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SUMMARY

Internal multiples are multiply reflected events in the measured wave-
field that have experienced all of their downward reflections below
the free surface. The order of an internal multiple is defined to be
the number of downward reflections it experiences, without reference
to the location of the downward reflection. The objective of internal
multiple elimination using only recorded data and information about
the reference medium is achievable directly through the inverse scat-
tering task specific subseries formalism. The first term in the inverse
scattering subseries for first-order internal multiple elimination is an
attenuator, which predicts the correct traveltime and an amplitude al-
ways less than the true internal multiples’ amplitude. The leading and
higher-order terms in the elimination series correct the amplitude pre-
dicted by the attenuator moving the algorithm towards an eliminator.
Leading-order as an eliminator means it eliminates a class of inter-
nal multiples and further attenuates the rest. Adding the leading-order
terms in a closed form provides an algorithm that eliminates all in-
ternal multiples generated at the shallowest reflector. The generating
reflector is the location where the downward reflection of a given first-
order internal multiple took place. The higher-order subseries and its
closed form correct the attenuation due to information on the overbur-
den of deeper generating reflectors. A prestack form of the algorithm,
which can be extended to a multidimensional form, is given for the
leading-order subseries and its closed form.

INTRODUCTION

Seismic exploration is an inverse problem. The seismic data are in-
verted for the properties of the medium that created them. In explo-
ration seismology, the medium properties correspond to the charac-
teristics of the Earth’s subsurface, and include the spatial location of
the reflectors as well as the density and elastic properties of the layers
between reflectors.

Events in recorded seismic data can be classified by the number of
reflections they have experienced. Primaries are seismic events that
have experienced one reflection, most often upward; whereas, multi-
ples are seismic recorded events that have experienced more than one
reflection. Multiples are further classified by the spatial location of the
downward reflections within its history. A multiple that has at least
one downward reflection at the free surface is a free surface multiple.
A multiple that has all of its downward reflections below the free sur-
face is an internal multiple. Source and/or receiver ghost events and
direct waves are assumed to be removed before these definitions and
classifications are applied.

In addition to the recorded data with the necessary wavefield com-
ponents, some standard processing algorithms require source wavelet
deconvolution, deghosting, seismic data reconstruction (interpolation
and extrapolation), regularization and/or redatuming. Seismic data
processing is usually accomplished in a sequence of steps, e.g., re-
moval of multiples, depth imaging or migration, and inversion for
changes in Earth properties. The standard practice is to perform these
steps in a specific order because each step is a pre-processing condi-
tion for the next procedure. The removal of multiples is a longstanding
problem, of considerable moment and interest, with outstanding the-
oretical and practical issues yet to be understood and addressed. The
practical challenges to the removal of multiples usually intensify with
deep water and highly complex, 2D or 3D, rapidly varying heteroge-
neous media, where medium properties and the reflectors that generate

the multiples are difficult to adequately predict.

The inverse scattering series promises to directly address all seismic
processing objectives with distinct algorithms that input only recorded
data, and does not require in principle or practice any subsurface in-
formation whatsoever. Before the work reported here, the captured po-
tential within the inverse scattering series was confined to the removal
of free surface multiples and the reduction, but not removal, of internal
multiples. This paper provides an additional capture of ability within
the inverse series to move further towards matching its promise. This
paper also provides algorithms that will further attenuate all internal
multiples, and will eliminate a specific subset of internal multiples.

There are cases of high exploration priority where this further cap-
ture can have an impact on interpretation and subsequent drilling de-
cisions. There are circumstances when internal multiple identification
or attenuation are sufficient, and other situations when a residual left
from internal multiple attenuation is a challenge and impediment to
effective and reliable prediction. Among the latter circumstances are
converted-wave internal multiples on towed-streamer data, and subtle
plays in the subsalt where dim target primaries can interfere with weak
proximal internal multiples.

Internal multiple elimination places greater demands on preprocess-
ing steps such as wavelet estimation. However, methods based on in-
verse scattering never move from not needing to needing subsurface
information when progressing from attenuating to eliminating internal
multiples. The last comment further separates the inverse scattering
multiple removal capability from the feedback loop internal multiple
concept.

