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Editor’s note: The following article brings to light a cautionary concern 
(and a set of fundamental and substantive issues, related to indirect 
methods, in general, that benefits from a broader and deeper under-
standing and perspective), regarding the validity of basic assumptions 
made in FWI. It was slated to appear in the special section on FWI in 
September. The article also describes and exemplifies a direct inverse 
method for the same FWI-type objectives. However as that issue was 
fully subscribed, given the popularity of FWI, it was decided, in 
conjunction with the section’s guest editors (Antoine Guitton, Tariq 
Alkhalifah, and Chris Liner) that the article appear in the October 
TLE. In the introduction to the FWI section, the guest editors pose 
some admonitory questions: “Are we heading in the right direction? Are 
we in the right valley? Or within a bigger context, is FWI the way to 
go?” In this context, Weglein’s article is a timely and pertinent riposte 
that will be of significant interest and may elicit a degree of controversy 
to those working in the FWI field.

A central purpose of this article is to bring an alternative 
voice, perspective, and understanding to the latest 

geophysical stampede, technical bubble, and self-proclaimed 
seismic cure-all, the so-called “full-waveform inversion” 
or FWI. If you think this is exaggerated, I refer to the 
advertisement/announcement of the 2013 SEG Workshop 
on FWI whose opening line is, “Full-waveform inversion 
has emerged as the final and ultimate solution to the Earth 
resolution and imaging objective.”

Besides representing language, attitude, and a viewpoint 
that have no place anywhere in science, and, in particular, in 
exploration seismology, the fact is that the method, as put 
forth, is from a fundamental and basic-principle point of view 
(aside from, and well before, any practical considerations and 
track record of added-value are considered) hardly deserving 
of the label “inversion”, let alone all the other extreme and 
unjustified claims and attributes, as being the “deliverance” 
and the last and final word on the subject.

From a direct-inversion point of view, and for the algo-
rithms that are derived for solving the exact same problem of 
estimating, for example, the location of velocity anomalies and 
shallow hazards, and velocity changes at the top and base salt, 
all the current approaches to so-called full-waveform inver-
sion are: (1) always using the wrong data, (2) always using the 
wrong algorithms, and (3) all too often, using the wrong Earth 
model, as well. Making this clear is one purpose of this article.

The issue being discussed in this article is not a matter 
of semantics and is not a labeling/mislabeling issue; it is the 
substantive issue of what data and what algorithms are called 
for by direct inversion to achieve certain seismic processing 
objectives. In particular, the focus here is on objectives that 
rely on the amplitude of reflection data as a function of in-
cident angle to determine changes in, e.g., P-wave velocity, 
AVO parameters, or so-called FWI.

Another purpose of this article is to propose and exem-
plify an alternative and direct inverse solution that actually 
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deserves the label “inversion” and could be useful for those 
goals and objectives, and perhaps can actually earn, deserve, 
and warrant a label of FWI, although never as the “ultimate 
and final solution.” The direct-inversion approach provides 
not only a method but also a framework and platform for 
understanding when it will and will not work. All current so-
called FWI methods are indirect model-matching methods, 
and indirect methods can never provide that capability and 
clarity. Model-matching run backward, or solving a forward 
problem in an inverse sense, resides behind all the current 
indirect P-wave-only so-called FWI and is never equivalent 
to a direct inverse solution for any nonlinear problem, nor 
does it even represent a fully and completely aligned goal and 
property of a direct inverse solution.

