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ABSTRACT

The objective of seismic exploration is to determine the location (imaging) and mechani-

cal properties (inversion) of hydrocarbon resources in the earth using recorded data. The

recorded data have a non-linear relationship with the property changes across a reflector.

Current inversion methods either assume small property changes and solve a linear approx-

imate form, or assume a non-linear relationship but use an indirect method to invert. The

assumptions of the former methods are often violated in practice and can cause erroneous

predictions; the latter category usually involves a significant computational effort (especially

in multi-dimensional case) and/or has ambiguity issues in the predicted result.

In this dissertation, a more comprehensive multi-parameter multi-dimensional direct non-

linear inversion framework is developed based on the inverse scattering task-specific sub-

series (see, e.g., Weglein et al., 2003). The procedure is direct and non-linear without

global searching and small-change assumptions; hence, it has the potential to provide more

accurate and reliable earth property predictions for large contrast and complex targets.

As an initial part of the more general multi-dimensional direct non-linear inversion project,

this dissertation focuses on the inversion for 1D media and 2D experiments. Explicit direct

non-linear inversion equations are derived for one and two parameter acoustic and three

parameter elastic cases. The terms for imaging are separated from inversion-only terms.

Numerical tests show that non-linear inversion results provide improved estimates in com-

parison with the standard linear inversion. In this dissertation, we demonstrate that the

direct non-linear elastic inversion in 2D requires all four components of data. However, we
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introduce an approach which only uses pressure measurements and approximately synthe-

sizes the other three required components of data. Added value beyond the corresponding

conventional linear results can still be achieved from pressure-only acquisition. This permits

us to derive value from direct non-linear elastic inversion, when only pressure measurements

are available. We anticipate further improvement when all four components of data are used.

Finally, the method is applied to time-lapse seismic data to distinguish pressure changes

from reservoir fluid changes, a situation in which conventional methods have difficulty.

Initial tests provide encouraging results.
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1. INTRODUCTION AND BACKGROUND

This chapter provides some basic information about seismic exploration, pressing seismic

challenges, the inverse scattering series as a part of the strategy to respond to those chal-

lenges, and the goal and structure of this dissertation. It includes the following three

sections.

• Section 1.1: General seismic exploration background. In this section, we give

a brief introduction of the objective of seismic exploration, current seismic processing

procedures and their assumptions, the current most pressing seismic challenges and a

strategy to address those challenges, and the specific goals of this dissertation.

• Section 1.2: The inverse scattering task-specific subseries. In this section, we

briefly describe inverse scattering theory; then, we introduce the task-specific subseries

including its history and where this dissertation’s work fits in with previous work.

We also provide a detailed explanation of technical terminology (e.g., linear/non-

linear and direct/indirect) which helps to understand the difference between current

inversion methods and the procedure developed in this dissertation.

• Section 1.3: An overview of this dissertation. This section describes the position

of the inversion in the seismic data processing sequence. The work documented in this

dissertation is placed as the initial part of a more general, multi-dimensional (multi-

D) heterogeneous direct non-linear inversion project using the inverse scattering task-

specific subseries.
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Introduction

1.1 General seismic exploration background

The objective of seismic exploration is to find hydrocarbon reservoirs in the earth using

seismic waves. Seismic surveys for the purposes of exploration can be conducted on land (on-

shore) and marine (off-shore) environments. However, the experiment is in essence the same:

A man-made source generates seismic waves, and receivers record those that reflect back to

the surface: this constitutes the data, D. Then, through analysis of the recorded data, (1)

a structural map of the earth is estimated, in a procedure called imaging, or migration, and

(2) the mechanical properties of the target are estimated in a procedure called inversion,

target identification, or parameter estimation. This dissertation concentrates on the marine

case, although some algorithms can also be applied to land data. An example of marine

seismic exploration geometry is shown in Fig. 1.1.

Fig. 1.1: Marine seismic exploration geometry: ∗ and ▽ indicate the source and receiver, respec-
tively. The boat moves through the water towing the source and receiver arrays and the
experiment is repeated at a multitude of surface locations. The collection of the differ-
ent source-receiver wavefield measurements defines the seismic reflection data. (Weglein
et al., 2003)
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Introduction

After the data are collected, we next consider means by which to produce a structure or

parameter map of the subsurface. As a first thought, one might consider building an algo-

rithm which would input the totality of the recorded data, and would output the structural

map and mechanical properties of the target in one step. However, historically this brute

force approach has proven unsuccessful due to the complexity of recorded data.

The recorded data contain many kinds of distinct arrivals of seismic energy, each having a

different propagation history from the source to the receiver. Such a distinct arrival of the

seismic energy is called a seismic event. It is useful to catalog and separate these events

based on the type and complexity of the interactions they have experienced.

Basically, seismic reflection events are catalogued as primary or multiple depending on

whether the energy arriving at the receiver has experienced one or more upward reflections,

respectively (see Fig. 1.2). Multiples can be further classified as free-surface multiples and

internal multiples according to whether or not they have been reflected by the free surface

(air-water interface).

ReceiversReceivers
WaterWater

AirAir

SourceSource

EarthEarth

33

11

22

Fig. 1.2: Marine primaries and multiples: 1, 2 and 3 are examples of primaries, free-surface
multiples and internal multiples, respectively. (Weglein et al., 2003)
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Introduction

Methods for extracting subsurface information (imaging and inversion) from seismic data

typically assume that the data consist exclusively of primaries. In other words, for most

current imaging and inversion algorithms, only primaries are considered as signal and all

other seismic events are considered noise, to be removed before imaging and inversion.

The reason is that the relationship between primaries and the earth is simpler than the

relationship between multiples and the earth. Put simply, multiples have more than one

upward reflection; and, hence, involve the cumulative effect of more than one reflection

interaction.

The primary-only assumption simplifies the processing of seismic data for determining the

spatial locations of reflectors and mechanical property changes across a reflector. Hence,

to satisfy this assumption, removal of the noise becomes a requisite precursor to seismic

primary processing. Specific algorithms have been (and/or are still being) derived to remove

free-surface multiples and internal multiples (e.g., Carvalho, 1992; Verschuur et al., 1992;

Araújo, 1994; Weglein et al., 1997; Matson, 1997; Weglein, 1999; Ramı́rez and Weglein,

2005). A comprehensive list of the references can be found in Weglein and Dragoset (2005).

After the removal of the multiples, the objective of the seismic processing is to use primaries

to find where rapid changes in medium properties (reflectors) are located (imaging), and

what the medium changes across a reflector are (inversion). Examples of current imaging

methods are finite difference (Claerbout, 1971), F-K (Stolt, 1978) and phase shift (Gazdag,

1978). Behind all current methods there resides the explicit algorithmic assumption and

requirement for an adequate velocity model to produce an accurate depth image. However,

under many circumstances, especially in complex geological environments, current best-

practice velocity estimation techniques are inadequate for estimating the velocity model

with a high-enough degree of accuracy (e.g., Herron, 2000; Gray et al., 2001; Paffenholz

et al., 2002; Glogovsky et al., 2002).

For inversion, current methods include: (1) the linear approximation (e.g., Clayton and

4



Introduction

Stolt, 1981; Weglein and Stolt, 1992) which is often useful, especially in the presence of

small earth property changes across the boundary and/or small angle reflections, and (2)

indirect model matching methods with global searching (e.g., Tarantola et al., 1984; Sen

and Stoffa, 1995) which define an objective function assumed to be minimized when the best

fitting model is obtained. The assumptions of the former methods (like the small contrast

assumptions) are often violated in practice and can cause erroneous predictions; the latter

category usually involves a significant and often daunting computation effort (especially in

multi-D cases) and/or sometimes have reported erroneous or ambiguous results. Further-

more, most of the traditional inversion methods use a plane wave reflection coefficient form

and have the need for overburden (medium above the target) information.

The above mentioned current imaging and inversion methods can give useful results when

their assumptions are satisfied. However, under some circumstances, especially in deep

water and in highly heterogeneous media and/or with a rapidly varying and corrugated

boundaries, the assumptions and prerequisites (e.g., multiple removal) behind those algo-

rithms cannot be adequately satisfied; and, hence, those methods for processing primaries

can have difficulty and may become ineffective or fail. That processing failure is the origin

of seismic exploration and production challenges.

In particular, the challenges associated with processing primaries are: (1) for imaging:

locating structure beneath rapidly varying multi-D (e.g., 2D or 3D) heterogeneity within

layers, or rapid variations at boundaries between layers, or at the target itself, and (2) for

inversion: large contrast mechanical property changes at a 1D or multi-D target with or

without a known multi-D overburden.

To address the challenges above, we seek to develop a fundamentally new procedure that

avoids the assumptions behind current methods for processing primaries. The inverse scat-

tering series is a direct multi-D inversion method that can perform the tasks associated

with multiple removal, imaging and inversion, without a priori knowledge of the earth’s
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material properties. Hence, the inverse scattering based task-specific subseries strategy 1

is a direct response to all of the challenges listed above for depth imaging and inversion

(and has already been successfully applied to multiple removal). It has the capability to

directly determine where the spatial locations of earth mechanical property changes are,

and what the values of the material property changes are across a reflector for either simple

or complex targets, e.g., (a) a large contrast and/or (b) a multi-D corrugated target, and

(c) a target with or without knowing the overburden (Weglein et al., 2003; Weglein, 2006b).

In actuality, the overburden and target geometries can both be multi-D (i.e., non-horizontal).

While the current methods for imaging assume the overburden is multi-D, current methods

for target identification typically assume the target geometry is essentially 1D (horizontal).

In addition, for the latter target identification methods, changes in material properties are

assumed to be small. This small-contrast assumption can often be violated in practice,

especially when the target relates to hydrocarbons. Hence, removing the small-contrast as-

sumption would be a major step in advancing target identification capability towards more

realism, and that increased realism will have an associated increase in reliability for target

identification and reduction in risk of drilling a dry hole.

Following the statement of the problem above, one important question is, “how does one

develop a method for target identification that does not assume small contrasts?” It is worth

reminding ourselves that the inverse scattering task-specific subseries has the potential to

perform multiple removal, direct depth imaging and inversion for a large contrast and a

multi-dimensional corrugated target with or without knowing the overburden. In this dis-

sertation, based on the task-specific inverse scattering subseries strategy, we develop a direct

multi-parameter 2 non-linear inversion 3 framework and algorithm. The method is direct

and non-linear without making a small contrast assumption. Hence, it has the potential

1 Details about the inverse scattering series and the inverse scattering task-specific subseries will be
discussed in next section.

2 More than one mechanical property changes across a reflector.
3 Details will be presented in next section.
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to provide more accurate target identification beyond the current inversion capability. As

a general framework, the method developed in this dissertation has the following further

advantages: (1) it determines data requirements for non-linear direct parameter estimation,

and (2) it involves explicit algorithms which directly provide improved estimates for medium

properties without recourse to highly non-linear optimization procedures.

The 1D elastic inversion model 4 is regarded as an acceptable level of realism for tar-

get identification by seismic exploration and target identification (Keys and Foster, 2006).

Therefore, we are motivated to develop a 1D elastic inverse scattering task-specific subseries

algorithm which has the capability to accurately perform large contrast target identification

for a 1D elastic earth. The specific procedures are described below.

In this dissertation, we progress and develop direct non-linear parameter estimation con-

cepts and algorithms in stages of increasing difficulty and complexity. Rather than starting

directly with the 1D elastic inversion, we begin with the 1D acoustic one parameter (P-wave

velocity) model, and look to identify task-specific imaging and inversion terms, generaliz-

ing the pioneering work on normal incidence case (e.g., Weglein et al., 2001; Shaw, 2001;

Shaw et al., 2001; Shaw et al., 2002; Weglein et al., 2003; Shaw and Weglein, 2003; Shaw

and Weglein, 2004) to the non-normal incidence case. We then move on to multi-parameter

non-linear inversion models, starting each time with the basic equations, and deriving linear

and low order but non-linear terms. First, the two parameter (P-wave velocity and den-

sity) acoustic case is considered, followed by the three parameter (P-wave velocity, S-wave

velocity and density) elastic case.

At each stage of complexity and realism, from (1) one parameter acoustic to (2) two para-

meter acoustic, and finally to (3) three parameter elastic media, there are new sets of inverse

issues and goals. The lessons gleaned in a simpler world can be useful to help decipher the

4 Elastic medium is a material that supports both P- and S-wave travel. In contrast, acoustic implies
that the shear modulus (an elastic constant) is zero and sometimes is restricted to P-waves in fluids (liquids
and gases). In a “P-wave”, the particles oscillate in the direction the wave propagates; while in a “S-wave”,
the particles oscillate perpendicular to the direction the wave propagates.
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actions of the inverse series in the next step of added complexity and realism. For example,

in 1D acoustic media, when the one parameter case is extended to the two parameter case,

more terms (e.g., terms that address ‘leakage’, details of which are presented in Chapter

3) arise that have no analog in the one parameter case. Again, when the two parameter

acoustic model is extended to the three parameter elastic model, yet more terms are ob-

tained that have no analog in the two parameter acoustic case, especially for imaging terms.

Our reasoning is that in the first case, the acoustic medium only supports P-waves, and

hence only one reference velocity (P-wave velocity) is involved. Therefore, when only one

velocity is incorrect (i.e., poorly estimated), there exists only one “mislocation” for each

parameter, and the imaging terms only need to correct this one mislocation. In contrast,

the elastic medium supports both P- and S-wave propagation, and hence two reference ve-

locities (P-wave velocity and S-wave velocity) are involved. When both of these velocities

are incorrect, generally, there exist four mislocations due to each of four different combi-

nations 5 of the two wrong velocities. Therefore, in non-linear elastic imaging-inversion,

the imaging terms need to correct the four mislocations arising from linear inversion of any

single mechanical property, such that a single correct location for the corresponding actual

change in that property is determined.

In addition, in progressing our work for the above mentioned three models, we have provided

an important message and suggestion for the overall strategy of depth imaging. When one

parameter acoustic is extended to two parameter acoustic, we observe similar mathematical

mechanisms acting towards correction of reflector location — the first non-linear (beyond

linear) imaging terms in both cases involve only velocity differences between the actual and

reference media. In other words, velocity appears to be the only parameter that governs

imaging, i.e., the location of reflectors. Also, in the three parameter elastic case, we observe

similar imaging-only terms involving only velocity differences. This common theme obtained

5 The “four combinations” refers to PP, PS, SP and SS, where, for instance, PP means P-wave incidence,
and P-wave reflection. Since P-waves non-normal incidence on an elastic interface can produce S-waves, or
vice versa, which in those cases are known as converted waves (Aki and Richards, 2002), the elastic data
generally contain four components: PP, PS, SP and SS.
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from the three (1D) models — one parameter acoustic, two parameter acoustic and three

parameter elastic, is a suggestion of possible generalization to multi-D media, also of possible

model-type independent 6 imaging. The apparent lesson is that such algorithms will be

driven entirely by velocity discrepancies between reference/actual media.

