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Abstract

In Ramírez (2007), a subseries of the Inverse Scattering Subseries (ISS) was isolated, whose
specific task is to eliminate internal multiples of first order. This subseries naturally splits into
two subseries: the Leading-Order Internal-Multiple-Eliminator Subseries (LOIMES) and the
Higher-Order Internal-Multiple-Eliminator Subseries (HOIMES).

The purpose of this report is to propose a modification of the LOIMES. The motivation for
such a modification is twofold. First, the original formulation carries a limitation for correctly
accommodating spike-like data, due to the presence of powers of the data higher than one, which
are not well defined mathematically when the data are spike-like. Second, we wish to apply the
LOIMES to the Internal-Multiple-Attenuation Subseries (IMAS) obtained in Ma and Weglein
(2012). The proposal splits into two cases: spike-like data and non-spike (but continuous) data.
For the spike-like case, the proposal correctly overcomes the limitation of the original approach
by explicitly avoiding the higher powers of the data, and it also allows for the elimination of
the effect described in Ma and Weglein (2012), and originated by the presence of a specific
1st. order internal multiple in the input data of the leading order contribution of the original
IMAS. For continuous data the proposal fixes a mathematical issue that is present in the original
approach, regarding the behavior of the subseries when ε (the parameter introduced to avoid
self interactions) goes to zero. At the same time, however, the proposal brings new questions to
the subject because it is not general enough to deal with all types of continuous data; it only
works for a very restricted class.

1 Introduction

One of the main challenges of exploration seismology is to locate hydrocarbon targets beneath the
earth’s surface. To achieve this goal, there is a sequence of steps to be performed in the data resulting
from seismic experiments: random-noise attenuation, deghosting, source wavelet deconvolution,
removal of free-surface multiples, removal of internal multiples, imaging, and inversion. All these
steps must be done in the same order in which they are listed. In particular, all current imaging
algorithms assume that the data consist exclusively of primaries, which means that any other type
of event (i.e., ghosts and multiples) is considered to be noise by the imaging process and therefore
needs to be removed from the data before the application of any imaging algorithm.
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Today, there are a number of methodologies in the oil industry that are designed to handle the dif-
ferent steps just mentioned. In particular, for the removal of internal multiples, one of the standard
methods is the energy-minimization adaptive substraction. This method works by using the internal
multiples predicted by a given model, and then systematically substracting this prediction from the
actual data, using the minimum energy criteria: the energy after the removal should be minimal.
However, this method fails, among other situations, when an internal multiple is interfering with a
primary. The reason is that in this situation the minimum energy criterium is no longer valid, and
the adaptive substraction affects also the amplitude of the primary.

A new criteria for adaptive subtraction in then necessary, but is not yet available. As such criteria
must deal with factors from the system (wavelet, ghosts internal multiples, etc.) and outside the
system (such as the irregular shape the free surface), what we can do in the meantime is to lower
the burden for the adaptive substraction. This can be done by applying to the system all the
preprocessing tools we have at hand. In this way, we help the adaptive subtraction to take care
mostly of the factors outside the system, and hence to improve its effectiveness.

Using the ISS and the concept of specific-task subseries, a multidimensional algorithm to remove free-
surface multiples was derived in Carvalho (1992), using no information about the earth’s subsurface.
Later on, this work was extended in Araújo (1994), where a multidimensional algorithm was derived
to attenuate internal multiples present in the data. However, to reach the goal of lowering the burden
of the adaptive subtraction as much as possible, it is important to move the atenuation of internal
multiples to a total elimination.

In response to this necessity, a further subseries was isolated in Ramírez (2007). The specific task
of this subseries is to remove, rather than attenuate, internal multiples of first order. However,
this subseries is unable to deal with spike-like data, as in this case there is a mathematical in-
consistency: the subseries contains powers of the data higher than one and these powers are not
well defined when the data are spike-like (analytic). The subseries splits into two subseries: the
Leading-Order Internal-Multiple-Eliminator Subseries (LOIMES) and the Higher-Order Internal-
Multiple-Eliminator Subseries (HOIMES). The LOIMES eliminates internal multiples that are of
first-order and whose downward reflection takes place at the shallowest reflector, while the HOIMES
eliminates the first-order internal multiples generated at any reflector other than the shallowest.

Although in practice the field data is never a spike, it is very important to test any new algorithm
with analytic data, as in this case the data is error-free and we have total control on them. This
means that if we test the algorithm with analytic data, any error in the output is an error in
the algorithm. In other words, with analytic data we can isolate and test the concept behind the
algorithm. Once the algorithm is successful with analytic data, we can go ahead and test it with
synthetic data, and eventually with field data.

In this report, we modify the original derivation of the LOIMES to allow for spike-like data. We focus
on the LOIMES because of its immediate application to recent developments in Ma and Weglein
(2012) and Liang and Weglein (2012), where the original Internal-Multiple-Attenuator Subseries
(IMAS) of Araújo and Weglein is extended to allow the input data to include first-order internal
multiples. In particular we show, by specific example, how this modified algorithm for the LOIMES
can be used to move the work in Ma and Weglein (2012), from an attenuator to an eliminator of
the effect of a particular internal multiple in the input data. Along the way, we also find the need
to rederive the LOIMES (and in general the first-order IMES) when the data are not spike-like (but
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are continuous). In this case, we find a derivation that is valid only for highly constrained data.
This last fact, together with the analysis of Ramírez and Weglein in the original derivation of the
first-order IMES, strongly suggests that more research in the subject is necessary, as there is no
physical reason for the elimination to take place only within some subset of data.

The organization of this report is as follows: in section 2, we review the original derivation of the
IMES proposed by Ramírez and Weglein. In section 3 we point out the limitation of the LOIMES
in dealing with spike-like data and explain how to overcome this limitation, by a modification of
the algorithm specific for such data. We also apply this modified algorithm to promote (for a
specific earth model) the IMAS in Ma and Weglein (2012) to being an eliminator for the effect of
the inclusion of a specific internal multiple in the input data. In section 4, we propose a slightly
different way to derive the LOIMES for continuous data, and we also make a few comments about
the HOIMES. Finally, in section 5 we present final comments and conclusions. There are two
appendices, in which we show the details of the calculations needed to follow the main body of this
report.

2 Review of the (LO)IMES

In this section, we will provide the line of thought for the original derivation of the LOIMES, and
at the same time we will highlight the problem we aim to solve. For simplicity, in this report we
will focus on a 1D earth with normal incidence.

The key point in the original approach of Ramírez (2007), in moving from the attenuator to the
eliminator, is to take into account certain self interactions of the effective data, denoted b1(z), that
contain the correct amplitude compensation for eliminating the internal multiples rather than just
for attenuating them. The resulting Internal-Multiple-Eliminator Subseries (IMES) is

bIM (k) = bIMLO (k) + bIMHO(k), (2.1)

where

bIMLO (k) =
∫∞
−∞ dze

ikzb1(z)
∫ z−ε
−∞ dz′e−ikz

′
(

1
1−b1(z′)2

)
b1(z′)×

∫ ∞

z′+ε
dz′′eikz

′′
b1(z′′), (2.2)

and

bIMHO(k) =
∫∞
−∞ dze

ikzb1(z)
∫ z−ε
−∞ dz′e−ikz

′ 2G(z′)
∫ z′−ε
−∞ dz′′′J(z′′′)

1−
∫ z′−ε
−∞ dz′′′J(z′′′)

×

∫ ∞

z′+ε
dz′′eikz

′′
b1(z′′), (2.3)

where
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J(z′′′) =
b1(z′′′)2

1− b1(z′′′)2
G(z′) =

b1(z′)
1− b1(z′)2

. (2.4)

The task of the leading-order eliminator bIMLO is to eliminate, when it is added to the effective data,
the internal multiples of first order generated at the shallowest reflector. The higher-order eliminator
bIMHO eliminates the first-order internal multiples created at deeper reflectors, and assumes that bIMLO
has been applied to data.