A third and perhaps the most important goal of this article 
is to provide a new, comprehensive overview and bridge for 
these two approaches for those who may be following, apply-
ing, and/or considering the current so-called indirect model-
matching FWI approach and those proposing, interested in, 
or providing a road to a direct inverse methodology. It will be 
shown how these two approaches have the same starting point, 
and in fact, have the same exact generalized Taylor series ex-
pansion for modeling data and for expressing the actual data in 
terms of a reference model and reference data and the difference 
between actual and reference properties. The two approaches 
differ in how they view each of the same terms of that forward 
series. One view of those individual terms leads to a Taylor series 
form that does not allow a direct inverse series and that leaves 
as the only option the running of a forward (linear truncated) 
series in an inverse sense. That forward description viewed as 
only a generalized Taylor series results in, and provides no other 
choice other than, an indirect model-matching approach (e.g., 
as seen in AVO and the so-called FWI methods). This is the 
mainstream/conventional view of the forward description as a 
Taylor series, and, while easy to understand, that view precludes 
a direct inverse, and therefore explains the widespread use of 
indirect model-matching approaches. Another view of those 
individual terms in the forward Taylor series that derives from 
the fundamental equation of scattering theory (the Lippmann-
Schwinger equation) recognizes that the forward Taylor series 
is a special class of generalized Taylor series—a generalized geo-
metric series. Further, it is a geometric series for a forward prob-
lem, and it has a geometric series for a direct inverse solution. 
Without understanding and calling upon the scattering-theory 
equation, that recognition of the forward series as being geo-
metric is not possible, and a direct inverse solution would not be 
achievable. All of the consequences and differences between the 
forward model-matching approach leading to methods such as 
so-called FWI and the direct inverse methods, derived from the 
inverse scattering series, have that simple, accessible, and under-
standable origin. The details, arguments, and examples behind 
these three objectives and goals are provided below.
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Let’s begin. Seismic processing is an inverse problem, in 
which measurements on or near the surface of the Earth are 
used to make inferences about the nature of the subsurface that 
are relevant to the exploration and production of hydrocarbons.

There was a time, not too long in the past, when a dis-
cussion of any method for solving inverse or data-processing 
problems always began with a definition of direct and indirect 
methods. The latter was deemed the less respectable and the 
lesser choice between the two, considered out of despera-
tion and resignation and offered with hesitation and apology. 
It was associated among “inversionists” with searching and 
model matching rather than with seeking a direct, clear, and 
definitive solution through a math-physics analysis.

It appears that earlier, healthy understanding and respect 
for the framework and definitiveness of direct inverse meth-
ods have largely given way or have been pushed aside, with 
serious and substantive negative and injurious conceptual and 
practical consequences. Among the latter manifestations and 
consequences is the totally mislabeled and ubiquitous phe-
nomenon of so-called “full-wave inversion” (FWI) methods. 
Among FWI references are Brossier et al. (2009), Crase et 
al. (1990), Gauthier et al. (1986), Nolan and Symes (1997), 
Pratt (1999), Pratt and Shipp (1999), Sirgue et al. (2010), 
Symes (2008), Tarantola (1984, 1986), Valenciano et al. 
(2006), Vigh and Starr (2008), and Zhou et al. (2012).

This note advocates (whenever possible) direct methods 
for solving processing problems and providing prerequisites. 
Direct methods offer many conceptual and practical benefits 
over indirect methods. Advantages of direct methods begin 
with actually knowing that you are solving the problem that 
you are interested in solving.

How can you recognize a direct versus an indirect meth-
od? Consider the quadratic equation

,                           (1)

and the solution

.                   (2)

Equation 2 is a direct solution for the roots of Equation 
1. On the other hand, if you see a cost function involved in a 
solution, the solution is indirect. Also, if you see a modeling 
equation being solved in an inverse sense, or an iteratively 
linear updating, those are each direct indicators of an indirect 
solution and a model-matching approach, which too often 
can start with an incorrect or insufficient modeling equation 
and a matching of fundamentally inadequate data. The only 
time that a forward problem solved in an inverse sense can 
be equivalent to a direct inverse solution is when the direct 
inverse solution is linear. For example, locating reflectors at 
depth with a known velocity model is linear, and, hence, e.g., 
(asymptotic) RTM is a modeling run backward (i.e., in an 
inverse sense) to directly determine structure. Another trans-
parent example is given by the forward geometric series

  (3)

and the inverse

  (4)

                                         when |S/a |. < 1

If, rather than these nonlinear relationships among S, a, 
and r, we instead imagine an exact linear relationship that S, 
a, and r might satisfy, e.g.,

,                                    (5)

then we have the forward problem of solving for S given a 
and r, and the inverse problem becomes solving for r in terms 
of S and a. The direct inverse solution r = S/a is equivalent to 
the forward problem solved in an inverse sense, solving S = ar 
for r in terms of S and a. However, if the forward relationship 
assumed among S, a, and r is a quadratic relationship (an ap-
proximate of the actual nonlinear forward problem given by 
Equation 3), we have

  .                                (6)

Then, solving the forward problem, Equation 6, in an 
inverse sense is a quadratic solution with two roots that can 
be real or imaginary, whereas the solution to Equation 4 is a 
single real solution for r. In place of Equation 6, think of the 
linearized forward Zoeppritz equation for R