In this dissertation, we proceed as follows. In each of the three models (i.e., one parameter

acoustic; two parameter acoustic; and three parameter elastic media), we first derive explicit

equations for the non-linear terms in the inverse scattering series that correspond to that

model. These equations provide a set of terms allowing the first step towards non-linear

objectives associated with primaries to be taken (i.e., reflector location without the velocity

and direct non-linear parameter estimation at the imaged reflector), with or without prior

knowledge of the overburden. The terms for imaging the location with an inadequate

velocity are next separated from non-linear inversion-only terms.

After the separation of inversion-only terms from location-only terms is accomplished, we

then focus on the inversion-only terms assuming a known overburden 7. However, the

contrast in properties across an interface is no longer assumed to be small. We reduce the

more general multi-D and multi-parameter framework to this narrowly specific objective to

both assure that this dissertation addresses the current pressing challenge for inversion —

the direct inversion of large contrast elastic medium property changes at a 1D target with

a known overburden — but concurrently to create an algorithm that is manageable, in the

sense of computation and complexity.

To determine the value of the new direct non-linear multi-parameter estimation method

compared with the current inversion methods, we perform a suite of numerical tests on 1D

one-interface examples. In the acoustic case, the non-linear inversion with P data (pressure

measurements) shows significant improved estimates beyond the current linear inversion.

In the elastic case, although in principle the direct non-linear inversion approach requires

6 Model-type independent algorithms do not depend on e.g., acoustic, elastic or anelastic.
7 The assumed known overburden means the non-linear imaging terms (that will only activate when the

overburden velocity is incorrect) have the right velocity and will be zero.

9



Introduction

all four components of elastic data (PP, PS, SP and SS data), in this dissertation we intro-

duce an approach which only uses pressure measurements and approximately synthesizes

the other required components of data. We show that added value is achieved in compar-

ison to conventional linear inversion results for all tested models from this compromised

pressure-only acquisition. We anticipate that significant further improvement will derive

from actually measuring all four components of data, and utilizing the corresponding con-

sistent and complete non-linear estimation equations.

The work presented in this dissertation is the first step into exploring the more comprehen-

sive multi-parameter multi-D direct non-linear inversion framework, and represents both a

conceptual advance and a practical addition to the algorithmic toolbox for target identifi-

cation.

1.2 The inverse scattering task-specific subseries

In this section, details about the inverse scattering task-specific subseries and the task-

specific subseries based direct non-linear inversion method are introduced.

Scattering theory relates the perturbation (the difference between the reference and ac-

tual medium properties) to the scattered wave field (the difference between the reference

medium’s and the actual medium’s wave field). It is therefore reasonable that in discussing

scattering theory, we begin with the basic wave equations governing the wave propagation

in the actual and reference medium, respectively 8,

LG = δ, (1.1)

L0G0 = δ, (1.2)

8 In this introductory math development, we follow closely Weglein et al. (1997); Weglein et al. (2002);
Weglein et al. (2003).
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where L and L0 are respectively the differential operators that describe wave propagation in

the actual and reference medium, and G and G0 are the corresponding Green’s operators.

The δ on the right hand side of both equations is a Dirac delta operator and represents an

impulsive source.

The perturbation is defined as V = L0 − L. The Lippmann- Schwinger equation,

G = G0 + G0V G, (1.3)

relates G,G0 and V (see, e.g., Taylor, 1972). Iterating this equation back into itself generates

the forward scattering series

G = G0 + G0V G0 + G0V G0V G0 + · · · . (1.4)

Then the scattered field ψs ≡ G − G0 can be written as

ψs = G0V G0 + G0V G0V G0 + · · ·

= (ψs)1 + (ψs)2 + · · · , (1.5)

where (ψs)n is the portion of ψs that is nth order in V . The measured values of ψs are the

data, D, where

D = (ψs)ms = (ψs)on the measurement surface.

In the inverse scattering series, expanding V as a series in orders of D,

V = V1 + V2 + V3 + · · · , (1.6)

then substituting Eq. (1.6) into Eq. (1.5), and evaluating Eq. (1.5) on the measurement

11
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surface yields

D = [G0(V1 + V2 + · · · )G0]ms + [G0(V1 + V2 + · · · )G0(V1 + V2 + · · · )G0]ms + · · · . (1.7)

Setting terms of equal order in the data equal, leads to the equations that determine V1,

V2, . . . directly from D and G0.

D = [G0V1G0]ms, (1.8)

0 = [G0V2G0]ms + [G0V1G0V1G0]ms, (1.9)

0 =[G0V3G0]ms + [G0V1G0V2G0]ms + [G0V2G0V1G0]ms

+ [G0V1G0V1G0V1G0]ms, (1.10)

etc. Equations (1.8) ∼ (1.10) permit the sequential calculation of V1, V2, . . ., and, hence,

achieve full inversion for V (see Eq. 1.6) from the recorded data D and the reference

wave field (i.e., the Green’s operator of the reference medium) G0. Therefore, the inverse

scattering series is a multi-D inversion procedure that directly determines physical properties

using only reflection data and reference medium information.

Therefore, in the forward problem (Eq. 1.4), given G0 and the perturbation V , the forward

series constructs the total field G by adding an infinite number of terms corresponding to

propagations in a reference medium and interactions with the perturbation V . Meanwhile,

in the inverse problem (Eqs. 1.8 ∼ 1.10), given reference medium G0 and the measured

scattered wave field, D, the inverse series determines the perturbation V order by order in

the data.

Noting that the inverse scattering series needs an infinite number of terms to construct the

unknown perturbation V , Prosser (1964; 1969; 1976; 1980; 1982; 1992) and Carvalho et al.

(1992) studied/tested its convergence and found that the full series diverges for all but a
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small range of earth models. Fortunately, convergent subseries have been identified which

perform free-surface multiple removal and internal multiple suppression (Carvalho, 1992;

Araújo, 1994; Weglein et al., 1997). These efforts build and provide fundamentally new

insights and capabilities that derive from the inverse scattering series (Weglein et al., 2000).

That is, instead of using the whole inverse scattering series to perform multiple removal,

imaging and inversion all together, a specific subset of the series is isolated to accomplish

only one task at a time. After each task has been finished, the problem is restarted, and it

is assumed that the former task does not exist at all. A new subset series is then pursued

to address the following problem. This is referred to as the inverse scattering task-specific

subseries strategy (Weglein et al., 2003). The order of the tasks is: (1) free-surface multiple

removal, (2) internal multiple removal, (3) depth imaging without velocity, and (4) inversion

or target identification. Since the entire process requires only reflection data and reference

medium information, it is reasonable to assume that these intermediate steps, i.e., all of

the derived subseries which are associated with achieving that objective, would also be

attainable with only the reference medium and reflection data and no subsurface medium

information is required.

After the above mentioned successful application of the inverse scattering task-specific sub-

series to free-surface and internal multiple removal (Carvalho, 1992; Araújo, 1994; Weglein

et al., 1997; Matson, 1997), further progress has been made, including: (1) terms have

been identified which extend the internal multiple attenuation algorithm to an elimination

algorithm (Ramı́rez and Weglein, 2005); (2) imaging without the velocity for one para-

meter 1D and then 2D acoustic media (Weglein et al., 2002; Shaw and Weglein, 2003;

Shaw et al., 2003a; Shaw et al., 2003b; Shaw et al., 2004; Shaw and Weglein, 2004; Liu

and Weglein, 2003; Liu et al., 2004; Liu et al., 2005), and (3) direct non-linear inversion for

multi-parameter 1D acoustic and then elastic media (Zhang et al., 2005; Zhang and Weglein,

2005). Also, recent work (Innanen and Weglein, 2004; Innanen and Weglein, 2005) suggests

that some well-known seismic processing tasks associated with resolution enhancement (i.e.,
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“Q-compensation”) can be accomplished within the task-separated inverse scattering series

framework. In this dissertation, we focus on item (3) above.

1.2.1 Linear and non-linear operations on the data

In this section, the direct non-linear inversion procedure is discussed in greater detail. In

particular, we draw distinctions between: linear and non-linear operations on the data, and

direct and indirect methods. By doing so, we better understand the difference between

current inversion methods and the procedure developed in this dissertation.

We define an operation to be non-linear in the data D (regarded as a variable), if it involves

multiplications of data, and/or multiplications of linear operations on the data, by them-

selves (e.g. D2, D3 etc.). Otherwise, it is called a linear operation. The above mentioned

inverse scattering task-specific subseries related algorithms are non-linear operations on the

data.

Examples of linear algorithms in seismic exploration are conventional migration/inversion

methods (e.g., Claerbout, 1971; Stolt, 1978; Clayton and Stolt, 1981; Stolt and Weglein,

1985). Another alternative approach, e.g., iterative linear inversion (e.g., Verschuur and

Berkhout, 1997; Berkhout and Verschuur, 1997) iterates the linear step (Eq. 1.8), each

time updating the reference medium. In contrast, the inverse scattering series Eqs. (1.8)

∼ (1.10) inverts the same (original) input operator, G0, at each step, and the reference

medium is never updated.

In this dissertation, we refer to two kinds of non-linearities. One is called a “circumstantial

non-linearity” which means that the degree of non-linearity depends on prior information,

and given enough information, the operation becomes linear. In other words, the non-

linearity is avoidable. For example, depth imaging is a linear process, if the medium velocity

information is provided. Otherwise, non-linear operations on the data are required to obtain

the correct image.
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The other kind of non-linearity is called “intrinsic non-linearity” which means that it can

not be avoided through provision of prior information. For inversion, the non-linearity is

intrinsic in the above sense. This can be shown through a very simple example — involving

a plane wave normally incident on a one-interface model (as shown in Fig. 1.3).

0
c

1
c

11 RR

Fig. 1.3: 1D plane wave normal incidence acoustic example.

In this example, the velocity changes across the interface. Above the interface we have the

reference medium with a constant velocity c0, and below we have the actual medium with

a constant velocity c. Assuming unit amplitude of the incident pulse, the data amplitude

is equal to the reflection coefficient R:

R =
c1 − c0

c1 + c0

. (1.11)

The velocity change across the interface can be characterized by α (details will be provided

in Chapter 2), where

α = 1 −
(

c0

c1

)2

. (1.12)

Therefore, R can be written in terms of α or α in terms of R, respectively as,

R =
1

4
α +

1

8
α2 + O(α3), (1.13)
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and

α = 4R − 8R2 + 12R3 + · · · . (1.14)

Both the forward expression for R as a function of α and the inverse expression for α as a

function of R are non-linear in α and R, respectively. Knowledge of α and c0, Eq. (1.12)

allows the solution for c1. Linear inversion, which in this simple case amounts to truncating

Eq. (1.14) beyond the first term, is an approximation, only providing accurate estimates

when the medium changes are small; and, hence, the higher order terms in Eq. (1.14) are

negligible. For larger contrasts the error due to the linear approximation increases.

1.2.2 Direct and indirect methods

We next consider inverse approaches that honor the intrinsic non-linearity of the data/medium

relationship, distinguishing between direct and indirect types.

An inversion method is regarded as direct if the algorithm can provide explicit formulae for

the solution that do not involve any form of numerical optimization or global searching. The

procedure developed in this dissertation is direct in this sense, since medium properties are

calculated directly, order by order, using the given data and reference medium information

only.

Instead of seeking the solutions directly, indirect methods (e.g., Tarantola et al., 1984; Sen

and Stoffa, 1995) define an objective function which would be minimized when the correct,

“optimized” result is obtained. Besides the big computation effort involved, the fundamental

disadvantage of those methods is that the scheme may not converge, or it may converge

into a false (local) minimum rather than the global minimum. Therefore, the results/models

obtained are ambiguous in that they are not necessarily the correct ones.

Indirect methods are commonly used and are generally an expression of the absence of
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direct methods. Indirect methods can provide value and benefit, but as with all methods,

there are pitfalls and limitations that need to be recognized. Indirect methods are typically

conceptually simple and accessible, understandable, and broadly accepted because the idea

of minimizing a functional is not difficult or complicated to understand and visualize, if

not always easy to realize. The latter simplicity combined with a lack of direct capability

helps to explain the wide acceptance and use of indirect methods. Indirect inversion also

often represents the definition of inversion for its practitioners. Direct methods have the

benefit of providing the precise framework and explicit data requirements needed for the

explicit direct sought after solution to the problem. The new inverse scattering series based

imaging, non-linear parameter inversion techniques of this dissertation represent new direct

inverse capability and methodology and it provides a framework for more reliable and more

accurate target identification, and thus, it is more advantageous.

In the above, we discussed two important terms: direct and non-linear. The inverse scat-

tering series is the only direct multi-D method which deals with both intrinsic and cir-

cumstantial non-linearity, separately or in combination, concurrently operating without the

traditional need for subsurface information. It provides a framework for direct multi-D in-

version which can be formulated for a 2D or 3D acoustic or elastic heterogeneous subsurface.

Historically, direct methods e.g., Clayton and Stolt (1981) on 2D acoustic, and Weglein and

Stolt (1992) on 2D elastic, focused on linear formulations, and hence assume that property

changes across each boundary are small, giving erroneous predictions for larger contrast and

more complex targets.

To summarize, the research documented in this dissertation presents the first direct non-

linear multi-parameter estimation of acoustic or elastic properties from the comprehensive

multi-D inverse scattering series framework. The inversion method is direct and non-linear

without global searching or small-change assumptions; hence, it has the potential to provide

more accurate and reliable earth property predictions for larger contrast and more complex

targets.
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1.3 An overview of this dissertation

The order of the seismic data processing using the task-specific inverse scattering subseries

acts like a chain of operations. In deriving these processing algorithms, the first step was

to identify the subseries that removes the free-surface multiples only, and then, restart the

problem and assume the free-surface never existed. The second step was to remove the in-

ternal multiples by isolating another specific subseries. After the removal of multiples, the

third step is to identify another series which only tries to locate the reflectors without deter-

mining the changes in parameters at those reflectors. The fourth and last step/subseries is

the one discussed in this dissertation — to identify the mechanical properties of the medium

assuming that there are no multiples in the data, and that the reflectors have already been

located at the right depths.

The work presented in this dissertation on 1D acoustic and then elastic media is an initial

part of the more general multi-D heterogeneous direct non-linear inversion project. We

start with the one parameter case, generalizing the normal incidence case to the non-normal

incidence case, and then, extend the discussion to the multi-parameter cases: two parameter

acoustic case and three parameter elastic. We take the steps in 1D, to allow the use of

analytic data for numerical tests, and to prime the next step: extension to a multi-parameter

and multi-D medium.

In Chapter 2, for a 1D medium embedded in a 2D space, we derive the first direct non-linear

inversion solutions with separated imaging-only and inversion-only terms. We start with

the one parameter case, generalizing the normal incidence case to the non-normal incidence

case or 1.5D 9 and solving the first three Eqs. (1.8) ∼ (1.10).