For now, we will focus on the leading-order eliminator bIMLO , whose initial terms are as follows:

bIMLO =
∫∞
−∞ dze

ikzb1(z)
∫ z−ε
−∞ dz′e−ikz

′ (
b1(z′) + b1(z′)3 + b1(z′)5 + ...

)
×

∫ ∞

z′+ε
dz′′eikz

′′
b1(z′′). (2.5)

Expanding (2.5), we notice that the resulting first term is exactly the first term in the IMAS
discussed in Araújo (1994), and the following terms contain the self interactions (in the middle
integral) mentioned in the second paragraph of the present section. Now, we will briefly describe
the origin of these self interactions by analyzing the first self-interacting term-namely, the one
containing b1(z′)3:

bIM5 (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
b1(z′)3

∫ ∞

z′+ε
dz′′eikz

′′
b1(z′′). (2.6)

The whole term, being of fifth order in the data, must reside somewhere within the fifth inverse
scattering equation. The correct term of this equation turns out to be V1G0V3G0V1, from which,
after selecting the model-type independent contribution, writing it in terms of effective data b1,
picking up the term with the right nonlinear characteristics to predict the internal multiple’s time,
and finally selecting the lower-higher-lower contribution, we are left with

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
b̂3(z′)

∫ ∞

z′+ε
dz′′eikz

′′
b1(z′′), (2.7)

where b̂3(z′) is the data representation of the model-type independent part of the third equation in
the inverse scattering series

V3 = −V1G0V1G0V1 − V1G0V2 − V2G0V1. (2.8)

Finally, we still need to focus on B3(k), the part of b̂3(z′) coming from V1G0V1G0V1:

B3(k) =

∫ ∞

−∞
dzeikzb1(z)

∫ ∞

−∞
dz′e−ikz

′
b1(z′)

∫ ∞

−∞
dz′′eikz

′′
b1(z′′). (2.9)
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From (2.6) and (2.7), it is clear that the self interactions must arise from (2.9), so we need to split
B3(k) in a way that makes these self interactions evident. The result proposed in Ramírez (2007)
is:

B3(k) =
∫∞
−∞ dze

ikzb1(z)
∫ z−ε
−∞ dz′e−ikz

′
b1(z′)

∫∞
z′+ε dz

′′eikz
′′
b1(z′′)

+
∫∞
−∞ dze

ikzb1(z)
∫∞
z+ε dz

′e−ikz
′
b1(z′)

∫ z′−ε
−∞ dz′′eikz

′′
b1(z′′)

+
∫∞
−∞ dze

ikzb1(z)
∫∞
z+ε dz

′e−ikz
′
b1(z′)

∫∞
z′+ε dz

′′eikz
′′
b1(z′′)

+
∫∞
−∞ dze

ikzb1(z)
∫ z−ε
−∞ dz′e−ikz

′
b1(z′)

∫ z′−ε
−∞ dz′′eikz

′′
b1(z′′)

+
∫∞
−∞ dze

ikzb1(z)
∫∞
−∞ dz

′e−ikz
′
b1(z′)δ(z − z′)

∫∞
−∞ dz

′′eikz
′′
b1(z′′)δ(z′ − z′′)

+
∫∞
−∞ dze

ikzb1(z)
∫∞
−∞ dz

′e−ikz
′
b1(z′)δ(z − z′)

∫∞
z′+ε dz

′′eikz
′′
b1(z′′)

+
∫∞
−∞ dze

ikzb1(z)
∫∞
−∞ dz

′e−ikz
′
b1(z′)δ(z − z′)

∫ z′−ε
−∞ dz′′eikz

′′
b1(z′′)

+
∫∞
−∞ dze

ikzb1(z)
∫∞
z+ε dz

′e−ikz
′
b1(z′)

∫∞
−∞ dz

′′eikz
′′
b1(z′′)δ(z′ − z′′)

+
∫∞
−∞ dze

ikzb1(z)
∫ z−ε
−∞ dz′e−ikz

′
b1(z′)

∫∞
−∞ dz

′′eikz
′′
b1(z′′)δ(z′ − z′′)

= B31(k) +B32(k) +B33(k) +B34(k)

+B35(k) +B36(k) +B37(k) +B38(k) +B39(k). (2.10)

In the above expression for B3(k), we can see that the self-interaction terms come from the Delta
functions in the last five terms. Performing the integrals with the Delta functions in B35(k), followed
by an inverse Fourier transform, we end up with B3(z′) = b1(z′)3. Inserting this portion of b̂3(z′)
into (2.7), we find exactly (2.6), the second term of bIMLO .

The next self-interaction contribution to bIMLO , b1(z′)5, is obtained by analogous arguments applied
to V1G0V5G0V1, to finally get

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
b1(z′)5

∫ ∞

z′+ε
dz′′eikz

′′
b1(z′′). (2.11)

The closed form, eq. (2.2), becomes evident by calculating, following the procedure just described,
a few terms beyond b1(z′)5.

3 LOIMES and spike-like data

In this section, we will describe a limitation of the formalism described above to eliminate internal
multiples, and we will also explain the solution when the data are spike-like. As a result, the
original algorithm for the LOIMES will change and the correct prescription will be provided (at
least when the data are spike-like). We will also apply this prescription to illustrate how to promote
the IMAS discussed in Ma and Weglein (2012) to an eliminator of certain unwanted events predicted
by the IMAS under some circumstances. In the next section we will discuss an approach solving
the limitation when the data are not spike-like but instead are continuous.
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3.1 Statement of the problem

As we mentioned earlier, we consider a 1D earth with normal incidence and two interfaces at
pseudodepths z1 ≡ c0t1/2 and z2 ≡ c0t2/2 with respect to a homogeneous reference medium with
constant velocity c0. The terms t1 and t2 are the traveltimes associated with the primaries created
at the first (shallowest) and second (deepest) reflector, respectively. Consider also spike-like data,
assumed to be built up from primaries and the unique first-order internal multiple allowed by this
two-layer example (strictly speaking, for this subsection we do not need any internal multiple in the
data, but it is included for further convenience):

D(t) = R1δ(t− t1) + T01R2T10δ(t− t2)− T01R2R1R2T10δ(t− (2t2 − t1)) (3.1)

where 2t2− t1 is the traveltime associated with the first-order internal multiple and Tij denotes the
transmission coefficient when the wave travels from the ith medium to the jth medium. Rk is the
reflection coefficient at the kth layer for a downward incident wave. Expressed in depth units the
data become

b1(z) = R1δ(z − z1) + T01R2T10δ(z − z2)− T01R2R1R2T10δ(z − (2z2 − z1)). (3.2)

If we try to compute the second term of bIMLO , eq. (2.6), using the data given by (3.2), we immedi-
ately run into serious theoretical issues because b1(z′)3 will involve terms with powers of the Delta
functions higher than one, i.e., terms like δ3(z − z1), etc. Unfortunately, the powers of the Delta
function are not well-defined mathematical objects and hence the spike-like data do not fit in this
formalism.

3.2 Fixing the problem

We will now propose a different way to deal with spike-like data to eliminate internal multiples of
first order generated at the shallowest reflector; i.e.; we will explain how to deal with the LOIMES
when the data are spike-like.