PP
 solved in an in-

verse sense, and the point is clear. This simple and transparent 
example demonstrates a pitfall of thinking that a direct inver-
sion is equivalent to a forward problem solved in an inverse 
sense. Another example, pointed out in Weglein et al. (2009), 
is the direct inverse solution for predicting and removing free-
surface and internal multiples, from the inverse-scattering se-
ries, where these two distinct algorithms are independent not 
only of subsurface information, they are also independent of 
whether we assume the Earth is acoustic, elastic, anelastic, het-
erogeneous, and anisotropic. The multiple-removal algorithms 
(which are direct and nonlinear) do not change one line of 
code when you change your mind about the Earth model type 
you want to consider. Can you imagine a model-matching and 
subtraction method or linear-updating method for predicting 
and removing multiples, with any cost function, L

1
, L

2
, L

P
, that 

would be independent of subsurface properties and the type 
of Earth model you are using to generate the synthetic data? It 
is hard to overstate the significance of this point. The widely 
recognized benefit to industry from effectively removing free-
surface and internal multiples using algorithms derived from 
the inverse scattering series, for offshore and onshore plays, 
never would have occurred if the indirect inversion, model-
matching, and iterative updating, and FWI-like thinking, 
were the approaches pursued for removing multiples.

In general, we look at inversion as a set of tasks: free-
surface and internal-multiple removal, depth imaging, and 
nonlinear AVO. For the purposes of this article and for dis-
cussing FWI, the focus is entirely on how the ISS addresses 
that parameter estimation task in isolation, and as if all other 
tasks (e.g., multiple removal) had been previously achieved.
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Indirect methods such as flat common-image gathers (CIG) 
were developed as a response to the inability to directly solve 
for and adequately provide a velocity model for depth imaging, 
and those CIGs represent a necessary condition at the image 
that an accurate velocity would satisfy. References for CIGs are 
Anderson et al. (2012), Baumstein et al. (2009), Ben-Hadj-ali 
et al. (2008, 2009), Biondi and Sava (1999), Biondi and Symes 
(2004), Brandsberg-Dahl et al. (1999), Chavent and Jacewitz 
(1995), Fitchner (2011), Guasch et al. (2012), Kapoor et al. 
(2012), Rickett and Sava (2002), Sava et al. (2005), Sava and 
Fomel (2003), Sirgue et al. (2009, 2010, 2012), Symes and 
Carazzone (1991), Tarantola (1987), and Zhang and Biondi 
(2013). Many wrong velocity models can and will also satisfy 
a flat common-image-gather criterion, especially under com-
plex imaging circumstances. Indeed, unquestioned faith in the 
power of satisfying the flat CIG criterion can and does con-
tribute to dry-hole drilling. Mathematicians who work on the 
latter types of CIG problems would better spend their time 
describing the underlying lack of a necessary and sufficient 
condition, and the consequences, rather than dressing up and 
obfuscating the necessary but insufficient condition in fancy, 
rigorous, and abstract new clothes.

It seems that the recent surge of interest in estimating 
changes in velocity is fueled by: (1) the improved ability to 
produce low-frequency and low-vertical-wavenumber infor-
mation from new acquisition and improved deghosting; (2) 
the implicit admission of serious problems with methods to 
estimate velocity models (e.g., with tomography, iterative flat 
CIG searching, and the like); and, of course, (3) the persistent 
and unacceptable dry-hole drilling rate. Today, for example, 
we basically remain fixed and without significant progress (at 
a one-in-ten success rate) in drilling successful exploration 
wells in the deep-water Gulf of Mexico (Hawthorn, 2009; 
Iledare and Kaiser, 2007).

Indirect methods should be considered only when direct 
methods are not available or are inadequate, or when you can-
not figure out how to solve a problem directly. Indirect meth-
ods are often and reasonably employed to allow a channel or an 
adjustment (a dial) for phenomena and components of reality 
that are outside and external to the physics of the system you 
have chosen and defined. Of course, there always are, and al-
ways will be, phenomena outside your assumed and adopted 
physics and system that must be accommodated and that are 
ignored at your peril. That’s the proper realm and role for in-
direct methods. Even then, however, they need to be applied 
judiciously and always with scrutiny of what resides behind 
cost-function-criteria assumptions. When a direct method 
to predict the amplitude and phase of free-surface multiples, 
such as inverse-scattering-series free-surface-multiple removal, 
includes the obliquity factor, and has the direct satisfaction of 
prerequisites such as source and receiver deghosting and wave-
let estimation, then the better the direct method of providing 
the prerequisites performs, the better the free-surface demul-
tiple provides the amplitude and phase of the free-surface mul-
tiples. If at any stage you decide you can “roll in” obliquity, 
source and receiver deghosting, and wavelet estimation into a 
catch-all energy-minimization adaptive subtraction, you run 