We then, in Chapters 3 and 4, respectively, extend the discussion to the multi-parameter

cases: two parameter acoustic case and three parameter elastic and solve the first two

9 An experiment performed in 2D while the medium is 1D (e.g., the velocity varies only in the vertical
direction).
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Eqs. (1.8) and (1.9). For the acoustic case, it is analytically shown that the imaging term

will automatically shut down when the correct velocity is provided. Numerical tests on

a one-interface model show that non-linear terms provide improved values compared with

the conventional linear inversion results. For the elastic case, it is shown that in order to

perform the direct non-linear elastic inversion in 2D, all four components of data (D̂PP ,

D̂PS, D̂SP and D̂SS) are required. A major theme here is to show how D̂PP can be used to

approximately synthesize the D̂PS, D̂SP and D̂SS such that high quality inversion results

can still be achieved with the measurement of only one data type. This permits us to

perform elastic non-linear inversion in some situations with only pressure measurements

available, i.e., towed streamer data. For the case when all four components of data are

available, we give one consistent method to solve for all of the second terms (the first terms

beyond linear). In the last part we apply the newly derived method to the case of seismic

time-lapse or 4D data (details are in Section 4.4). The goal is to use the inverse scattering

subseries algorithm to distinguish pressure changes from reservoir fluid changes in cases

when conventional seismic methods have difficulties interpreting the data. The numerical

tests show very useful results. In Chapter 5, an overall summary is presented.
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2. ONE PARAMETER ACOUSTIC INVERSION

We start this chapter by extending the work of, e.g., Weglein et al. (2001); Shaw (2001);

Shaw et al. (2001); Shaw et al. (2002); Weglein et al. (2003); Shaw and Weglein (2003);

Shaw and Weglein (2004), from 1D acoustic normal incidence to non-normal incidence case.

We look to calculate the first three terms in the inverse scattering series and to identify task-

specific imaging and inversion terms. We assume that the acoustic medium only varies in

one parameter (velocity) — assumption which will be generalized to two parameter (velocity

and density) in the following chapter.

This chapter has the following structure. Sections 2.1, 2.2 and 2.3 give the solutions of the

first, second and third terms, respectively. In section 2.4, we present some numerical results

tested on three models. The last section includes some conclusions.

2.1 Derivation of α1

Equations (1.1) and (1.2), for 1D acoustic and constant density media, can be written in

the following forms respectively

[
d2

dz2
+

ω2

c2(z)

]
G (z, zs; ω) = δ (z − zs) , (2.1)

[
d2

dz2
+

ω2

c2
0

]
G0 (z, zs; ω) = δ (z − zs) , (2.2)
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where zs is the depth of the source, ω is the temporal frequency, and c(z) and c0 are the

P-wave velocities in the actual media and reference media, respectively.

In this case, the perturbation can be written as

V (z) =
ω2

c2
0

− ω2

c2(z)
= k2α (z) , (2.3)

where k = ω
c0

, and

α(z) = 1 − c2
0

c2(z)
, (2.4)

is the parameter we choose to do the inversion. Similar to Eq. (1.6), α(z) can be expanded

as

α(z) = α1(z) + α2(z) + α3(z) + · · · .

Then we have

V1(z) = k2α1(z),

V2(z) = k2α2(z),

V3(z) = k2α3(z).

From the first equation of the inverse scattering series, Eq. (1.8), we have

D = G0k
2α1G0, (2.5)

then, in space domain, for 1D acoustic media and 2D experiment, it can be written as

D(xg, zg; xs, zs; ω) =

+∞∫

−∞

dx′

+∞∫

−∞

dz′G0(xg, zg; x
′, z′; ω)k2α1(z

′)G0(x
′, z′; xs, zs; ω), (2.6)
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where xg, zg and xs, zs are respectively the positions of the receiver and source, and

G0(xg, zg; x
′, z′; ω) =

1

(2π)2

+∞∫

−∞

dk′
x

+∞∫

−∞

dk′
z

eik′

x(xg−x′)eik′

z(zg−z′)

k2 − k′2
x − k′2

z

, (2.7)

G0(x
′, z′; xs, zs; ω) =

1

(2π)2

+∞∫

−∞

dk′′
x

+∞∫

−∞

dk′′
z

eik′′

x(x′−xs)eik′′

z (z′−zs)

k2 − k′′2
x − k′′2

z

. (2.8)

Next we Fourier transform Eq. (2.6) over xg and xs on both sides and use the following

convention

f(x) =

+∞∫

−∞

dkf̃(k)eikx;

f̃(k) =
1

2π

+∞∫

−∞

dxf(x)e−ikx.

Then the left side becomes

1

(2π)2

+∞∫

−∞

dxg

+∞∫

−∞

dxse
−ikgxgD(xg, zg; xs, zs; ω)eiksxs = D̃(kg, zg;−ks, zs; ω),

and the right side becomes

+∞∫

−∞

dx′

+∞∫

−∞

dz′G̃0(kg, zg; x
′, z′; ω)k2α1(z

′)G̃0(x
′, z′;−ks, zs; ω)

=

+∞∫

−∞

dx′

+∞∫

−∞

dz′e−i(kg−ks)x′ eiqg(z′−zg)

4πiqg

k2α1(z
′)

eiqs(z′−zs)

4πiqs

,

where (it is assumed that the perturbation α and, hence, all the terms in the inverse

scattering series, α1, α2, · · · , are non-zero only below the source and receiver, i.e., for z′ > zg
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and z′ > zs)

G̃0(kg, zg; x
′, z′; ω) =

1

2π

+∞∫

−∞

dxge
−ikgxgG0(xg, zg; x

′, z′; ω)

= e−ikgx′ eiqg(z′−zg)

4πiqg

, (2.9)

G̃0(x
′, z′;−ks, zs; ω) =

1

2π

+∞∫

−∞

dxsG0(x
′, z′; xs, zg; ω)eiksxs

= eiksx′ eiqs(z′−zs)

4πiqs

, (2.10)

and

k2 − k2
g = q2

g , k2 − k2
s = q2

s .

Letting left side = right side leads to

D̃(kg, zg;−ks, zs; ω) = − k2

4qgqs

(
1

2π

)2

e−i(qgzg+qszs)

+∞∫

−∞

dx′

+∞∫

−∞

dz′e−i(kg−ks)x′

α1(z
′)ei(qg+qs)z′ .

(2.11)

Then, we have

D̃(qg; zg, zs; ω) = − k2

4q2
g

e−iqg(zg+zs)α̃1(−2qg). (2.12)

Using the relation qg = k cos θ, and choosing θ (the incident angle shown in Fig. 2.1) as the

free parameter, Eq. (2.12) becomes

D̃(qg, θ; zg, zs) = − 1

4 cos2 θ
e−iqg(zg+zs)α̃1(−2qg). (2.13)

This is the linear (first order) solution for α1 in frequency domain. In the next section, we

will give the derivation of the first non-linear (second order) solution for α2.
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Fig. 2.1: The relationship between qg, kg and θ.

2.2 Derivation of α2

From the second equation of the inverse scattering series, Eq. (1.9), we have

G0k
2α2G0 = −G0k

2α1G0k
2α1G0, (2.14)

which can be written in space domain (for 2D experiment) as

+∞∫

−∞

dx′

+∞∫

−∞

dz′G0(xg, zg; x
′, z′; ω)k2α2(z

′)G0(x
′, z′; xs, zs; ω)

= −
+∞∫

−∞

dx′

+∞∫

−∞

dz′
+∞∫

−∞

dx′′

+∞∫

−∞

dz′′G0(xg, zg; x
′, z′; ω)k2α1(z

′)G0(x
′, z′; x′′, z′′; ω)

×k2α1(z
′′)G0(x

′′, z′′; xs, zs; ω). (2.15)

Similar to the derivation of α1, after Fourier transforming Eq. (2.15) over xg and xs, the

left side becomes

− 1

(8π)
k2 e−iqg(zg+zs)

q2
g

+∞∫

−∞

dz′α2(z
′)e2iqgz′ .
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The right side becomes (we use the same assumption that the perturbation α and its series

components αi for i ≥ 1 are non-zero only below the source-receiver surface, i.e. for z′ > zg

and z′′ > zs)

= − 1

(4πi)3
(2π)2

+∞∫

−∞

dz′
+∞∫

−∞

dz′′
eiqg(z′−zg)

qg

k2α1(z
′)

eiqg |z′−z′′|

qg

k2α1(z
′′)

eiqg(z′′−zs)

qg

= − i

16π
k4 e−iqg(zg+zs)

q3
g

+∞∫

−∞

dz′
+∞∫

−∞

dz′′α1(z
′)α1(z

′′)eiqg(z′+z′′)eiqg |z′−z′′|

= − i

(8π)
k4 e−iqg(zg+zs)

q3
g

+∞∫

−∞

dz′
+∞∫

−∞

dz′′α1(z
′)α1(z

′′)e2iqgz′H(z′ − z′′).

Imposing Left side = Right side, we get

+∞∫

−∞

dz′α2(z
′)e2iqgz′ =

ik2

qg

+∞∫

−∞

dz′
+∞∫

−∞

dz′′α1(z
′)α1(z

′′)e2iqgz′H(z′ − z′′). (2.16)

Using qg = k cos θ, and Fourier transforming Eq. (2.16) over 2qg, we get

+∞∫

−∞

dz′α2(z
′)

+∞∫

−∞

dqge
−2iqg(z−z′) =

1

cos2 θ

+∞∫

−∞

dz′
+∞∫

−∞

dz′′α1(z
′)α1(z

′′)H(z′ − z′′)

×
+∞∫

−∞

dqg(iqg)e
−2iqg(z−z′). (2.17)

Then we have

α2(z) = − 1

2 cos2 θ

d

dz


α1(z)

+∞∫

−∞

dz′′α1(z
′′)H(z − z′′)


 , (2.18)
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and finally, we get the following non-linear (in α1 and hence in the data) solution for α2

α2(z) = − 1

2 cos2 θ


α2

1(z) + α′
1(z)

z∫

−∞

dz′α1(z
′)


 , (2.19)

where α′
1(z) = dα1(z)

dz
. This is the first one parameter non-linear inversion of 1D acoustic

media for a 2D experiment in which the imaging-only term(s) and inversion-only term(s) are

isolated. The term − 1
2 cos2 θ

α2
1(z) represents the inversion-only, and − 1

2 cos2 θ
α′

1(z)
z∫

−∞

dz′α1(z
′)

with an integral represents the imaging term. For θ = 0, this solution reduces to the non-

linear solution for 1D normal incidence case (e.g., Shaw, 2005)

α2(z) = −1

2


α2

1(z) + α′
1(z)

z∫

−∞

dz′α1(z
′)


 . (2.20)

If another choice of free parameter other than θ (e.g., ω or kh) is selected, then the func-

tional form between the data and the first order perturbation Eq. (2.13) would change.

Furthermore, the relationship between the first and second order perturbation Eq. (2.19)

would, then, also be different, and new analysis would be required for the purpose of iden-

tifying specific task separated terms. Empirically, the choice of θ as free parameter (for a

1D medium) is particularly well suited for allowing a task separated identification of terms

in the inverse series. The numerical tests shown in section 2.4, will indicate how the first

non-linear term α2 contributes to the parameter prediction on α.

2.3 Derivation of α3

Similarly, from the third equation of the inverse scattering series, Eq. (1.10), we have

G0k
2α3G0 = −G0k

2α1G0k
2α2G0 − G0k

2α2G0k
2α1G0 − G0k

2α1G0k
2α1G0k

2α1G0, (2.21)
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then, in space domain and for 2D experiment, we have

+∞∫

−∞

dx′

+∞∫

−∞

dz′G0(xg, zg; x
′, z′; ω)k2α3(z

′)G0(x
′, z′; xs, zs; ω)

= −
+∞∫

−∞

dx′

+∞∫

−∞

dz′
+∞∫

−∞

dx′′

+∞∫

−∞

dz′′G0(xg, zg; x
′, z′; ω)k2α1(z

′)G0(x
′, z′; x′′, z′′; ω)

×k2α2(z
′′)G0(x

′′, z′′; xs, zs; ω)

−
+∞∫

−∞

dx′

+∞∫

−∞

dz′
+∞∫

−∞

dx′′

+∞∫

−∞

dz′′G0(xg, zg; x
′, z′; ω)k2α2(z

′)G0(x
′, z′; x′′, z′′; ω)

×k2α1(z
′′)G0(x

′′, z′′; xs, zs; ω)

−
+∞∫

−∞

dx′

+∞∫

−∞

dz′
+∞∫

−∞

dx′′

+∞∫

−∞

dz′′
+∞∫

−∞

dx′′′

+∞∫

−∞

dz′′′G0(xg, zg; x
′, z′; ω)k2α1(z

′)

×G0(x
′, z′; x′′, z′′; ω)k2α1(z

′′)G0(x
′′, z′′; x′′′, z′′′; ω)k2α1(z

′′′)

×G0(x
′′′, z′′′; xs, zs; ω). (2.22)

Similar to the derivation of α1 and α2, after Fourier transforming Eq. (2.22) over xg and

xs, the left side becomes

= − 1

(8π)
k2 e−iqg(zg+zs)

q2
g

+∞∫

−∞

dz′α3(z
′)e2iqgz′ .

The right side (with the same assumption that α1 is non-zero only below the source and

receiver, i.e., for z′ > zg and z′′′ > zs) becomes

= − i

(8π)
k4 e−iqg(zg+zs)

q3
g

+∞∫

−∞

dz′
+∞∫

−∞

dz′′α1(z
′)α2(z

′′)e2iqgz′H(z′ − z′′)

− i

(8π)
k4 e−iqg(zg+zs)

q3
g

+∞∫

−∞

dz′
+∞∫

−∞

dz′′α2(z
′)α1(z

′′)e2iqgz′H(z′ − z′′)
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− 1

(32π)
k6 e−iqg(zg+zs)

q4
g

+∞∫

−∞

dz′
+∞∫

−∞

dz′′
+∞∫

−∞

dz′′′α1(z
′)α1(z

′′)α1(z
′′′)eiqg(z′+z′′′)eiqg|z′−z′′|

×eiqg |z′′−z′′′|.