INTERNAL MULTIPLE ELIMINATION

The third term in the inverse scattering series: (G0V1G0V1G0V1G0)
contains the leading-order contribution for the removal series of first-
order internal multiples (Weglein et al., 2003). This leading-order term
is the internal multiple attenuator. Assuming that the actual medium
varies only in depth, the 1D Earth and normal incidence wave ver-
sion (Araújo, 1994; Weglein et al., 1997) of the first-order internal
multiple attenuator is

b1(k) = D(ω), (1)

bIM1
3 (k) =

∫ ∞

−∞
dz1eikz1 b1(z1)

×
∫ z1−ε

−∞
dz2e−ikz2 b1(z2)

∫ ∞

z2+ε
dz3eikz3 b1(z3), (2)

where k = 2 ω
c0

is the vertical wavenumber, D(ω) is the temporal Fourier
transforms of the measured scattered field (data), ε is a small positive
parameter chosen to insure that the relations z1 > z2 and z3 > z2 are
satisfied, the pseudodepths z1 and z2 are defined with the reference ve-
locity c0 to be zi = c0ti

2 , and the superscript IM1 refers to the 1st order
internal multiple elimination series.

The attenuation algorithm prediction is performed by a nonlinear com-
bination of three sets of data. This nonlinear combination predicts the
traveltime of the true internal multiple in the data. The amplitude pre-
diction is an estimate of the true internal multiple’s amplitude. The
estimate is always less than the actual amplitude given by an attenua-
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Inverse scattering internal multiple elimination

tion factor (AF) of (Ramı́rez and Weglein, 2005),

(AF) j =





T01T10 for j = 1

Π j−1
i=1
(
T 2

i i−1T 2
i−1 i

)
Tj j−1Tj−1 j for 1 < j < J

(3)

where j represents the interface where the downward reflection took
place, Tj−1 j and Tj j−1 are the transmission coefficients going down
and up through the interface j, respectively, and J is the total number
of interfaces in the model. The interfaces are numbered with inte-
gers, starting with the shallowest location. In a single-layer medium,
the first-order internal multiple has an amplitude of −T01R2R1R2T10

and bIM1
3 predicts a first-order internal multiple with an amplitude of

T01T10R2R1R2T10T01. In agreement with equation 3, the attenuation
factor of the predicted internal multiple is T01T10. The attenuation fac-
tor is affected by the history of the event down to and including only
the depth of the shallowest reflection, independent of the place where
the two upward reflections occurred.

The terms in the elimination series use the data to predict multiples
and remove them from the data itself. This removal is highly accu-
rate when the prerequisites of the algorithm are satisfied (wavelet de-
convolution, deghosting and free surface multiple elimination). The
first-order internal multiple elimination series starts with bIM1

3 . Be-
cause bIM1

3 has estimated the internal multiple amplitude attenuated by
a factor of (AF) j , the purpose of the higher-order terms in the elim-
ination series is to remove the effect of this factor. The higher-order
terms improve the effectiveness of the attenuator, towards the objec-
tive of completely subtracting the amplitude of multiples within the
data. To achieve an elimination method, the inverse scattering sub-
series for internal multiples elimination should be able to predict the
true amplitude for these events by correcting the attenuation factor in
equation 3.

In the attenuator’s prediction, the factor that multiplies the internal
multiples generated at the first reflector∗, (IM) j=1, is T01T10. This
attenuation factor corresponds to the first term in the Taylor expansion
of (T01T10)/(T01T10) = 1,

T01T10

(
1

T01T10

)
= T01T10

1
(1−R2

1)

= T01T10

(
1+R2

1 +R4
1 +R6

1 +R8
1 · · ·

)
. (4)

In the attenuator’s prediction, the factor (T01T10)2T12T21 that multi-
plies the internal multiples generated at the second reflector, (IM) j=2,
corresponds to the first term in the more complicated geometric series
for:

(T01T10)2T12T21

(T01T10)2T12T21
= (T01T10)2T12T21

1
(1−R2

1)2(1−R2
2)

, (5)

= (T01T10)2T12T21
(
1+2R2

1 +R2
2 +3R4

1 +2R2
2R2

1 + · · ·
)
.