into the serious problem: No matter how much better you 
achieve a satisfaction of energy minimization, you still have 
no guarantee that that improved energy minimization aligns 
with and supports free-surface-multiple removal while preserv-
ing primaries. In fact, removal of multiples can increase “en-
ergy” (e.g., when you have destructive interference between 
a primary and a multiple), and it is widely understood that 
the energy-minimization criteria are among today’s greatest 
impediments to effectively removing free-surface and internal 
multiples for complex onshore and marine plays. The crite-
ria behind the indirect adaptive step matter. Within the area 
of free-surface and internal-multiple attenuation, the rush to 
and overreliance on energy-minimization adaptive subtraction 
contributes to the inability to effectively and surgically remove 
multiples at all offsets and without damaging primaries. That 
specific issue was discussed in a recent report to the M-OSRP 
consortium on seeking adaptive criteria (Weglein, 2012) that 
serve as an alternative and replacement for energy minimiza-
tion for free-surface multiple removal. However, the trend of 
using indirect methods for phenomena and processing goals 
within the system, and for providing prerequisites within the 
system, is in general a conceptual and practical mistake. There 
has been a dangerous and growing tendency to solve everything 
inside and outside the system by using indirect methods and 
cost functions. Of course the need for ever-faster computers is 
universally recognized and supported. However, the growth in 
computational physics, often at the expense of mathematical 
physics, and the availability of ever-faster computers, encourag-
es the rush to “cost functions” and to searching without think-
ing, and thus represents a ubiquitous, misguided, and unfor-
tunate trend, with “solutions” that aren’t. When we give up on 
physics and determinism, we look at statistics and searching, 
and indirect methods become a “natural” choice and are always 
readily available, along with their drawbacks and consequences.

A direct method provides a framework of precise data needs, 
and it delivers a straight-ahead formula that takes in your data 
and actually solves and explicitly and directly outputs the solu-
tion that you seek. Indirect methods can never provide that 
clarity or confidence. Model-matching and iterative updating 
by any fancy name, such as a new “Frechet derivative,” and 
the so-called “full-wave inversion,” are model-matching and are 
never, ever, equivalent to a direct inversion for the Earth’s elas-
tic mechanical property changes. The distinction is significant 
and has both conceptual and mercantile consequences.

Here is an example of the difference. Suppose someone 
said that you could take a single seismic trace that is a single 
function of time, and invert simultaneously for velocity and 
density, each as a function of depth in a 1D Earth.

Today, you might reasonably be cautious and concerned 
because the dimension of the data is less than the overall di-
mension of the quantities you seek to determine. We have 
learned as an industry to be dubious in the latter single-trace, 
solve-for-two-functions-of-depth case. We look skeptically at 
those who would model-match and pull all kinds of arcane 
cost functions and generalized inverses together, using differ-
ent norms and constraints and full-wave predictions of that 
single trace that can be model-matched with amplitude and 
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phase so that we can call that model-matching scheme “full-
waveform inversion.” Why can’t we solve for density and ve-
locity uniquely from a single trace, because we can certainly 
model the single trace from knowing the velocity and density 
as a function of depth? That’s a beginning and an example of 
thinking that solving a forward problem in an inverse sense is 
in some way actually solving the inverse problem. What came 
along in that earlier time, as a response to this question, were 
direct acoustic inversion methods that said that inverting 
for velocity and density as functions of depth from a single 
trace is impossible, or at least that it is impossible to pro-
vide the unique and actual velocity and density as a function 
of depth. That direct-inversion framework convinced many 
(hopefully most) people that the one-trace-in, two-functions-
out approach is not a question or an issue of which indirect 
algorithm or L