Again, imposing Left side = Right side, and using qg = k cos θ, we get (for fixed θ)

+∞∫

−∞

dz′α3(z
′)e2iqgz′

=
1

cos2 θ
iqg

+∞∫

−∞

dz′
+∞∫

−∞

dz′′α1(z
′)α2(z

′′)e2iqgz′H(z′ − z′′)

+
1

cos2 θ
iqg

+∞∫

−∞

dz′
+∞∫

−∞

dz′′α2(z
′)α1(z

′′)e2iqgz′H(z′ − z′′)

+
1

cos4 θ

q2
g

4

+∞∫

−∞

dz′
+∞∫

−∞

dz′′
+∞∫

−∞

dz′′′α1(z
′)α1(z

′′)α1(z
′′′)

×eiqg(z′+z′′′)eiqg|z′−z′′|eiqg|z′′−z′′′|. (2.23)

Fourier transforming Eq. (2.23) over 2qg, we get (detailed derivations of the integrations on

the right side of Eq. 2.23 are presented in Shaw et al., 2003b)

α3(z) =
1

cos4 θ

[
3

16
α3

1(z)

+
1

8
α′′

1(z)




z∫

−∞

dz′α1(z
′)




2

+
3

4
α1(z)α′

1(z)

z∫

−∞

dz′α1(z
′)

− 1

8
α′

1(z)

z∫

−∞

dz′α2
1(z

′)

− 1

16

z∫

−∞

dz′
z∫

−∞

dz′′
dα1(z

′)

dz′
dα1(z

′′)

dz′′
α1(z

′ + z′′ − z)

]
. (2.24)
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In this equation, the first term on the right hand side 3
16 cos4 θ

α3
1(z) represents the inversion-

only term, and the second term 1
8 cos4 θ

α′′
1(z)

(
z∫

−∞

dz′α1(z
′)

)2

represents the imaging-only

term. The last term contributes to the removal of the internal multiples which begins in

the third term in the inverse series (Weglein et al., 1997).

In the following section, we will see how α3 contributes to the parameter prediction on α.

2.4 Numerical tests

Consider a one-interface example, (shown in Fig. 2.2), the interface surface is at z = a,

above the interface is the reference medium, and below is the actual medium. Suppose

zs = zg = 0. In this case, the reflection coefficient has the following form

0
c

1
c

zz

xx

aa

00

Fig. 2.2: One-interface example.

R(θ) =
(c1/c0)

√
1 − sin2 θ −

√
1 − (c2

1/c
2
0) sin2 θ

(c1/c0)
√

1 − sin2 θ +
√

1 − (c2
1/c

2
0) sin2 θ

. (2.25)

With this coefficient, data may be expressed analytically (Clayton and Stolt, 1981; Weglein

et al., 1986) as:

D̃(qg, θ) = R(θ)
e2iqga

4πiqg

. (2.26)
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Substituting Eq. (2.26) into Eq. (2.13) and Fourier transforming Eq. (2.13) over 2qg, we

have
+∞∫

−∞

dqge
−2iqgzR(θ)

e2iqga

2iqg

= − 1

4 cos2 θ

+∞∫

−∞

dz′
+∞∫

−∞

dqge
−2iqgzα1(z

′)e2iqgz′ . (2.27)

Then, for fixed θ, we have

α1(z) = 4R(θ) cos2 θH(z − a). (2.28)

Hence, given one angle θ, we can get the corresponding α1.

After substituting Eq. (2.28) into Eqs. (2.19) and (2.24), respectively, we obtain

α2(z) = −8R2(θ) cos2 θH(z − a), (2.29)

and

α3(z) = 12R3(θ) cos2 θH(z − a). (2.30)

From Eqs. (2.29) and (2.30), we can see that only inversion terms are kept on the right

side of the equations and the other terms with integrals in Eqs. (2.19) and (2.24) are

automatically gone. The reason is that, for this one-interface model, we have the right

velocity (reference velocity) and hence the interface is located at the right depth so it does

not need to be corrected any more. Furthermore, there are no internal multiples in this

one-interface model. Therefore, the task-specific subseries will automatically shut down

when there is no such kind of task that needs to be performed, which is called purposeful

perturbation.

The numerical tests are based on the following three specific models:

Model 1: c0 = 2000m/s, c1 = 2200m/s;

Model 2: c0 = 1500m/s, c1 = 1800m/s;
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Model 3: c0 = 1800m/s, c1 = 1500m/s.

Model 2 has a bigger contrast than Model 1, and in Model 3, the velocity of the actual

medium is less than the reference medium so the sign of α becomes negative.

As shown in Figs. 2.4, 2.3 and 2.5, for all three models presented in the numerical tests,

including the non-linear terms α2 and α3 produces significant improvement.
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Fig. 2.3: Model 1: c0 = 2000m/s, c1 = 2200m/s, exact value of α for this example is 0.174, the
critical angle is 65.40.

2.5 Conclusion

This chapter represents the first analysis of the direct non-linear target identification for

a 1D acoustic medium and 2D experiment and provides a user guide and useful lessons
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Fig. 2.4: Model 2: c0 = 1500m/s, c1 = 1800m/s, exact value of α for this example is 0.306, the
critical angle is 56.40.

for its generalization to a more complex and realistic model. In particular, for all of the

three models tested, the first and second non-linear terms in the inverse scattering inversion

subseries provide added value and improved capability for target identification beyond the

conventional linear inversion. Although the tested models involve only one interface, the

solutions can be applied to multi-interface models too.

The work on the one parameter case has progressed further and Simon Shaw generalized

this one parameter case to 3D acoustic data in, e.g., Shaw (2005).

In this one parameter case, we assume that the acoustic medium only varies in velocity and

analytical tests show very good results. So what if both velocity and density change in an

acoustic medium? In the next chapter, the algorithm will be generalized to more realistic

models — two parameter 1D acoustic model. This is a major step for target identification

towards realism — a multi-parameter world.
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Fig. 2.5: Model 3: c0 = 1800m/s, c1 = 1500m/s, exact value of α for this example is -0.44.
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3. TWO PARAMETER ACOUSTIC INVERSION

In this chapter, the direct non-linear inversion for the one parameter case is generalized

to a multi-parameter case — two parameter acoustic inversion. For the first time, a two

parameter direct non-linear inversion solution is obtained for 1D acoustic media (velocity

and density vary vertically in depth) 2D experiment. Clayton and Stolt (1981) gave a two

parameter linear inversion solution for 2D acoustic media (velocity and density vary both

vertically and laterally). In this chapter, we use the same parameters but concentrate on

1D acoustic media to derive the direct non-linear inversion solution. In the application

of the direct non-linear inverse algorithm, we move one step each time (e.g., from one

parameter 1D acoustic case to two parameter 1D acoustic case, or to one parameter 2D

acoustic case, instead of ‘jumping’ directly to two parameter 2D acoustic case) so that we

can solve the problem step by step and learn lessons from each step which would guide us

to step further towards greater realism. For one parameter 2D acoustic media, some work

on direct non-linear imaging with reference velocity is presented by Liu et al. (2005).

For the direct non-linear inversion solution obtained in this chapter, the tasks for imaging-

only and inversion-only terms are separated. Tests with analytic data indicate significant

added value for parameter predictions, beyond linear estimates, in terms of both the prox-

imity to actual value and the increased range of angles over which the improved estimates

are useful.

A closed form of the inversion terms for one-interface case is also obtained. This closed

form might be useful in predicting the precritical data using the postcritical data.
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A special parameter ∆c (∆c = c − c0) (P-wave velocity change across an interface) is also

found. Its Born inversion (∆c)1 always has the right sign. That is, the sign of (∆c)1 is

always the same as that of ∆c. In practice, it could be very useful to know whether the

velocity increases or decreases across the interface. After changing parameters, from α

(relative changes in P-wave bulk modulus) and β (relative changes in density) to velocity

and β, another form of the non-linear solution is obtained. There is no leakage correction

(please see details in Section 3.3) in this solution. This new form clearly indicates that the

imaging terms care only about velocity errors. The mislocation is due to the wrong velocity.

This is suggestive of possible generalization to multi-D medium, also of possible model-type

independent imaging which only depends on velocity changes.

This chapter has the following structure. Section 3.1 gives the solutions of the first and sec-

ond terms. In section 3.2, we derive the closed form and this is followed by numerical tests.

The last section contains further discussions about the special parameters and conclusions.

3.1 Derivation of α1, β1 and α2, β2

In this section, we will consider a 1D acoustic two parameter earth model (e.g. bulk modulus

and density or velocity and density). We start with the 3D acoustic wave equations in the

actual and reference medium (Clayton and Stolt, 1981; Weglein et al., 1997)

[
ω2

K(r)
+ ∇ · 1

ρ(r)
∇

]
G(r, rs; ω) = δ(r − rs), (3.1)

[
ω2

K0(r)
+ ∇ · 1

ρ0(r)
∇

]
G0(r, rs; ω) = δ(r − rs), (3.2)

where G(r, rs; ω) and G0(r, rs; ω) are respectively the free-space causal Green’s functions

that describe wave propagation in the actual and reference medium. K = c2ρ, is P-wave

bulk modulus, c is P-wave velocity and ρ is the density. The quantities with subscript “0”

are for the reference medium, and those without the subscript are for the actual medium.
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The perturbation is

V = L0 − L =
ω2α

K0

+ ∇ · β

ρ0

∇, (3.3)

where α = 1 − K0

K
and β = 1 − ρ0

ρ
are the two parameters we choose to do the inversion.

Assuming both ρ0 and c0 are constants, Eq. (3.2) becomes

(
ω2

c2
0

+ ∇2

)
G0(r, rs; ω) = ρ0δ(r − rs). (3.4)

For the 1-D case, the perturbation V has the following form

V (z,∇) =
ω2α(z)

K0

+
1

ρ0

β(z)
∂2

∂x2
+

1

ρ0

∂

∂z
β(z)

∂

∂z
. (3.5)

V (z,∇), α(z) and β(z) can be expanded respectively as

V (z,∇) = V1(z,∇) + V2(z,∇) + · · · , (3.6)

α(z) = α1(z) + α2(z) + · · · , (3.7)

β(z) = β1(z) + β2(z) + · · · . (3.8)

Then we have

V1(z,∇) =
ω2α1(z)

K0

+
1

ρ0

β1(z)
∂2

∂x2
+

1

ρ0

∂

∂z
β1(z)

∂

∂z
, (3.9)

V2(z,∇) =
ω2α2(z)

K0

+
1

ρ0

β2(z)
∂2

∂x2
+

1

ρ0

∂

∂z
β2(z)

∂

∂z
, (3.10)

....

Substituting Eq. (3.9) into Eq. (1.8), we can get the linear solution for α1 and β1 in

frequency domain

D̃(qg, θ, zg, zs) = −ρ0

4
e−iqg(zs+zg)

[
1

cos2 θ
α̃1(−2qg) + (1 − tan2 θ)β̃1(−2qg)

]
, (3.11)

36



Two parameter acoustic inversion

where the subscripts s and g denote source and receiver quantities respectively, and qg, θ

and k = ω/c0 shown in Fig. 3.1, have the following relations (Matson, 1997)

qg = qs = k cos θ,

kg = ks = k sin θ.

Similarly, substituting Eq. (3.10) into Eq. (1.9), we can get the solution for α2(z) and

111
,, Kc r

q

gq k

gk

zz

000 ,, Kc r

Fig. 3.1: The relationship between qg, kg and θ.

β2(z) as a function of α1(z) and β1(z) (Detail derivation in Appendix A)

1

cos2 θ
α2(z) + (1 − tan2 θ)β2(z) = − 1

2 cos4 θ
α2

1(z) − 1

2
(1 + tan4 θ)β2

1(z) +
tan2 θ

cos2 θ
α1(z)β1(z)

− 1

2 cos4 θ
α′

1(z)

z∫

0

dz′[α1(z
′) − β1(z

′)]

+
1

2
(tan4 θ − 1)β′

1(z)

z∫

0

dz′[α1(z
′) − β1(z

′)], (3.12)

where α′
1(z) = dα1(z)

dz
, β′

1(z) = dβ1(z)
dz

.

The first two parameter direct non-linear inversion of 1D acoustic media for a 2D experiment

has been obtained. As shown in Eq. (3.11) and Eq. (3.12), given two different angles θ, we
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can determine α1, β1 and then α2, β2. For a single-interface example, it can be shown that

only the first three terms on the right hand side contribute to parameter predictions, while

the last two terms perform imaging in depth since they will be zero after the integration

across the interface (see Section 3.2). Therefore, in this solution, the tasks for imaging-only

and inversion-only terms are separated. Details about the significance of this solution will

be presented in the following sections.

3.2 A special case: one-interface model

In this section, we derive a closed form for the inversion-only terms. From this closed form,

we can easily get the same inversion terms as those in Eqs. (3.11) and (3.12). We also

show some numerical tests using analytic data. From the numerical results, we see how the

corresponding non-linear terms contribute to the parameter predictions such as the relative

changes in the P-wave bulk modulus
(
α = ∆K

K

)
, density

(
β = ∆ρ

ρ

)
, impedance

(
∆I
I

)
and

velocity
(

∆c
c

)
.

3.2.1 Closed form for the inversion terms

1. Incident angle not greater than critical angle, i.e. θ ≤ θc

For a single interface example, the reflection coefficient has the following form (Keys, 1989)

R(θ) =
(ρ1/ρ0)(c1/c0)

√
1 − sin2 θ −

√
1 − (c2

1/c
2
0) sin2 θ

(ρ1/ρ0)(c1/c0)
√

1 − sin2 θ +
√

1 − (c2
1/c

2
0) sin2 θ

. (3.13)

After adding 1 on both sides of Eq. (3.13), we can get

1 + R(θ) =
2 cos θ

cos θ + (ρ0/ρ1)
√

(c2
0/c

2
1) − sin2 θ

. (3.14)
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Then, using the definitions of α = 1 − K0

K1
= 1 − ρ0c20

ρ1c21
and β = 1 − ρ0

ρ1
, Eq. (3.14) becomes

4R(θ)

(1 + R(θ))2 =
α

cos2 θ
+ (1 − tan2 θ)β − αβ

cos2 θ
+ β2 tan2 θ, (3.15)

which is the closed form we derived for one interface two parameter acoustic inversion-only

terms.

2. Incident angle greater than critical angle, i.e. θ > θc

For θ > θc, Eq. (3.13) becomes

R(θ) =
(ρ1/ρ0)(c1/c0)

√
1 − sin2 θ − i

√
(c2

1/c
2
0) sin2 θ − 1

(ρ1/ρ0)(c1/c0)
√

1 − sin2 θ + i
√

(c2
1/c

2
0) sin2 θ − 1

. (3.16)

Then, Eq. (3.14) becomes

1 + R(θ) =
2 cos θ

cos θ + i (ρ0/ρ1)
√

sin2 θ − (c2
0/c

2
1)

, (3.17)

which leads to the same closed form as Eq. (3.15)

4R(θ)

(1 + R(θ))2 =
α

cos2 θ
+ (1 − tan2 θ)β − αβ

cos2 θ
+ β2 tan2 θ.

As we see, this closed form is valid for all incident angles.

In addition, for normal incidence (θ = 0) and constant density (β = 0) media, the closed

form Eq. (3.15) will be reduced to

α =
4R

(1 + R)2 . (3.18)

This represents the relationship between α and R for one parameter 1D acoustic constant

density medium and 1D normal incidence obtained in Innanen (2003). In this case, α

becomes 1 − c2
0/c

2
1 and R becomes (c1 − c0) / (c1 + c0).
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3. Derivation of the inversion terms from the closed form

From the closed form Eq. (3.15), using Taylor expansion on the left hand side

1

(1 + R(θ))2 =
[
1 − R(θ) + R2(θ) − . . .

