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Abstract

In this work a subseries of the ISS is isolated, with the specific task of removing internal

multiples of first-order, with downward reflection at the shallowest reflector. The algorithm

predicts both the phase and exact amplitude of the internal multiples and does not modify any

primary; therefore the internal multiples are removed surgically. This algorithm may be relevant

and provide added value when one of the internal multiples under discussion is interfering

destructively with (or is proximal to) a primary, and the attenuation of the internal multiple

provided by previous algorithms is not adequate for the clean removal of the multiple and not

touching the primary. To show how the elimination subseries proposed in this work deals with

this challenging situation, an analytic example with three interfaces is included, with one of

the relevant first-order internal multiples interfering destructively with the primary generated

at the third reflector. We show in particular how the interfering internal multiple is eliminated

with no damage to the amplitude or the phase of the primary, as is expected from a method for

surgical removal of internal multiples.

1 Introduction

Today, there are a number of methodologies in the oil industry that are designed to predict internal

multiples. These methods are followed by energy-minimization adaptive subtraction to try to

accommodate all shortcomings in the prediction, as it addresses contributions left outside of the

system by the prediction method. In other words, the energy-minimization adaptive subtraction

deals with issues not included in the physical framework behind the prediction method.

In particular, by using the ISS and the concept of specific-task subseries, a multidimensional al-

gorithm was derived in Araújo (1994), Araújo et al. (1994) and Weglein et al. (1997) to predict

and attenuate internal multiples present in the data. However, there are situations in which the

energy-minimization adaptive-subtraction technique is not suitable anymore, and the attenuation
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of internal multiples is not enough for a correct interpretation of the seismic data. An example

of this challenging situation for the oil industry can arise when an internal multiple is interfering

destructively with (or is proximal to) a primary associated to a target e.g. subsalt targets. This

situation is often present in onshore exploration, but it can also happen offshore. While the energy-

minimization adaptive-subtraction technique is of value for isolated multiples, in this case it might

also affect the primary that is experiencing interference from the internal multiple.

Therefore, it is important to develop new algorithms with enhanced capabilities. In response to this

need, Ramı́rez and Weglein (2005) and Ramı́rez (2007) discuss early ideas for moving attenuation

of internal multiples towards elimination through higher order terms in the ISS. Those ideas and

concepts are here progressed and developed leading to a subseries which surgically removes at the

same time all internal multiples of first-order having their single downward reflection generated at

the shallowest reflector. We refer to this subseries as the leading-order internal multiple elimination

subseries (LOIMES). We also illustrate how to use this subseries in a three-interface analytic model,

to surgically remove the first-order internal multiple with its downward reflection at the shallowest

interface and upward reflections at the second reflector. To highlight the importance of this work,

the parameters of the model are chosen to mimic the situation described in the paragraphs above;

i.e., to allow the internal multiple to interfere destructively with a primary. In particular, the

primary that is experiencing interference corresponds to the third reflector.

The report’s organization is as follows: Section 2 provides a review of the leading-order attenuation

of internal multiples of first order, which is the initial step toward their complete elimination. In

Section 3 we explain how to isolate the LOIMES, with emphasis on the first contribution beyond the

leading-order attenuator; i.e., with full details of the derivation of the second term of the subseries

provided. Section 4 is devoted to application of the LOIMES to the analytic model mentioned in

the paragraph above. Finally, in Section 5 we present final comments and conclusions. There are

two appendices, in which we show the details of the calculations needed to follow the main body

of this paper.

2 Review of the internal multiple attenuation subseries

2.1 The inverse scattering series and seismic physics

The inverse scattering series (ISS) is a direct inversion method which can in principle determine,

in seismic applications, subsurface properties of the earth using only the measured data D in a

seismic experiment, and a Green’s function for a chosen reference medium. The information about
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the earth is contained in the perturbation operator V , which is the difference between the actual

medium (the earth) and the reference medium. Also, the data are the value of the scattered field1

at the measurement surface. The ISS starts with the expansion of the perturbation operator (at

the measurement surface) as

V = V1 + V2 + V3 + ... (1)

where Vi is the portion of V that is ith order in the measured data. Then, at the measurement

surface the ISS takes the form (Weglein et al. 2003)

G0V1G0 = D

G0V2G0 = −G0V1G0V1G0

G0V3G0 = −G0V1G0V1G0V1G0 −G0V1G0V2G0 −G0V2G0V1G0

...

(2)

As D is provided by the seismic experiment, we can solve for V1 in the first equation of (2). Then,

we can substitute V1 into the second equation and solve for V2. Now we can substitute V1 and

V2 into the third equation and solve for V3. Following this procedure we can determine all the

components in the right hand side of (1). However, empirical tests performed in Carvalho (1992)

suggest that with no a priori information, convergence is restricted to small contrasts and short

duration of the perturbation.

A solution for the issue of convergence explained in Weglein et al. (2003) is to split the inversion

into specific tasks:

1. Removal of free-surface multiples.

2. Removal of internal multiples.

3. Location and imaging of reflectors in space.

4. Inversion for earth material properties.

A free-surface multiple is by definition a seismic event with at least one downward reflection at the

air-water interface; the number of downward reflections at the air-water interface is the order of

1The scattered field is defined as ψs ≡ G−G0, where G and G0 are Green’s functions for the actual and reference

medium respectively.
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the free-surface multiple. On the other hand, an internal multiple is by definition a seismic event

with at least one downward reflection, and with all of its downward reflections created at the earth

(Figure 1). The order an the internal multiple is defined as the number of downward reflections it

experiences anywhere during its travel time.

 

Figure 1: First-order internal multiple.

In Figure 1 the direction of increasing Z is downwards, hence Z2 > Z1 and Z3 > Z1. We also

say that, on the basis of the locations where reflections occur, the interfaces generate an internal

multiple of first order are in a “lower-higher-lower” configuration.

The recipe is to isolate distinct subseries from the ISS, with each subseries having as its goal only

one of the specific tasks just listed. It turns out that those specific-task subseries have better

convergence properties than the entire ISS. A fundamental part of this approach, mentioned in

Weglein et al. (2003), is that the four tasks listed above are accomplished sequentially in the order

in which they are mentioned. Each time a task is achieved, the problem is restarted, as if the

task(s) accomplished had not existed before.

With regard to internal multiples, a subseries was isolated in Araújo (1994) and Weglein et al.

(1997). Its task is attenuation of internal multiples of all orders. In particular, first-order internal

multiples are attenuated by the leading-order contribution2 of this subseries, conveniently named

the leading-order attenuator.

2The leading-order contribution in a specific-task subseries refers here to the first term of that subseries that

provides the initial contribution towards the achievement of the specific task.
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2.2 The leading-order attenuator

As we will see in later sections, the LOIMES isolated in this work shares the same leading-order

contribution that the internal multiple attenuation subseries (IMAS) has. Hence, it is important

to first understand how the leading-order attenuator works, and then to move to higher-order

contributions to the LOIMES. In this subsection we will provide a review of the leading-order

attenuator.

A detailed study of the isolation of the IMAS, and in particular of the leading-order attenuator, is

beyond the scope of this work. The interested reader can consult Araújo (1994), Ramı́rez (2007),

and Weglein et al. (2003) for more details. For this work it is enough to say that the leading-

order attenuator is contained in the third equation of the ISS. This is because first-order internal

multiples experience three reflections and therefore they are of third order in data. The leading-

order attenuator is isolated from V1G0V1G0V1 in the references just mentioned.

For the 1D and normal-incidence case, the analytic expression for the leading-order attenuator is

b3(k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
b1(z

′)
∫ ∞

z′+ε
dz′′eikz

′′
b1(z

′′), (3)

where ε is a small and positive parameter introduced to ensure the characteristic “lower-higher-

lower” configuration for first-order internal multiples, which was mentioned in Section 2.1, and to

avoid the configurations that include the contributions of the self-interactions z′′ = z′ and z′ = z.

In the general case, ε is chosen to match the width of the source wavelet, and the consequence is

that thin-bed multiples will not be attenuated (Weglein et al. 2003). However, we will consider 1D

models and spike waves with normal incidence and therefore there is no wavelet to worry about,

that is, there is no restriction on the value of ε other that it must be small and positive3. Also,

k = 2ω
c0

is the vertical wavenumber, and b1(z) is the result of performing Stolt’s migration on the

data of the model using the water speed, denoted c0.

