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Abstract
The inverse scattering series free-surface-multiple-elimination (FSME) algorithm is modified
and extended to accommodate the source property–source radiation pattern. That
accommodation can provide additional value for the fidelity of the free-surface multiple
predictions. The new extended FSME algorithm retains all the merits of the original algorithm,
i.e., fully data-driven and with a requirement of no subsurface information. It is tested on a one-
dimensional acoustic model with proximal and interfering seismic events, such as interfering
primaries and multiples. The results indicate the new extended FSME algorithm can predict more
accurate free-surface multiples than methods without the accommodation of the source property
if the source has a radiation pattern. This increased effectiveness in prediction contributes to
removing free-surface multiples without damaging primaries. It is important in such cases to
increase predictive effectiveness because other prediction methods, such as the surface-related-
multiple-elimination algorithm, has difficulties and problems in prediction accuracy, and those
issues affect efforts to remove multiples through adaptive subtraction. Therefore accommodation
of the source property can not only improve the effectiveness of the FSME algorithm, but also
extend the method beyond the current algorithm (e.g. improving the internal multiple attenuation
algorithm).
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(Some figures may appear in colour only in the online journal)

1. Introduction

In seismic exploration, multiple removal is a classic and long-
standing problem. To remove free-surface multiples, plenty of
methods have been proposed and developed with different
assumptions, advantages, and limitations (e.g. Carvalho 1992,
Verschuur et al 1990, Weglein et al 1997, 2003, Berkhout
and Verschuur 1999, Dragoset et al 2008). Among these

methods, the inverse scattering series (ISS) free-surface-
multiple-elimination (FSME) algorithm (Carvalho 1992,
Weglein et al 1997, 2003) is fully data-driven and requires no
subsurface information, which has a big advantage, especially
under conditions of complex geology. In principle, the ISS
FSME algorithm is able to predict exact amplitude and time
of free-surface multiples at all offsets so as to remove the free-
surface multiples through a direct subtraction, and preserve
primaries (Carvalho 1992, Weglein et al 1997). However,
in practice the algorithm may require an adaptive assist.
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In contrast, the surface-related-multiple-elimination algo-
rithm cannot provide accurate predictions because it ignores
the obliquity factor and retains the source ghosts. Hence, it
requires an adaptive step in principle in practice. Certain
criteria adaptive subtraction based such as energy mini-
mization can be a reasonable choice, however in other
situations, it has issues with proximal and interfering pro-
blems, because the energy minimization criterion assumes
that the energy of the data will be minimized after the
multiples are removed. But in some cases, after multiple
removal, the energy may increase rather than decrease.
Therefore, adaptive subtraction can fail to remove the mul-
tiples or can damage primaries.

The ISS method has certain prerequisites including
(Weglein et al 2003): (1) the reference wave5 removal, (2)
the source wavelet and radiation pattern estimation and
removal, and (3) the source and receiver ghosts6 removal.
Hence, preprocessing of the seismic data is the important
component for free-surface multiple prediction. The reference
wave should be removed because it contains no subsurface
information which is the objective of the research. To separate
the reference wavefield from the scattered wavefield (reflec-
tion data), Weglein and Secrest (1990) propose a method that
require no subsurface information. To identify subsurface
properties from seismic data, it is also necessary to identify
and remove the seismic source’s effect from the seismic data
because both the source and the properties of the Earth con-
tribute to the recorded seismic data (e.g. Weglein and Secrest
1990, Amundsen 1993, Osen et al 1998). Source and receiver
de-ghosting will remove the ghost notches and enhance the
low-frequency content of the seismic data (e.g. Zhang and
Weglein 2005, 2006, Mayhan et al 2011, 2012, Mayhan and
Weglein 2013). Yang (2014) discusses the impact of the
source wavelet and ghosts on free-surface multiple prediction
and removal. All of these preprocessing steps can be achieved
based on Green’s theorem wave separation methods without
requiring any subsurface information. Green’s theorem
methods were explored by Zhang (Weglein et al 2002, Zhang
and Weglein 2005, 2006, Zhang 2007) and developed by
Mayhan (Mayhan et al 2011, 2012, Mayhan and Weglein
2013). Wu and Weglein (2014) extended the Green’s theorem
methods for the reference wave and scattered wave separation
from off-shore acoustic plays to on-shore elastic plays.
Green’s theorem methods and the ISS FSME algorithm are
consistent with each other, i.e., multidimensional and fully
data-driven without any subsurface information.