]2
,

and setting the terms of equal order in the data equal, we have

α1

cos2 θ
+ (1 − tan2 θ)β1 = 4R(θ), (3.19)

α2

cos2 θ
+ (1 − tan2 θ)β2 = −1

2

α2
1

cos4 θ
− 1

2
(1 + tan4 θ)β2

1 +
tan2 θ

cos2 θ
α1β1. (3.20)

For a one-interface example (in Fig. 3.2), Eqs. (3.11) and (3.12) will respectively reduce to

the same form as Eqs. (3.19) and (3.20), which is shown below.

Assume the interface surface is at depth z = a, and suppose zs = zg = 0. Using the similar

000 ,, Kc r

111
,, Kc r

zz

xx

aa

00

Fig. 3.2: 1D one-interface acoustic model.

analytic data (Clayton and Stolt, 1981; Weglein et al., 1986) as in Chapter 2,

D̃(qg, θ) = ρ0R(θ)
e2iqga

4πiqg

, (3.21)
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and substituting Eq. (3.21) into Eq. (3.11), after Fourier transformation over 2qg, for z > a

and fixed θ, we get

1

cos2 θ
α1(z) + (1 − tan2 θ)β1(z) = 4R(θ)H(z − a). (3.22)

Also, the non-linear solution Eq. (3.12) will reduce to

1

cos2 θ
α2(z) + (1 − tan2 θ)β2(z) = − 1

2 cos4 θ
α2

1(z) − 1

2
(1 + tan4 θ)β2

1(z)

+
tan2 θ

cos2 θ
α1(z)β1(z), (3.23)

The two equations Eqs. (3.22) and (3.23) agree with Eqs. (3.19) and (3.20), respectively.

3.2.2 Numerical tests

From Eq. (3.22), choosing two different angles to solve for α1 and β1

β1(θ1, θ2) = 4
R(θ1) cos2 θ1 − R(θ2) cos2 θ2

cos(2θ1) − cos(2θ2)
, (3.24)

α1(θ1, θ2) = β1(θ1, θ2) + 4
R(θ1) − R(θ2)

tan2 θ1 − tan2 θ2

. (3.25)

Similarly, from Eq. (3.23), given two different angles we can solve for α2 and β2 in terms of

α1 and β1

β2(θ1, θ2) =

[
−1

2
α2

1

(
1

cos2 θ1

− 1

cos2 θ2

)
+ α1β1

(
tan2 θ1 − tan2 θ2

)
− 1

2
β2

1

×
(

cos2 θ1 − cos2 θ2 +
sin4 θ1

cos2 θ1

− sin4 θ2

cos2 θ2

)]
/ [cos(2θ1) − cos(2θ2)] , (3.26)

α2(θ1, θ2) =β2(θ1, θ2) +

[
−1

2
α2

1

(
1

cos4 θ1

− 1

cos4 θ2

)
+ α1β1

(
tan2 θ1

cos2 θ1

− tan2 θ2

cos2 θ2

)
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−1

2
β2

1

(
tan4 θ1 − tan4 θ2

)]
/
(
tan2 θ1 − tan2 θ2

)
; (3.27)

where α1 and β1 in Eqs. (3.26) and (3.27) denote α1(θ1, θ2) and β1(θ1, θ2), respectively.

For a specific model, ρ0 = 1.0g/cm3, ρ1 = 1.1g/cm3, c0 = 1500m/s and c1 = 1700m/s. In

the following figures, we give the results for the relative changes in the P-wave bulk modulus
(
α = ∆K

K

)
, density

(
β = ∆ρ

ρ

)
, impedance

(
∆I
I

)
and velocity

(
∆c
c

)
corresponding to different

pairs of θ1 and θ2.

From Fig. 3.3, we can see that when we add α2 to α1, the result is much closer to the

exact value of α. Furthermore, the result is better behaved; i.e., the plot surface becomes

flatter, over a larger range of precritical angles. Similarly, as shown in Fig. 3.4, the results

of β1 + β2 are much better than those of β1. In addition, the sign of β1 is wrong at some

angles, while, the results for β1 + β2 always have the right sign. So after including β2, the

sign of the density is corrected, which is very important in the earth identification, and also

the results of ∆I
I

(see Fig. 3.5 ) and ∆c
c

(see Fig. 3.6) are much closer to their exact values

respectively compared to the linear results.

Especially, the values of
(

∆c
c

)
1

are always greater than zero, that is, the sign of (∆c)1 is

always positive, which is the same as that of the exact value ∆c. We will further discuss

this in the next section.

3.3 A Special parameter for linear inversion

As mentioned before, in general, since the relationship between data and target property

changes is non-linear, linear inversion will produce errors in target property prediction.

When one actual property change is zero, the linear prediction of the change can be non-

zero. Also, when the actual change is positive, the predicted linear approximation can be

negative. There is a special parameter for linear inversion of acoustic media, that never

suffers the latter problem.
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From Eq. (3.13) we can see when c0 = c1, the reflection coefficient is independent of θ, then

from the linear form Eq. (3.25), we have

(
∆c

c

)

1

=
1

2
(α1 − β1) = 0 when ∆c = 0,

i.e., when ∆c = 0, (∆c)1 = 0. This generalizes to when ∆c > 0, then (∆c)1 > 0, or when

∆c < 0, then (∆c)1 < 0, as well. This can be shown mathematically (See Appendix A for

details).

Therefore, we can, first, get the right sign of the relative change in P-wave velocity from

the linear inversion (∆c)1, then, get more accurate values by including non-linear terms.

Another interesting point is that the image does not move when the velocity does not change

across an interface, i.e., c0 = c1, since, in this situation, the integrands of imaging terms

α1 − β1 in Eq. (3.12) are zero. We can see this more explicitly when we change the two

parameters α and β to ∆c
c

and β. Using the two relationships below (See details in Appendix

A) (
∆c

c

)

1

=
1

2
(α1 − β1),

and (
∆c

c

)

2

=
1

2

[
1

4
(α1 + β1)

2 − β2
1 + (α2 − β2)

]
,

rewriting Eq. (3.12) as

1

cos2 θ

(
∆c

c

)

2

(z) + β2(z) =
cos2 θ − 2

2 cos4 θ

(
∆c

c

)2

1

(z) − 1

2
β2

1(z)

− 1

cos4 θ

(
∆c

c

)′

1

(z)

z∫

0

dz′
(

∆c

c

)

1

− 1

cos2 θ
β′

1(z)

z∫

0

dz′
(

∆c

c

)

1

. (3.28)

This equation indicates two important concepts. One is leakage: there is no leakage correc-
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tion at all in this expression. Here the leakage means that, if the actual value of α (relative

changes in P-wave bulk modulus) is zero, its linear approximation α1 could be non-zero

since α and β are coupled together (like the coupled term α1β1 in Eq. 3.12) and α1 could

get leakage values from β1. While in Eq. (3.28), no such coupled term is present at all and

thus, if the actual changes in the velocity are zero, then its linear inversion
(

∆c
c

)
1

would

be zero and there would be no leakage from β1. This leakage issue or coupled term has

no analogue in the 1D one parameter acoustic case (Eq. 2.19) since in this case we only

have one parameter and there is no other parameter to leak into. Or in other words, in the

one parameter (velocity) case, each ‘jump’ in the amplitude of the data (primaries only)

corresponds to each wrong location with a wrong amplitude for the parameter predicted in

the linear inverse step; while in the two parameter case of this chapter, each ‘jump’ in the

data no longer has the simple one-to-one relationship with the amplitude and location of

the two parameters.

The other concept is purposeful perturbation which is mentioned in Chapter 2. The inte-

grand
(

∆c
c

)
1

of the imaging terms clearly tells that if we have the right velocity, the imaging

terms will automatically be zero even without doing any integration; otherwise, if we do

not have the right velocity, these imaging terms would be used to move the interface closer

to the right location from the wrong location. The conclusion from this equation is that

the depth imaging terms depend only on the velocity errors.

3.4 Conclusion

In this chapter, we derive the first two parameter direct non-linear inversion solution for

1D acoustic media with 2D experiment. Numerical tests show that the terms beyond linear

in earth property identification subseries provide added value. Although the models we

used in the numerical tests are simple (for some readers), Eqs. (3.11) and (3.12) also work

for more complex models since the inverse scattering series is a direct inversion procedure
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which inverts data directly without knowing the specific properties of the target.

The work presented in this chapter is an important step for target identification towards

more realism. The encouraging numerical results motivated us to move one step further

— extension of our work to the elastic case (see, e.g., Boyse and Keller, 1986) using three

parameters in the next chapter.
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Fig. 3.3: α1 (top) and α1 +α2 (bottom) displayed as a function of two different angles. The graphs
on the right are the corresponding contour plots of the graphs on the left. In this example,
the exact value of α is 0.292.
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Fig. 3.4: β1 (top) and β1 + β2 (bottom). In this example, the exact value of β is 0.09.
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Fig. 3.5: Linear approximation to relative change in impedance (see details in Appendix A)(
∆I
I

)
1

= 1
2(α1 + β1) (top). Sum of linear and first non-linear terms

(
∆I
I

)
1

+
(

∆I
I

)
2

=(
∆I
I

)
1
+ 1

2

[
1
4(α1 − β1)

2 + (α2 + β2)
]

(bottom). In this example, the exact value of ∆I
I

is
0.198.
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Fig. 3.6: Linear approximation to relative change in velocity (see details in Appendix A)
(

∆c
c

)
1

=
1
2(α1 − β1) (top). Sum of linear and first non-linear terms

(
∆c
c

)
1

+
(

∆c
c

)
2

=
(

∆c
c

)
1

+
1
2

[
1
4(α1 + β1)

2 − β2
1 + (α2 − β2)

]
(bottom). In this example, the exact value of ∆c

c
is

0.118.
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4. THREE PARAMETER ELASTIC INVERSION

In this chapter, we extend our work on direct non-linear inversion for 1D two parameter

acoustic media (Chapter 3) to the three parameter elastic case. Weglein and Stolt (1992)

presented the Born approximation inversion solutions for 2D elastic media (P-wave velocity,

S-wave velocity and density vary vertically and laterally) using three parameters. Recently,

R. H. Stolt extended the earlier elastic results to 3D. But that work mainly focuses on linear

elastic formulations. In this chapter, we use the same parameters and derive the first set

of direct non-linear inversion equations for 1D elastic media (i.e., depth/vertically varying

P-wave velocity, S-wave velocity and density).

The terms for moving mislocated reflectors are separated from inversion-only terms. Al-

though in principle this direct non-linear inversion approach requires all four components

of elastic data, synthetic tests indicate that consistent value-added results may be achieved

given only D̂PP (PP data) measurements. This means that we can perform direct elastic

non-linear inversion only using pressure measurements, i.e. towed streamer data. For the

case that all four components of data are available, a consistent method is provided.

Finally, we present the application to the time-lapse seismic data to distinguish pressure

changes from reservoir fluid changes while the conventional seismic time-lapse attributes

has difficulty. Initial tests give very useful results.
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4.1 Background for 2D elastic inversion

In this section we consider the inversion problem in two dimensions for an elastic medium.

We start with the displacement space, and then, for convenience (see e.g., Weglein and

Stolt, 1992; Aki and Richards, 2002), we change the basis and transform the equations to

PS space. Finally, we do the elastic inversion in the PS domain.

4.1.1 In the displacement space

We begin with some basic equations in the displacement space (Matson, 1997):

Lu = f , (4.1)

L0u = f , (4.2)

LG = δ, (4.3)

L0G0 = δ, (4.4)

where L and L0 are the differential operators that describe the wave propagation in the

actual and reference medium, respectively, u and f are the corresponding displacement and

source terms, respectively, and G and G0 are the corresponding Green’s operators for the

actual and reference medium.

Similar to Chapter 1, defining the perturbation V = L0 − L, the Lippmann- Schwinger

equation for the elastic media in the displacement space is

G = G0 + G0V G. (4.5)
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Iterating this equation back into itself generates the Born series

G = G0 + G0V G0 + G0V G0V G0 + · · · . (4.6)

We define the data D as the measured values of the scattered wave field. Then, on the

measurement surface, we have

D = G0V G0 + G0V G0V G0 + · · · . (4.7)

Expanding V as a series in orders of D we have

V = V1 + V2 + V3 + · · · . (4.8)

Substituting Eq. (4.8) into Eq. (4.7), evaluating Eq. (4.7), and setting terms of equal

order in the data equal, the equations that determine V1, V2, . . . from D and G0 would be

obtained.

D = G0V1G0, (4.9)

0 = G0V2G0 + G0V1G0V1G0, (4.10)

....

In the actual medium, the 2-D elastic wave equation is (Weglein and Stolt, 1992)

Lu ≡


ρω2




1 0

0 1


 +




∂1γ∂1 + ∂2µ∂2 ∂1(γ − 2µ)∂2 + ∂2µ∂1

∂2(γ − 2µ)∂1 + ∂1µ∂2 ∂2γ∂2 + ∂1µ∂1










u1

u2


 = f ,

(4.11)

where

u =




u1

u2


 = displacement,
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ρ = density,

γ = bulk modulus (≡ ρα2 where α = P-wave velocity),

µ = shear modulus (≡ ρβ2 where β = S-wave velocity),

ω = temporal frequency (angular), ∂1 and ∂2 denote the derivative over x and z, respectively,

and

f is the source term.

