same process, still
higher hurdles and tougher prerequisites will be addressed. This new vision of processing
signal in seismic data has game-changing potential for the exploration and production of
hydrocarbons. We would also anticipate that these inverse scattering series methods and the
new methods for satisfying their prerequisites (e.g., source signal identification) might serve to
encourage other fields of non-destructive evaluation to benefit from these efforts—fields such as
medical imaging, environmental monitoring, nuclear, atomic and molecular identification and
signal enhancement, military and defence detection, identification and guidance applications
and global and crustal seismology.
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