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SUMMARY

The Inverse Scattering Series (ISS) is a comprehensive
framework for achieving seismic data processing goals
without requiring subsurface information. Distinct isolated
task-specific subseries can accomplish free surface multiple
removal, internal multiple attenuation, depth imaging and
inversion of primaries. The ISS can predict and eliminate
internal multiples without a priori information. Although
the leading order ISS internal multiple attenuation algorithm
for the first order internal multiples has shown unmatched
capability on complex synthetic and onshore data compared
with other methods (e.g., Fu et al. (2010); Luo et al. (2011)),
there are open issues to be addressed (e.g., Weglein et al.
(2011)). For example, spurious events can be predicted in the
first order attenuator (leading order prediction of the first order
internal multiples) when there are both primaries and internal
multiples in the input data. This paper and the companion
paper (H.Liang et al., 2012) propose a new algorithm to
directly respond to this issue. The new algorithm maintains
the strength of the current algorithm and, in addition, can
accommodate data consisting of both primaries and internal
multiples.

INTRODUCTION

In seismic exploration, multiples are events which have
experienced multiply reflections, and they are further classified
by the location of downward reflection. Multiples which
have at least one of downward reflections at the free surface
(air-water or air-land) are free surface multiples. Multiples
that have experienced all the downward reflections below the
free surface are internal multiples. The order of an internal
multiple depends on the number of downward reflections it has
experienced. For example, the first order internal multiples
have only one downward reflection below the free surface
(dashed line in Figure 1). The primaries-only assumption
in seismic data analysis requires multiple removal. The
methods for multiple removal were classified as separation
and wavefield prediction in Weglein (1999). The separation
methods seek a characteristic to distinguish primaries from
multiples, while the early wavefield prediction methods first
modeled and then subtracted multiples. Both of these
approaches have earned well deserved places in the seismic
toolbox. However as seismic exploration moves to more
complex areas these methods have limitations due to their
assumptions and the requirements for subsurface information.
The ISS free surface multiple removal algorithm (Carvalho
(1992); Weglein et al. (1997)) and internal multiple attenuation
algorithm (Araújo (1994); Weglein et al. (1997)) start by
avoiding the assumptions of the earlier methods, e.g., they are
completely multi-D and have no requirements for subsurface

information. There are both separation and wavefield
prediction ingredients in the ISS multiple removal methods
and they can be viewed as a next step in the development of
separation and wavefield prediction methods (Weglein et al.,
2011). For example, the ISS free surface multiple separation
distinguishes the free surface multiples from other events by
the downward reflection at the free surface. In contrast,
the ISS internal multiple separation is realized without any
a priori information by understanding the difference in the
construction of primaries and internal multiples in the forward
series. As an example, the ISS leading order prediction for
the removal of the first order internal multiple provides a
“lower-higher-lower”relationship in the pseudo-depth domain
and uses only primaries as subevents to predict the first order
internal multiples from all reflectors, at all depths at once, and
without any subsurface information.

However, when there are internal multiples in the input
data, the ISS leading order prediction of internal multiples
can produce spurious events. The leading order means it
can effectively attenuate, not completely eliminate, internal
multiples by itself. While we recognize the shortcomings
of the current leading order ISS internal multiple attenuation
algorithm, we also recognize that addressing them resides in
the ISS (Weglein et al., 2011). Each term in the subseries
achieves what the order of that term enables it to achieve.
There are certain issues that a term of a given order can
address, and other issues that require aid from higher order
terms. The more difficult the task, the more complicated
and more inclusive the subseries. For example, it requires
an infinite series (in a closed form) to completely eliminate
all first order internal multiples generated at the shallowest
layer when the properties at and above that reflector are
unknown (Ramı́rez and Weglein, 2005). Similarly, the internal
multiple attenuation task is more difficult when the input data
contains internal multiples as well as primaries than when
the input data contains only primaries, so the ISS internal
multiple attenuation algorithm needs to capture terms in order
to address the spurious events. In this paper we provide an
understanding of the issue of the leading order prediction of
the first order internal multiples when the input data consists
of both primaries and internal multiples. We also provide a
new ISS internal multiple attenuation algorithm to address a
particular type of spurious event that is predicted when the
middle subevent in the first order attenuator is an internal
multiple.

AN OVERVIEW OF THE ISS INTERNAL MULTIPLE
ATTENUATION ALGORITHM

The leading term contribution to constructing a class of
multiples in the forward series suggests the leading term
contribution for their removal in the inverse series (Weglein



et al., 2003). A subseries that focuses on internal multiple
removal can be isolated from the inverse series. The ISS
internal multiple attenuation algorithm starts with the input
data, D(kg,ks,ω) which is the Fourier transformed prestack
data that is deghosted, wavelet deconvolved and has free
surface multiples removed. The leading order prediction
of the first order internal multiples makes the leading term
contribution to the removal of the first order internal multiples.
In a 2D earth, it is,
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zs and zg are source and receiver depths; and zi (i = 1,2,3)
represents pseudo-depth using reference velocity migration.
The quantity b1(kg,ks,z) corresponds to an uncollapsed
migration (Weglein et al., 1997) of an effective plane-wave
incident data, and b1(kg,ks,qg +qs) =−2iqsD(kg,ks,ω).