Each one of the terms in these Taylor expansions, equations 4 and 5,
can be and are calculated by higher-order terms in the inverse scatter-
ing internal multiple elimination series. Identifying and adding these
higher-order terms builds a sum of amplitude corrections that improves
the subtraction of internal multiples from the data. The higher-order
amplitude corrections are given by algorithms, found in the internal
multiple elimination series bIM1

3 +bIM1
5 +bIM1

7 + · · · (Ramı́rez and We-
glein, 2005), that only required measured values of the scattered field
and the reference Green’s function.

The second term in the elimination series, b5
IM1 , resides within the

fifth term in the inverse series. It is the first step to move the attenuation

∗We define the generating reflector of a first-order internal multiple as the reflector where
the downward reflection took place.

DATA

Go

Figure 1: Diagrams for bIM1
51 (left) and bIM1

52 (right).

algorithm towards an elimination of first-order internal multiples, and
it is given by

bIM1
5 (k) =

∫ ∞

−∞
dzeikzb1(z)

×
∫ z−ε

−∞
dz′e−ikz′

[
b1(z′)3 +2 b1(z′)

∫ z′−ε

−∞
dz′′′ b1(z′′′)2

]

×
∫ ∞

z′+ε
dz′′eikz′′b1(z′′). (6)

The second term in the first-order internal multiple elimination series
can be separated in two parts, and represented with the diagrams in
Figure(1),

bIM1
51 (k) =

∫ ∞

−∞
dzeikzb1(z)

×
∫ z−ε

−∞
dz′e−ikz′b1(z′)3

∫ ∞

z′+ε
dz′′eikz′′b1(z′′), (7)

bIM1
52 (k) =

∫ ∞

−∞
dzeikzb1(z)

×
∫ z−ε

−∞
dz′e−ikz′2 b1(z′)

∫ z′−ε

−∞
dz′′′ b1(z′′′)2

∫ ∞

z′+ε
dz′′eikz′′b1(z′′).

(8)

The diagram located on the left side of Figure1 corresponds to equa-
tion 7 and it belongs to a series that eliminates all first-order inter-
nal multiples that were downward reflected at the shallowest reflector.
This term combines nonlinearly five sets of data to give amplitude in-
formation and the correct traveltime of the internal multiples. The
three hits in the diagram indicate triple self interaction of data at the
generating reflector. Hence, the extra amplitude information given by
the self-interacting data corresponds to powers of the reflection coeffi-
cient of each generating reflector, which is in agreement with the anal-
ysis in equations 4 and 5. The analysis of the properties of this term,
using its diagram representation and numerical examples, showed that
it is the main contribution of bIM1

5 to the elimination of internal multi-
ples (Ramı́rez Pérez, 2007). Its mathematical representation resembles
the one of the attenuator, which is the leading-order term of the series
by itself. We can find the leading-order terms by examining each term
in the internal multiple elimination series and selecting the ones that
only have data self-interactions at the generating reflector. The sum of
the leading-order terms in the series is

bIM1
LO =

∫ ∞

−∞
dzeikzb1(z)

×
∫ z−ε

−∞
dz′e−ikz′

(
1

1−b1(z′)2

)
b1(z′)

∫ ∞

z′+ε
dz′′eikz′′b1(z′′). (9)

This equation is the infinite sum of the leading-order terms in the in-
verse scattering internal multiple elimination series. The leading-order
eliminator, bIM1

LO , eliminates all first-order internal multiples generated
at the shallowest reflector without requiring a-priori information, nor
a velocity model. It is all done in terms of the effective data, b1, and
the reference velocity contained in k = 2ω

c0
. Furthermore, the leading-

order eliminator helps to better attenuate all the internal multiples gen-
erated at deeper reflectors.
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Inverse scattering internal multiple elimination

The diagram located on the right of Figure 1 represents equation 8,
containing I = 2b1(z′)