In terms of data generated by a general source with a
radiation pattern, the ISS FSME algorithm needs to be
modified and extended because it assumes an isotropic point
source, where the source has no variation of amplitude or

phase with take-off angle7. In towed marine acquisition, a
general source (e.g. air-gun array) with a radiation pattern is
commonly used. Such a general source exhibits directivity
in the take-off angle (Loveridge et al 1984); that directivity is
an issue for multiple removal and attenuation and AVO
analysis. Thus, in seismic processing, it is essential to char-
acterize the source’s effect on any seismic processing meth-
ods. Therefore, to accommodate a general source with a
radiation pattern, the proposed method modifies and extends
the ISS FSME algorithm to improve its accuracy and effec-
tiveness in predicting multiples. The accommodation of the
source radiation pattern is able to enhance the free-surface
multiple predictions at all offsets if the source has a radiation
pattern.

2. Theory

The ISS FSME subseries can be isolated and derived from the
ISS (Weglein et al 2003, Yang 2014) as
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where ¢D1 is the source–receiver deghosted data. G0
d and G0

FS

are the two parts of Green’s function G0—the direct arrival
part and its free-surface reflection part, as shown in figure 1.
G0
d is an impulse response, and P0

d is the direct wave generated
by a general source. V is the scattering factor, which is the
difference between the actual and reference media. V can be
described as a series = + + +V V V Vn1 2 , Vn is the part of
V. ¢Vn is the portion of Vn due to the presence of the free
surface. ¢Dn (for >n 1) is the corresponding free-surface
multiple.

For an isotropic point source, the ISS FSME algorithm
(equation (3)) in a 2D case (Carvalho 1992) can be written

Figure 1. Green’s function G0 in the reference medium includes two
parts: = +G G G0 0

d
0
FS. G0

d is the direct Green’s function and G0
FS is

its ghost due to the presence of free surface.

5 The wave that travels in the reference medium is called a reference wave,
which includes the direct wave and its ghost. The direct wave travels
straightly from the source to the receiver. The ghost propagates up to the free
surface and reflects down to the receiver.
6 Ghosts are the events that by travel up to the free-surface (source ghosts) at
the beginning or travel down from the free-surface to the receiver (receiver
ghosts) at the end. The event that exhibits both features is called a source-
receiver ghost. 7 Take-off angle refers to the angle of incidence wave.
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explicitly as
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where kg, ks represent the receiver and the source horizontal
wavenumber respectively. ω is the frequency. g and s

are the receivers’ and sources’ depth below the free
surface, respectively. The term q is the obliquity factor

w w= -( )q c ksgn 2
0
2 2 . c0 is the reference velocity. w( )A

is the source signature, which is a function of time or ω in
different domains. The free-surface multiples are predicted
order-by-order and then added together to give the data
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that have been deghosted and free-surface demultipled.
The ISS FSME algorithm (equation (4)) assumes an

isotropic point source. Hence, if all the prerequisites are
satisfied, Zhang (2007) has shown that this algorithm
(equation (4)) has the ability to predict correct free-surface
multiples at all offsets for data generated by an isotropic
point source and remove these multiples from the data
without adaptive subtraction. However, in terms of data
generated by a general source with a radiation pattern,
however, the algorithm (equation (4)) predicts free-surface
multiples only approximately. To accommodate the sources’
effect, the ISS FSME algorithm is modified and extended
from an isotropic point source to a general source ρ with a
radiation pattern
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where r w( )k q, , is the projection of the source signature
that projects the source onto the measurement surface in the
f–k domain and w+ =k q c2 2 2

0
2. The details of the deri-

vation of equation (6) can be found in appendix A. The
projection of the source signature r w( )k q, , can be achieved
from the direct reference wavefield, which is separated from
the total wavefield by using Green’s theorem methods
(Weglein and Secrest 1990, Mayhan and Weglein 2013,
Tang et al 2013).