We will consider the 1D model shown in Figure 2, where Zi denotes the depth of the ith reflector

for i = 1, 2, 3.

3In practice, the computational implementation requires a discretization of time. In this case ε = c0∆t
2
, where ∆t

is a time sample interval and usually it has assigned the value of 1ms. Also, c0 is the water speed.
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Figure 2: A 1D earth model, with three interfaces. The first interface, with depth Z1, is the water bottom.

The second interface, with depth Z2, can be identified as the top salt, and the third interface, with depth

Z3, can be identified as the target.

We also consider data composed of primaries and internal multiples, generated by spike waves at

normal incidence:

D(t) = R1δ(t− t1) +R′2δ(t− t2) +R′3δ(t− t3) + IM, (4)

where R′2 = T01R2T10, R
′
3 = T01T12R2T21T10, and ti is the travel time of the primary associated

with the interface at depth Zi. Also, Ri is the reflection coefficient experienced by a wave that is

reflected upward at the interface at depth Zi. Tij represents the transmission coefficient experienced

by a wave traveling from the acoustic medium that has parameters (ci, ρi) to the acoustic medium

that has parameters (cj , ρj).

In this case, the input of the leading-order attenuator, eq. (3), becomes (Appendix A.1):

b1(z) = R1δ(z − z1) +R′2δ(z − z2) +R′3δ(z − z3) + · · · , (5)

where zi = c0ti
2 represents the position of the reflector at depth Zi, after Stolt’s migration. The

zi are usually referred to as pseudodepths, and we say that eq. (5) is in the pseudodepth domain.

Although the input data of the leading-order attenuator, eq. (5), includes primaries and internal

multiples, we only consider the effect of the primaries. Initial steps towards the inclusion of internal

multiples are addressed in Ma and Weglein (2012) and Liang and Weglein (2012).

According to Appendix A.2, in the time domain the result for the evaluation of eq. (3), using eq.

(5), is
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b3(t) = −T01T10 ∗ (IM)j=1 − (T01T10)
2 ∗ T12T21 ∗ (IM)j=2 + · · · , (6)

where (IM)j=1 is the sum of all first-order internal multiples with their downward reflection at the

first (shallowest) reflector of the model, and (IM)j=2 is the first-order internal multiple with its

downward reflection at the second interface of the model. The analytic expressions are

(IM)j=1 = −T01R2R1R2T10δ(t− (2t2 − t1))

−2T01R2R1T21R3T12T10δ(t− (t2 + t3 − t1))− T01T 2
12R3R1R3T

2
21δ(t− (2t3 − t1)). (7)

(IM)j=2 = −T01T12R3R2R3T10T21δ(t− (2t3 − t2)). (8)

In order to see why b3(t) is an attenuator of internal multiples, let’s add it to the data of the model:

b1(t) + b3(t) = primaries+ [1− T01T10](IM)j=1 + [1− (T01T10)
2 ∗ T12T21] ∗ (IM)j=2 + · · · . (9)

As 0 < T01T10 < 1, it becomes evident from (9) that the amplitude contribution of (IM)j=1 i.e.,

the amplitude contribution of the internal multiples generated at the shallowest reflector is reduced

by an amount T01T10 with respect to the contribution of those multiples prior to the addition of

b3(z). T01T10 is referred to as attenuation factor.

An analogous situation is present for the internal multiple with its downward reflection at the second

reflector. In this case, the amplitude contribution is reduced by an amount of (T01T10)
2 ∗ T12T21.

Finally, it is convenient to summarize some features of the leading-order attenuator:

• It is completely data-driven, and no subsurface information is required.

• It predicts the exact time and well understood amplitude of all first-order internal multiples.

• It also predicts the exact time and approximate amplitude for internal multiples with con-

verted waves.
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3 The leading-order internal multiple eliminator subseries (LOIMES)

In Section 2 we illustrated, using the specific model of Figure 2, how the leading-order attenu-

ator decreases the amplitude contribution for first-order internal multiples with their downward

reflection at the shallowest interface, by an amount of T01T10. This means that to promote this

attenuation to an elimination, the contribution of higher-order terms from the elimination subseries

need to move this attenuator factor to the unity: when those higher-order contributions are added

to the initial attenuation provided by b3(t), the predicted amplitude will exactly match (IM)j=1.

Hence, the collective contribution of the terms in the elimination subseries will remove (IM)j=1

from the data.

As the input of the ISS is water-speed migrated data, in order to isolate the terms within the

ISS giving the right contributions, we need to express 1 in terms of reflection coefficients, and in

particular in terms of R1. This can be done by the following geometric series expansion:

1 = T01T10 ∗
(

1

T01T10

)
= T01T10 ∗

1

(1−R2
1)

= T01T10 ∗ (1 +R2
1 +R4

1 +R6
1 +R8

1 + . . .). (10)

Notice that, upon distribution of the product, the first term on the right-hand side of eq. (10) is

the initial attenuation provided by the leading-order attenuator. Therefore, the remaining terms

are the required amplitude contributions from the higher-order terms, in any subseries claiming

to promote the attenuation to elimination. For simplicity, we will focus on isolation of the term

within the ISS that provides the next contribution following the leading-order attenuation; i.e., on

the isolation of the term whose contribution is T01T10 ∗R2
1 on the right-hand side of eq. (10).

The first step towards the isolation of the second term of the LOIMES from the ISS is to notice

that T01T10 ∗ R2
1 is the attenuation provided by the leading-order attenuator, T01T10, times the

square power of R1. As the prediction for first-order multiples of the leading-order attenuator,

eq. (6), is already of third order in the data, the square power of R1 means that to predict

T01T10 ∗ R2
1 ∗ (IM)j=1, the second term of the LOIMES should come from a term that is of fifth

order in the data. That is, it must be somewhere within the fifth term in the ISS:

V5 = −(V1G0V1G0V1G0V1G0V1 + V2G0V1G0V1G0V1 + V1G0V2G0V1G0V1

+V1G0V1G0V2G0V1 + V1G0V1G0V1G0V2 + V3G0V1G0V1 + V1G0V3G0V1
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+V1G0V1G0V3 + V4G0V1 + V1G0V4). (11)

The second step towards isolation of the portion of V5 that contains T01T10 ∗ R2
1 ∗ (IM)j=1, is

to notice that the selected part should match the exact travel time of the true internal multiple.

Using this argument, and upon some inspection of the terms in V5 provided in Ramı́rez (2007), it

is recognized that the correct term within V5 should reside in the lower-higher-lower contribution

of V1G0V3G0V1, and in particular the contribution to V3 coming from V1G0V1G0V1 needs to be

further selected. In other words we are looking for an expression like

bIM5 (k) ≡
∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
F [b1(z

′)]
∫ ∞

z′+ε
dz′′eikz

′′
b1(z

′′), (12)

where, as is common for subseries of the ISS, the integrals have been expressed in terms of water-

speed migrated data; i.e., in terms of b1(z). F [b1(z
′)] is the portion of V1G0V1G0V1, expressed in

terms of b1(z), that provides the two extra contributions R1 we are looking for. As R1 arises in

the data as a result of interactions of the wave with the shallowest interface, to obtain F [b1(z
′)] we

must split V1G0V1G0V1 in a way that these interactions become explicit.