∫ z′−ε
−∞ dz′′′ b1(z′′′)2 in the middle integral. The

term I, represented by the middle part of the diagram, has two self-
interacting data within the overburden of the generating reflector. This
double self interaction provides the series with second order correc-
tions for any interface above the generating reflector, and it only acts
on internal multiples downward reflected at interfaces below the shal-
lowest reflector. The internal multiples generated at the shallowest
reflector are completely eliminated with the leading-order closed form
term in equation 9. The double self-interacting diagram further atten-
uates all first-order internal multiples generated at deeper reflectors†.
The main part of these second subseries can be summed in a higher-
order closed form term,

bIM1
HO =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε

−∞
dz′e−ikz′ 2J(z′)

∫ z′−ε
−∞ dz′′′J(z′′′)b1(z′′′)

1− ∫ z′
−∞ dz′′′J(z′′′)b1(z′′′)

∫ ∞

z′+ε
dz′′eikz′′b1(z′′),

(10)

where J(z) =
b1(z)

1−b1(z)
2 . (11)

The higher-order eliminator assumes that the action of the leading-
order eliminator has taken effect prior to its calculation. Because the
leading-order closed form eliminates all multiples generated at the first
reflector, the only problem task left, in terms of internal multiples,
is to finish correcting the amplitude of the deeper internal multiples
and eliminate them. This is the task performed by the higher-order
eliminator, bIM1

HO .

Equation 10 is the infinite sum of the main terms in the higher-order
subseries of the internal multiple elimination series. The higher-order
eliminator includes diagrams that have extra data self-interactions above
the generating reflector. The reason it is not including all the higher-
order terms is because, these terms in the inverse series for internal
multiple elimination have different integer weights, which means that
a specific higher-order diagram is required to act more than once in the
removal process. From the form of equation 10, the closed form only
contains a weighting factor of 2 (please refer to the middle integral) in
agreement to the weighting factor needed by equation 8. The first term
included in the higher-order closed form corresponds to equation 8.

An elimination algorithm for internal multiples based on inverse scat-
tering series has the potential of removing difficult internal multiples,
leaving all primaries unaffected. Although the internal multiple am-
plitudes are reduced by the attenuator, bIM1

3 , and substantially reduced
(and a subset is eliminated) by the leading-order closed form, bIM1

LO ,
there is, in some cases, an observable residual that can be further at-
tenuated with the action of the higher-order closed form, bIM1

HO . The
higher-order closed form term of the internal multiple elimination se-
ries complements the elimination of the amplitude of the remaining in-
ternal multiples by adding nonlinear contributions in terms of data and
a reference Green’s function. The combination of the leading-order
closed form with the higher-order closed form term gives an improved
algorithm for the removal of internal multiples.

2D EXTENSION OF THE ALGORITHM

In the theory presented in the previous section, no assumptions about
the Earth below the receivers are made, this characteristic makes it
ideal for addressing one of the current challenges in exploration seis-
mology: removing multiples, locating and identifying targets in highly
complex medium, when the velocity model is unobtainable. Hence,
the extension to a multidimensional Earth model is a necessary step.

†Where deeper refers to all reflectors located below the shallowest one.

The attenuation algorithm for a 2D Earth model, presented in Araújo
(1994); Weglein et al. (1997) and Weglein et al. (2003), is

b1(kg,ks,qg +qs) =−2iqsD(kg,ks,ω), (12)

bIM1
3 (kg,ks,qg +qs) =

1
(2π)2

∫ ∞

−∞
dk1eiq1(xs−xg)

∫ ∞

−∞
dk2eiq2(εg−εs)

×
∫ ∞

−∞
dz1ei(qg+q1)z1 b1(kg,−k1,z1)

×
∫ z1−ε2

−∞
dz2ei(−q1−q2)z2 b1(k1,−k2,z2)

×
∫ ∞

z2+ε1

dz3ei(q2+qs)z3 b1(k2,−ks,z3), (13)

where ω represents the temporal frequency, c0 is the acoustic velocity
of water; kg and ks are the horizontal wavenumbers corresponding to
receiver and source coordinates: xg and xs, respectively; the 2D wave
vectors: kg = (kg,−qg) and ks = (ks,qs) are constrained by |kg| =
|ks| = ω

c0
; the vertical wavenumbers are qg = sgn(ω)

√
( ω

c0
)2− kg

2

and qs = sgn(ω)
√

( ω
c0

)2− ks
2, and εi is a small positive parameter

chosen to insure that the relations z1 > z2 and z3 > z2 are satisfied.