In this paper, the source array is assumed to be invariant
from one shot to the next. In other words, the geometry or the
distribution of the source array keeps consistency for each
shot. The direct reference wavefield P0

d for a 2D case can be
expressed as an integral of the direct reference Green’s
function G0

d over all air-guns in an array,
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where (x, z) and ( )x z,s s are the prediction point and the source
point, respectively. Here, ¢ ¢( )x z, is the distribution of the
source with respect to the source locator ( )x z,s s . Using the
bilinear form of Green’s function and Fourier transforming
over x, the proposed method obtain the relationship between ρ
and P0

d in the f–k domain as
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where r w( )k q, , can be derived from the direct reference
wavefield and w+ =k q c2 2 2

0
2. The derivation of

equation (8) can be found in appendix B. The parameter
q is not a free variable, hence we can not obtain r w( )x z, , in
the space-frequency domain by taking an inverse Fourier
transform on r w( )k q, , . However, the projection of the
source signature r w( )k q, , can always be achieved directly
from the reference wavefield P0

d in the f–k domain, where
the variable k or q represents the amplitude variations of
the source signature with angles. Ikelle et al (1997) also
proposed a similar quantity, w( )A k, , the inverse source
wavelet, and solved for it indirectly using the energy mini-
mization criterion. We instead apply Green’s theorem wave
separation methods to get the generalized source signature
directly.

By substituting the projection of the source signature
r w( )k q, , into the ISS FSME subseries (equations (1)–(3)),
we can obtain the new extended FSME algorithm which
accommodates a general source with a radiation pattern and
can provide additional value by improving the fidelity of
the free-surface multiple predictions at all offsets. The new
extended FSME algorithm is consistent with Green’s theorem
wave separation methods that provides all data requirements
as well as they are both fully multidimensional and require no
subsurface information. The new extended FSME algorithm
(equation (6)) can be reduced to the previous FSME algorithm
(equation (4)) when the general source (e.g. source array)
reduces to an isotropic point source. Meanwhile the projec-
tion of the source signature r w( )k q, , can be applied into

Figure 2. One-dimensional two-reflector acoustic model with
constant velocity and varying density. Two reflectors are at 300 and
600 m. The depths of the sources and receivers are 7 m and 9 m,
respectively.
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the ISS internal multiple attention algorithm (Yang and
Weglein 2015) to improve its effectiveness and accuracy, and
the extension of the ISS demultiple algorithms can be easily
extended to the 3D case.

3. Numerical tests

This section will show the impact of free-surface multiple
removal through the use of the ISS FSME algorithms that
are accommodating compared to not accommodating the
source radiation pattern. The numerical test is based on a 1D
two-reflector acoustic model with constant velocity and
varying density, as shown in figure 2. Here, the constant
velocity model is selected because the interfering events
can completely cancel each other in this model, otherwise,
they can only cancel part of events. To generate this data
with interfering events, the analytic method is used in the

w–k domain and generate them separately. The parameters
are designed so that the second primary can cancel the first-
order free-surface multiple. Even though the sources and
receivers are not on the free surface, the second primary and
the first-order free-surface multiple have the same travel
time, because both events have the same time-shift due to
the depth of the source and receiver. The data are generated
by a general source (e.g. source array) with a radiation
pattern (figure 3) using the reflectivity method. Here it is
referred to as the source-array data. The source array has
nine air-guns with each a different amplitude indicated by
their size. The model has two reflectors, at 300 and 600 m.
The depths of the sources and receivers are at 7 m and 9 m,
respectively. Here the data is assumed to have been pre-
processed by removing its reference wavefield and ghosts to
satisfy the prerequisites of the ISS FSME algorithm.

Primaries and free-surface multiples are generated
separately as shown in figure 4. P1 and P2 are the two pri-
maries. F1, F2 and F3 are the first first-order, second first-
order, and first second-order free-surface multiples, respec-
tively. The events in the same color has the same arrival
time, hence, they are interfering in the seismic data. P2 and
F1 have opposite polarity but the same amplitude. Therefore,
P2 and F1 cancel each other and are invisible in the seismic
data. Similarly, F3 will be interfere with F2 and cancel part
of F2. Figure 5(a) represents the two primaries P1 and P2,
and figure 5(b) is the free-surface multiples F1, F2 and F3.
Adding up them to get the total source-array data, as shown
in figure 5(c). The second primary is destructively interfer-
ing with the first-order free-surface multiple and they are
invisible in the seismic data. Therefore, the adaptive sub-
traction method can be invalid or fail for this kind of
situation, because it is based on the energy minimization
criterion with the assumption that the energy of the data will
be minimized after the multiples are removed. However, in
this case, the energy increases after removal of the first-order
free-surface multiple.

