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Summary

We are using the inverse scattering series, a multidimen-
sional direct inversion procedure, to derive an algorithm
that can accurately depth image seismic data directly in
terms of an inaccurate velocity. Previously, a subseries
of the inverse series had been isolated (for a 1D normal
incidence experiment in an acoustic medium) that moves
reflectors towards their correct spatial location using the
inadequate reference velocity. Here, this imaging series
algorithm is formulated for an experiment in which a
point source explodes in a three-dimensional constant
density acoustic medium where the velocity varies only
in depth, thereby confining our current study to the
positioning of reflectors vertically.

The imaging series is a cascaded series in that every term
is itself an infinite series in the recorded data. The lead-
ing order imaging series consists of the portion of each
term that is leading order in the data and is therefore
an approximation to the full depth imaging potential of
the inverse series. It has been found to converge for large
contrasts between the actual and reference medium. The
first term locates reflectors at the depths dictated by the
reference velocity and the data’s travel times. The re-
maining terms use the data’s amplitudes and travel times
to shift the reflectors closer to their correct location.

Analytic and bandlimited numerical examples demon-
strate that the leading order imaging series improves the
predicted depths of the reflectors at precritical angles, act-
ing to flatten the angle gathers. We use synthetic reflec-
tivity data examples to show that, even when missing
zero and low temporal frequency information, the leading
order imaging series locates reflectors closer to their ac-
tual depths than a migration with the reference velocity.
For higher contrasts, or when greater accuracy is desired,
then higher order imaging terms are required.

Introduction and background

Current depth imaging algorithms can be formulated
from a linear inverse scattering model, in which the
reference velocity is assumed to be close enough to the
actual velocity in order to place reflectors at their correct
spatial locations. In practice, especially in complex geo-
logical environments, methods for deriving the reference
velocity model can be inadequate for linear imaging
algorithms inasmuch as they fail to focus reflectors at
their correct locations. The inverse scattering series has
the ability to image primary reflection events at their
correct location using only the reflection data and an
approximate velocity model (Weglein et al., 2000). The
first term in the inverse series is a linear inversion of the
data. Using a velocity model that is incorrect below the

measurement surface, the first term will locate primaries
at locations expected when imaging with a conventional
algorithm. Therefore, the first term in the series will
mislocate reflectors unless the velocity model is correct.
The higher order terms in the inverse series, that are
non-linear in the data, contain parts that move the
reflectors to their true spatial locations. These terms are
non-zero when the velocity model is incorrect.

As a multidimensional direct inversion procedure (Moses,
1956), the inverse series removes multiples, locates re-
flectors, and inverts amplitudes for medium parameters
directly using only the measured data and a reference
medium’s parameters. Adopting the strategy of isolat-
ing task-specific subseries described by Weglein et al.
(2003), we assume that free-surface and internal multiples
have been removed (Weglein et al., 1997), and the source
wavelet is known (a prerequisite for all inverse series al-
gorithms). Our objective is to locate reflectors in space
(not invert for changes in earth material properties).

Shaw et al. (2003) considered the simplest case of a
normal-incidence experiment over a 1D constant density
acoustic medium for which the velocity was an unknown
function of depth. An imaging series algorithm was de-
rived that images reflectors in depth using a constant ref-
erence velocity and it was shown analytically that this se-
ries converges for large finite contrasts between the actual
and reference velocities. For relatively small contrasts,
the leading order imaging series is a good approximation
to the entire imaging series in that the predicted depths
are a significant improvement over conventional depth
imaging with the reference velocity. It was also demon-
strated that this series converges more rapidly for smaller
contrasts and for lower maximum frequencies. Therefore,
a proximate reference velocity and a source spectrum with
a lower maximum frequency aid the rate of convergence.

Having established for the simplest case that the leading
order imaging series has good convergence properties, the
next step in developing a practical algorithm is to evaluate
its efficacy under increasingly realistic conditions. Since
seismic data are always bandlimited, one of the highest
priority tests is an analysis of the algorithm under condi-
tions of missing low frequencies. With this objective, we
retain the simplicity of the acoustic model, but rederive
the leading order imaging series to accommodate prestack
input data which provide a lower vertical wavenumber
more closely mirroring the actual experiment.

We present analytic and bandlimited synthetic examples
of a prestack leading order imaging series. The analytic
examples show how the algorithm performs depth imaging
given a constant reference velocity that is never updated.
The synthetic examples demonstrate that the algorithm
retains effectiveness even when missing low frequencies.
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Leading order imaging series

Fig. 1: A multi-layer 1D constant density acoustic model.