On the other hand, after isolating the model-type independent contribution of the term V1G0V1G0V1,

and expressing the result in terms of the water-speed migrated data, we arrive at the following ex-

pression:

∫ ∞

−∞
dzeikzb1(z)

∫ ∞

−∞
dz′e−ikz

′
b1(z

′)
∫ ∞

−∞
dz′′eikz

′′
b1(z

′′), (13)

which is the same term from which the leading-order attenuator is extracted, when we are working

with V3. The next step is to introduce, in order to extract the desired interactions from eq. (13),

the same parameter ε included in the leading-order attenuator, eq. (3), and then to break the two

right integrals in eq. (13) as

∫ ∞

−∞
dz′ =

∫ z−ε

−∞
dz′ +

∫ z+ε

z−ε
dz′ +

∫ ∞

z+ε
dz′

∫ ∞

−∞
dz′′ =

∫ z′−ε

−∞
dz′′ +

∫ z′+ε

z′−ε
dz′′ +

∫ ∞

z′+ε
dz′′. (14)

By using eq. (14), we arrive at the following expansion of eq. (13):
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∫ ∞

−∞
dzeikzb1(z)

∫ ∞

−∞
dz′e−ikz

′
b1(z

′)
∫ ∞

−∞
dz′′eikz

′′
b1(z

′′) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
b1(z

′)
∫ ∞

z′+ε
dz′′eikz

′′
b1(z

′′)

+

∫ ∞

−∞
dzeikzb1(z)

∫ ∞

z+ε
dz′e−ikz

′
b1(z

′)
∫ z′−ε

−∞
dz′′eikz

′′
b1(z

′′)

+

∫ ∞

−∞
dzeikzb1(z)

∫ ∞

z+ε
dz′e−ikz

′
b1(z

′)
∫ ∞

z′+ε
dz′′eikz

′′
b1(z

′′)

+

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
b1(z

′)
∫ z′−ε

−∞
dz′′eikz

′′
b1(z

′′)

+

∫ ∞

−∞
dzeikzb1(z)

∫ z+ε

z−ε
dz′e−ikz

′
b1(z

′)
∫ z′+ε

z′−ε
dz′′eikz

′′
b1(z

′′)

+

∫ ∞

−∞
dzeikzb1(z)

∫ z+ε

z−ε
dz′e−ikz

′
b1(z

′)
∫ ∞

z′+ε
dz′′eikz

′′
b1(z

′′)

+

∫ ∞

−∞
dzeikzb1(z)

∫ z+ε

z−ε
dz′e−ikz

′
b1(z

′)
∫ z′−ε

−∞
dz′′eikz

′′
b1(z

′′)

+

∫ ∞

−∞
dzeikzb1(z)

∫ ∞

z+ε
dz′e−ikz

′
b1(z

′)
∫ z′+ε

z′−ε
dz′′eikz

′′
b1(z

′′)

+

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
b1(z

′)
∫ z′+ε

z′−ε
dz′′eikz

′′
b1(z

′′) =

B31(k) +B32(k) +B33(k) +B34(k)

+B35(k) +B36(k) +B37(k) +B38(k) +B39(k). (15)

From (15), we further select the fifth term B35(k), as this is the term containing the interactions

with the first reflector: z′′ = z′ and z′ = z. In this way we have isolated the interactions and
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their neighborhood. As this neighborhood is small, we expect we have done enough to reach

our goal of elimination of internal multiples of first order with their downward reflection at the

shallowest interface. It is interesting that the parameter ε is applied in this context to include the

self-interactions, rather than to avoid them, as is the case for the leading-order attenuator.

The last step is to define F [b1(z)] as the inverse Fourier transform of B35(k) :

F [b1(z)] = F−1
[∫ ∞

−∞
dzeikzb1(z)

∫ z+ε

z−ε
dz′e−ikz

′
b1(z

′)
∫ z′+ε

z′−ε
dz′′eikz

′′
b1(z

′′)

]
. (16)

In this way, we arrive at the second contribution towards elimination of internal multiples of first

order with their downward reflection at the shallowest interface:

bIM5 (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
F [b1(z

′)]
∫ ∞

z′+ε
dz′′eikz

′′
b1(z

′′). (17)

In Appendix A.2 we show in detail how to perform the integrals in eq. (17), for the same model as

the one in Figure 2 in Section 2.2. In the time domain the result is

bIM5 (t) = R3
1(R′2)

2δ(t− (2t2 − t1)) + 2R′2R
3
1R
′
3δ(t− (t2 + t3 − t1))+

R′3R
3
1R
′
3δ(t− (2t3 − t1)) + (R′2)

3(R′3)
2δ(t− (2t3 − t2)), (18)

which can be expressed in terms of eqs. (7) and (8) as

bIM5 (t) = −T01T10 ∗R2
1 ∗ (IM)j=1 − (T01T10)

2 ∗ T12T21 ∗ (R′2)
2(IM)j=2. (19)

If we now add eq. (19) to the effect of the leading order attenuator; i.e., to eq. (9), we get

b1(t) + b3(t) + bIM5 (t) = primaries+ [1− T01T10(1 +R2
1)](IM)j=1+

[1− (T01T10)
2 ∗ T12T21 ∗ (1 + (R′2)

2)](IM)j=2 + ... (20)

Let’s restrict our attention to the amplitude of the internal multiples generated at the shallowest

reflector, i.e., to the coefficient of (IM)j=1 in eq. (20). In this case the attenuation factor T01T10
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is changed to T01T10(1 + R2
1). This new contribution contains the first and second terms of the

geometric series on the right-hand side of eq. (10). Hence, the integral proposed for bIM5 , eq. (17),

correctly reproduces the expected amplitude contribution to take the attenuation of first-order

internal multiples with their downward reflection at the shallowest reflector closer to elimination.

To isolate higher-order contributions of the LOIMES, a process analogous to the isolation of bIM5 (k),

eq. (12), is necessary. For example, the term following bIM5 (k), denoted as bIM7 (k), will be contained

in the seventh term of the ISS. Specifically it will be in V1G0V5G0V1, from which the part of V5

corresponding to V1G0V1G0V1G0V1G0V1 is further selected, followed by an expansion analogous

to eq. (15). The difference is that in this case, there will be four integrals whose intervals of

integration need to split. After computing a few higher-order terms, we can write, upon some

formal definitions, a compact form for bIMLO :

bIMLO (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′×

F−1
(∫ ∞

−∞
dz′eikz

′
b1(z

′)
1

1−
∫ ∫

b1(z′)

)∫ ∞

z′+ε
dz′′eikz

′′
b1(z

′′), (21)

where F−1 means the inverse Fourier transform and

1

1−
∫ ∫

b1(z′)
≡ 1 +

∫ ∫
b1(z

′) +

(∫ ∫
b1(z

′)
)2

+

(∫ ∫
b1(z

′)
)3

+ . . . , (22)

with

(∫ ∫
b1(z

′)
)n
≡
∫ z′+ε

z′−ε
dz1e

−ikz1b1(z1)
∫ z1+ε

z1−ε
dz2e

ikz2b1(z2)×

∫ z2+ε

z2−ε
dz3e

−ikz3b1(z3)
∫ z3+ε

z3−ε
dz4e

ikz4b1(z4) · · · ×

∫ z(2n−2)+ε

z(2n−2)−ε
dz(2n−1)e

−ikz(2n−1)b1(z(2n−1))
∫ z(2n−1)+ε

z(2n−1)−ε
dz2ne

ikz2nb1(z2n), n > 0. (23)

(∫ ∫
b1(z

′)
)n
≡ 1, n = 0. (24)
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Finally, it can also be seen from eq. (20) that bIM5 (t) further attenuates the internal multiple of

first order generated at the second reflector. However, the LOIMES by itself will not match the

amplitude of this event. For that to occur, another subseries needs to be isolated such that, in

cooperation with the LOIMES, the elimination takes place. Earlier work on this direction was also

reported in Ramı́rez (2007).

4 Application of the LOIMES to an analytic model

As was mentioned in the introduction, one motivation for the surgical elimination of internal mul-

tiples is that in some situations current techniques such as the energy-minimization adaptive sub-

traction are no longer suitable and attenuation of internal multiples is not enough. An example of

such a situation is present when an internal multiple is interfering destructively with a primary. On

the other hand, as the LOIMES exactly predicts both the travel time and amplitude of the original

internal multiple, it can be considered to be an example of a method for surgical removal of internal

multiples, because it does not modify any other event. In this section we will use an analytic model

in which an internal multiple of first order is interfering destructively with a primary, and the

attenuation provided by the leading-order attenuator is not enough for correct interpretation of the

primary. We will use this example to show the usefulness of the LOIMES by surgically removing

the internal multiple.

The analytic model is the three-interface model of Figure 2, with the specific values for the pa-

rameters shown in Figure 3. We will use the notation Pi for the primary generated at the reflector

Zi. First-order internal multiples are denoted as IMijk, for i, j, k = 1, 2, 3, with j indicating the

reflector in which the downward reflection is generated; i and k indicate the reflectors in which the

upward reflections are generated.
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 Figure 3: Specific analytic model. This model has the same configuration as that presented in Section 2,

with the specified values for the depths, velocities, and densities.