For constant (ρ, γ, µ) = (ρ0, γ0, µ0), (α, β) = (α0, β0), the operator L becomes

L0 ≡


ρ0ω

2




1 0

0 1


 +




γ0∂
2
1 + µ0∂

2
2 (γ0 − µ0)∂1∂2

(γ0 − µ0)∂1∂2 µ0∂
2
1 + γ0∂

2
2





 . (4.12)

Then,

V ≡L0 − L

= − ρ0




aρω
2 + α2

0∂1aγ∂1 + β2
0∂2aµ∂2 ∂1(α

2
0aγ − 2β2

0aµ)∂2 + β2
0∂2aµ∂1

∂2(α
2
0aγ − 2β2

0aµ)∂1 + β2
0∂1aµ∂2 aρω

2 + α2
0∂2aγ∂2 + β2

0∂1aµ∂1


 , (4.13)

where aρ ≡ ρ

ρ0
− 1, aγ ≡ γ

γ0
− 1 and aµ ≡ µ

µ0
− 1 are the three parameters we choose to do

the elastic inversion. For a 1D earth (i.e. aρ, aγ and aµ are only functions of depth z), the

expression above for V becomes

V = −ρ0




aρω
2 + α2

0aγ∂
2
1 + β2

0∂2aµ∂2 (α2
0aγ − 2β2

0aµ)∂1∂2 + β2
0∂2aµ∂1

∂2(α
2
0aγ − 2β2

0aµ)∂1 + β2
0aµ∂1∂2 aρω

2 + α2
0∂2aγ∂2 + β2

0aµ∂
2
1


 . (4.14)
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4.1.2 Transforming to PS space

For convenience, we can change the basis from u =




u1

u2


 to




φP

φS


 to allow L0 to be

diagonal,

Φ =




φP

φS


 =




γ0(∂1u1 + ∂2u2)

µ0(∂1u2 − ∂2u1)


 , (4.15)

also, we have 


φP

φS


 = Γ0Πu =




γ0(∂1u1 + ∂2u2)

µ0(∂1u2 − ∂2u1)


 , (4.16)

where Π =




∂1 ∂2

−∂2 ∂1


, Γ0 =




γ0 0

0 µ0


. In the reference medium, the operator L0 will

transform in the new basis via a transformation

L̂0 ≡ ΠL0Π
−1Γ−1

0 =




L̂P
0 0

0 L̂S
0


 ,

where L̂0 is L0 transformed to PS space, Π−1 =




∂1 −∂2

∂2 ∂1


∇−2 is the inverse matrix of

Π, L̂P
0 = ω2/α2

0 + ∇2, L̂S
0 = ω2/β2

0 + ∇2, and

F = Πf =




F P

F S


 . (4.17)

Then, in PS domain, Eq. (4.2) becomes,




L̂P
0 0

0 L̂S
0







φP

φS


 =




F P

F S


 . (4.18)
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Since G0 ≡ L−1
0 , let ĜP

0 =
(
L̂P

0

)−1

and ĜS
0 =

(
L̂S

0

)−1

, then the displacement G0 in PS

domain becomes

Ĝ0 = Γ0ΠG0Π
−1 =




ĜP
0 0

0 ĜS
0


 . (4.19)

So, in the reference medium, after transforming from the displacement domain to PS do-

main, both L0 and G0 become diagonal.

Multiplying Eq. (4.5) from the left by the operator Γ0Π and from the right by the operator

Π−1, and using Eq. (4.19),

Γ0ΠGΠ−1 = Ĝ0 + Ĝ0

(
ΠV Π−1Γ−1

0

)
Γ0ΠGΠ−1

= Ĝ0 + Ĝ0V̂ Ĝ, (4.20)

where the displacement Green’s operator G is transformed to the PS domain as

Ĝ = Γ0ΠGΠ−1 =




ĜPP ĜPS

ĜSP ĜSS


 . (4.21)

The perturbation V in the PS domain becomes

V̂ = ΠV Π−1Γ−1
0 =




V̂ PP V̂ PS

V̂ SP V̂ SS


 , (4.22)

where the left superscripts of the matrix elements represent the type of measurement and

the right ones are the source type.

Similarly, applying the PS transformation to the entire inverse series gives

V̂ = V̂1 + V̂2 + V̂3 + · · · . (4.23)
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It follows, from Eqs. (4.20) and (4.23) that

D̂ = Ĝ0V̂1Ĝ0, (4.24)

Ĝ0V̂2Ĝ0 = −Ĝ0V̂1Ĝ0V̂1Ĝ0, (4.25)

...

where D̂ =




D̂PP D̂PS

D̂SP D̂SS


 are the data in the PS domain.

In the displacement space we have, for Eq. (4.1),

u = Gf . (4.26)

Then, in the PS domain, Eq. (4.26) becomes

Φ = ĜF. (4.27)

On the measurement surface, we have

Ĝ = Ĝ0 + Ĝ0V̂1Ĝ0. (4.28)

Substituting Eq. (4.28) into Eq. (4.27), and rewriting Eq. (4.27) in matrix form:




φP

φS


 =




ĜP
0 0

0 ĜS
0







F P

F S


 +




ĜP
0 0

0 ĜS
0







V̂ PP
1 V̂ PS

1

V̂ SP
1 V̂ SS

1







ĜP
0 0

0 ĜS
0







F P

F S


 . (4.29)

This can be written as the following two equations

φP = ĜP
0 F P + ĜP

0 V̂ PP
1 ĜP

0 F P + ĜP
0 V̂ PS

1 ĜS
0 F S, (4.30)
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φS = ĜS
0 F S + ĜS

0 V̂ SP
1 ĜP

0 F P + ĜS
0 V̂ SS

1 ĜS
0 F S. (4.31)

We can see, from the two equations above, that for homogeneous media, (no perturbation,

V̂1 = 0), there are only direct P and S waves and that the two kind of waves are separated.

However, for inhomogeneous media, these two kinds of waves will be mixed together. If

only the P wave is incident, F P = 1, F S = 0, then the two Eqs. (4.30) and (4.31) above

are respectively reduced to

φP = ĜP
0 + ĜP

0 V̂ PP
1 ĜP

0 , (4.32)

φS = ĜS
0 V̂ SP

1 ĜP
0 . (4.33)

Hence, in this case, there is only the direct P wave ĜP
0 , and no direct wave S. But there

are two kinds of scattered waves: one is the P-to-P wave ĜP
0 V̂ PP

1 ĜP
0 , and the other is the

P-to-S wave ĜS
0 V̂ SP

1 ĜP
0 . For the acoustic case, only the P wave exists, and hence we only

have one equation φP = ĜP
0 + ĜP

0 V̂ PP
1 ĜP

0 .

Similarly, if only the S wave is incident, F P = 0, F S = 1, and the two Eqs. (4.30) and

(4.31) are, respectively, reduced to

φP = ĜP
0 V̂ PS

1 ĜS
0 , (4.34)

φS = ĜS
0 + ĜS

0 V̂ SS
1 ĜS

0 . (4.35)

In this case, there is only the direct S wave ĜS
0 , and no direct P wave. There are also two

kinds of scattered waves: one is the S-to-P wave ĜP
0 V̂ PS

1 ĜS
0 , the other is the S-to-S wave

ĜS
0 V̂ SS

1 ĜS
0 .

57



Three parameter elastic inversion

4.2 Linear inversion of a 1D elastic medium

Writing Eq. (4.24) in matrix form




D̂PP D̂PS

D̂SP D̂SS


 =




ĜP
0 0

0 ĜS
0







V̂ PP
1 V̂ PS

1

V̂ SP
1 V̂ SS

1







ĜP
0 0

0 ĜS
0


 , (4.36)

leads to four equations

D̂PP = ĜP
0 V̂ PP

1 ĜP
0 , (4.37)

D̂PS = ĜP
0 V̂ PS

1 ĜS
0 , (4.38)

D̂SP = ĜS
0 V̂ SP

1 ĜP
0 , (4.39)

D̂SS = ĜS
0 V̂ SS

1 ĜS
0 . (4.40)

For zs = zg = 0, in the (ks, zs; kg, zg; ω) domain, we get the following four equations relating

the linear components of the three elastic parameters and the four data types:

D̃PP (kg, 0;−kg, 0; ω) = − 1

4

(
1 −

k2
g

ν2
g

)
ã(1)

ρ (−2νg) −
1

4

(
1 +

k2
g

ν2
g

)
ã(1)

γ (−2νg)

+
2k2

gβ
2
0

(ν2
g + k2

g)α
2
0

ã(1)
µ (−2νg), (4.41)

D̃PS(νg, ηg) = −1

4

(
kg

νg

+
kg

ηg

)
ã(1)

ρ (−νg − ηg) −
β2

0

2ω2
kg(νg + ηg)

(
1 −

k2
g

νgηg

)
ã(1)

µ (−νg − ηg),

(4.42)

D̃SP (νg, ηg) =
1

4

(
kg

νg

+
kg

ηg

)
ã(1)

ρ (−νg − ηg) +
β2

0

2ω2
kg(νg + ηg)

(
1 −

k2
g

νgηg

)
ã(1)

µ (−νg − ηg),

(4.43)
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D̃SS(kg, ηg) = −1

4

(
1 −

k2
g

η2
g

)
ã(1)

ρ (−2ηg) −
[
η2

g + k2
g

4η2
g

−
2k2

g

η2
g + k2

g

]
ã(1)

µ (−2ηg), (4.44)

where

ν2
g + k2

g =
ω2

α2
0

,

η2
g + k2

g =
ω2

β2
0

.

For the P-wave incidence case (see Fig. 4.1), using k2
g/ν

2
g = tan2 θ and k2

g/(ν
2
g +k2

g) = sin2 θ,

where θ is the P-wave incident angle, Eq. (4.41) becomes

D̃PP (νg, θ) = −1

4
(1 − tan2 θ)ã(1)

ρ (−2νg) −
1

4
(1 + tan2 θ)ã(1)

γ (−2νg) +
2β2

0 sin2 θ

α2
0

ã(1)
µ (−2νg).

(4.45)

In this case, when β0 = β1 = 0, Eq. (4.45) reduces to the acoustic two parameter case Eq.

(3.11) for zg = zs = 0.

4.3 Direct non-linear inversion of 1D elastic medium

Writing Eq. (4.25) in matrix form:




ĜP
0 0

0 ĜS
0







V̂ PP
2 V̂ PS

2

V̂ SP
2 V̂ SS

2







ĜP
0 0

0 ĜS
0




= −




ĜP
0 0

0 ĜS
0







V̂ PP
1 V̂ PS

1

V̂ SP
1 V̂ SS

1







ĜP
0 0

0 ĜS
0







V̂ PP
1 V̂ PS

1

V̂ SP
1 V̂ SS

1







ĜP
0 0

0 ĜS
0


 , (4.46)

leads to four equations

ĜP
0 V̂ PP

2 ĜP
0 = −ĜP

0 V̂ PP
1 ĜP

0 V̂ PP
1 ĜP

0 − ĜP
0 V̂ PS

1 ĜS
0 V̂ SP

1 ĜP
0 , (4.47)
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q
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,, rba

000
,, rba

PP
T

PP
R

SP
R

SP
T

Incident P-wave

Fig. 4.1: Response of incident compressional wave on a planar elastic interface. α0, β0 and ρ0

are the compressional wave velocity, shear wave velocity and density of the upper layer,
respectively; α1, β1 and ρ1 denote the compressional wave velocity, shear wave velocity
and density of the lower layer. RPP , RSP , TPP and TSP denote the coefficients of
the reflected compressional wave, the reflected shear wave, the transmitted compressional
wave and the transmitted shear wave, respectively. (Foster et al., 1997)

ĜP
0 V̂ PS

2 ĜS
0 = −ĜP

0 V̂ PP
1 ĜP

0 V̂ PS
1 ĜS

0 − ĜP
0 V̂ PS

1 ĜS
0 V̂ SS

1 ĜS
0 , (4.48)

ĜS
0 V̂ SP

2 ĜP
0 = −ĜS

0 V̂ SP
1 ĜP

0 V̂ PP
1 ĜP

0 − ĜS
0 V̂ SS

1 ĜS
0 V̂ SP

1 ĜP
0 , (4.49)

ĜS
0 V̂ SS

2 ĜS
0 = −ĜS

0 V̂ SP
1 ĜP

0 V̂ PS
1 ĜS

0 − ĜS
0 V̂ SS

1 ĜS
0 V̂ SS

1 ĜS
0 . (4.50)

Since V̂ PP
1 relates to D̂PP , V̂ PS

1 relates to D̂PS, and so on, the four components of the data

will be coupled in the non-linear elastic inversion. We cannot perform the direct non-linear

inversion without knowing all components of the data. As shown in Chapter 3 and this

chapter, when the work on the two parameter acoustic case is extended to the present three

parameter elastic case, it is not just simply adding one more parameter, but there are more

issues involved. Even for the linear case, the linear solutions found in (4.41) ∼ (4.44) are

60



Three parameter elastic inversion

much more complicated than those of the acoustic case. For instance, four different sets of

linear parameter estimates are produced from each component of the data. Also, generally

four distinct reflector mislocations arise from the two reference velocities (P-wave velocity

and S-wave velocity).

However, in some situations like the towed streamer case, we do not have all components

of data available. A particular non-linear approach to be presented in the next section,

has been chosen to side-step a portion of this complexity and address our typical lack of

four components of elastic data: using D̂PP as the fundamental data input, and perform a

reduced form of non-linear elastic inversion, concurrently asking: what beyond-linear value

does this simpler framework add? We will see from the numerical tests presented in the

following section.

4.3.1 Only using D̂PP — a particular non-linear approach and the numerical tests

When assuming only D̂PP are available, first, we compute the linear solution for a
(1)
ρ , a

(1)
γ

and a
(1)
µ from Eq. (4.41). Then, substituting the solution into the other three equations

(4.42), (4.43) and (4.44), we synthesize the other components of data — D̂PS, D̂SP and D̂SS.

Finally, using the given D̂PP and the synthesized data, we perform the non-linear elastic

inversion, getting the following second order (first term beyond linear) elastic inversion

solution from Eq. (4.47),

(
1 − tan2 θ

)
a(2)

ρ (z) +
(
1 + tan2 θ

)
a(2)

γ (z) − 8b2 sin2 θa(2)
µ (z)

= − 1

2

(
tan4 θ − 1

) [
a(1)

γ (z)
]2

+
tan2 θ

cos2 θ
a(1)

γ (z)a(1)
ρ (z)

+
1

2

[(
1 − tan4 θ

)
− 2

C + 1

(
1

C

)(
α2

0

β2
0

− 1

)
tan2 θ

cos2 θ

] [
a(1)

ρ (z)
]2

− 4b2

[
tan2 θ − 2

C + 1

(
1

2C

) (
α2

0

β2
0

− 1

)
tan4 θ

]
a(1)

ρ (z)a(1)
µ (z)

+ 2b4

(
tan2 θ − α2

0

β2
0

)[
2 sin2 θ − 2

C + 1

1

C

(
α2

0

β2
0

− 1

)
tan2 θ

] [
a(1)

µ (z)
]2
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− 1

2

(
1

cos4 θ

)
a(1)′

γ (z)

∫ z

0

dz′
[
a(1)

γ (z′) − a(1)
ρ (z′)

]

− 1

2

(
1 − tan4 θ

)
a(1)′

ρ (z)

∫ z

0

dz′
[
a(1)

γ (z′) − a(1)
ρ (z′)

]

+ 4b2 tan2 θa(1)′
µ (z)

∫ z

0

dz′
[
a(1)

γ (z′) − a(1)
ρ (z′)

]

+
2

C + 1

1

C

(
α2

0

β2
0

− 1

)
tan2 θ

(
tan2 θ − C

)
b2

∫ z

0

dz′a(1)
µ z

(
(C − 1) z′ + 2z

(C + 1)

)
a(1)

ρ (z′)

− 2

C + 1

2

C

(
α2

0

β2
0

− 1

)
tan2 θ

(
tan2 θ − α2

0

β2
0

)
b4

∫ z

0

dz′a(1)
µ z

(
(C − 1) z′ + 2z

(C + 1)

)
a(1)

µ (z′)

+
2

C + 1

1

C

(
α2

0

β2
0

− 1

)
tan2 θ

(
tan2 θ + C

)
b2

∫ z

0

dz′a(1)
µ (z′) a(1)

ρ z

(
(C − 1)z′ + 2z

(C + 1)

)

− 2

C + 1

1

2C

(
α2

0

β2
0

− 1

)
tan2 θ

(
tan2 θ + 1

) ∫ z

0

dz′a(1)
ρ (z′) a(1)

ρ z

(
(C − 1) z′ + 2z

(C + 1)

)
,

(4.51)

where a
(1)
ρ z

(
(C−1)z′+2z

(C+1)

)
= d

[
a

(1)
ρ

(
(C−1)z′+2z

(C+1)

)]
/dz, b = β0

α0
and C = ηg

νg
=

√
1−b2 sin2 θ

b
√

1−sin2 θ
.