For a 3D constant density acoustic medium with point
sources and receivers located at ~x s = (xs, ys, zs) and
~x g = (xg, yg, zg), respectively (see Fig. 1), wave propa-
gation is characterized by

(
∇2 +

ω2

c2(~x g)

)
P̃ (~x g|~x s; ω) = −A(ω)δ(~x g − ~x s) (1)

where P̃ is the pressure field, A is the source wavelet,
c is the propagation velocity and ω is the angular fre-
quency. To simplify the current analysis, we assume that
the medium varies only in the z direction. For the gen-
eralization to a 2D earth, see Fang et al. (2004). The
velocity, c, can be expressed in terms of a constant refer-
ence velocity, c0, and a perturbation, α, such that

1/c2(z) = [1− α (z)] /c2
0. (2)

The goal of inversion is to solve for α which is written

α = α1 + α2 + α3 + · · · (3)

where α1, the first term in the series for α, is linearly
related to the measured scattered field, P̃s = P̃ − P̃0. P̃0

is the pressure wavefield due to the same source, A(ω),
in the reference medium chosen to be a wholespace with
velocity c0. The second term is quadratic in P̃s, the third
term is cubic and so on. After using the inverse series
to solve for α, we could use (2) to solve for the velocity,
c. However, our objective is not to solve for the medium
parameters, but to solve directly for the location at which
α changes. This is the problem of imaging in a medium
whose velocity is not known before or after the imaging
procedure.

A prestack leading order imaging series

The inverse series equations are

D̃ =G0V1G0 (4)

G0V2G0 =−G0V1G0V1G0 (5)

G0V3G0 =−G0V1G0V1G0V1G0

−G0V1G0V2G0 −G0V2G0V1G0 (6)

...

where, for the acoustic medium considered here, Vn =
k2
0αn, k0 = ω/c0 and G0 is the causal Green’s function

satisfying the wave equation in the reference medium. In
(4), D̃ is the scattered field evaluated on the measurement
surface and the source wavelet has been deconvolved so
D̃ = P̃s/A. Hence, D̃ is related to α1 by

D̃ (~x g|~x s; ω) =

+∞∫

−∞

G0

(
~x g|~x ′ ; ω

)
k2
0α1

(
z ′

)
G0

(
~x ′ |~xs; ω

)
d~x ′

(7)

and the solution for α1 in cylindrical coordinates is

α̃1(−2qg) = 2π
−4q2

g

k2
0

eiqgzm

∫ +∞

0

D̃(r; ω)J0(krr)rdr (8)

where zm = zg + zs and the vertical and horizontal
wavenumbers, qg and kr, respectively, are related by

qg = k0

√
1− k2

r/k2
0. (9)

J0(krr) is a zero order Bessel function of the first kind that
arises due to the azimuthal symmetry. The fact that the
data are a function of both time and source-receiver offset
whereas α is only a function of depth is evident in (8) in
that α̃1 is over-determined. Considering fixed angles of
incidence, θ0, leads to a number of different estimates of
α1, denoted by α1(z, θ0). Fixing θ0 is the same as fixing
horizontal and vertical slownesses, p0 and ζ0, respectively:

p0 = (sin θ0)/c0 and ζ0 = (cos θ0)/c0.

However, qg is still allowed to vary through the variation
in ω since qg = ωζ0. Proceeding with this choice and
inverse Fourier transforming both sides of (8) gives

α1(z, θ0) = −8ζ0 cos2 θ0

×
∫ +∞

−∞
e−iωτ

∫ +∞

0

D̃(r; ω)J0(ωp0r)rdrdω. (10)

where τ = ζ0 (2z − zm). Equation (10) is a scaled slant
stack of the recorded data. An alternative approach to
handling the degree of freedom is to hold ω fixed and
integrate over angle or vertical slowness. This parameter-
ization will result in different estimates of α1 for constant
ω values and is the subject of ongoing research.

The imaging series is a subseries of the inverse series that
positions reflectors at their correct spatial location (We-
glein et al., 2002). For the problem in which the earth is
characterized by a single parameter, the imaging series is

αIM = αIM
1 + αIM

2 + αIM
3 + · · · (11)

where αIM
n is the term in the imaging series that is nth

order in the measured field and is found in the nth term
of the inverse series. αIM is a cascaded series in that each
term is itself and infinite series in the data. The lead-
ing order imaging series, αLOIM, is the contribution to
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Leading order imaging series

the imaging series that is leading order in the data. The
terms in this imaging series have been found to exhibit a
specific pattern (corresponding to particular inverse scat-
tering diagrams) recognized by Shaw et al. (2003) allowing
the prediction of a general form. Using the constant-θ0

formulation, the prestack form of the algorithm is

αLOIM(z, θ0) =

∞∑
n=0

(−1/2)n

n! cos2n θ0

(∫ z

0

α1(z
′, θ0)dz ′

)n

× ∂nα1(z, θ0)

∂zn
(12)

where α1(z, θ0) is given by (10). There is a closed form
for the 1D leading order imaging series:

αLOIM(z, θ0) =α1

(
z − 1/2

cos2 θ0

∫ z

0

α1(z
′, θ0)dz ′, θ0

)
.