P
 cost function you are using. It is more ba-

sic and stands above algorithm; it’s an inadequate-data issue. 
No algorithm with that single-trace data input should call 
itself “inversion,” even if that single trace was model-matched 
and iteratively updated and computed with amplitude and 
phase and, with too much self-regard, labels itself as “full-
wave inversion.” We learned to stop running that single trace 
through search algorithms for velocity and density—and that 
lesson was absorbed within our collective psyches in our in-
dustry—for whatever the cost function and local or global 
minimum you employed. Using the wrong and fundamental-
ly inadequate data closes the book and constitutes the end of 

the story. Thus, we learned to look for and respect dimension 
between the data and the sought-after parameters we want to 
identify. That is a good thing, but it turns out that it’s not a 
good-enough thing. In fact, direct acoustic wavefield inver-
sion for a 1D Earth requires all the traces for a given shot 
record in order to determine one or more parameters (e.g.,   
V

P
 and density) as a function of depth.

This article will show (in a similar way) that the fact that you 
can solve the forward Zoeppritz equations (or a linear approxi-
mate) for a PP reflection coefficient as a function of incident 
angle and the changes in , µ, and  across the reflector does not 
imply that you can solve for changes in , µ, and  in terms of 
the PP reflection coefficient as a function of angle. A direct in-
verse for the changes in , , and  demands all multicomponent 
sources and receivers, or, equivalently, PP, PS, SP, and SS data.

These conditions on data requirements hold for any pro-
cessing/inverse problem in which the reference or background 
medium is elastic—e.g., for all amplitude analysis, including 
AVO and so-called FWI and all ISS multiple removal and 
imaging with ocean-bottom or onshore acquisition. See Li et 
al. (2011), Liang et al. (2010), Matson (1997), Matson and 
Weglein (1998), Weglein et al. (2003), and H. Zhang (2006).

“Inadequate data” means something much more basic and 
fundamental than limitations due to sampling, aperture, and 
bandwidth. That is, indirect solutions can (and often do) in-
put data that are fundamentally inadequate from a basic and 
direct inverse perspective and understanding. The indirect 
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methods then search locally and globally around error surfaces 
with Frechet derivatives and conjugate gradients, and they keep 
hordes of math, physics, geophysics, and computer scientists 
busy using giant and super-fast computers looking at outputs 
and 3D color displays, and being convinced that with all the 
brainpower and resources that are invested, they are on track 
and are on their way to solving the problem. What’s wrong 
with linear iterative updating? What’s wrong begins with un-
derstanding the meaning of a linear inverse. Even in cases in 
which the data are adequate—e.g., cases with P-wave data 
and an acoustic inverse model—the algorithms that a direct 
inverse provides for explicit linear and each nonlinear estimate 
of changes in P-wave velocity and density, will differ at the first 
nonlinear step and at every subsequent step, with the nonlinear 
iterative linear estimate of these changes in physical properties. 
The linear, quadratic, cubic, … estimates of physical properties 
from a direct inverse method are explicit and unique (a gener-
alized Taylor/geometric series) and order-by-order in the data 
and will not agree with an iterative linear update. Hence, al-
though the iterative linear updating is nonlinear in the data, it 
does not represent a direct inverse solution. Further, the terms 
in the direct solution are analytically determined in terms of 
the first term, whereas iterative linear updating requires gener-
alized inverses, SVD, cost functions, and numerical solutions. 
They could not be more different. If you had an alternative to 
the solution of the quadratic equation and it produced differ-
ent roots from those produced by the direct quadratic formula, 
(Equation 2), would you call it “an inverse solution for the 
roots?” That’s the issue, and it’s that simple.

For the elastic inverse case, the difference is yet more se-
rious. A direct inverse solution for the P-velocity, V

P
, shear 

velocity, V
S
, and density, , and a linear iterative method, will 

already differ at the linear step, and that difference and result-
ing gap grow at each nonlinear step and estimate.

When it comes to directly inverting for changes in elastic 
properties and density, there are direct and explicit formulas 
for the linear and nonlinear estimates. The same single un-
changed direct inverse ISS set of equations that derived the al-
gorithms for free-surface and internal-multiple removal—and 
have demonstrated standalone capability (see, e.g., Ferreira, 
2011; Luo et al., 2011; and Weglein et al., 2003, 2011)—have 
also provided the ISS depth imaging (Weglein et al. 2011, 
2012) and direct inversion for Earth mechanical properties. 
In Zhang (2006), we find the first direct nonlinear equations 
for estimating the changes in elastic properties for a 1D Earth.