The first five terms on the right side of Eq. (4.51) are inversion terms; i.e., they contribute

to parameter predictions. The other terms on the right side of the equation are imaging

terms. The arguments for the remarks above are the same as in the acoustic case in Chapter

2. For one interface model, there is no imaging task. The only task is inversion. In this

case, all of the integration terms on the right side of Eq. (4.51) are zero, and only the first

five terms can be non-zero. Thus, we conclude that the integration terms (which care about

duration) are imaging terms, and the first five terms are inversion terms. Both the inversion

and imaging terms (especially the imaging terms) become much more complicated after the

extension of acoustic case (Chapter 2 and 3) to elastic case. The integrand of the first three

integral terms is the first order approximation of the relative change in P-wave velocity.

The derivatives a
(1)′
γ , a

(1)′
ρ and a

(1)′
µ in front of those integrals are acting to correct the wrong

locations caused by the inaccurate reference P-wave velocity. The other four terms with

integrals will be zero as β0 → 0 since in this case C → ∞.

In the following, we test this approach numerically.
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For a single interface 1D elastic medium case, as shown in Fig. 4.1, the reflection coefficient

RPP has the following form (Foster et al., 1997; Appendix B)

RPP =
N

D
, (4.52)

where

N = − (1 + 2kx2)2b
√

1 − c2x2
√

1 − d2x2 − (1 − a + 2kx2)2bcdx2

+ (a − 2kx2)2cd
√

1 − x2
√

1 − b2x2

+ 4k2x2
√

1 − x2
√

1 − b2x2
√

1 − c2x2
√

1 − d2x2 − ad
√

1 − b2x2
√

1 − c2x2

+ abc
√

1 − x2
√

1 − d2x2, (4.53)

D =(1 + 2kx2)2b
√

1 − c2x2
√

1 − d2x2 + (1 − a + 2kx2)2bcdx2

+ (a − 2kx2)2cd
√

1 − x2
√

1 − b2x2

+ 4k2x2
√

1 − x2
√

1 − b2x2
√

1 − c2x2
√

1 − d2x2 + ad
√

1 − b2x2
√

1 − c2x2

+ abc
√

1 − x2
√

1 − d2x2, (4.54)

where a = ρ1/ρ0, b = β0/α0, c = α1/α0, d = β1/α0, k = ad2 − b2 and x = sin θ, and

the subscripts “0” and “1” denote the reference medium and actual medium respectively.

Similar to the acoustic case, using the analytic data (Clayton and Stolt, 1981; Weglein et al.,

1986)

D̃PP (νg, θ) = RPP (θ)
e2iνga

4πiνg

, (4.55)

where a is the depth of the interface. Substituting Eq.(4.55) into Eq.(4.45), Fourier trans-

forming Eq.(4.45) over 2νg, and fixing z > a and θ, we have

(1 − tan2 θ)a(1)
ρ (z) + (1 + tan2 θ)a(1)

γ (z) − 8
β2

0

α2
0

sin2 θa(1)
µ (z) = 4RPP (θ)H(z − a). (4.56)
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In this section, we numerically test the direct inversion approach on the following four

models:

Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 =

2.46g/cm3; α0 = 2627m/s, α1 = 4423m/s; β0 = 1245m/s, β1 = 2939m/s.

Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3; α0 = 2627m/s,

α1 = 3251m/s; β0 = 1245m/s, β1 = 2138m/s.

Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 =

2.08g/cm3; α0 = 2627m/s, α1 = 2330m/s; β0 = 1245m/s, β1 = 1488m/s.

Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3; α0 =

3251m/s, α1 = 3507m/s; β0 = 2138m/s, β1 = 2116m/s.

To test and compare methods, the top of sand reflection was modeled for oil sands with

porosities of 10, 20, and 30%. The three models used the same shale overburden. An

oil/water contact model was also constructed for the 20% porosity sand.

The low porosity model (10%) represents a deep, consolidated reservoir sand. Pore fluids

have little effect on the seismic response of the reservoir sand. It is difficult to distinguish

oil sands from brine sands on the basis of seismic response. Impedance of the sand is higher

than impedance of the shale.

The moderate porosity model (20%) represents deeper, compacted reservoirs. Pore fluids

have a large impact on seismic response, but the fluid effect is less than that of the high

porosity case. The overlying shale has high density compared to the reservoir sand, but the

P-wave velocity of the oil sand exceeds that of the shale. As a result, impedance contrast is

reduced, and shear wave information becomes more important for detecting the reservoir.

The high porosity model (30%) is typical of a weakly consolidated, shallow reservoir sand.

Pore fluids have a large impact on the seismic response. Density, P-wave velocity, and the

α/β ratio of the oil sand are lower than the density, P-wave velocity, and α/β ratio of the
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overlying shale. Consequently, there is a significant decrease in density and P-wave bulk

modulus and an increase in shear modulus at the shale/oil sand interface.

The fourth model denotes an oil/water contact in a 20% porosity sand. At a fluid contact,

both density and P-wave velocity increase in going from the oil zone into the wet zone.

Because pore fluids have no affect on shear modulus, there is no change in shear modulus.

Using these four models, we can find the corresponding RPP from Eq. (4.52). Then,

choosing three different angles θ1, θ2 and θ3, we can get the linear solutions for a
(1)
ρ , a

(1)
γ

and a
(1)
µ from Eq. (4.56) , and then get the solutions for a

(2)
ρ , a

(2)
γ and a

(2)
µ from Eq. (4.51).

There are two plots in each figure. The left ones are the results for the first order, while

the right ones are the results for the first order plus the second order. The red lines denote

the corresponding actual values. In the figures, we illustrate the results corresponding to

different sets of angles θ1 and θ2. The third angle θ3 is fixed at zero.

Fig. 4.2: Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.46g/cm3;α0 = 2627m/s, α1 = 4423m/s; β0 = 1245m/s, β1 = 2939m/s. For this model,

the exact value of aρ is 0.06. The linear approximation a
(1)
ρ (left) and the sum of linear

and first non-linear a
(1)
ρ + a

(2)
ρ (right).

The numerical results indicate that all the second order solutions provide improvements
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Fig. 4.3: Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.46g/cm3;α0 = 2627m/s, α1 = 4423m/s; β0 = 1245m/s, β1 = 2939m/s. For this model,

the exact value of aγ is 2.01. The linear approximation a
(1)
γ (left) and the sum of linear

and first non-linear a
(1)
γ + a

(2)
γ (right).

over the linear solutions for all of the four models. When the second term is added to

linear order, the results become much closer to the corresponding exact values and the

surfaces become flatter in a larger range of angles. But the degrees of those improvements

are different for different models. How accurately D̂PP effectively synthesize D̂PS and D̂SP

(as shown in Figs. 4.14 ∼ 4.17) determined the degree of benefit provided by the non-linear

elastic approach. All of the “predicted” values in the figures are predicted using the linear

results from D̂PP . And the “actual” values are calculated from the Zoeppritz’ equations

(Appendix B).

In principle, the elastic non-linear direct inversion in 2D requires all four components of

data. However, in this section we introduce an approach which requires only D̂PP and

approximately synthesizes the other required components. Based on this approach, the first

direct non-linear elastic inversion solution is derived. Value-added results are obtained from

the non-linear inversion terms beyond linear. Although D̂PP can itself provide useful non-

linear direct inversion results, the implication of this research is that further value would
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Fig. 4.4: Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.46g/cm3;α0 = 2627m/s, α1 = 4423m/s; β0 = 1245m/s, β1 = 2939m/s. For this model,

the exact value of aµ is 4.91. The linear approximation a
(1)
µ (left) and the sum of linear

and first non-linear a
(1)
µ + a

(2)
µ (right).

derive from actually measuring D̂PP , D̂PS, D̂SP and D̂SS, as the method requires. In the

following section, we give a consistent method and solve all of the second order Eqs. (4.47),

(4.48), (4.49) and (4.50) with all four components of data available.
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Fig. 4.5: Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3; α0 =
2627m/s, α1 = 3251m/s; β0 = 1245m/s, β1 = 2138m/s. For this model, the exact value

of aρ is -0.022. The linear approximation a
(1)
ρ (left) and the sum of linear and first

non-linear a
(1)
ρ + a

(2)
ρ (right).

Fig. 4.6: Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3; α0 =
2627m/s, α1 = 3251m/s; β0 = 1245m/s, β1 = 2138m/s. For this model, the exact value

of aγ is 0.498. The linear approximation a
(1)
γ (left) and the sum of linear and first non-

linear a
(1)
γ + a

(2)
γ (right).
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Fig. 4.7: Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3; α0 =
2627m/s, α1 = 3251m/s; β0 = 1245m/s, β1 = 2138m/s. For this model, the exact value

of aµ is 1.89. The linear approximation a
(1)
µ (left) and the sum of linear and first non-

linear a
(1)
µ + a

(2)
µ (right).

Fig. 4.8: Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.08g/cm3;α0 = 2627m/s, α1 = 2330m/s; β0 = 1245m/s, β1 = 1488m/s. For this model,

the exact value of aρ is -0.103. The linear approximation a
(1)
ρ (left) and the sum of linear

and first non-linear a
(1)
ρ + a

(2)
ρ (right).
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Fig. 4.9: Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.08g/cm3;α0 = 2627m/s, α1 = 2330m/s; β0 = 1245m/s, β1 = 1488m/s. For this model,

the exact value of aγ is -0.295. The linear approximation a
(1)
γ (left) and the sum of linear

and first non-linear a
(1)
γ + a

(2)
γ (right).

Fig. 4.10: Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.08g/cm3; α0 = 2627m/s, α1 = 2330m/s; β0 = 1245m/s, β1 = 1488m/s. For this

model, the exact value of aµ is 0.281. The linear approximation a
(1)
µ (left) and the

sum of linear and first non-linear a
(1)
µ + a

(2)
µ (right).
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Fig. 4.11: Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3; α0 =
3251m/s, α1 = 3507m/s; β0 = 2138m/s, β1 = 2116m/s. For this model, the exact value

of aρ is 0.022. The linear approximation a
(1)
ρ (left) and the sum of linear and first

non-linear a
(1)
ρ + a

(2)
ρ (right).

Fig. 4.12: Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3; α0 =
3251m/s, α1 = 3507m/s; β0 = 2138m/s, β1 = 2116m/s. For this model, the exact value

of aγ is 0.19. The linear approximation a
(1)
γ (left) and the sum of linear and first non-

linear a
(1)
γ + a

(2)
γ (right).
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Fig. 4.13: Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3; α0 =
3251m/s, α1 = 3507m/s; β0 = 2138m/s, β1 = 2116m/s. For this model, the exact value

of aµ is 0.001. The linear approximation a
(1)
µ (left) and the sum of linear and first

non-linear a
(1)
µ + a

(2)
µ (right).
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5 10 15 20 25 30 35
θ

shale (0.2 porosity) over oil sand (0.1 porosity).

Rsp−actual

Rsp−predicted

5 10 15 20 25 30 35
θ

shale (0.2 porosity) over oil sand (0.1 porosity).

Rps−actual

Rps−predicted

Fig. 4.14: The comparison between the synthesized values and the actual values of Rsp (top)
and Rps (bottom) for Model 1: shale (0.20 porosity) over oil sand (0.10 porosity).
ρ0 = 2.32g/cm3, ρ1 = 2.46g/cm3; α0 = 2627m/s, α1 = 4423m/s; β0 = 1245m/s, β1 =
2939m/s.
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5 10 15 20 25 30 35 40 45 50
θ

shale (0.2 porosity) over oil sand (0.2 porosity).

Rsp−actual

Rsp−predicted

5 10 15 20 25 30 35 40 45 50
θ

shale (0.2 porosity) over oil sand (0.2 porosity).

Rps−actual

Rps−predicted

Fig. 4.15: The comparison between the synthesized values and the actual values of Rsp (top) and
Rps (bottom) for Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 =
2.27g/cm3; α0 = 2627m/s, α1 = 3251m/s;β0 = 1245m/s, β1 = 2138m/s.
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5 10 15 20 25 30 35 40 45 50
θ

shale (0.2 porosity) over oil sand (0.3 porosity).

Rsp−actual

Rsp−predicted

5 10 15 20 25 30 35 40 45 50
θ

shale (0.2 porosity) over oil sand (0.3 porosity).

Rps−actual

Rps−predicted

Fig. 4.16: The comparison between the synthesized values and the actual values of Rsp (top)
and Rps (bottom) for Model 3: shale (0.20 porosity) over oil sand (0.30 porosity).
ρ0 = 2.32g/cm3, ρ1 = 2.08g/cm3; α0 = 2627m/s, α1 = 2330m/s; β0 = 1245m/s, β1 =
1488m/s.
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5 10 15 20 25 30 35 40 45 50

θ (degree)

oil sand (0.2 porosity) over wet sand (0.2 porosity).

Rsp−actual

Rsp−predicted

5 10 15 20 25 30 35 40 45 50

θ (degree)

oil sand (0.2 porosity) over wet sand (0.2 porosity).

Rps−actual

Rps−predicted

Fig. 4.17: The comparison between the synthesized values and the actual values of Rsp (top) and
Rps (bottom) for Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 =
2.32g/cm3; α0 = 3251m/s, α1 = 3507m/s;β0 = 2138m/s, β1 = 2116m/s.
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4.3.2 Using all four components of data — full direct non-linear elastic inversion

Using four components of data, one consistent method to solve for the second terms is,

first, using the linear solutions as shown in Eqs. (4.41), (4.42), (4.43) and (4.44), we can

get the linear solution for a
(1)
ρ , a

(1)
γ and a

(1)
µ in terms of D̂PP , D̂PS, D̂SP and D̂SS through

the following way




a
(1)
ρ

a
(1)
γ

a
(1)
µ




= (OT O)−1OT




D̂PP

D̂PS

D̂SP

D̂SS




, (4.57)

where the matrix O is


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+
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(
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[
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g
2
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g
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g

2+ηSS
g

2

]




, (4.58)

and OT is the transpose of matrix O, the superscript −1 denotes the inverse of the matrix

OT O.