With the input data and the leading order prediction of the first
order internal multiples, we can obtain the data with the first
order internal multiples attenuated,

D(kg,ks,ω)+D3(kg,ks,ω) (2)

Where D3(kg,ks,ω) = (−2iqs)−1b3(kg,ks,qg +qs).

For a 1D earth and a normal incident plane wave, equation 1
reduces to,
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The leading order ISS internal multiple attenuation algorithm
for the first order internal multiples for a 1D earth and an
implusive incident plane wave is,

b1 +b3. (4)

Note that the (−2iqs) factor is not needed here. However, in
general the output of the ISS leading order removal of first the
order internal multiples needs the (−2iqs) factor to take b to D
as in equation 2.

The portion of the third order term of the ISS that predicts
the first order internal multiple is isolated by requiring
the “lower-higher-lower”relationship in pseudo-depth domain
as shown in Figure 1. The assumption behind the first

order internal multiple prediction in Figure 1 is all of the
subevents have to be primaries for the prediction to be an
internal multiple. There are circumtances, shown in the
next section, where the “lower-higher-lower”template would
produce spurious events when one of subevents is an internal
multiple. However, these spurious events are fully anticipated
and can be attenuated by other terms in the inverse series.

Figure 1: Combination of subevents for the first order
internal multiple (dashed line), (SABE)time + (DBCR)time −
(DBE)time = (SABCR)time, figure adapted from Weglein et al.
(2003)

A NEW ISS INTERNAL MULTIPLE ATTENUATION
ALGORITHM TO ATTENUATE THE SPURIOUS
EVENT ARISING IN A THREE-REFLECTOR MODEL

Now we consider a three-reflector analytic example. We
examine the prediction of the first order internal multiple
attenuator using the input data which consists of three
primaries and one specific internal multiple associated with the
first two reflectors. For an impulsive incident wave δ (t− z

c ) the
data is,

D(t)= R1δ (t−t1)+R′2δ (t−t2)+R′3δ (t−t3)+R′4δ (t−(2t2−t1))
(5)

where R′2 = T01R2T10; R′3 = T01T12R3T21T10; R′4 =
T01R2(−R1)R2T10, and ti, Ri are two way times and reflection
coefficients from the ith reflector respectively, and Ti j is the
transmission coefficient between the ith and jth reflector.

Given this data, we find from equation 3,
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(6)

We have assumed t3 > 2t2 − t1 in deriving equation 6. In
addition to the four first order internal multiples (first two



Figure 2: Three primaries and one internal multiple in a
three-reflector model

rows in equation 6), the first order attenuator,b3, predicts
some additional events due to the specific intenral multiple
in the input. Analysis of the traveltimes of these additional
events shows each of them corresponds to one specific internal
multiple of higher order with the exception of the last event
(R′3)

2R′4δ (t − (2t3 − (2t2 − t1))) which is a spurious event
prediction.

An understanding of the properties of the first order
attenuator when both primaries and internal multiples are
input and act as subevents

When there are internal multiples in the data, there will be
many other possible subevent combinations in the first order
internal multiple atteuator, b3. Since when

b1 = P+ I

it follows from equation 3 that

bIM
3 = b1 ∗b1 ∗b1

= (P+ I)(P+ I)(P+ I)

= PPP+PPI +PIP+ IPP+PII + IPI + IIP+ III

where ∗ stands for nonlinear interaction between the data,
P stands for primaries, and I stands for internal multiples.
Besides the primary only subevent combination, PPP, there
are subevent combinations involved with the internal multiple
that produce the spurious event. A more detailed analysis
shows that the spurious event (R′3)

2R′4δ (t − (2t3 − (2t2 − t1)))
in equation 6 comes from PIP as shown in Figure 3 .

Figure 3: A analogous W-like configuration to produce the
spurious event using the internal multiple as a subevent.

We use a diagram to illustrate the generation of the spurious
event by PIP subevent combination. The diagram for PIP
is shown in the left panel in Figure 4 which satisfies the
“lower-higher-lower”relationship as required by the algorithm.
Following the logic of predicting internal multiples by
the “lower-higher-lower”pattern of three primary subevents,

the PIP diagram will split into a “lower-higher-much
higher-lower-much lower”configuration in the right panel of
Figure 4. The resultant configuration does not agree with
the double W-like configuration which constructs second
order internal multiple using five primary subevents. The

Figure 4: Separation for PIP into W-like

pseudo-depth of the two outermost P should be deeper than
the effective pseudo-depth of the middle I to allow the PIP
spurious events to happen, see Figure 3. In other words,
the PIP spurious events can exist in a medium which has
three or more reflectors. That explains the fact that there
are no spurious events produced in a two-reflector example in
H.Zhang and S.Shaw (2010) even though an internal multiple
is included in their data.