The starting point is eq. (2.10): it turns out that this expression has a subtle inconsistency. To see
this, take the limit ε→ 0, and use the following relations, involving definite integrals

limε→0

∫ z−ε

−∞
dz′f(z′) =

∫ z

−∞
dz′f(z′) limε→0

∫ ∞

z+ε
dz′f(z′) =

∫ ∞

z
dz′f(z′). (3.3)

The resulting expression is

B3(k) = B3(k)

+
∫∞
−∞ dze

ikzb1(z)
∫∞
−∞ dz

′e−ikz
′
b1(z′)δ(z − z′)

∫∞
−∞ dze

ikz′′b1(z′′)δ(z′ − z′′)

+
∫∞
−∞ dze

ikzb1(z)
∫∞
−∞ dz

′e−ikz
′
b1(z′)δ(z − z′)

∫∞
z′ dze

ikz′′b1(z′′)

+
∫∞
−∞ dze

ikzb1(z)
∫∞
−∞ dz

′e−ikz
′
b1(z′)δ(z − z′)

∫ z′
−∞ dze

ikz′′b1(z′′)
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+
∫∞
−∞ dze

ikzb1(z)
∫∞
z dz′e−ikz

′
b1(z′)

∫∞
−∞ dze

ikz′′b1(z′′)δ(z′ − z′′)

+

∫ ∞

−∞
dzeikzb1(z)

∫ z

−∞
dz′e−ikz

′
b1(z′)

∫ ∞

−∞
dzeikz

′′
b1(z′′)δ(z′ − z′′), (3.4)

which is obviously inconsistent, because the contribution of the interaction terms is not zero. To
fix this problem, let’s go back to eq. (2.9) and split the second and third intervals of integration as
follows:
∫∞
−∞ =

∫ z−ε
−∞ +

∫ z+ε
z−ε +

∫∞
z+ε

∫ ∞

−∞
=

∫ z′−ε

−∞
+

∫ z′+ε

z′−ε
+

∫ ∞

z′+ε
. (3.5)

The resulting expression is

B3(k) =
∫∞
−∞ dze

ikzb1(z)
∫ z−ε
−∞ dz′e−ikz

′
b1(z′)

∫∞
z′+ε dz

′′eikz
′′
b1(z′′)

+
∫∞
−∞ dze

ikzb1(z)
∫∞
z+ε dz

′e−ikz
′
b1(z′)

∫ z′−ε
−∞ dz′′eikz

′′
b1(z′′)

+
∫∞
−∞ dze

ikzb1(z)
∫∞
z+ε dz

′e−ikz
′
b1(z′)

∫∞
z′+ε dz

′′eikz
′′
b1(z′′)

+
∫∞
−∞ dze

ikzb1(z)
∫ z−ε
−∞ dz′e−ikz

′
b1(z′)

∫ z′−ε
−∞ dz′′eikz

′′
b1(z′′)

∫∞
−∞ dze

ikzb1(z)
∫ z+ε
z−ε dz

′e−ikz
′
b1(z′)

∫ z′+ε
z′−ε dz

′′eikz
′′
b1(z′′)

+
∫∞
−∞ dze

ikzb1(z)
∫ z+ε
z−ε dz

′e−ikz
′
b1(z′)

∫∞
z′+ε dz

′′eikz
′′
b1(z′′)

+
∫∞
−∞ dze

ikzb1(z)
∫ z+ε
z−ε dz

′e−ikz
′
b1(z′)

∫ z′−ε
−∞ dz′′eikz

′′
b1(z′′)

+
∫∞
−∞ dze

ikzb1(z)
∫∞
z+ε dz

′e−ikz
′
b1(z′)

∫ z′+ε
z′−ε dz

′′eikz
′′
b1(z′′)

+
∫∞
−∞ dze

ikzb1(z)
∫ z−ε
−∞ dz′e−ikz

′
b1(z′)

∫ z′+ε
z′−ε dz

′′eikz
′′
b1(z′′) =

B31(k) +B32(k) +B33(k) +B34(k)

+B′35(k) +B′36(k) +B′37(k) +B′38(k) +B′39(k). (3.6)

In the limit ε→ 0, (3.6) reduces trivially to B3(k) = B3(k), so we will use this expression, instead
of (2.10), as the starting point for the derivation of the LOIMES. In our present approach all the
arguments in Ramírez (2007) for the derivation of the LOIMES, prior to eq. (2.10), are unchanged.
The difference is that instead of B35(k) in eq. (2.10) we now consider the analogous term B′35(k)
in eq. (3.6), as both contain two interactions. Thus, the recipe now is that the second term in bIMLO
becomes

bIM5 (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
B′35(z)

∫ ∞

z′+ε
dz′′eikz

′′
b1(z′′). (3.7)
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3.3 Example: The three-layer earth

In appendix A we work out the details for the above expression for the same earth model as that of
section 3.1: a 1D and three-layer (or two-interface) earth with normal incidence. The only difference
with respect to section 3.1 is that this time we assume spike-like and primary-only data. The result
for B′35(z) is eq. (A.7), which upon its insertion into (3.7), results in

bIM5 = R3
1R
′2
2 e

ik(2z2−z1) = T01T10 ∗R2
1 ∗ (T01R2R1R2T10)eik(2z2−z1)

whose explicit calculation is also performed in appendix A, and the result is eq. (A.10). In the
above expression, the notation is also as in section 3.1: Tij denotes the transmission coefficient when
the wave travels from the ith medium to the jth medium, and Rk is the reflection coefficient at the
kth layer for a downward incident wave.

Eq. (A.10) is consistent with the one obtained in Ramírez (2007) for the same earth configuration.
However, in that reference it is assumed that δn(z− zi) = δ(z− zi), where δn(z− zi) means the nth
power of δ(z− zi). This statement is wrong and is only true for the definition of the Delta function
used for numerical simulations:

δ(z − zi) =

{
1 z = zi

0 z 6= zi
.

Going back to our approach, we can now perform an analysis similar to the one presented in Ramírez
(2007): when the above expression is added to both the data bIM1 and the first term of the eliminator
series bIM3 = T01T10 ∗ (T01R2R1R2T10) (which is also the second term in the IMAS), we have

bIM1 + bIM3 + bIM5 = primaries+ [−1 + T01T10 ∗ (1 +R2
1)] ∗ (T01R2R1R2T10). (3.8)

In the above expression the (−1) term comes from the original first-order internal multiple in the
data, whose amplitude is −T01R2R1R2T10, and the 1 +R2

1 term contains the first two terms in the
geometric series expansion for 1:

1 = T01T10

(
1

T01T10

)
= T01T10

1

(1−R2
1)

= T01T10(1 +R2
1 +R4

1 +R6
1 +R8

1 + . . .). (3.9)

This means that bIM3 + bIM5 is closer to 1 than is the attenuator bIM3 , and therefore the internal
multiple’s amplitude is better estimated, which means that [−1 +T01T10 ∗ (1 +R2

1)] is closer to zero
and hence this is a first step toward the complete removal of the internal multiple.