The free-surface multiples will be predicted and
removed from the source-array data (figure 5(c)) by using
the ISS FSME algorithm (equation (4)) that does not
accommodate the source radiation pattern and the new
extended algorithm (equation (6)) that does accommodate
the source radiation pattern. Since the synthetic data has
only two orders of the free-surface multiples, the FSME
algorithm needs only calculate with the second iterations.
Figures 6(a) and (b) show the free-surface multiples pre-
dicted by use of the algorithms that are not accommodating
and accommodating the source radiation pattern (equations
(4) and (6)), respectively. Figure 6(c) is the corresponding
difference between these two predictions. This is an
advantage of the ISS FSME algorithm, because we need
only calculate the FSME algorithm to the order that has in
the actual data. The total data (figure 5(c)) will input into the
ISS FSME algorithm, and figures 7(a) and (b) are the results
following free-surface multiple removal by using the these
two algorithms, respectively. It can be seen that both algo-
rithms can effectively remove the free-surface multiples and
recover the second primary. Figure 7(a) indicates that if the
algorithm does not accommodate the source radiation pat-
tern, the free-surface multiple removal result obtains some
residues for the source-array data. The new extended algo-
rithm that accommodates the source radiation pattern can
accurately predict and completely eliminate the free-surface
multiples as shown in figure 7(b).

The proposed method picks one trace (for instance, at
1800 m offset) from figures 7(a) and (b) and compare them
with the trace picked from figure 5(a) to judge whether the
second primary is fully recovered or not. Figure 8 illustrates
the details of this single trace comparison. After removal of
free-surface multiples by using the new extended algorithm,
the second primary (dashed green line) is fully recovered
as the original primary (red line) and second-order free-
surface multiples are also completely removed. Without the
algorithm accommodating the source radiation pattern, the

Figure 3. Source array with nine air-guns.

Figure 4. Seismic events. P1 and P2 are the two primaries. F1, F2 and
F3 are the first first-order, second first-order, and first second-order
free-surface multiples, respectively. The events with the same color
have the same arrival time.
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second primary (blue line) is partly recovered and is a little
weaker than the original primary (red line) and there are
some multiple residues on the second-order free-surface
multiples. The amplitude errors will greatly affect AVO
analysis. The numerical tests for the synthetic data with
interfering events have demonstrated that the ability of the
new extended ISS FSME algorithm to correctly predict both
amplitude and time of free-surface multiples, as well as
remove them completely without touching the primaries.
Most importantly, this new extended algorithm recovers
the primary that is destructively interfering with a free-
surface multiple. In summary, by accommodating the source

radiation pattern, the effectiveness and accuracy of the ISS
FSME algorithm has been enhanced.

4. Conclusions

The ISS FSME algorithm is modified and extended by
accommodating the source radiation pattern. Compared with
previous methods the new extended algorithm can provide
additional value by improving the fidelity of amplitude and
phase predictions of free-surface multiples at all offsets. It is
multidimensional without the requirement of any subsurface

Figure 5. Separated seismic data: (a) primaries, (b) free-surface multiples, and (c) total source-array data.

Figure 6. The free-surface multiples that are predicted by the ISS FSME algorithms that are (a) not accommodating and (b) accommodating
the source radiation pattern. (c) The difference between these two predictions.
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information. The numerical tests show that the new extended
FSME algorithm can predict the free-surface multiples more
accurately and then remove them more effectively. This
accommodation and extension is particularly important when
the free-surface multiples are proximal to or interfering with
other events, since we cannot fix the errors in amplitude
and phase of the prediction adaptively. In conclusion,
the accommodation of the source radiation pattern into the
FSME algorithm can not only improve the effectiveness of
the algorithm, but also extend the method beyond the current
algorithm (e.g. improving internal multiple attenuation
algorithm).
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Appendix A. Derivation of equation (6)

Before deriving equation (6), we first derive equation (1) in a
2D case,

  



òw w

w
w

¢ =

´

´

( ) ( )

( )
( ) ( )