The interfering events are the primary P3 and the internal multiple IM212, whose common travel

time is 2.2947s. The amplitudes for P3 and IM212 are 0.0045 and -0.1084, respectively. A trace

is shown in Figure 4, from which the amplitude of the combined event P3 + IM212 can be read as

-0.1039: the polarity is opposite that of the primary.

 Figure 4: Data of the model. These data include primaries and the relevant internal multiples of first order.
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The next step would be the application of b3(t) to attenuate internal multiples of first order. The

result is shown in Figure 5, in which a small time window containing the travel time of the interfering

event is shown with an increased scale, in order to make visible the attenuated amplitude. It can

also be seen from the right side of Figure 5 that the primaries P1 and P2 are not affected at all.

From the left side, we can see that the amplitude attenuation is not enough to change the polarity

of the interfering event. This might lead to assignment of the incorrect polarity to the primary.

 Figure 5: Data after the action of the leading-order attenuator, b3(t)

From the above paragraph it is evident that an improvement in the predicted amplitude for IM212

is needed. As was explained in Section 3, this can be done if we include further terms from the

LOIMES. This is shown in Figure 6, in which the effect of the second term, bIM5 (t), has been added

to that of b3(t).
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Figure 6: Data after the action of both the leading-order attenuator and bIM5 (t).

In this case, it can be seen that the primary P3 appears with its original amplitude and polarity,

0.0045, which means that the interfering internal multiple has been removed. This illustrates, at

least for the present model, the high rate of convergence of the LOIMES. However, for more complex

models the convergence can be slower, and more terms might be needed. Also, from Figure 6, it

can be noticed that neither the travel times nor the amplitudes of the primaries P1 and P2 are

influenced or changed, as expected from a method for surgical removal of internal multiples.

5 Discussion and conclusions

In this work we have isolated a subseries whose task is to eliminate first-order internal multiples

with their downward reflections at the shallowest interface. A generic term of this subseries is

given by eqs. (21)-(24). This subseries is called the leading-order internal multiple elimination

subseries (LOIMES). This elimination subseries predicts the phase and the exact amplitude of the

internal multiples and does not modify any primary. Therefore, the surgical removal of such internal

multiples is achieved.
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We have also applied the LOIMES to an analytic example with three interfaces. The configuration

is set up to produce an internal multiple (with downward reflection at the shallowest reflector)

interfering destructively with the primary generated at the third reflector, in a way that the leading-

order attenuator is not enough to let the primary show up in the data with its correct polarity. We

show how the action of the third-order and fifth-order contributions of the algorithm remove the

interfering internal multiple, making the primary to appear in the trace with its original amplitude

and polarity. In practice however, it is not possible to know a priori the number of terms that

are necessary to eliminate the interfering internal multiple. The recipe is to apply to the data one

term at a time until no change is noticed in the primary. Although higher-order terms will imply

an increased computational cost (more integrals need to be calculated), if the interfering primary

is suspected to be the target, then the investment might be worthwhile, as a situation involving a

drilling or no drilling decision might be involved and processing costs pale compared to drilling dry

holes.

Interfering events are common in onshore exploration, but they may also occur offshore. Therefore,

the algorithm in this work may provide added value in those challenging geologic configurations in

which techniques such as the energy-minimization adaptive subtraction fails.

So far, we have assumed that the earth is acoustic. It would be interesting to study the properties

of the LOIMES, with the assumption of the more realistic situation of an elastic earth, in which

the internal multiple can include S-waves.

Further research in this topic includes extending the method beyond the normal incidence assump-

tion of the present work, and to derive the corresponding multidimensional version of the subseries

presented here. Additionally, current challenges in exploration seismology might also require the

removal of other internal multiples of first-order, generated beneath the shallowest reflector. Hence,

a more general research goal is to isolate a subseries, with the specific task of the elimination of

first-order internal multiples generated at all reflectors.

So far, we have assumed that the earth is acoustic. It would be interesting to study the properties

of the LOIMES, with the assumption of the more realistic situation of an elastic earth, in which

the internal multiple can include S-waves.

A Calculation of the leading-order attenuator, b3(t)

Now we will show the key steps involved in calculation of eq. (3). We will use the 1D model with

three interfaces shown in Figure 2, with data generated by a spike wave with normal incidence, i.e.,

191



when the input is given by eq. (5). We will follow the procedure described in Weglein et al. (2003),

in which a 1D model with two interfaces is presented.

A.1 Preparing the input for the Leading-order attenuator

The first task is to obtain b1(z) from the data of the model, eq. (4), which for convenience is

repeated here:

D(t) = R1δ(t− t1) +R′2δ(t− t2) +R′3δ(t− t3) + IM,

where R′2, R
′
3 and ti are as in Section 3.

As it was mentioned in the main body of this work, formally b1(z) is obtained by Stolt’s migration

of eq. (4) using the water speed. However the procedure is captured, in this case, by a simple set

of rules:

1. Perform a temporal Fourier transform

D(ω) = R1e
iωt1 +R′2e

iωt2 +R′3e
iωt3 + ...

2. Define the vertical wavenumber and pseudodepths

k = 2
ω

c0
zi =

c0ti
2
.

Now D can be written as

D(k) = R1e
ikz1 +R′2e

ikz2 +R′3e
ikz3 + ...

3. Perform a Fourier transform on k and denote the result as b1(z):

b1(z) ≡ D(z) = R1δ(z − z1) +R′2δ(z − z2) +R′3δ(z − z3) + ...

In the general case, b1(z) is D(z) times an obliquity factor. In our case, this factor is not

needed as we are considering normal incidence of a plane wave; i.e., b1(z) ≡ D(z). The role

of the obliquity factor in more general situations is to produce a plane wave in the Fourier

domain (see Weglein et al. 2003).
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The equation in item 3 is the input for the leading-order attenuator, eq. (3), and it matches exactly

eq. (5) in Section 2.2.

A.2 Explicit calculation of the analytic expression for b3(t)

We will now insert eq. (5) into eq. (3), which for convenience is repeated here:

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
b1(z

′)
∫ ∞

z′+ε
dz′′eikz

′′
b1(z

′′).

We start the evaluation of the above expression with the integral on the right (we only take into

account the primaries):

∫ ∞

z′+ε
dz′′eikz

′′
b1(z) =

∫ ∞

z′+ε
dz′′eikz

′′
[R1δ(z

′′ − z1) +R′2δ(z
′′ − z2) +R′3δ(z

′′ − z2)] =

∫ ∞

−∞
dz′′eikz

′′
[R1δ(z

′′ − z1)H(z′′ − (z′ + ε)) +R′2δ(z
′′ − z2)H(z′′ − (z′ + ε))+

R′3δ(z
′′ − z2)H(z′′ − (z′ + ε))] =

R1e
ikz1H(z1 − (z′ + ε)) +R′2e

ikz2H(z2 − (z′ + ε)) +R′3e
ikz3H(z3 − (z′ + ε)). (25)

As it will be used repeatedly throughout the present and the next appendices, it is worthwhile to

say some words about the procedure to go from the second term to the third one in eq. (25). The

interval of integration is extended from z′− ε to ∞, but Heaviside functions are introduced at each

term of the integrand, with each Heaviside function having the appropriate argument to avoid the

modification the original integral.