The mathematical origin of linear inverse theory (and lin-
ear iterative inversion) begins with a Taylor series of the re-
corded data, D(m), from the actual Earth. Those data depend 
on the Earth properties characterized by the label m and the 
synthetic data D(m

0
) from an estimate or reference value of 

those properties that we label, m
0
. To relate D(m) and D(m

0
), 

we introduce a Taylor series

 ,  (7)

in which the derivatives are Frechet derivatives. A linearized 
form of Equation 7 is considered

 ,                 (8)

where the Frechet derivative,

  (9)

is approximated by a finite-difference approximation involv-
ing data at m

0
 and data at a nearby model, m

0
+ Δm. Δm

1
1 

means the first linear estimate of Δm, with the subscript 
standing for linear and the superscript for the first estimate. 
The matrix inversion of Equation 8 for Δm

1
1 leads to a new 

approximate m
0
+Δm

1
1, and

.    (10)

The process is repeated and is the basis of iterative linear 
inversion. Properties of that process related to convergence 
to m are spelled out in Blum (1972), page 536, with issues 
where the constants such as M that appear in the convergence 
criteria are unknown.

Another starting point for this type of perturbative ap-
proach is from scattering theory, where D(m) relates to the 
actual Green’s function, G, and D(m

0
) relates to the reference 

Green’s function, G
0
, and V = m–m

0
. The identity among G, 

G
0
, and V is called the Lippmann-Schwinger or Scattering 

Equation (see, e.g., Taylor 1972)

                             (11)

and an expansion of Equation 11 for G in terms of G
0 
and V 

produces

         .            (12)

Keys and Weglein (1983) provide the formal association 
between D¢(m

0
)Δm and G

0
VG

0
. Equation 7 is a Taylor series 

in Δm, and as such that series does not have an available in-
verse series. However, because Equation 12 (which follows 
from the scattering Equation 11) is a geometric series in r 
= VG

0
 and a = G

0
, then a geometric series for S = G−G

0
 

in terms of a and r—S = ar/(1−r)—has an inverse series r = 
(S/a)/(1+S/a) with terms

 
 

 

 
... . 

A unique expansion of VG
0
 in orders of measurement val-

ues of (G-G
0
) is

                    (13)
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The scattering-theory equation allows that forward series 
form the opportunity to find a direct inverse solution. Sub-
stituting Equation 13 into Equation 12 and setting the terms 
of equal order in the data to be equal, we have D = G

0
V

1
G

0
 , 

where the higher order terms are V
2
, V

3
, . . . , as given in We-

glein et al. (2003) page R33 Equations 7—14.
For the elastic equation, V is a matrix and the relationship 

between the data and V
1
 is

 

 

 
 

where V
1
, V

2
 are linear, quadratic contributions to V in terms 

of the data,

.

The changes in elastic properties and density are con-

tained in  , and that leads to direct and explicit 

solutions for the changes in mechanical properties in orders 

of the data,  ,

 

 

 

The ability of the forward series to have a direct inverse se-
ries derives from (1) the identity among G, G

0
, V provided by 

the scattering equation and then (2) the recognition that the 
forward solution can be viewed as a geometric series for the 
data, D, in terms of VG

0
. The latter derives the direct inverse 

series for VG
0
 in terms of the data.

Viewing the forward problem and series as the Taylor 
series (Equation 7) in terms of Δm does not offer a direct 
inverse series, and hence there is no choice but to solve the 
forward series in an inverse sense. It is that fact that results 
in all current AVO and FWI methods being modeling meth-
ods that are solved in an inverse sense. Among references that 
solve a forward problem in an inverse sense in P-wave AVO 
are Beylkin and Burridge (1990), Boyse and Keller (1986), 
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Burridge et al. (1998), Castagna and Smith (1994), Clay-
ton and Stolt (1981), Foster et al. (2010), Goodway (2010), 
Goodway et al. (1997), Shuey (1985), Smith and Gidlow 
(2000), Stolt (1992), and Stolt and Weglein (1985). The in-
tervention of the explicit relationship among G, G

0
, and V 

(the scattering equation) in a Taylor series-like form produces 
a geometric series and a direct inverse solution.