( )
D x x G x x z

V x z x z

P x z x x z x z

, , , , , , , ,

, , , ,

, , , , d d d d . A.1

g g s s g g

s s

1

4

0
d

1 1

1 1 1 2 2

0
d

2 2 1 1 2 2

Substituting the bilinear form of Green’s function

w¢ ¢ =
- - + w

- ¢ - ¢

∬( ) ( )
( ) ( )

G x z x z k k
k k

, , , , d d
e e

, A.2x z

k x x k z z

x z c

0
d

i i

2 2

x z

2

0
2

into equation (A.1), gives

 





òw

w

w

¢ =

´
- - +

´

w

- -

∬( )

( )

( ) ( )

( )

( ) ( )

D x x k k

k k
V x z x z

P x z x x z x z

, , , , d d

e e
, , , ,

, , , , d d d d . A.3

g g s s x z

k x x k z

x z c

s s

1

4

i i

2 2
1 1 1 2 2

0
d

2 2 1 1 2 2

x g z g1 1

2

0
2

Figure 7. The impact of the source radiation pattern on free-surface multiple removal by using the ISS FSME algorithms that are (a) not
accommodating and (b) accommodating the source radiation pattern.

Figure 8. Single trace comparison: red line: the two original
primaries; blue line: the result after multiple removal by using the
algorithm that does not accommodate the source radiation pattern;
dashed green line: the result after multiple removal using the
algorithm that accommodate the source radiation pattern.
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Fourier transforming with respect to xg and xs gives

 





















ò

ò

ò

ò ò

ò ò

ò

w

w w

pd

w w

p w

w

p w

w

w

w

¢ =

´
- - +

´

=
- - +

-

´

=
- - +

´

=
- +

´

=

´

w

w

w

- -
-

- -

-
-

º

-
-

-
-

  

∬

∬

( )

( ) ( )

( )

( ) ( )

( )

( )

( )

( )

( )

( )
( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ∣ ∣

D k k k k

k k
x

V x z x z P x z k x z x z

k k
k k

k k

V x z x z P x z k x z x z

k
k k

V x z x z

P x z k x z x z

k
k q

V x z x z

P x z k x z x z

q
V x z x z

P x z k x z x z

, , , , d d

e e
e d

, , , , , , , , d d d d

d d
e e

2

, , , , , , , , d d d d

2 e d
e

, , , ,

, , , , d d d d

2 e d
e

, , , ,

, , , , d d d d

e
e

2i
, , , ,

, , , , d d d d .

A.4

g g s s x z

k x x k z

x z c

k x
g

s s

x z

k x k z

x z c

x g

s s

k x
z

k z

z g c

q

s s

k x
z

k z

z g

s s

k x
k z

g

s s

1

4

i i

2 2
i

1 1 1 2 2 0
d

2 2 1 1 2 2

4 i i

2 2

1 1 1 2 2 0
d

2 2 1 1 2 2

4
i

i

2 2
1 1 1 2 2

0
d

2 2 1 1 2 2

4
i

i

2 2 1 1 1 2 2

0
d

2 2 1 1 2 2

4
i

i

1 1 1 2 2

0
d

2 2 1 1 2 2

x g z g
g g

x z g

g
z g

g

g
z g

g
g g

1 1

2

0
2

1 1

2

0
2

1
1

2

0
2

2

1
1

1
1

Since we assume  < zg 1, equation (A.4) becomes
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Substituting the bilinear form of Green’s function (G0
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. Fourier transforming with respect to xg
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Integrating over ¢kx gives
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Since we assume  < zg 1, >z 02 , and >z 03 , equation (A.11)
becomes
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Inserting two identities into equation (A.12) gives
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In the above derivation, equations (A.6) and (A.7) are applied.
In the final step, we ignore the constant variables s and g in
the data ¢D1 and ¢-Dn 1. Equation (A.13) is the extended ISS
FSME algorithm.

Appendix B. Derivation of equation (8)

The projection of a general source signature r w( )k q, , is
derived from the direct reference wavefield P0

d. We assume
for simplicity that the distribution of the general source is the
same for each experiment, which means that the source dis-
tribution does not depend on the effective source position rs.
Thus, P0

d in a 2D case can be presented as equation (7)
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equation (B.1) becomes
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Here, > ¢ +( )z z zs is used, because the prediction point is
deeper than the source distribution.
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