Substituting eq. (25) into the second integral of eq. (3) , we get

∫ z−ε

−∞
dz′e−ikz

′
[R1δ(z

′ − z1) +R′2δ(z
′ − z2) +R′3δ(z

′ − z3)]×

[R1e
ikz1H(z1 − (z′ + ε)) +R′2e

ikz2H(z2 − (z′ + ε)) +R′3e
ikz3H(z3 − (z′ + ε))]
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=

∫ z−ε

−∞
dz′e−ikz

′
R1δ(z

′ − z1)R1e
ikz1H(z1 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
R1δ(z

′ − z1)R′2eikz2H(z2 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
R1δ(z

′ − z1)R′3eikz3H(z3 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
R′2δ(z

′ − z2)R1e
ikz1H(z1 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
R′2δ(z

′ − z2)R′2eikz2H(z2 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
R′2δ(z

′ − z2)R′3eikz3H(z3 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
R′3δ(z

′ − z3)R1e
ikz1H(z1 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
R′3δ(z

′ − z3)R′2eikz2H(z2 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
R′3δ(z

′ − z3)R′3eikz3H(z3 − (z′ + ε)) =

I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9. (26)

Evaluating each of the integrals in eq. (26) we get

I1 =

∫ z−ε

−∞
dz′e−ikz

′
R1δ(z

′ − z1)R1e
ikz1H(z1 − (z′ + ε)) = R4

1H(z1 − (z1 + ε))︸ ︷︷ ︸
=0

H((z − ε)− z1) = 0,

I2 =

∫ z−ε

−∞
dz′e−ikz

′
R1δ(z

′ − z1)R′2eikz2H(z2 − (z′ + ε)) =
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R1R
′
2e
ik(z2−z1)H(z2 − (z1 + ε))H((z − ε)− z1),

I3 =

∫ z−ε

−∞
dz′e−ikz

′
R1δ(z

′ − z1)R′3eikz3H(z3 − (z′ + ε)) =

R1R
′
3e
ik(z3−z1)H(z3 − (z1 + ε))H((z − ε)− z1),

I4 =

∫ z−ε

−∞
dz′e−ikz

′
R′2δ(z

′ − z2)R1e
ikz1H(z1 − (z′ + ε)) =

R1R
′
2e
ik(z1−z2)H(z1 − (z2 + ε))︸ ︷︷ ︸

=0

H((z − ε)− z2) = 0,

I5 =

∫ z−ε

−∞
dz′e−ikz

′
R′2δ(z

′ − z2)R′2eikz2H(z2 − (z′ + ε)) =

R′2H(z2 − (z2 + ε))︸ ︷︷ ︸
=0

H((z − ε)− z2) = 0,

I6 =

∫ z−ε

−∞
dz′e−ikz

′
R′2δ(z

′ − z2)R′3eikz3H(z3 − (z′ + ε)) =

R′2R
′
3e
ik(z3−z2)H((z − ε)− z2),

I7 =

∫ z−ε

−∞
dz′e−ikz

′
R′3δ(z

′ − z3)R1e
ikz1H(z1 − (z′ + ε)) =

R1R
′
3e
ik(z1−z3)H(z1 − (z3 + ε))︸ ︷︷ ︸

=0

,

I8 =

∫ z−ε

−∞
dz′e−ikz

′
R′3δ(z

′ − z3)R′2eikz2H(z2 − (z′ + ε)) =

R′2R
′
3e
ik(z2−z3)H(z2 − (z3 + ε))︸ ︷︷ ︸

=0

,
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I9 =

∫ z−ε

−∞
dz′e−ikz

′
R′3δ(z

′ − z3)R′3eikz3H(z3 − (z′ + ε)) =

R′3H(z3 − (z3 + ε))︸ ︷︷ ︸
=0

.

Hence, the result of the second integral in eq. (3) is

I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9

= R1R
′
2e
ik(z2−z1)H((z−ε)−z1)+R1R

′
3e
ik(z3−z1)H((z−ε)−z1)+R′2R

′
3e
ik(z3−z2)H((z−ε)−z2). (27)

Substituting eq. (27), into the last integral of eq. (3), we finally have

b3(k) =

∫ ∞

−∞
dzeikz[R1δ(z − z1) +R′2δ(z − z2) +R′3δ(z − z3)]×

[R1R
′
2e
ik(z2−z1)H((z − ε)− z1) +R1R

′
3e
ik(z3−z1)H((z − ε)− z1) + (R′2)R

′
3e
ik(z3−z2)H((z − ε)− z2)]

=

∫ ∞

−∞
dzeikzR1δ(z − z1)R1R

′
2e
ik(z2−z1)H((z − ε)− z1)+

∫ ∞

−∞
dzeikzR1δ(z − z1)R1R

′
3e
ik(z3−z1)H((z − ε)− z1)+

∫ ∞

−∞
dzeikzR1δ(z − z1)R′2R′3eik(z3−z2)H((z − ε)− z2)+

∫ ∞

−∞
dzeikzR′2δ(z − z2)R1R

′
2e
ik(z2−z1)H((z − ε)− z1)+

∫ ∞

−∞
dzeikzR′2δ(z − z2)R1R

′
3e
ik(z3−z1)H((z − ε)− z1)+

196



∫ ∞

−∞
dzeikzR′2δ(z − z2)R′2R′3eik(z3−z2)H((z − ε)− z2)+

∫ ∞

−∞
dzeikzR′3δ(z − z3)R1R

′
2e
ik(z2−z1)H((z − ε)− z1)+

∫ ∞

−∞
dzeikzR′3δ(z − z3)R1R

′
3e
ik(z3−z1)H((z − ε)− z1)+

∫ ∞

−∞
dzeikzR′3δ(z − z3)R′2R′3eik(z3−z2)H((z − ε)− z2) =

I ′1 + I ′2 + I ′3 + I ′4 + I ′5 + I ′6 + I ′7 + I ′8 + I ′9. (28)

Evaluating now the integrals in (28), we get

I ′1 =

∫ ∞

−∞
dzeikzR1δ(z − z1)R1R

′
2e
ik(z2−z1)H((z − ε)− z1) =

R2
1R
′
2e
ik(z2−2z1)H((z1 − ε)− z1)︸ ︷︷ ︸

=0

,

I ′2 =

∫ ∞

−∞
dzeikzR1δ(z − z1)R1R

′
3e
ik(z3−z1)H((z − ε)− z1) =

R2
1R
′
3e
ik(z3−2z1)H((z1 − ε)− z1)︸ ︷︷ ︸

=0

,

I ′3 =

∫ ∞

−∞
dzeikzR1δ(z − z1)R′2R′3eik(z3−z2)H((z − ε)− z2) =

R1R
′
2R
′
3e
ik(z1+z3−z2)H((z1 − ε)− z2)︸ ︷︷ ︸

=0

,

I ′4 =

∫ ∞

−∞
dzeikzR′2δ(z − z2)R1R

′
2e
ik(z2−z1)H((z − ε)− z1)
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R1(R
′
2)

2eik(2z2−z1),

I ′5 =

∫ ∞

−∞
dzeikzR′2δ(z − z2)R1R

′
3e
ik(z3−z1)H((z − ε)− z1) =

R′2R1R
′
3e
ik(z2+z3−z1),

I ′6 =

∫ ∞

−∞
dzeikzR′2δ(z − z2)R′2R′3eik(z3−z2)H((z − ε)− z2) =

R′2R
′
3e
ik(z3−2z2)H((z2 − ε)− z2)︸ ︷︷ ︸

=0

,

I ′7 =

∫ ∞

−∞
dzeikzR′3δ(z − z3)R1R

′
2e
ik(z2−z1)H((z − ε)− z1) =

R′3R1R
′
2e
ik(z3+z2−z1),

I ′8 =

∫ ∞

−∞
dzeikzR′3δ(z − z3)R1R

′
3e
ik(z3−z1)H((z − ε)− z1) =

R′3R
3
1R
′
3e
ik(2z3−z1),

I ′9 =

∫ ∞

−∞
dzeikzR′3δ(z − z3)R′2R′3eik(z3−z2)H((z − ε)− z2) =

R′2(R
′
3)

2eik(2z3−z2).

With the results above, the sum of the integrals in eq. (28) gives

b3(k) = R1(R
′
2)

2eik(2z2−z1) + 2R′2R1R
′
3e
ik(z2+z3−z1)+
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= R1(R
′
2)

2eik(2z2−z1) + 2R′2R1R
′
3e
ik(z2+z3−z1) +R′3R1R

′
3e
ik(2z3−z1) +R′2(R

′
3)

2eik(2z3−z2),

which in the time domain is expressed as

b3(t) = R1(R
′
2)

2δ(t− (2t2 − t1)) + 2R′2R1R
′
3δ(t− (t2 + t3 − t1)) +R′3R1R

′
3δ(t− (2t3 − t1))+

R′2(R
′
3)

2δ(t− (2t3 − t2))

b3(t) = −T01T10 ∗ (IM)j=1 − (T01T10)
2 ∗ T12T21 ∗ (IM)j=2.

The above expression is exactly eq. (6). (IM)j=1 and (IM)j=2 represent the contributions of the

internal multiples (of first order) with their downward reflection originating at the first (shallowest)

and second reflectors, respectively. Their analytic expressions are given by eqs. (7) and (8):

(IM)j=1 = −T01R2R1R2T10δ(t− (2t2 − t1))

−2T01R2R1T21R3T12T10δ(t− (t2 + t3 − t1))− T01T 2
12R3R1R3T

2
21δ(t− (2t3 − t1)).