The linear equations are:

  (14)

  (15)

  (16)

  (17)

  (18)

  (19)

 

 (20)

    (21)

and

  (22)

where a (1), a (1), and a (1) are the linear estimates of the changes 
in bulk modulus, shear modulus, and density, respectively. 
The direct quadratic nonlinear equations are

  (23)

  (24)

  (25)

  (26)

  (27)

Because  relates to ,  relates to , and so on, 
the four components of the data will be coupled in the nonlin-
ear elastic inversion. We cannot perform the direct nonlinear 
inversion without knowing all components of the data. Thus, 
the direct nonlinear solution determines the data needed for 
a direct inverse. That, in turn, defines what a linear estimate 
means. That is, a linear estimate of a parameter is an estimate 
of a parameter that is linear in data that can directly invert for 
that parameter. Because D

PP
, D

PS
, D

SP
, and D

SS
 are needed to 

determine a , a , and a  directly, a linear estimate for any one 
of these quantities requires simultaneously solving Equations 
19–22. See, e.g., Weglein et al. (2009) for further detail.

Those direct nonlinear formulas are like the direct solution 
for the quadratic equation mentioned above and solve directly 
and nonlinearly for changes in V

P
, V

S
, and density in a 1D elastic 

Earth. Stolt and Weglein (2012), present the linear equations 
for a 3D Earth that generalize Equations 19-22. Those formulas 
prescribe precisely what data you need as input, and they dic-
tate how to compute those sought-after mechanical properties, 
given the necessary data. There is no search or cost function, and 
the unambiguous and unequivocal data needed are full mul-
ticomponent data—PP, PS, SP, and SS—for all traces in each 
of the P and S shot records. The direct algorithm determines 
first the data needed and then the appropriate algorithms for 
using those data to directly compute the sought-after changes in 
the Earth’s mechanical properties. Hence, any method that calls 
itself inversion (let alone full-wave inversion) for determining 
changes in elastic properties, and in particular the P-wave veloc-
ity, V

P
, and that inputs only P-data, is more off base, misguided, 

and lost than the methods that sought two or more functions of 
depth from a single trace. You can model-match P-data until the 
cows come home, and that takes a lot of computational effort 
and people with advanced degrees in math and physics com-
puting Frechet derivatives, and requires sophisticated L

P
 norm 

cost functions and local or global search engines, so it must be 
reasonable, scientific, and worthwhile. Why can’t we use just 
PP data to invert for changes in V

P
, V

S
, and density, because 

Zoeppritz says that we can model PP from those quantities, and 
because we have, using PP-data with angle variation, enough 
dimension? As stated above, data dimension is good, but not 
good enough for a direct inversion of those elastic properties. 
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Figure 1. Synthetic well log A-52. Figure 2. The baseline, monitor, and input reflection coefficients.

Figure 3. Comparison of actual changes in shear modulus, 
P-impedance, and velocity ratio V

P
/ V

S
. The baseline is the log data in 

1986 and the monitor is the log data in 2001.

Figure 4. Comparison of first- and second-order approximations of 
relative change in shear modulus. The baseline is the log data in 1986 
and the monitor is the log data in 2001.

Figure 5. Comparison of first- and second-order approximations of 
relative change in V

P
/ V

S
. The baseline is the log data in 1986 and the 

monitor is the log data in 2001.

Figure 6. Zoomed-in comparison of first- and second-order 
approximations of relative change in V

P
/ V

S
. The baseline is the log 

data in 1986 and the monitor is the log data in 2001.
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The direct inverse is nonlinear. Iterative linear is nonlinear. 
But iterative linear inversion is not in any way equivalent to a 
direct nonlinear inversion. The further evidence that iterative 
linear inverse is not a direct elastic inverse solution, is that you 
can iteratively linear invert P-wave data. Hence, you can have 
the fundamentally inadequate data and perform iterative lin-
ear updating. That’s not possible with a direct inverse method. 
The framework, data needs, and algorithms provided by direct 
inversion all matter. If you iteratively linear invert multicom-
ponent data, you would not be performing a direct inversion, 
and your nonlinear estimates would not agree with the unique 
nonlinear terms provided by a direct solution. Multicompo-
nent data are important, but the direct inverse algorithm of that 
data is essential. The framework of a direct method helps you 
understand what will allow things to work in principle, and, 
equally important, it helps you identify the issue or problem 
when things don’t work. Indirect methods, on the other hand, 
can never match that definiteness, clarity, and value. When we 
use just P-wave data with an acoustic or elastic model-matching 
FWI for shallow-hazard detection or velocity estimation at top 
salt, and then issues arise, perhaps the framework and require-
ments described in this note might be among the issues behind 
a lack of predictive stability and usefulness.