As we explained before, in Ramírez (2007) the next term in the eliminator series, bIM7 , whose
amplitude is T01T10 ∗ R4

1 ∗ T01R2R1R2T10, arises when we are selecting the appropriate part of
V1V5V1 by a procedure similar to the one applied in the same reference to V1V3V1 to get bIM5 . This
procedure will bring, when the data are spike-like, the same issue that we had with bIM5 , i.e., an
interaction of the form b1(z)5 implying a fifth power of the Delta function.
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3.4 A modified closed form of the LOIMES

The issue explained in the last paragraph of the previous subsection is solved in exactly the same
way we solved the analogous problem for bIM5 i.e. by selecting the same term proposed in Ramírez
(2007) for bIM7 and performing the resulting integrals with finite intervals of integration. This
procedure can be applied to each higher-order term in the original IMES. After computing a few
higher-order terms, we can write a closed form for bIMLO :

bIMLO =
∫∞
−∞ dze

ikzb1(z)
∫ z−ε
−∞ dz′e−ikz

′×

F−1

(∫ ∞

−∞
dz′eikz

′
b1(z′)

1

1−
∫ ∫

b1(z′)

)∫ ∞

z′+ε
dz′′eikz

′′
b1(z′′) (3.10)

where F−1 means the inverse Fourier transform and

1

1−
∫ ∫

b1(z′)
≡ 1 +

∫ ∫
b1(z′) +

(∫ ∫
b1(z′)

)2

+

(∫ ∫
b1(z′)

)3

+ . . . (3.11)

and
(∫ ∫

b1(z′)
)n ≡

∫ z′+ε
z′−ε dz1e

−ikz1b1(z1)
∫ z1+ε
z1−ε dz2e

ikz2b1(z2)×
∫ z2+ε
z2−ε dz3e

−ikz3b1(z3)
∫ z3+ε
z3−ε dz4e

ikz4b1(z4) · · · ×

∫ z(2n−2)+ε

z(2n−2)−ε
dz(2n−1)e

−ikz(2n−1)b1(z(2n−1))

∫ z(2n−1)+ε

z(2n−1)−ε
dz2ne

ikz2nb1(z2n), n > 0. (3.12)

(∫ ∫
b1(z′)

)n
≡ 1, n = 0. (3.13)

In this way we have successfully addressed the problem of incorporating the spike-like data in the
LOIMES.

3.5 Application to the IMAS: Removal of effects of internal multiples in the
input data

We will now explain an application of the modified LOIMES proposed in this report. In particular,
we will see how to eliminate the effect, created by the IMAS, when the input data include internal
multiples, and we are working with a specific 1D earth model. Speciffically, this effect is a component
of the recorded data whose traveltime cannot be related to a set of reflections and transmissions
originated in the reflector boundaries at the subsurface. In other words, it is an event that does not
exist in the earth.

In the original IMAS algorithm in Araújo (1994), one of the basic assumptions is that the input data
were made only of primaries and that the internal multiples’ times are constructed via interactions
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of these primaries. In other words, the internal multiples are constructed using the primaries as
subevents. However, the data collected from the seismic experiment obviously contain internal
multiples, and a consequence of their inclusion as part of the input data for the IMAS is that, under
certain conditions, the effects mentioned in the paragraph above are created. The presence of such
events can potentially decrease the effectiveness of the subsequent imaging algorithm applied to the
data. For this reason, it is important to find the way in which the ISS deals with the presence of
those events.

The answer to this is provided in Ma and Weglein (2012) and Liang and Weglein (2012), each of
which propose an extension of the IMAS. This extended IMAS contains some terms attenuating the
amplitude of the unusual events, created by the presence of internal multiples in the input data. We
will go a step further and explain how this attenuator subseries can be extended to an eliminator (of
effects of internal multiples in the input data) subseries by using the modified LOIMES proposed in
this report. For this we will focus on the simplest situation in which such a unusual event is created:
a 1D earth with three reflectors and with the traveltime t3 of the primary associated with the third
layer satisfying t3 > 2t2 − t1, where t2 and t1 are the traveltimes of the primaries associated with
the second and first layer, respectively, and t2 > t1, as before. We also assume normal incidence
and include in the input data the first-order internal multiple, associated with the first (shallowest)
layer, and with traveltime 2t2 − t1.
With the assumptions of the paragraph above, the second term of this IMAS becomes

b3(k) +

∫ +∞

−∞
dz′1e

ikz′1b1(z′1)

∫ z′1−ε

−∞
dz′2e

−ikz′2b3(z′2)

∫ ∞

z′2+ε
dz′3e

ikz′3b1(z′3), (3.14)

where

b3(k) =

∫ +∞

−∞
dz′1e

ikz′1b1(z′1)

∫ z′1−ε

−∞
dz′2e

−ikz′2b1(z′2)

∫ ∞

z′2+ε
dz′3e

ikz′3b1(z′3) (3.15)

is the leading order contribution in the original IMAS.

The reason for the second term in (3.14) is as follows. The inclusion of the first-order internal
multiple IM1 = −T01R2R1R2T10e

ik[2z2−z1] in the input data (zm, Tij and Rk are defined as in
section 3.1) results in the presence of the term SE = (T01T12R3T21T10)2(−T01R2R1R2T10)eik[2z2−z1]

in (3.15). Now, if the ISS is right, this event should be attenuated at least in some way; in other
words, it should be possible to find a term from the ISS predicting the same phase of the SE but
with an attenuated amplitude and positive sign. This is exactly what the second term in (3.14)
does: it creates the term (T01T10)(T01T12R3T21T10)2(T01R2R1R2T10)eik[2z2−z1], which when added
to SE event, results in

(1− T01T10)(T01T12R3T21T10)2(−T01R2R1R2T10)eik[2z2−z1]. (3.16)

The above expression is an attenuator of the amplitude of SE, because T01T10 < 1. Our claim
in this report is that the ISS is able to completely remove SE rather than just to attenuate it.
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In the particular earth model we are considering, it is easy to prove our claim: notice in (3.16)
that if we can add to (3.14) more terms from the ISS, such that the correction to the amplitude
of SE is changed from T01T01 to 1, then the amplitude of the SE is canceled. It is clear that
the contributions of the extra terms must match exactly those of (3.9), when we explained how to
promote the IMAS proposed by Araújo and Weglein to the role of an eliminator. But we know
that in (3.9) this contribution comes from the LOIMES, when eliminating the first-order internal
multiple generated at the shallowest reflector. Hence, if it is possible to somehow include the
modified LOIMES described in this report into (3.14), then we will be able to eliminate the SE. It
turns out that the right place to plug in the LOIMES is in the second term of (3.14), because this
is the term responsible for the factor T10T01 in (3.16). Therefore, at least for this configuration,
(3.14) can be promoted to being an eliminator of SE. This subseries takes the form:

b3(k) +

∫ +∞

−∞
dz′1e

ikz′1b1(z′1)

∫ z′1−ε

−∞
dz′2e

−ikz′2bIMLO (z′2)

∫ ∞

z′2+ε
dz′3e

ikz′3b1(z′3), (3.17)

whose first term is exactly (3.14). To see explicitly how this subseries works, we write the second
term in (3.17) in expanded form:

∫ +∞

−∞
dz′1e

ikz′1b1(z′1)

∫ z′1−ε

−∞
dz′2e

−ikz′2(b3(z′2) + bIM5 (z′2) + ...)

∫ ∞

z′2+ε
dz′3e

ikz′3b1(z′3). (3.18)

On the other hand, for the particular earth configuration studied in this example, we have

b3(z) = −T01T10 ∗ IM1 + SE + ... (3.19)

b3(z) + bIM5 (z) + ... = −T01T10(1 +R2
1 + ...) ∗ IM1 + ... (3.20)

Inserting (3.20) into (3.18):
∫ +∞
−∞ dz′1e

ikz′1b1(z′1)
∫ z′1−ε
−∞ dz′2e

−ikz′2(−T01T10(1 +R2
1 + ...) ∗ IM1 + ...)