(IM)j=2 = −T01T12R3R2R3T10T21δ(t− (2t3 − t1)).

B Explicit calculation of the expression for bIM5 (t)

In this appendix we will provide the details of the calculation of bIM5 (k), using the second term of

the LOIMES, which is presented here for convenience:

bIM5 (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
F [b1(z

′)]
∫ ∞

z′+ε
dz′′eikz

′′
b1(z

′′),

where

F [b1(z)] = F−1
[∫ ∞

−∞
dzeikzb1(z)

∫ z+ε

z−ε
dz′e−ikz

′
b1(z

′)
∫ z′+ε

z′−ε
dz′′eikz

′′
b1(z

′′)

]
.
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We start with the evaluation of F [b1(z)]. First we insert eq. (5) into the right integral of F [b1(z)].

Then, by extension of the interval of integration and insertion of the convenient Heaviside functions,

as in Appendix A, we get

∫ z′+ε

z′−ε
dz′′eikz

′′
b1(z

′′) =

∫ z′+ε

z′−ε
dz′′eikz

′′
[R1δ(z

′′ − z1) +R′2δ(z
′′ − z2) +R′3δ(z

′′ − z3)] =

R1e
ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1) +R′2e

ikz2H(z2 − (z′ − ε))H((z′ + ε)− z2)+

R′3e
ikz3H(z3 − (z′ − ε))H((z′ + ε)− z3). (29)

Substituting eq. (29) into the second integral in F [b1(z
′)], we have

∫ z+ε

z−ε
dz′e−ikz

′
b1(z

′)[R1e
ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1)+

R′2e
ikz2H(z2 − (z′ − ε))H((z′ + ε)− z2) +R′3e

ikz3H(z3 − (z′ − ε))H((z′ + ε)− z3)]

=

∫ z+ε

z−ε
dz′e−ikz

′
[R1δ(z

′ − z1) +R′2δ(z
′ − z2) +R′3δ(z

′ − z3)]×

[R1e
ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1) +R′2e

ikz2H(z2 − (z′ − ε))H((z′ + ε)− z2)

+R′3e
ikz3H(z3 − (z′ − ε))H((z′ + ε)− z3)] =

∫ z+ε

z−ε
dz′e−ikz

′
R1δ(z

′ − z1)R1e
ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1)+

∫ z+ε

z−ε
dz′e−ikz

′
R1δ(z

′ − z1)R′2eikz2H(z2 − (z′ − ε))H((z′ + ε)− z2))+

∫ z+ε

z−ε
dz′e−ikz

′
R1δ(z

′ − z1)R′3eikz3H(z3 − (z′ − ε))H((z′ + ε)− z3))+
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∫ z+ε

z−ε
dz′e−ikz

′
R′2δ(z

′ − z2)R1e
ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1)+

∫ z+ε

z−ε
dz′e−ikz

′
R′2δ(z

′ − z2)R′2eikz2H(z2 − (z′ − ε))H((z′ + ε)− z2)+

∫ z+ε

z−ε
dz′e−ikz

′
R′2δ(z

′ − z2)R′3eikz3H(z3 − (z′ − ε))H((z′ + ε)− z3)+

∫ z+ε

z−ε
dz′e−ikz

′
R′3δ(z

′ − z3)R1e
ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1)+

∫ z+ε

z−ε
dz′e−ikz

′
R′3δ(z

′ − z3)R′2eikz2H(z2 − (z′ − ε))H((z′ + ε)− z2)+

∫ z+ε

z−ε
dz′e−ikz

′
R′3δ(z

′ − z3)R′3eikz3H(z3 − (z′ − ε))H((z′ + ε)− z3)

I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9. (30)

The integrals in (30) are evaluated as follows:

I1 =

∫ z+ε

z−ε
dz′e−ikz

′
R1δ(z

′ − z1)R1e
ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1) =

R2
1e
−ikz1eikz1H(z1 − (z − ε))H((z + ε)− z1)H(z1 − (z1 − ε))︸ ︷︷ ︸

=1

H((z1 + ε)− z1)︸ ︷︷ ︸
=1

=

R2
1H(z1 − (z − ε))H((z + ε)− z1),

I2 =

∫ z+ε

z−ε
dz′e−ikz

′
R1δ(z

′ − z1)R′2eikz2H(z2 − (z′ − ε))H((z′ + ε)− z2) =

R1R
′
2e
−ikz1eikz2H(z1 − (z − ε))H((z + ε)− z1)H(z2 − (z1 − ε))H((z1 + ε)− z2)︸ ︷︷ ︸

=0

= 0,
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I3 =

∫ z+ε

z−ε
dz′e−ikz

′
R1δ(z

′ − z1)R′3eikz3H(z3 − (z′ − ε))H((z′ + ε)− z3) =

R1R
′
3e
−ikz1eikz3H(z1 − (z − ε))H((z + ε)− z1)H(z3 − (z1 − ε))H((z1 + ε)− z3)︸ ︷︷ ︸

=0

= 0,

I4 =

∫ z+ε

z−ε
dze−ikz

′
R′2δ(z

′ − z2)R1e
ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1) =

R1R
′
2e
−ikz2eikz1H(z2 − (z − ε))H((z + ε)− z2)H(z1 − (z2 − ε))︸ ︷︷ ︸

=0

H((z2 + ε)− z1) = 0,

I5 =

∫ z+ε

z−ε
dze−ikz

′
R′2δ(z

′ − z2)R′2eikz2H(z2 − (z′ − ε))H((z′ + ε)− z2) =

(R′2)
2e−ikz2eikz2H(z2 − (z − ε))H((z + ε)− z2)H(z2 − (z2 − ε))H((z2 + ε)− z2) =

(R′2)
2H(z2 − (z − ε))H((z + ε)− z2),

I6 =

∫ z+ε

z−ε
dze−ikz

′
R′2δ(z

′ − z2)R′3eikz3H(z3 − (z′ − ε))H((z′ + ε)− z3) =

R′3R
′
2e
−ikz2eikz3H(z2 − (z − ε))H((z + ε)− z2)H(z3 − (z2 − ε))︸ ︷︷ ︸

=0

H((z2 + ε)− z3) = 0,

I7 =

∫ z+ε

z−ε
dze−ikz

′
R′3δ(z

′ − z3)R1e
ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1) =

R1R
′
3e
−ikz3eikz1H(z3 − (z − ε))H((z + ε)− z3)H(z1 − (z3 − ε))︸ ︷︷ ︸

=0

H((z3 + ε)− z1) = 0,

I8 =

∫ z+ε

z−ε
dze−ikz

′
R′3δ(z

′ − z3)R′2eikz2H(z2 − (z′ − ε))H((z′ + ε)− z2) =
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R′3R
′
2e
−ikz3eikz2H(z3 − (z − ε))H((z + ε)− z3)H(z2 − (z3 − ε))︸ ︷︷ ︸

=0

H((z3 + ε)− z2) = 0,

I9 =

∫ z+ε

z−ε
dze−ikz

′
R′3δ(z

′ − z3)R′3eikz3H(z3 − (z′ − ε))H((z′ + ε)− z3) =

(R′3)
2e−ikz3eikz3H(z3 − (z − ε))H((z + ε)− z3)H(z3 − (z3 − ε))H((z3 + ε)− z3) =

(R′3)
2H(z3 − (z − ε))H((z + ε)− z3). (31)

Upon substitution of the integrals just calculated, we get

I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9 =

R2
1H(z1 − (z − ε))H((z + ε)− z1) + (R′2)

2H(z2 − (z − ε))H((z + ε)− z2)+

(R′3)
2H(z3 − (z − ε))H((z + ε)− z3). (32)

Finally, substituting eq. (32) into the third integral in F [b1(z
′)], and using the notation of eq. (15),

we end up with

∫ ∞

−∞
dzeikz[R1δ(z − z1) +R′2δ(z − z2) +R′3δ(z − z3)]×

[R2
1H(z1 − (z − ε))H((z + ε)− z1) + (R′2)

2H(z2 − (z − ε))H((z + ε)− z2)+

(R′3)
2H(z3 − (z − ε))H((z + ε)− z3)] =

∫ ∞

−∞
dzeikzR1δ(z − z1)R2

1H(z1 − (z − ε))H((z + ε)− z1)+
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∫ ∞