(13)

The rate of convergence of (12) is greater for smaller val-
ues of kz, smaller values of

∫ z

0
α1(z

′, θ0)dz ′, and smaller
values of θ0. Analysis of the 1D normal incidence algo-
rithm showed that, for relatively small contrasts (the ac-
tual velocity within about 10% of the reference velocity),
the leading order contributions to the imaging series can
accurately locate reflectors. Higher contrasts or greater
accuracy require higher order imaging terms.

Analytic and bandlimited numerical examples

Consider a model that consists of two horizontal inter-
faces at depths za and zb (Fig. 1). For this example,

D̃(r; ω) = −
∫ +∞

0

(
R01 + R′12e

2iωζ1(zb−za)
)

iωζ0

× eiωζ0(2za−zm)J0(krr)krdkr (14)

where the amplitudes are functions of angle and are

R01 =
ζ0 − ζ1

ζ0 + ζ1
and R′12 =

−2ζ1

ζ0 + ζ1

ζ1 − ζ2

ζ1 + ζ2

2ζ0

ζ0 + ζ1
(15)

and

ζi = (cos θi)/ci , i = 0, 1, 2, . . . (16)

Substituting the data (14) into the linear inverse equation
(10), then for this two-reflector example, the first term in
the series for α(z) can be written as a function of angle

α1(z, θ0) =4 cos2 θ0

[
R01H (z − za) + R′12H (z − zb′)

]
(17)

where the shallower reflector is correctly located at za

(since the velocity down to za was correct) but the deeper
reflector is mislocated at depth

zb′ = za + (zb − za)
ζ1

ζ0
. (18)
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Fig. 2: Depths predicted by the first term in the series and
three different imaging series as a function of angle for two
analytic examples: za = 1000 m, zb = 1075 m, c0 = 1500
m/sec and c1 = 1650 m/s (i), c1 = 1350 m/sec (ii).

The shift of the deeper reflector to its correct depth can
be written as an infinite series in the data:

zb − zb′ = −2(zb′ − za)
(
R01 −R2

01 + R3
01 − · · ·

)
(19)

under the condition that |R01| < 1, which precludes post-
critical reflections. The approximation to this shift that
is leading order in the scattered field is

zb − zb′ ≈ −2(zb′ − za)R01. (20)

This is equal to the shift calculated by the leading order
imaging series. To see this, we substitute the first term
in the imaging series for this example (17) into the closed
form for αLOIM (13) and evaluate the algorithm at zb′ :

αLOIM(zb′ , θ0) =α1 (zb′ − 2 [zb′ − za] R01 (θ0)) . (21)

Hence, the leading order imaging series αLOIM shifts the
interface at zb′ in α1 to a depth zb′+2 (zb′ − za) R01 which
is closer to the actual depth zb and is a function of angle.
The leading order imaging series, αLOIM, is a better ap-
proximation to the entire imaging series, αIM, when the
magnitude of the perturbation above the reflector being
imaged is smaller. Higher order imaging terms include
successively more amplitude terms in the series for the
shift in (19). For models containing more than two in-
terfaces, the leading order imaging series produces an ap-
proximation to the shift at each mislocated interface that
is an infinite series in reflection and transmission coeffi-
cients in the overburden.

Figure 2 shows two analytic examples where the reference
velocity c0 = 1500 m/sec and two reflectors are located
at za = 1000 m and zb = 1075 m. The depths predicted
by the first term in the series and three approximations
to the imaging series are displayed. The variation of zb′
with angle is the residual moveout resulting from a mi-
gration with the incorrect (reference) velocity. Figure 2
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Leading order imaging series
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Fig. 3: Cumulative sum of up to 35 terms in the prestack
leading order imaging series (Eq. 12) for a 6-layer model. The
yellow dashed lines are the actual depths of the reflectors. The
first term is a migration with the constant reference velocity.

shows that including higher order imaging terms improves
the accuracy of the predicted depth, especially at higher
angles where they are needed more. Figure 3 shows the
cumulative sum of up to 35 terms in the leading order
imaging series (Eq. 12) for a 6-layer model. In this case,
after 35 terms the series has converged. Finally, Fig. 4
shows that the algorithm retains effectiveness even when
missing zero and low frequencies.

Conclusions

We have reformulated the prestack imaging series for
a 1D medium and for a point-source experiment, and
have demonstrated its effectiveness on analytic and
bandlimited numerical examples. This prestack for-
mulation, and its effectiveness with band-limited data,
motivate continued progression towards its generalization
for eventual field data application, which is further
encouraged by the current industry trend towards lower
frequency acquisition.
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