When the internal multiple in PPI or IPP is separated into
three “lower-higher-lower”primary subevents, it leads to a
double W-like configuration which will predict the second
order internal multiple as shown in Figure 5. This also explains
the additional higher order internal multiple predictions in
b3 in our analytic example. It can be shown that there
are circumstances where PPI produces spurious events in a
medium which has more than three reflectors (H.Liang et al.,
2012).

Figure 5: One possible separation for PPI into double W-like

Terms like IIP or III may also produce spurious events, when
compared to the effects by terms like PIP, these terms can
often be ignored in practice. However, the removal of the latter
spurious events also resides in the higher order ISS terms, and
beyond those considered and included in this paper.

A new term to attenuate the PIP spurious event
To remove the spurious events produced by the first order
attenuator when using an internal multiple as the middle
subevent, a new and higher order ISS term which has that
capability is included in the current algorithm.

Guided by Figure 4 a portion of the fifth order term from the
ISS (G0V1G0V3G0V1G0) can be employed to predict the PIP



spurious events in 1D,
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b1(z) is an uncollapsed migration and b3(z) is the first order
attenuator. Compared with equation 3, this equation also
requires the “lower-higher-lower”relationship, but the middle
b1 becomes b3 to obtain a prediction of the spurious event
using the predicted internal multiple.

Then, adding equation 7 and equation 3 leads to our new
algorithm for a 1D earth,
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Where bPPP
3 = b3. The superscript indicates the subevents

combination that the algorithm can accommodate. Note that
the (−2iqs) factor is needed in genernal.

Compared with the original algorithm (equation 4), the new
algorithm includes a portion of higher order term (bPIP

5 ) only
to attenuate the PIP spurious events predicted by bPPP

3 when
internal multiples are in the data.

We use the same analytic example to test the new algorithm.
Substituting D(t) in equation 5 and b3 in equation 6 into
equation 7 produces,
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The first term is the prediction of the spurious event.
Substitution of R′2 = T01R2T10 leads to,

(T01T10)2R1(R2)2(R′3)
2
δ (t− (2t3 − (2t2 − t1)))

The last term (R′3)
2R′4δ (t − (2t3 − (2t2 − t1))) in equation 6

is the spurious event. Substitution of R′4 = T01R2(−R1)R2T10
leads to,

(−T01T10)R1(R2)2(R′3)
2
δ (t− (2t3 − (2t2 − t1)))

When added to b3, the first term in equation 9 will effectively
attenuate the spurious event. The T01T10 error comes from the
fact that bPIP

5 uses the predicted internal multiple as the middle
subevent to predict the spurious event, while b3 creates the
spurious event using the actual internal multiple as the middle
subevent (middle b1) as shown in Figure 3 and Figure 6.

It is the geometric similarity (single W-like) between bPIP
5 and

b3 ,see Figure 4, that enables bPIP
5 to contribute to removing

the spurious events produced in b3. We note that each term in
the inverse series does what the order of that term is capable
of performing. Different portions of a given order term in the

Figure 6: Illustration of the spurious event prediction in bPIP
5 .

Notice the middle b3 produces predicted internal multiples
which have the opposite sign of the actual internal multiples.
Only the first order predicted internal multiples (black dashed
line) and spurious event (red dashed line) are shown.

ISS can contribute to different tasks. For example, in our case,
although both the leading order prediction of the second order
internal multiples b5 (right panel in Figure 5) and bPIP

5 (right
panel in Figure 4) come from the fifth order term in the inverse
series, they have different tasks determined by their different
geometries. bPIP

5 has a single W-like geometry that is capable
of attenuating the spurious events while b5 has a double W-like
geometry which is capable of predicting second order internal
multiples using primaries. Both are contained in the fifth order
term in the ISS.

Therefore, by incorporating a higher order ISS term into
the attenuator, equation 8 can effectively attenuate the PIP
spurious events predicted by b3.

DISCUSSION AND CONCLUSION

In this paper, we provide both: (1) an algorithm to address
certain most significant spurious events observed in Fu et al.
(2010) and Luo et al. (2011), and (2) a template for locating
ISS terms addressing these more general spurious events
that can arise from using a leading order internal multiple
attenuation algorithm with a complex medium and a complex
data. The ISS can remove all internal multiples without
subsurface information and also remove spurious events that
arise from using a complex data in a leading order algorithm.
We exemplify that capability in this and the companion paper
by H.Liang et al. (2012).

To conclude, the new algorithm in this paper retains the
strength of the original algorithm while addressing a limitation
in the current algorithm and provides an initial extention to
accommodate data consisting of both primaries and internal
multiples.

ACKNOWLEDGMENTS

We thank all our sponsors for their support for this research.
The authors would like to thank Wilberth Herrera, Jim
Mayhan, and Paolo Terenghi for their useful discussions.



REFERENCES
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