−∞
dzeikzR1δ(z − z1)(R′2)2H(z2 − (z − ε))H((z + ε)− z2)+

∫ ∞

−∞
dzeikzR1δ(z − z1)(R′3)2H(z3 − (z − ε))H((z + ε)− z3)+

∫ ∞

−∞
dzeikzR′2δ(z − z2)R2

1H(z1 − (z − ε))H((z + ε)− z1)+

∫ ∞

−∞
dzeikzR′2δ(z − z2)(R′2)2H(z2 − (z − ε))H((z + ε)− z2)+

∫ ∞

−∞
dzeikzR′2δ(z − z2)(R′3)2H(z3 − (z − ε))H((z + ε)− z3)+

∫ ∞

−∞
dzeikzR′3δ(z − z3)R2

1H(z1 − (z − ε))H((z + ε)− z1)+

∫ ∞

−∞
dzeikzR′3δ(z − z3)(R′2)2H(z2 − (z − ε))H((z + ε)− z2)+

∫ ∞

−∞
dzeikzR′3δ(z − z3)(R′3)2H(z3 − (z − ε))H((z + ε)− z3) =

I ′1 + I ′2 + I ′3 + I ′4 + I ′5 + I ′6 + I ′7 + I ′8 + I ′9. (33)

Evaluating the integrals above, we have

I ′1 =

∫ ∞

−∞
dzeikzR1δ(z − z1)R2

1H(z1 − (z − ε))H((z + ε)− z1) =

R3
1e
ikz1H(z1 − (z1 − ε))H((z1 + ε)− z1) = R3

1e
ikz1 ,

I ′2 =

∫ ∞

−∞
dzeikzR1δ(z − z1)(R′2)2H(z2 − (z − ε))H((z + ε)− z2) =
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R1(R
′
2)

2eikz1H(z2 − (z1 − ε))H((z1 + ε)− z2)︸ ︷︷ ︸
=0

= 0,

I ′3 =

∫ ∞

−∞
dzeikzR1δ(z − z1)(R′3)2H(z3 − (z − ε))H((z + ε)− z3) =

R1(R
′
3)

2eikz1H(z3 − (z1 − ε))H((z1 + ε)− z3)︸ ︷︷ ︸
=0

= 0,

I ′4 =

∫ ∞

−∞
dzeikzR′2δ(z − z2)R2

1H(z1 − (z − ε))H((z + ε)− z1) =

R2
1R
′
2e
ikz2 H(z1 − (z2 − ε))︸ ︷︷ ︸

=0

H((z2 + ε)− z1) = 0,

I ′5 =

∫ ∞

−∞
dzeikzR′2δ(z − z2)(R′2)2H(z2 − (z − ε))H((z + ε)− z2) =

(R′2)
3eikz2H(z2 − (z2 − ε))H((z2 + ε)− z2) = (R′2)

3eikz2 , (34)

I ′6 =

∫ ∞

−∞
dzeikzR′2δ(z − z2)(R′3)2H(z3 − (z − ε))H((z + ε)− z3) =

R′2(R
′
3)

2eikz2H(z3 − (z2 − ε))H((z2 + ε)− z3)︸ ︷︷ ︸
=0

= 0,

I ′7 =

∫ ∞

−∞
dzeikzR′3δ(z − z3)R2

1H(z1 − (z − ε))H((z + ε)− z1) =

R2
1R
′
3e
ikz3 H(z1 − (z3 − ε))︸ ︷︷ ︸

=0

H((z3 + ε)− z1) = 0,

I ′8 =

∫ ∞

−∞
dzeikzR′3δ(z − z3)(R′2)2H(z2 − (z − ε))H((z + ε)− z2) =
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(R′2)
2R′3e

ikz3 H(z2 − (z3 − ε))︸ ︷︷ ︸
=0

H((z2 + ε)− z1) = 0,

I ′9 =

∫ ∞

−∞
dzeikzR′3δ(z − z2)(R′3)2H(z3 − (z − ε))H((z + ε)− z3) =

(R′3)
3eikz3H(z3 − (z3 − ε))H((z3 + ε)− z3) = (R′3)

3eikz3 . (35)

Adding the integrals above, we finally have

B35(k) = R3
1e
ikz1 + (R′2)

3eikz2 + (R′3)
3eikz2 , (36)

where notation from eq. (15) has been used. When transformed to the pseudodepth domain, eq.

(36) becomes

F [b1(z)] = R3
1δ(z − z1) + (R′2)

3δ(z − z2) + (R′3)
3δ(z − z3). (37)

Now we will evaluate bIM5 (k),the second term in bIMLO , using eq. (37):

bIM5 (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
F [b1(z

′)]
∫ ∞

z′+ε
dz′′eikz

′′
b1(z). (38)

The 1st integral in the above expression is

∫ ∞

z′+ε
dz′′eikz

′′
b1(z) =

∫ ∞

z′+ε
dz′′eikz

′′
[R1δ(z

′′ − z1) + (R′2)δ(z
′′ − z2)+

(R′3)δ(z
′′ − z3)] =

R1e
ikz1H(z1 − (z′ + ε)) +R′2e

ikz2H(z2 − (z′ + ε)) +R′3e
ikz3H(z3 − (z′ + ε)). (39)

Substituting eq. (39) in the second integral of eq. (38), we get

∫ z−ε

−∞
dz′e−ikz

′
[R3

1δ(z
′ − z1) + (R′2)

3δ(z′ − z2) + (R′3)
3δ(z′ − z3)]×
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[R1e
ikz1H(z1 − (z′ + ε)) +R′2e

ikz2H(z2 − (z′ + ε)) +R′3e
ikz3H(z3 − (z′ + ε))]

=

∫ z−ε

−∞
dz′e−ikz

′
R3

1δ(z
′ − z1)R1e

ikz1H(z1 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
R3

1δ(z
′ − z1)R′2eikz2H(z2 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
R3

1δ(z
′ − z1)R′3eikz3H(z3 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
(R′2)

3δ(z′ − z2)R1e
ikz1H(z1 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
(R′2)

3δ(z′ − z2)R′2eikz2H(z2 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
(R′2)

3δ(z′ − z2)R′3eikz3H(z3 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
(R′3)

3δ(z′ − z3)R1e
ikz1H(z1 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
(R′3)

3δ(z′ − z3)R′2eikz2H(z2 − (z′ + ε))+

∫ z−ε

−∞
dz′e−ikz

′
(R′3)

3δ(z′ − z3)R′3eikz3H(z3 − (z′ + ε)) =

I ′′1 + I ′′2 + I ′′3 + I ′′4 + I ′′5 + I ′′6 + I ′′7 + I ′′8 + I ′′9 . (40)

Evaluating each of the integrals in eq. (40), we have

I ′′1 =

∫ z−ε

−∞
dz′e−ikz

′
R3

1δ(z
′ − z1)R1e

ikz1H(z1 − (z′ + ε)) = R4
1H(z1 − (z1 + ε))︸ ︷︷ ︸

=0

H((z − ε)− z1) = 0,
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I ′′2 =

∫ z−ε

−∞
dz′e−ikz

′
R3

1δ(z
′ − z1)R′2eikz2H(z2 − (z′ + ε)) =

R3
1R
′
2e
ik(z2−z1)H(z2 − (z1 + ε))H((z − ε)− z1),

I ′′3 =

∫ z−ε

−∞
dz′e−ikz

′
R3

1δ(z
′ − z1)R′3eikz3H(z3 − (z′ + ε)) =

R3
1R
′
3e
ik(z3−z1)H(z3 − (z1 + ε))H((z − ε)− z1),

I ′′4 =

∫ z−ε

−∞
dz′e−ikz

′
(R′2)

3δ(z′ − z2)R1e
ikz1H(z1 − (z′ + ε)) =

R1(R
′
2)

3eik(z1−z2)H(z1 − (z2 + ε))︸ ︷︷ ︸
=0

H((z − ε)− z2) = 0,

I ′′5 =

∫ z−ε

−∞
dz′e−ikz

′
(R′2)

3δ(z′ − z2)R′2eikz2H(z2 − (z′ + ε)) =

(R′2)
4H(z2 − (z2 + ε))︸ ︷︷ ︸

=0

H((z − ε)− z2) = 0,

I ′′6 =

∫ z−ε

−∞
dz′e−ikz

′
(R′2)

3δ(z′ − z2)R′3eikz3H(z3 − (z′ + ε)) =

(R′2)
3R′3e

ik(z3−z2)H((z − ε)− z2),

I ′′7 =

∫ z−ε

−∞
dz′e−ikz

′
(R′3)

3δ(z′ − z3)R1e
ikz1H(z1 − (z′ + ε)) =

R1(R
′
3)

3eik(z1−z3)H(z1 − (z3 + ε))︸ ︷︷ ︸
=0

,

I ′′8 =

∫ z−ε

−∞
dz′e−ikz

′
(R′3)

3δ(z′ − z3)R′2eikz2H(z2 − (z′ + ε)) =
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R′2(R
′
3)

3eik(z2−z3)H(z2 − (z3 + ε))︸ ︷︷ ︸
=0

,

I ′′9 =

∫ z−ε

−∞
dz′e−ikz

′
(R′3)

3δ(z′ − z3)R′3eikz3H(z3 − (z′ + ε)) =

(R′3)
4H(z3 − (z3 + ε))︸ ︷︷ ︸

=0

.