In equations 12 and 13, the effective data b1(kg,ks,qg +qs) is defined
as a source obliquity factor times the 2D measured values of the scat-
tered field, D. The variable z is the Fourier conjugate to the sum of the
vertical wave numbers, kz =−(qg +qs). The attenuation of multiples
is performed by adding the attenuator, bIM1

3 , to the effective data, b1.

As we showed in 1D, the second term in the first-order internal multi-
ple elimination series can be separated in two equations. The 2D form
of the first equation is

bIM1
51 (kg,ks,qg +qs) =

1
(2π)2

∫ ∞

−∞
dk1eiq1(xs−xg)

∫ ∞

−∞
dk2eiq2(εg−εs)

×
∫ ∞

−∞
dz1ei(qg+q1)z1 b1(kg,−k1,z1)

×
∫ z1−ε2

−∞
dz2ei(−q1−q2)z2 [b1(k1,−k2,z2)]

3

×
∫ ∞

z2+ε1

dz3ei(q2+qs)z3 b1(k2,−ks,z3), (14)

which have the same diagrammatic representation as shown in Fig-
ure 1. Studying the higher-order terms in the inverse scattering internal
multiple elimination series in a multidimensional model type indepen-
dent form, we find that the form of the terms with self-interacting data
at the generating reflector conserves the properties and characteristics
found in the simple 1D case. Analogous to the 1D case, the first term
in the leading-order elimination series is the attenuator, equation 17,
and the second term is given by equation 14. The next terms in the
leading-order series have the form:

bIM1
51 (kg,ks,qg +qs) =

∞

∑
N=0

1
(2π)2

∫ ∞

−∞
dk1eiq1(xs−xg)

∫ ∞

−∞
dk2eiq2(εg−εs)

×
∫ ∞

−∞
dz1ei(qg+q1)z1 b1(kg,−k1,z1)

×
∫ z1−ε2

−∞
dz2ei(−q1−q2)z2 [b1(k1,−k2,z2)]

2N+1

×
∫ ∞

z2+ε1

dz3ei(q2+qs)z3 b1(k2,−ks,z3), (15)

We can add the leading-order terms in the multidimensional case to a

2473SEG Las Vegas 2008 Annual Meeting

Main Menu

2473

D
ow

nl
oa

de
d 

12
/2

0/
12

 to
 1

29
.7

.5
2.

17
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



Inverse scattering internal multiple elimination

closed form, which is given by,

b1(kg,ks,qg +qs) =−2iqsD(kg,ks,ω), (16)

b3(kg,ks,qg +qs) =
1

(2π)2

∫ ∞

−∞
dk1eiq1(xs−xg)

∫ ∞

−∞
dk2eiq2(εg−εs)

×
∫ ∞

−∞
dz1ei(qg+q1)z1 b1(kg,−k1,z1)

×
∫ z1−ε2

−∞
dz2ei(−q1−q2)z2

b1(k1,−k2,z2)

1−b1(k1,−k2,z2)
2

×
∫ ∞

z2+ε1

dz3ei(q2+qs)z3 b1(k2,−ks,z3), (17)

This is a 2D model type independent leading-order elimination algo-
rithm for internal multiples. The leading-order eliminator is a data-
driven algorithm written in terms of effective data b1 (see equation 16).
The leading-order closed form, bIM1

LO , gives the main contribution to-
wards eliminating internal multiples. It completely removes all first-
order internal multiples generated at the first reflector and improves the
attenuation of the remaining multiples. ‘Leading-order’ as an elimina-
tor means it eliminates a class of internal multiples and further atten-
uates the rest. In a 2D medium, the multiples that have no cumulative
transmission error (the ones with downward reflection at the shallow-
est reflector) are eliminated by the algorithm in equation 17, b1 +bIM1

LO .
The higher-order closed form is being examined for a 2D extension. It
is not always possible to generalize a 1D closed form to 2D; an al-
gorithm in 2D has more variables and different dependencies than the
same algorithm in 1D. However, we are studying the 2D expressions
for the higher-order terms in the elimination series. For a multidimen-
sional world, the leading-order eliminator provides the removal of all
first-order internal multiples generated at the first reflector and effec-
tively attenuates the rest of the multiples.