∫∞
z′2+ε dz

′
3e
ikz′3b1(z′3) =

− T01T10(1 +R2
1 + ...) ∗

∫ +∞

−∞
dz′1e

ikz′1b1(z′1)

∫ z′1−ε

−∞
dz′2e

−ikz′2IM1

∫ ∞

z′2+ε
dz′3e

ikz′3b1(z′3) + ... (3.21)

Among other terms, (3.21) produces, when the middle integral is combined with the two outer
integrals containing the primary associated with the third layer, the event SE. Hence, using (3.9),
(3.21) reproduces −SE plus other contributions. Therefore, the first term of eq. (3.14), becomes

SE − SE + ... = ... (3.22)

From the above expression, it becomes evident that the amplitude of SE is completely removed, as
desired.
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It is not coincidence that the terms added are exactly those of the LOIMES, as we are trying to
eliminate the contribution of an event created by the first-order internal multiple generated at the
shallowest reflector; this internal multiple is exactly the contribution that the LOIMES takes care
of. In more general earth models, in which events similar to SE can be generated by first-order
internal multiples generated at reflectors other than the shallowest, we would need the HOIMES.

It is worth mentioning that (3.17) will bring more terms than the ones needed for the elimination
of the SE. It would be interesting to do further research into the specific tasks of these terms.

4 LOIMES and continuous data

In section 2, we modified the LOIMES to correctly accomodate spike-like data. The key point
was writing the correct splitting of B3(k), eq. (3.6), as opposed to eq. (2.10), and then selecting
B′35(k) instead of B35(k). Analogously, in this section we will propose a derivation for the LOIMES,
suitable for nonspike-like but continuous data, starting from eq. (3.6) and B′35(k).

4.1 LOIMES and the mean value theorem

Our goal is to make explicit the interactions contained in the finite-interval integrations in eq. (3.6).
For that we will use a sort of "complex mean value theorem” (CMVT) :

∫ b

a
f(z)dz = (b− a)f(η) for some η ∈ (b, a), (4.1)

where f(z) is a complex-valued, real function. Also we assume that the real and imaginary parts of
f(z) are continuous on (a, b).

For complex-valued functions, eq. (4.1) is not true in general, but it can be for certain cases. Hence,
(4.1) is a restriction for the data in which the present approach to the LOIMES can be applied. To
determine whether the CMVT applies to a given data, we need to split f(z) into real and imaginary
parts and apply the usual mean value theorem (MVT) to each of them. If η in (4.1) is the same for
both integrals, then we can proceed with the application of the LOIMES to these specific data.

Let’s now apply the CMVT to B′35(k). From (3.6)

B′35(k) =
∫∞
−∞ dze

ikzb1(z)
∫ z+ε
z−ε dz

′e−ikz
′
b1(z′)

∫ z′+ε
z′−ε dze

ikz′′b1(z′′) =
∫∞
−∞ dze

ikzb1(z)
∫ z+ε
z−ε dz

′e−ikz
′
b1(z′)(2ε)eik(z′+β)b1(z′ + β) =

∫∞
−∞ dze

ikzb1(z)eikβb1(z + α)(2ε)2b1(z + α+ β) =

eikβ
∫ ∞

−∞
(2ε)2dzeikzb1(z)b1(z + α)b1(z + α+ β), (4.2)

where z + α and z′ + β are the parameter η introduced by the mean value theorem, for the middle
and left integrals in B′35(k), respectively. Note that α and β represent the deviation from the center
of the interval of integration of the respective integrals, and hence
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α < ε/2 β < ε/2 α+ β < ε.

Notice that the factor (2ε)2 makes the value of B′35(k) go to zero when ε→ 0, as is desired. Using
the fact that ε is small (and also ε/2), and with the continuity of b1(z), we can make the following
approximation:

b1(z) ≈ b1(z + α) ≈ b1(z + β) ≈ b1(z + α+ β).

eikβ ≈ 1, (4.3)

Hence we end up with

B′35(k) = (2ε)2

∫ ∞

−∞
dzeikzb1(z)3, (4.4)

which upon a Fourier transform becomes B′35(z) = (2ε)2b1(z)3. We propose eq. (4.4) as the
part of b̂3 to be inserted into (3.7) to get bIM5 , the second term in bIMLO . Using the fact that
B′35(z) = (2ε)2b1(z)3 = (2ε)2B35(z), the result is the original term (2.6) times a factor (2ε)2:

(2ε)2

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
b1(z′)3

∫ ∞

z′+ε
dz′′eikz

′′
b1(z′′). (4.5)

As we anticipated in the introduction, this CMVT scheme has its own issues. For example, by
applying the CMVT to obtain subsequent terms in bIMLO , we predict a subseries whose closed form
is, when the data are continuous and hence are not spike-like:

bIMLO =
∫∞
−∞ dze

ikzb1(z)
∫ z−ε
−∞ dz′e−ikz

′
(

1
1−(2ε b1(z′))2

)
b1(z′)×

∫ ∞

z′+ε
dz′′eikz

′′
b1(z′′). (4.6)

Notice the 2ε factor in the quotient that is present in (4.6) but is not present in the original series
(2.2). This means that both subseries agree only if ε = 1/2. At first we may think that we have a
generalization of (2.2), but this is not true because we should keep in mind that we want a subseries
that eliminates multiples and for this we need to predict the right amplitude, which is exactly what
(2.2) does. This means that any deviation from the amplitude predicted by (2.2) will result in the
failure of the series to eliminate internal multiples. This forces us to interpret the condition ε = 1/2
as a restriction to the class of experiments to which the LOIMES can be applied, namely, those for
which ε = 1/2.

We now discuss some intriguing relations between the approach we have just described for continuous
data, and another procedure commonly used in the physics literature to circumvent difficulties
similar to the ones encountered in this report.

A common approach used to overcome difficulties such as ill-definiteness of the higher powers of the
Delta function is to introduce into B35(k) the two parameters α and β into the arguments of the
Delta function, as follows
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B35(α, β, k) =
∫∞
−∞ dze

ikzb1(z)
∫∞
−∞ dz

′e−ikz
′
b1(z′)δ(z − z′ + α)

∫∞
−∞ dz

′′eikz
′′
b1(z′′)δ(z′ − z′′ + β) =

∫∞
−∞ dze

ikzb1(z)
∫∞
−∞ dz

′e−ikz
′
b1(z′)δ((z + α)− z′)eik(z′+β)b1(z′ + β)

= eikβ
∫ ∞

−∞
dzeikzb1(z)b1(z + α)b1(z + α+ β). (4.7)

In this way, the self interactions are removed and are, when the data are spike-like, the higher-than-
one powers of the Delta function. The next step would be to define

B35(k) ≡ limα,β→0B35(α, β, k), (4.8)

where the limit is performed after the integral B35(α, β, k) has been calculated. What we have
described is analogous to the procedure used in Green’s function theory, in which the resulting
integral defining the Green’s function is not well defined (due to the presence of poles in the path
of integration). Hence it is made well defined by deforming the contour of integration, which we
accomplished by introducing a small parameter ε to avoid the poles of the integrand, followed by
the limit ε→ 0.

Unfortunately, this solution is not powerful enough for our present issues, and the reason is that if
we take (4.8) as the definition for the interactions, then with the spike data B35(k) becomes zero,
which is obviously not what we want.

If we assume (1) that the data are continuous and (2) that the operation of taking limits commutes
with the integral, then (4.8) reduces to the original integral B35(k) containing interactions. This
means that at least for continuous data, we can consider (4.8) to be an equivalent expression for
the interaction contribution to the eliminator subseries bIMLO .