In “Wave theory modeling of P-waves in a heterogeneous 
elastic medium” (Weglein 2012), a single-channel P-wave for-
malism is presented as a way to model P-waves in amplitude 
and phase without needing to model and predict shear waves. 
This P-only wave-modeling method is intractable as a param-
eter-estimation inverse procedure, blocked at the first and lin-
ear term. That supports the need for all multicomponent data 
in a direct inverse for estimating changes in the Earth’s me-
chanical properties. If one somehow remained insistent that 
P-data were adequate for a direct elastic inverse, one would 
have to provide a response to that linear, intractable inverse 
step. Further, those direct and explicit nonlinear formulas are 
derivable only from the direct inverse machinery of the inverse 
scattering series (please see the References section).

Using P-wave data with amplitude and phase for an acoustic 
Earth model flies in the face of 40 years of AVO experience, 
which says that the elastic Earth is the minimum realistic Earth 
model for any amplitude-dependent algorithm or processing 
method. Using P-wave data for an elastic Earth model, with 
algorithms that utilize amplitude and phase, violates the neces-
sary multicomponent data needs prescribed by direct inversion 
of V

P
, V

S
, and density. Having the adequate data (defined by a 

direct-inversion framework) is better than not having the neces-
sary and sufficient data and is a good place to start. However, 
even when one is starting with the indicated multicomponent 
data, the train can still be taken off the track by indirect search 
and iterative linear-updating algorithms, when direct inverse al-
gorithms are indicated and available. Iterative linear updating 
of multicomponent data is a model-matching indirect method 
and is never equivalent to a direct inversion of those data.

Some might say in response that P-wave FWI with either 
an acoustic or elastic medium, followed by use of some search 
algorithm, represents “an approximation,” and what’s wrong 
with approximations? The answer is precisely that “What IS 

wrong with the approximation?” If you purposefully or inad-
vertently ignore (or wish away) the framework and algorithms 
that a direct solution to the elastic parameter estimation pro-
vides, you will never know what you are ignoring and dropping 
and what your approximation is approximating, nor will you 
know what value your method actually represents and means, 
and how you could improve the reliability of your prediction.

In summary, so-called P-wave FWI is something less than 
advertised and is in general the wrong (acoustic) Earth model, 
the wrong data, and the wrong method—but besides that, it 
has a lot going for it.

In Zhang (2006), the direct elastic inverse was applied to 
a 4D application and the term beyond linear was able to help 
distinguish a pressure change from a fluid change. This line 
of research continued in Li (2011) and Liang (2010). This is 
comparatively illustrated with synthetic log data in Zhang’s 
Figures 1 through 6 (which are included in this article).

Epilog

A direct method to find the route from where you are to 
where you want to go—e.g., for a scheduled meeting—
would use MapQuest, while an indirect method would seek 
and search and stop at every possible location in the city until 
you arrive somewhere where someone seems to be happy to 
see you, and you have a toolbox of L

P
 cost functions to define 

“happy.” A direct solution, in contrast to indirect methods, 
does not require or ever raise the issue of necessary but insuf-
ficient conditions or cost functions, and it’s not a “condition” 
or property. It’s a solution, a construction. Nothing beats 
that for clarity, efficiency, and effectiveness. The direct Map-
Quest inversion communication and message to the current 
indirect P-wave FWI methods is that the latter are searching 
for the meeting in the wrong city.

The message of this article is that direct inversion provides 
a framework, and a set of data requirements and algorithms, 
that not only have produced a standalone capability (with 
model-type independent algorithms) for removing free-sur-
face and internal multiples, without subsurface information, 
but also for establishing the requirements for all seismic pro-
cessing methods that depend on amplitude analysis, such as 
AVO and so-called FWI. Being frank, we wish these require-
ments were not the case, because it makes our lives more com-
plicated and difficult—but the conclusions are inescapable. 
When the framework, data requirements, and direct methods 
are not satisfied, we have a clear and understandable reason 
for the resulting failure and for what we might do to provide 
more reliable and useful predictive capability. Direct and in-
direct methods both play an essential role in an effective seis-
mic processing strategy: where the former accommodates the 
physics within the system, and the latter provides a channel 
for real-world phenomena beyond the assumed physics. 
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