Figure 2: Left: Predicted internal multiples. Right: Data with pri-
maries and internal multiples. The data and example were generated
during an internship at ConocoPhillips, 2006.

A 1.5D numerical example of the internal multiple prediction with bIM
LO

in a half space of water and a horizontally layered elastic medium rep-
resenting the Earth, is shown in figure 2. The finite difference synthetic
data, on the right of this figure, contains primaries and internal multi-
ples due to an elastic halfspace. The traces on the left show the pre-
dicted internal multiples. Notice that all multiples were predicted with
their correct traveltime. The data were deconvolved with a statistical
estimate of the wavelet. The wavelet used to model the data was not
used in the prediction; hence, the predicted multiples have a different
wavelet. The fact that the internal multiple elimination algorithm with
an acoustic background, predicts internal multiples propagated in an
elastic Earth is a remarkable effect of the model-type independence of
the algorithm. The eliminator algorithm predicts all internal multiples
in a model-type independent fashion. However, in situations when the

background model-type does not correspond to the actual model-type
where the internal multiples were created, the leading-order eliminator
will not completely eliminate all the internal multiples generated at the
first reflector. For example, in a towed-streamer marine acquisition,
where the background is acoustic (water), the leading-order eliminator
will attenuate all internal multiples better than the attenuator, and it
will only eliminate those multiples that have a complete propagation
path as pressure waves. The converted-wave internal multiples will be
predicted with their correct arrival time and an attenuated amplitude.
It is worth noting that the elimination algorithm is not at all more ex-
pensive than the attenuator. However, the sensitivity of the inverse
scattering leading-order eliminator for input wavelet is expected to be
higher. In particular, an accurate estimation of the source wavelet will
be needed to perform the division in the innermost integral. It will also
allow convergence of the leading-order closed form.

CONCLUSIONS

In many circumstances the first-order term in the inverse scattering
internal multiple series, known as the attenuator, provides an effec-
tive solution. It predicts the correct arrival time and attenuates the
amplitude of the internal multiples in the data. However, there are
situations for towed-streamer pressure measurements where either the
residual can be far from small (e.g., converted-wave internal multiples)
or where a small residual interferes with a target primary, and the lat-
ter is itself small. In these cases, the attenuation is not enough and we
need to seek for algorithms that provide an elimination of these events
in the data.

This work shows progress in the identification, analysis and mathe-
matical manipulation of higher-order terms in the series for internal
multiple elimination, where the first term is an attenuator. Two closed
forms were obtained by adding subsets of the infinite series for inter-
nal multiple elimination: the leading-order and the higher-order closed
forms. Leading-order as an eliminator means it eliminates a class of
internal multiples and further attenuates the rest. The higher order al-
gorithm provides a better estimate of the amplitudes, and represents
an improvement towards the elimination of internal multiples. In this
theory, no assumptions about the Earth below the receivers are made.

The internal multiple elimination algorithms do not require any knowl-
edge of the subsurface properties, neither the distinction between inter-
nal multiples, nor the knowledge of the location where the downward
reflection took place. The internal multiple algorithms are non-linear
data-driven algorithms that only require a reference Green’s function
and the measured data. The extension to a multidimensional Earth was
achieved for the leading-order algorithm. The leading order eliminator
effectively attenuates all orders of internal multiples in the data, gen-
erated at any reflector below the measurement surface. The leading-
order eliminator provides the removal of all first-order internal multi-
ples generated at the shallowest reflector when the background model-
type (i.e., acoustic or elastic) agrees with the actual model-type. In
situations when the background model-type is different to the actual it
represents an improvement upon current internal multiple attenuation
technology.

The extension to a multidimensional Earth of the higher-order terms,
as well as extensions of definitions, is our current subject of study.
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