At this point it is worth comparing (4.2) with (4.7), the expression obtained using the approach
described earlier that was based on the CMVT. We can see that they are similar, with the obvious
difference of the factor (2ε)2 in (4.2). In this way, the CMVT approach reproduces the regularization
scheme just explained and at the same time fixes the problem with the original splitting of B3(k),
eq. (2.10). It’s fair to say that it is not expected for (4.8) to fix the issue related to the limit
ε → 0, as it was obtained from the old expression for B3(k), eq. (2.10), which is not well behaved
in this limit. However it is interesting that we partially reproduce the result of the CMVT. This
might mean that although not strictly correct, eq. (2.10) may still be useful for studying some
properties and obtaining some insight about the LOIMES; after all, in practice ε is small but not
zero. Another nice feature of the CMVT is that whereas in the regularization scheme both α and
β were introduced in a somewhat arbitrary way, here they arise naturally: they are the coordinates
of the point whose image is used by the CMVT.

Given the similarities between those two approaches, it would be interesting to perform a more de-
tailed study of the relation between them, in order to better understand the nature of the LOIMES.

As we explained earlier, the LOIMES matches the amplitude of the internal multiple by using
interactions in the integrals of certain terms of the ISS. Now, if we just require the filtering (or
extraction) of the self interaction contained in the integrals in (3.6) instead of insisting on looking
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for a convenient expression for the value of the integrals with a finite interval of integration (i.e.,
looking for an expression in which are the self interactions become evident), we only need to multiply
the integral times a Delta function with the correct argument. In this way we arrive, for the non-
spike data, at an expression similar to the right-hand side of (2.10), but we must keep in mind that
this expression is not equal to B3(k) anymore. Now we can proceed by selecting the original B35(k),
instead of B′35(k), to be the term associated with the LOIMES. By repeating this filtering process
in the appropriate higher-order terms, we arrive at the original form for the LOIMES, eq. (2.2). In
general this filtering process can be applied also to the HOIMES, obtaining in this way the original
expression for the IMES, as stated in eqs. (2.1)-(2.4).

The advantage of this argument is that, although not mathematically rigorous, it is fairly general
and can include all continuous data, as opposed to the scheme proposed in this report. Again, the
spike-like are not included, as this would bring the original problem with the powers of the Delta
function. However we can now argue, on the basis of of the results of Appendix A, that the filtering
process is not necessary for the Delta function. That is because of the function’s very particular
properties under integration; it automatically selects the self-interaction part of the integral, without
the need of any further filtering process. This argument is highly plausible, even though ideally
it would be desirable to have a filter working with all kinds of data at once including the Delta
function.

Although the central subject of this report is the LOIMES, it is worthwhile to say some words about
the HOIMES. As can be seen from the general form, eqs. (2.3) and (2.4), this subseries also contains
interaction terms, thereby causing the same problem that the leading-order eliminator subseries has
with spike-like data. A detailed analysis of such a case is beyond the objective of this report, but
it is easy to provide some evidence that the formalism described here can be also applied to the
HOIMES. For this, let’s focus on continuous data, so we can apply the CMVT approach.

The first term in the HOIMES is

bIMHO =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
2(2ε)b1(z′)

∫ z′−ε

−∞
dz′′′b21(z′′′)

∫ ∞

z′+ε
dz′′eikz

′′
b1(z′′), (4.9)

and it was derived in Ramírez (2007) on the basis of the symmetry B36(k) = B39(k) in (2.10). So,
a first hint that the HOIMES can be described by the CMVT approach is that this symmetry is
preserved by the corresponding terms in (3.6): B′36(k) = B′39(k). This fact is proved in Appendix
B, where we also use this symmetry to show that, in this case, the parameters arising from the
application of the CMVT are unambiguously zero. Thus, by using B′36(k) and B′39(k) instead of
B36(k) and B39(k), and using the MVT, we get our proposal for the first term of the HOIMES:

bIMHO =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
2(2ε)b1(z′)

∫ z′−ε

−∞
dz′′′b21(z′′′)

∫ ∞

z′+ε
dz′′eikz

′′
b1(z′′), (4.10)

which also contains the factor 2ε, characteristic of the CMVT approach. Notice that this modified
term is, as in the LOIMES, the old term multiplied by a factor of 2ε. The rule is that for each time
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the CMVT is applied, there is a factor of 2ε and also an interaction of the data. More precisely,
if the MVT is applied ntimes in a single term of the ISS, we get a factor of (2ε)n and a factor of
b1(z)n+1.

Following these criteria, and provided the corresponding symmetries are preserved, we conjecture
that the HOIMES predicted by the MVT is

bIMHO =
∫∞
−∞ dze

ikzb1(z)
∫ z−ε
−∞ dz′e−ikz

′ 2G(z′)
∫ z′−ε
−∞ dz′′′J(z′′′)

1−
∫ z′−ε
−∞ dz′′′J(z′′′)

×

∫ ∞

z′+ε
dz′′eikz

′′
b1(z′′) (4.11)

where

J(z′′′) =
2εb1(z′′′)2

1− (2εb1(z′′′))2
G(z′) =

b1(z′)
1− (2εb1(z′))2

. (4.12)

By expanding (4.11), we have

bIMHO =
∫∞
−∞ dze

ikzb1(z)
∫ z−ε
−∞ dz′e−ikz

′
(2(2ε)b1(z′)

∫ z′−ε
−∞ b21(z′)+

2(2ε)3b1(z′)
∫ z′−ε
−∞ b41(z′) + 2(2ε)3b31(z′)

∫ z′−ε
−∞ b21(z′)+

2(2ε)2b1(z′)
∫ z′−ε

−∞
b21(z′)

∫ z′−ε

−∞
b21(z′))

∫ ∞

z′+ε
dz′′eikz

′′
b1(z′′). (4.13)

Notice that this conjecture also works only for ε = 1/2, as in this case it coincides with (2.3), the
old version of the HOIMES. Notice also that the factors 2ε in each term satisfy the general rule just
explained in the paragraph above.

5 Discussion and conclusions

As mentioned in the introduction, the present report is oriented to lower the burden of the adaptive
subtraction of internal multiples, by promoting to elimination, the attenuation provided by the
leading order contribution of the original attenuator subseries. In particular, we have rederived and
modified the LOIMES in order to accommodate spike-like data. As a result we find a modified closed
form for the Leading-Order Internal-Multiple-Eliminator Subseries (LOIMES) originally proposed
in Ramírez (2007). Such a closed form, eqs. (3.10)-(3.12), is only valid for this kind of data.

The relevance of this work is that now we can test the algorithm itself: as the analytic data is perfect,
any problem in the output is caused by the algorithm, which means that it must ve revisited. Also,
as we did in this work, this allows the elimination subseries to enhance the effectiveness of other
algorithms, which are also being tested with analytic data.

Also, we illustrate how to apply the modified closed form of the LOIMES to promote the IMAS
of Ma and Weglein (2012), eq. (3.14), to the role of an eliminator of some effects, caused by the
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inclusion of internal multiples in the input data. We do this for the simplest case, in which the
contribution of (3.14) differs from that of the original IMAS of Araujo and Weglein: a four-layer
1D-earth, with normal incidence. The traveltime t3 represents the primary associated with the
third (deepest) layer satisfying t3 > 2t2 − t1, where t2 and t1 are the traveltimes of the primaries
associated with the second and first (shallowest) layer, respectively. We also include in the input
data the first-order internal multiple with traveltime 2t2 − t1, associated with the first layer.

As was explained in section 3.1, both the LOIMES and the HOIMES were first derived from (2.10),
which is not strictly correct. Hence the need to rederive both suberies, including for continuous data
starting from the correct expression, eq. (3.6). We do this for the LOIMES, and we conjecture the
answer for the HOIMES. Unfortunately, the derivation we found is not general enough to include
all types of continuous data, but only a very restricted class-i.e., continuous data that satisfy the
CMVT, eq. (4.1).