Hence, the value of eq. (40) is

I ′′1 + I ′′2 + I ′′3 + I ′′4 + I ′′5 + I ′′6 + I ′′7 + I ′′8 + I ′′9

= R3
1R
′
2e
ik(z2−z1)H((z− ε)− z1) +R3

1R
′
3e
ik(z3−z1)H((z− ε)− z1) + (R′2)

3R′3e
ik(z3−z2)H((z− ε)− z2).

(41)

Substituting eq. (41) in the last integral of eq. (37), we finally have

bIM5 (k) =

∫ ∞

−∞
dzeikz[R1δ(z − z1) +R′2δ(z − z2) +R′3δ(z − z3)]×

[R3
1R
′
2e
ik(z2−z1)H((z− ε)−z1)+R3

1R
′
3e
ik(z3−z1)H((z− ε)−z1)+(R′2)

3R′3e
ik(z3−z2)H((z− ε)−z2)] =

∫ ∞

−∞
dzeikzR1δ(z − z1)R3

1R
′
2e
ik(z2−z1)H((z − ε)− z1)+

∫ ∞

−∞
dzeikzR1δ(z − z1)R3

1R
′
3e
ik(z3−z1)H((z − ε)− z1)+

∫ ∞

−∞
dzeikzR1δ(z − z1)(R′2)3R′3eik(z3−z2)H((z − ε)− z2)+

∫ ∞

−∞
dzeikzR′2δ(z − z2)R3

1R
′
2e
ik(z2−z1)H((z − ε)− z1)+
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∫ ∞

−∞
dzeikzR′2δ(z − z2)R3

1R
′
3e
ik(z3−z1)H((z − ε)− z1)+

∫ ∞

−∞
dzeikzR′2δ(z − z2)(R′2)3R′3eik(z3−z2)H((z − ε)− z2)+

∫ ∞

−∞
dzeikzR′3δ(z − z3)R3

1R
′
2e
ik(z2−z1)H((z − ε)− z1)+

∫ ∞

−∞
dzeikzR′3δ(z − z3)R3

1R
′
3e
ik(z3−z1)H((z − ε)− z1)+

∫ ∞

−∞
dzeikzR′3δ(z − z3)(R′2)3R′3eik(z3−z2)H((z − ε)− z2) =

I ′′′1 + I ′′′2 + I ′′′3 + I ′′′4 + I ′′′5 + I ′′′6 + I ′′′7 + I ′′′8 + I ′′′9 (42)

The integrals in eq. (42) are calculated as usual:

I ′′′1 =

∫ ∞

−∞
dzeikzR1δ(z − z1)R3

1R
′
2e
ik(z2−z1)H((z − ε)− z1) =

R4
1R
′
2e
ik(z2−2z1)H((z1 − ε)− z1)︸ ︷︷ ︸

=0

.

I ′′′2 =

∫ ∞

−∞
dzeikzR1δ(z − z1)R3

1R
′
3e
ik(z3−z1)H((z − ε)− z1) =

R4
1R
′
3e
ik(z3−2z1)H((z1 − ε)− z1)︸ ︷︷ ︸

=0

.

I ′′′3 =

∫ ∞

−∞
dzeikzR1δ(z − z1)(R′2)3R′3eik(z3−z2)H((z − ε)− z2) =

R1(R
′
2)

3R′3e
ik(z1+z3−z2)H((z1 − ε)− z2)︸ ︷︷ ︸

=0

.
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I ′′′4 =

∫ ∞

−∞
dzeikzR′2δ(z − z2)R3

1R
′
2e
ik(z2−z1)H((z − ε)− z1)

R3
1(R′2)

2eik(2z2−z1).

I ′′′5 =

∫ ∞

−∞
dzeikzR′2δ(z − z2)R3

1R
′
3e
ik(z3−z1)H((z − ε)− z1) =

R′2R
3
1R
′
3e
ik(z2+z3−z1).

I ′′′6 =

∫ ∞

−∞
dzeikzR′2δ(z − z2)(R′2)3R′3eik(z3−z2)H((z − ε)− z2) =

(R′2)
3R′3e

ik(z3−2z2)H((z2 − ε)− z2)︸ ︷︷ ︸= 0,

I ′′′7 =

∫ ∞

−∞
dzeikzR′3δ(z − z3)R3

1R
′
2e
ik(z2−z1)H((z − ε)− z1) =

R′3R
3
1R
′
2e
ik(z3+z2−z1),

I ′′′8 =

∫ ∞

−∞
dzeikzR′3δ(z − z3)R3

1R
′
3e
ik(z3−z1)H((z − ε)− z1) =

R′3R
3
1R
′
3e
ik(2z3−z1),

I ′′′9 =

∫ ∞

−∞
dzeikzR′3δ(z − z3)(R′2)3R′3eik(z3−z2)H((z − ε)− z2) =

(R′2)
3(R′3)

2eik(2z3−z2).

The sum of the integrals above gives
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bIM5 = R3
1(R′2)

2eik(2z2−z1) + 2R′2R
3
1R
′
3e
ik(z2+z3−z1)+

R′3R
3
1R
′
3e
ik(2z3−z1) + (R′2)

3(R′3)
2eik(2z3−z2). (43)

Upon Fourier transformation, eq. (43) becomes:

bIM5 (t) = R3
1(R′2)

2δ(t− (2t2 − t1)) + 2R′2R
3
1R
′
3δ(t− (t2 + t3 − t1))+

R′3R
3
1R
′
3δ(t− (2t3 − t1)) + (R′2)

3(R′3)
2δ(t− (2t3 − t2)),

which is exactly eq. (18) in Section 3.
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Araújo, F. V., Weglein A. B., Carvalho P. M., and Stolt R. H. “Inverse scattering series for multiple

attenuation: an example with surface and internal multiples.” 64th Ann. Int. SEG Mtg, Expanded

Abstracts. . Soc. Expl. Geophys., 1994. 1039–41.

Carvalho, P. M. Free-surface multiple reflection elimination method based on nonlinear inversion

of seismic data. PhD thesis, Universidade Federal da Bahia, 1992. In Portuguese.

Liang, Hong and A. B. Weglein. “A further general modification of the leading order ISS attenu-

ator of first order internal multiples to accommodate primaries and internal multiples when an

arbitrary number of reflectors generate the data: theory, development, and examples.” M-OSRP

2012 Annual Meeting. 2012, 148–166.

Ma, Chao and A. B. Weglein. “Modifying the leading-order ISS attenuator of first-order internal

multiples to accomodate primaries and internal multiples: fundamental concept and theory,

development, and examples exemplified when three reflectors generate the data.” M-OSRP 2012

Annual Meeting. 2012, 133–147.

212



Ramı́rez, A. C. I. - Inverse scattering subseries for removal of internal multiples and depth imaging

primaries; II. - Green’s theorem as the foundation of interferometry and guiding new practical

methods and applications. PhD thesis, University of Houston, 2007.

Ramı́rez, A. C. and Arthur B. Weglein. “An inverse scattering internal multiple elimination method:

Beyond attenuation, a new algorithm and initial tests.” 75st Annual International Meeting, SEG,

Expanded Abstracts. . Soc. Expl. Geophys., 2005.
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