A further research topic in this direction is to write the modified closed form, analogous to (3.10),
corresponding to the HOIMES. The potential applications are (1) elimination of effects, created
by the original IMAS, when the input data includes first-order internal multiples, whose downward
reflection is generated at deeper reflectors, and more important, (2) elimination of first-order internal
multiples, created at salt deposits beneath the earth’s surface.
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A Calculating the modified LOIMES for spike data.

In this appendix we will show explicitly, for 1D and three-layer earth, how to perform the integral
(3.7), when the input data are the two spike-like primaries, with normal incidence, associated with
the two interfaces.

D(t) = R1δ(t− t1) + T01R2T10︸ ︷︷ ︸
R′2

δ(t− t2). (A.1)

The notation is the same as in section 3.1: t1 and t2 are the traveltimes associated with the primaries
created at the first and second reflector, respectively, and t2 > t1, Tij denotes the transmission
coefficient when the wave travels from the ith medium to the jth medium, and Rk is the reflection
coefficient at the kth layer for a downward incident wave. We will also need the pseudodepths
z1 ≡ c0t1/2 and z2 ≡ c0t2/2, of the two interfaces, with respect to a homogeneous reference medium
with constant velocity c0.

Inserting (A.1) into the right integral of B′35(k), we get by following eq. (90) in Weglein et al. (2003)
∫ z′+ε
z′−ε dz

′′eikz
′′
b1(z′′) =

∫ z′+ε
z′−ε dz

′′eikz
′′
[R1δ(z

′′ − z1) +R′2δ(z
′′ − z2)] =
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R1e
ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1) +R′2e

ikz2H(z2 − (z′ − ε))H((z′ + ε)− z2).

Substituting the above result into the second integral in B′35(k), we have
∫ z+ε
z−ε dz

′e−ikz
′
b1(z′)[R1e

ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1)+

R′2e
ikz2H(z2 − (z′ − ε))H((z′ + ε)− z2)] =

∫ z+ε
z−ε dz

′e−ikz
′
[R1δ(z

′ − z1) +R′2δ(z
′ − z2)]×

[R1e
ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1) +R′2e

ikz2H(z2 − (z′ − ε))H((z′ + ε)− z2)] =
∫ z+ε
z−ε dz

′e−ikz
′
R1δ(z

′ − z1)R1e
ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1)+

∫ z+ε
z−ε dz

′e−ikz
′
R1δ(z

′ − z1)R′2e
ikz2H(z2 − (z′ − ε))H((z′ + ε)− z2)]+

∫ z+ε
z−ε dz

′e−ikz
′
R′2δ(z

′ − z2)R1e
ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1)+

∫ z+ε
z−ε dz

′e−ikz
′
R′2δ(z

′ − z2)R′2e
ikz2H(z2 − (z′ − ε))H((z′ + ε)− z2) =

I1 + I2 + I3 + I4. (A.2)

Performing the four integrations, we arrive at

I1 =
∫ z+ε
z−ε dz

′e−ikz
′
R1δ(z

′ − z1)R1e
ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1) =

R2
1e
−ikz1eikz1H(z1 − (z − ε))H((z + ε)− z1)H(z1 − (z1 − ε))︸ ︷︷ ︸

=1

H((z1 + ε)− z1)︸ ︷︷ ︸
=1

=

R2
1H(z1 − (z − ε))H((z + ε)− z1)

I2 =
∫ z+ε
z−ε dz

′e−ikz
′
R1δ(z

′ − z1)R′2e
ikz2H(z2 − (z′ − ε))H((z′ + ε)− z2) =

R1R
′
2e
−ikz2eikz2H(z1 − (z − ε))H((z + ε)− z1)H(z2 − (z1 − ε))H((z1 + ε)− z2)︸ ︷︷ ︸

=0

= 0

I3 =
∫ z+ε
z−ε dze

−ikz′R′2δ(z
′ − z2)R1e

ikz1H(z1 − (z′ − ε))H((z′ + ε)− z1) =

R1R
′
2e
−ikz2eikz1H(z2 − (z − ε))H((z + ε)− z2)H(z1 − (z2 − ε))︸ ︷︷ ︸

=0

H((z2 + ε)− z1) = 0

I4 =
∫ z+ε
z−ε dze

−ikz′R′2δ(z
′ − z2)R′2e

ikz2H(z2 − (z′ − ε))H((z′ + ε)− z2) =

(R′2)2e−ikz2eikz2H(z2 − (z − ε))H((z + ε)− z2)H(z2 − (z2 − ε))H((z2 + ε)− z2) =

(R′2)2H(z2 − (z − ε))H((z + ε)− z2). (A.3)

Finally, substituting the value of the integrals in (A.3) into the third integral in B′35(k), we end up
with

B′35(k) =
∫∞
−∞ dze

ikz[R1δ(z − z1) +R′2δ(z − z2)]×

[R2
1H(z1 − (z − ε))H((z + ε)− z1) + (R′2)2H(z2 − (z − ε))H((z + ε)− z2)] =
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∫∞
−∞ dze

ikzR1δ(z − z1)R2
1H(z1 − (z − ε))H((z + ε)− z1)+

∫∞
−∞ dze

ikzR1δ(z − z1)(R′2)2H(z2 − (z − ε))H((z + ε)− z2)+
∫∞
−∞ dze

ikzR′2δ(z − z2)R2
1H(z1 − (z − ε))H((z + ε)− z1)

∫∞
−∞ dze

ikzR′2δ(z − z2)(R′2)2H(z2 − (z − ε))H((z + ε)− z2) =

I ′1 + I ′2 + I ′3 + I ′4. (A.4)

Evaluating the integrals above, we have

I ′1 =
∫∞
−∞ dze

ikzR1δ(z − z1)R2
1H(z1 − (z − ε))H((z + ε)− z1) =

R3
1e
ikz1H(z1 − (z1 − ε))H((z1 + ε)− z1) = R3

1e
ikz1

I ′2 =
∫∞
−∞ dze

ikzR1δ(z − z1)(R′2)2H(z2 − (z − ε))H((z + ε)− z2) =

R1(R′2)2eikz1H(z2 − (z1 − ε))H((z1 + ε)− z2)︸ ︷︷ ︸
=0

= 0

I ′3 =
∫∞
−∞ dze

ikzR′2δ(z − z2)R2
1H(z1 − (z − ε))H((z + ε)− z1) =

R2
1R
′
2e
ikz2 H(z1 − (z2 − ε))︸ ︷︷ ︸

=0

H((z2 + ε)− z1) = 0

I ′4 =
∫∞
−∞ dze

ikzR′2δ(z − z2)(R′2)2H(z2 − (z − ε))H((z + ε)− z2) =

(R′2)3eikz2H(z2 − (z2 − ε))H((z2 + ε)− z2) = (R′2)3eikz2 . (A.5)

Adding the integrals above, we finally have

B′35(k) = R3
1e
ikz1 + (R′2)3eikz2 . (A.6)

When transformed to the space domain, (A.6) becomes

B′35(z) = R3
1δ(z − z1) + (R′2)3δ(z − z2). (A.7)

Now we will evaluate bIM5 , the second term in bIMLO , using (A.7):

bIM5 (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz

′
B′35(z)

∫ ∞

z′+ε
dz′′eikz

′′
b1(z). (A.8)

The first integral in the above expression is
∫∞
z′+ε dz

′′eikz
′′
b1(z) =

∫∞
z′+ε dz

′′eikz
′′
[R1δ(z

′′ − z1) + (R′2)δ(z′′ − z2)] =

R1e
ikz1H(z1 − (z′ + ε)) +R′2e

ikz2H(z2 − (z′ + ε)).

185



Multiple removal M-OSRP11

Substituting the above result into the second integral of (A.8), we get
∫ z−ε
−∞ dz′e−ikz

′
[R3

1δ(z
′ − z1) + (R′2)3δ(z′ − z2)][R1e

ikz1H(z1 − (z′ + ε)) +R′2e
ikz2H(z2 − (z′ + ε))]

=
∫ z−ε
−∞ dz′e−ikz

′
R3

1δ(z
′ − z1)R1e

ikz1H(z1 − (z′ + ε))+

∫ z−ε
−∞ dz′e−ikz

′
R3

1δ(z
′ − z1)R′2e

ikz2H(z2 − (z′ + ε))

∫ z−ε
−∞ dz′e−ikz

′
(R′2)3δ(z′ − z2)R1e

ikz1H(z1 − (z′ + ε))+

∫ z−ε
−∞ dz′e−ikz

′
(R′2)3δ(z′ − z2)R′2e

ikz2H(z2 − (z′ + ε)) =

I ′′1 + I ′′2 + I ′′3 + I ′′4 . (A.9)

Evaluating the above integrals, we have

I ′′1 =
∫ z−ε
−∞ dz′e−ikz

′
R3

1δ(z
′ − z1)R1e

ikz1H(z1 − (z′ + ε)) = R4
1 H(z1 − (z1 + ε))︸ ︷︷ ︸

=0

H((z − ε)− z1) = 0

I ′′2 =
∫ z−ε
−∞ dz′e−ikz

′
R3

1δ(z
′ − z1)R′2e

ikz2H(z2 − (z′ + ε)) =

R3
1R
′
2e
ik(z2−z1)H(z2 − (z1 + ε))H((z − ε)− z1)

I ′′3 =
∫ z−ε
−∞ dz′e−ikz

′
(R′2)3δ(z′ − z2)R1e

ikz1H(z1 − (z′ + ε)) =

R1(R′2)3eik(z1−z2)H(z1 − (z2 + ε))︸ ︷︷ ︸
=0

H((z − ε)− z2) = 0

I ′′4 =
∫ z−ε
−∞ dz′e−ikz

′
(R′2)3δ(z′ − z2)R′2e

ikz2H(z2 − (z′ + ε)) =

(R′2)4H(z2 − (z2 + ε))︸ ︷︷ ︸
=0

H((z − ε)− z2) = 0

Substituting the only nonzero value, I ′′2 , in the last integral of (A.8), we finally have

bIM5 =
∫∞
−∞ dze

ikz[R1δ(z − z1) +R′2δ(z − z2)]R3
1R
′
2e
ik(z2−z1)H(z2 − (z1 + ε))H((z − ε)− z1) =

R4
1R
′
2e
ikz2H(z2 − (z1 + ε))H((z1 − ε)− z1)︸ ︷︷ ︸

=0

+R3
1R
′2
2 e

ik(2z2−z1)H(z2 − (z1 + ε))H((z2 − ε)− z1) =

R3
1R
′2
2 e

ik(2z2−z1). (A.10)

B Calculating α and β for the HOIMES

In this appendix we will show that the ISS requires the parameters α and β to be zero. We begin
by showing that the integrals B′36(k) and B′39(k) in (3.6) have the same value.

B′39(k) =
∫∞
−∞ dze

ikzb1(z)
∫ z−ε
−∞ dz′e−ikz

′
b1(z′)

∫ z′+ε
z′−ε dz

′′eikz
′′
b1(z′′) =

∫∞
−∞ dze

ikzb1(z)
∫∞
−∞ dz

′e−ikz
′
b1(z′)H((z − ε)− z′)×
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∫∞
−∞ dz

′′eikz
′′
b1(z′′)H((z′ + ε)− z′′)H(z′′ − (z′ − ε)) =

∫∞
−∞ dz

′′eikz
′′
b1(z′′)

∫∞
−∞ dz

′e−ikz
′
b1(z′)H((z′ + ε)− z′′)H(z′′ − (z′ − ε))×

∫∞
−∞ dze

ikzb1(z)H((z − ε)− z′)
Making the change of variables z′′ → z and z → z′′, we get:

B′39(k) =
∫∞
−∞ dze

ikzb1(z)
∫∞
−∞ dz

′e−ikz
′
b1(z′)H((z′ + ε)− z)H(z − (z′ − ε))×

∫∞
−∞ dz

′′eikz
′′
b1(z′′)H((z′′ − ε)− z′) =

∫∞
−∞ dze

ikzb1(z)
∫∞
−∞ dz

′e−ikz
′
b1(z′)H(z′ − (z − ε))H((z + ε)− z′)×

∫∞
−∞ dz

′′eikz
′′
b1(z′′)H(z′′ − (z′ + ε)) =

∫ ∞

−∞
dzeikzb1(z)

∫ z+ε

z−ε
dz′e−ikz

′
b1(z′)

∫ ∞

z′+ε
dz′′eikz

′′
b1(z′′) = B′36(k). (B.1)

The following step is to apply the mean-value theorem to both B′36(k) and B′39(k):

B′36(k) =
∫∞
−∞ dze

ikzb1(z)
∫ z+ε
z−ε dz

′e−ikz
′
b1(z′)

∫∞
z′+ε dz

′′eikz
′′
b1(z′′) =

∫∞
−∞ dze

ikzb1(z)2εe−ik(z+α)b1(z + α)
∫∞
z+α+ε dz

′′eikz
′′
b1(z′′) =

(2ε)e−ikα
∫ ∞

−∞
dzb1(z)b1(z + α)

∫ ∞

−∞
dz′′eikz

′′
b1(z′′)H(z′′ − (z + α+ ε)) (B.2)

B′39(k) =
∫∞
−∞ dze

ikzb1(z)
∫ z−ε
−∞ dz′e−ikz

′
b1(z′)

∫ z′+ε
z′−ε dz

′′eikz
′′
b1(z′′)

=
∫∞
−∞ dze

ikzb1(z)
∫∞
−∞ dz

′e−ikz
′
b1(z′)H((z − ε)− z′)2εeik(z′+β)b1(z′ + β)

= (2ε)eikβ
∫∞
−∞ dze

ikzb1(z)
∫∞
−∞ dz

′b1(z′)b1(z′ + β)H((z − ε)− z′)

= (2ε)eikβ
∫∞
−∞ dz

′b1(z′)b1(z′ + β)
∫∞
−∞ dze

ikzb1(z)H((z − ε)− z′)

= (2ε)eikβ
∫ ∞

−∞
dzb1(z)b1(z + β)

∫ ∞

−∞
dz′′eikz

′′
b1(z′′)H((z′′ − (z + ε)). (B.3)

We have just proved that B′36(k) = B′39(k). Hence, (B.2) and (B.3) must be equal-i.e.,

(2ε)e−ikα
∫∞
−∞ dz

′′b1(z)b1(z + α)
∫∞
−∞ dze

ikz′′b1(z′′)H(z′′ − (z + α+ ε))

= (2ε)eikβ
∫ ∞

−∞
dzb1(z)b1(z + β)

∫ ∞

−∞
dz′′eikz

′′
b1(z′′)H(z′′ − (z + ε)). (B.4)

From the phase outside the integral, the argument of the data and the argument of the step function
respectively, in the expression above, we get the following over constrained, but consistent set of
equations:
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α = −β, α = β, α = 0. (B.5)

whose only solution is α = β = 0. This shows that the parameters introduced by the CMVT are
zero. Notice that those α and β are not the same as the α and β of section 4.
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