Let the arguments of a
(1)
ρ and a

(1)
µ in Eqs. (4.41), (4.42), (4.43) and (4.44) equal, we need

−2νPP
g = −νPS

g − ηPS
g = −νSP

g − ηSP
g = −2ηSS

g ,

which leads to (please see details in Appendix B)

2
ω

α0

cos θPP =
ω

α0

√
1 − α2

0

β2
0

sin2 θPS +
ω

β0

cos θPS =
ω

α0

cos θSP +
ω

β0

√
1 − β2

0

α2
0

sin2 θSP

= 2
ω

β0

cos θSS.
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From the expression above, given θPP , as shown in Fig. 4.18, we can find the corresponding

angles θPS, θSP and θSS which appear in matrix O

θPS = cos−1

[
4b2 cos2 θPP + 1 − b2

4b cos θPP

]
,

θSP = cos−1

[
4b2 cos2 θPP − 1 + b2

4b2 cos θPP

]
,

θSS = cos−1
(
b cos θPP

)
,

where b = β0

α0
.

PPq

PP PP

PSq

SS

PP

SPq

PP SS

SSq

SS SS

000
,, rba

111 ,, rba
000

,, rba

111 ,, rba

000
,, rba

111 ,, rba
000

,, rba

111 ,, rba

Fig. 4.18: Different incident angles.

Then, through the similar way, we can get the solution for a
(2)
ρ , a

(2)
γ and a

(2)
µ in terms of a

(1)
ρ ,

a
(1)
γ and a

(1)
µ 



a
(2)
ρ

a
(2)
γ

a
(2)
µ




= (OT O)−1OT Q, (4.59)

where the matrix Q is in terms of a
(1)
ρ , a

(1)
γ and a

(1)
µ .
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Based on this idea, we get the following non-linear solutions for Eqs. (4.47), (4.48), (4.49)

and (4.50) respectively.

The form of the solution for Eq. (4.47), i.e.,
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0 V̂ PP

2 ĜP
0 = −ĜP

0 V̂ PP
1 ĜP

0 V̂ PP
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1 ĜP
0 ,

is the same as Eq. (4.51). In the (ks, zs; kg, zg; ω) domain, we get the the other three

solutions respectively, for Eqs. (4.48), (4.49) and (4.50).

The solution for Eq. (4.48), i.e.,
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1 ĜS

0 − ĜP
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the solution for Eq. (4.49), i.e.,

ĜS
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and the solution for Eq. (4.50), i.e.,
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2 ĜS
0 = −ĜS
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1 ĜP

0 V̂ PS
1 ĜS
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where ηg = Cνg, k
2
g + ν2

g = ω2/α2
0 and k2

g + η2
g = ω2/β2

0 . In Appendix B, we give some

typical integrations which can be useful for the derivations, and Appendix C could help

in both derivation of the solution and understanding the algorithm. The interpretation of

these results are similar to those provided in Chapter 4.

After we solve all (four) of the second order equations, future research is to perform numer-

ical tests with all four components of data available.

The next section is another application of the direct non-linear inversion method (with PP

data only) to the time-lapse seismic data.
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4.4 An application to time-lapse seismic data

The inverse scattering series based direct non-linear inversion method has shown positive

results on its application to multi-parameter 1D acoustic and elastic media (see, e.g., Chap-

ter 3 and previous sections of Chapter 4). In this section, we present another application of

this method to time-lapse seismic data aiming to distinguish pressure changes from reser-

voir fluid changes. Two elastic parameters (Shear modulus and velocity ratio) are chosen

to discriminate the two changes. Synthetic tests indicate that these two parameters are

very useful in mapping the pressure and fluid changes; and, the direct non-linear inver-

sion method gives closer and more reliable parameter predictions compared to conventional

linear order approximation.

4.4.1 Introduction

Time-lapse seismic data can be defined as those seismic data acquired at different times over

the same area to assess changes in the subsurface with time, such as fluid movement or the

fraction of hydrocarbons that can be or has been produced from a well, reservoir or field. In

the production field, it is very important to monitor the development of the reservoir, like

timely information on changes in reservoir pressure and fluids. In order to do this, repeated

experiments would be needed at different times over the same area. Since the changes in

reservoir pressure and fluids could affect the seismic response very similarly, conventional

seismic time-lapse attributes find difficulty in distinguishing pressure changes from reservoir

fluid changes. Some works on studying the sensitivities and/or discrimination of these two

changes have been presented by, e.g., Tura and Lumley (1999); Landrø (2001); Landrø et al.

(2003); Landrø and Duffaut (2004); Stovas and Landrø (2005); Kvam and Landrø (2005).

In this section, as suggested by Robert G. Keys and Douglas J. Foster, we choose two

parameters — relative changes in shear modulus and velocity ratio Vp/Vs (Vp is the acoustic

P-wave velocity and Vs is the elastic S-wave velocity) which may be useful for separating
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pressure changes from fluid changes. The reason for choosing these two parameters is that

Vp/Vs is sensitive to changes in fluid/water saturation, but insensitive to changes in pressure;

while, shear modulus is sensitive to changes in pore pressure but unaffected by changes in

fluid. These two parameters can help to indicate either a pressure or a fluid changed in the

reservoir. Hence, if these two parameters can be more accurately predicted/estimated using

the direct non-linear inversion method, it would be easier to accomplish this goal.

The direct non-linear inversion method is based on the inverse scattering series, and it uses

the measured scattered wave field, i.e., data D, to predict the earth property changes in

space. Over here, the baseline survey is considered as the reference wave field G0 in the

inverse scattering series, and the monitor survey as the actual wave field G. The initial

reservoir condition is considered as the background and the reservoir property changes in

TIME are related to the earth property changes in SPACE in the inverse scattering series,

and the monitor survey minus the baseline survey is related to the scattered field. The

relationship between the inverse scattering series and the time-lapse seismic monitoring is

illustrated in the following table:

Inverse scattering series Time-lapse seismic monitoring

Reference medium L0 Initial reservoir condition

Actual medium L Current reservoir condition

Earth property changes in space V = L0 − L Reservoir property changes in time

Reference wave field G0 Baseline survey

Actual wave field G Monitor survey

Scattered wave field D = G − G0 Monitor − Baseline

In the following sections, we show the numerical tests of the first and second order algorithms

to estimate shear modulus and Vp/Vs contrasts with only D̂PP (PP data). The applications

are on the core data (Gregory, 1976) and Heidrun well log data, respectively. The tests

are similar to those numerical tests described in my previous work (e.g., Chapter 3 and
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previous sections of Chapter 4) with reference medium over actual medium replaced by

baseline over monitor; and the parameters require modification from aγ, aρ and aµ to aR, aρ

and aµ, where aR is the relative change in the velocity ratio Vp/Vs. The detailed derivations

of writing a
(1)
R and a

(2)
R in terms of a

(1)
γ , a

(2)
γ , a

(1)
µ and a

(2)
µ are in Appendix B.

4.4.2 Core data tests

In this section, we numerically test the direct non-linear inversion approach and compare

the effects of pressure and fluid changes on the elastic properties in the following two cases:

(1) Fixing the fluid as 100% water saturation, while the pressure changes from 1000 to

9000psi. The measurement at pressure = 5000psi presents the baseline and the measure-

ments at the other different pressures are respectively considered as monitors (Gregory,

1976, Table 3).

(2) Fixing the pressure at 5000psi, while the fluid changes from 0 to 100 percent. The

measurement at 100% saturation is the baseline and the other cases with different water

saturations are monitors, respectively (Gregory, 1976, Table 4).

The numerical results are shown in the figures at the end of this chapter. As illustrated

in Figs. 4.19 and 4.20, when pressure changes, shear modulus has the most variation and

Vp/Vs has the least variation; while when only water saturation changes, shear modulus

has the least variation and Vp/Vs has bigger variation. So shear modulus is very sensitive

to pressure changes while relatively not sensitive to the fluid changes, and Vp/Vs is very

sensitive to the fluid changes, but is relatively insensitive to the pressure changes. These

two parameters would be very useful in indicating/mapping pressure and fluid changes. The

P impedance has very big variation in both cases. So it is very sensitive to each of the two

kinds of changes and cannot discriminate fluid changes from pressure changes.

Figures. 4.21 ∼ 4.24 show the comparison of first and second order approximation of the

relative changes in shear modulus and Vp/Vs in the two cases as stated above. Among all of
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the examples tested, because the contrast here is relatively small, both the first and second

order approximation give good approximations, and the second order approximation does

an even better job, especially for larger contrasts, the improvements are more obvious. Here,

it is worth noting that the objective of the direct non-linear inversion method (e.g., Weglein

et al., 2003) is trying to predict more reliable property changes for more complex, larger

contrast targets where the error coming from the linear approximation would be significant.

4.4.3 Heidrun well log data tests

In this section, well log data tests are performed on the Heidrun synthetic well log A-52 (Fig.

4.25). From the year 1986 to the year 2001, at the first layer of the reservoir, oil is replaced

by gas, and at the second layer, oil is replaced by water. Throughout the interval, the pore

pressure decreased. So the main change that happened in the reservoir is the fluid change.

The baseline is the log data in 1986 and the monitor is the log data in 2001. In the numerical

tests, the inputs are analytically calculated reflection coefficients R1, R2, · · · , Ri, · · · and the

corresponding actual changes are, respectively, M1

B1
− 1, M2

B2
− 1, · · · , Mi

Bi
− 1, · · · (as shown in

Fig. 4.26), where Mi and Bi denote the ith layer mechanical properties of the monitor and

baseline, respectively.

From Fig. 4.27, we can see that, in the interval from about 3150 ∼ 3185m, oil goes to

gas, and Vp/Vs decreases; while in the interval from about 3200 ∼ 3220m, oil is replaced

by water, and Vp/Vs increases. Throughout this area, the pore pressure decreases a little

bit, so the shear modulus increases in a small amount. The numerical results agree with

the given well log A-52, and also indicate that the shear modulus is not sensitive to fluid

changes since it has very small changes throughout the interval because the pressure change

is small. Figure 4.28 is the comparison of the first order and second order approximation

for the relative changes in the shear modulus. In this case, the second order approximation

provides significant improvements beyond the linear results. It is much closer to the actual
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values. Figure 4.29 shows that both the first and second order approximation give very good

results for the relative changes in Vp/Vs. The error from the first approximation is smaller

and hence the first order approximation is more reliable compared with shear modulus (Fig.

4.28). But when we zoom in on Fig. 4.29, say from about 3150 ∼ 3590m, the results can be

re-illustrated in Fig. 4.30, and we can see that the second order approximation does give

better results compared with the first order approximation.

4.4.4 Conclusion

In this application of the direct non-linear inversion method to time-lapse seismic data, we

perform numerical tests (with PP data only), respectively, on core data and well log data.

In both cases, numerical results indicate that the second order approximation provides

improvements in the earth property predictions compared to the conventional first order

approximation. In addition, the numerical results (especially from the well log data tests)

show that the second order approximation is more helpful for predicting shear modulus

compared to Vp/Vs. This is a very important message since, in practice, the shear modulus

is more difficult to be reliably predicted compared to Vp/Vs with conventional inversion

methods. Future research is expected to apply this method to more realistic cases —

synthetic data and then real seismic data.
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Fig. 4.21: Comparison of first and second order approximation of relative change in shear modulus
for pressure changes, fluid fixed (100% water saturation). Gregory (1976), Table 3.
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Fig. 4.22: Comparison of first and second order approximation of relative change in Vp/Vs (See
Appendix B) for pressure changes, fluid fixed (100% water saturation). Gregory (1976),
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Fig. 4.23: Comparison of first and second order approximation of relative change in shear modulus
for fluid changes, pressure fixed (5000psi). Gregory (1976), Table 4.
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Fig. 4.24: Comparison of first and second order approximation of relative change in Vp/Vs for fluid
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5. SUMMARY

The current methods for removing multiples and processing primaries can give useful results

when their assumptions are satisfied. However, under some circumstances, especially in deep

water and in highly heterogeneous media and/or with a rapidly varying and corrugated

boundary, the assumptions behind those algorithms cannot be adequately satisfied; and,

hence, those methods can have difficulty and may become ineffective or fail. This technical

difficulty combining with the increased interest and cost in exploring potential hydrocarbon

targets under such circumstances as mentioned above, motivated the need for fundamentally

new seismic concepts and capability (Weglein, 2006a).

To deal with the difficulties faced by current methods, one strategy is trying to develop

a fundamentally new procedure which avoids those assumptions behind current methods.

The inverse scattering series based task-specific subseries strategy has the potential to:

(1) not only attenuate but eliminate internal multiples; (2) image and invert primaries

under complex circumstances with large earth property changes. It provided a sequence

of algorithms, respectively, for multiple removals (Carvalho, 1992; Araújo, 1994; Weglein

et al., 1997; Matson, 1997; Ramı́rez and Weglein, 2005), imaging without velocity (Shaw,

2005; Liu et al., 2005) and direct non-linear inversion.

In this dissertation, we develop a framework and algorithm for more accurate target iden-

tification. We focus on the direct non-linear inversion of 1D acoustic or elastic properties.

This is the first step into exploring the more comprehensive multi-parameter multi-D direct

non-linear inversion framework.
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Specifically, in Chapter 2, we extended the earlier work of, e.g., Weglein et al. (2001);

Weglein et al. (2003); Shaw and Weglein (2003); Shaw and Weglein (2004), from one para-

meter (velocity) 1D normal incidence to non-normal incidence case. We calculated the first

three terms in the inverse scattering series and identified task-specific imaging and inver-

sion terms. Numerical tests on three different one-interface models show that including the

first and second non-linear terms in the inverse scattering inversion subseries provides added

value and improved capability for parameter estimation compared to the conventional linear

results.

In Chapter 3, the direct non-linear inversion for the 1D one parameter case was generalized

to a multi-parameter case — two parameter (velocity and density) acoustic inversion. For

the first direct non-linear inversion solution obtained in this chapter, the tasks for imaging-

only and inversion-only terms were separated. Tests with analytic data indicated significant

added value, beyond linear estimates, in terms of both the proximity to actual value and

the increased range of angles over which the improved estimates are useful.

A closed form of the inversion terms for one-interface case was also obtained. This closed

form might be useful in predicting the precritical data using the postcritical data.

A special parameter ∆c (∆c = c−c0) (P-velocity change across an interface) was also found.

Its Born inversion (∆c)1 always has the right sign. That is, the sign of (∆c)1 is the same

as that of ∆c. In practice, it could be very useful to know whether the velocity increases

or decreases across the interface. After exchanging the parameters from α (relative changes

in P-bulk modulus) and β (relative changes in density) to velocity and β, another form

of the non-linear solution was obtained. There would be no leakage correction (please see

details in Section 3.3) at all in this solution. This new form obviously indicates that the

imaging terms care only about velocity errors. The mislocation is due to the wrong velocity.

This is suggestive of possible generalization to multi-D medium, also of possible model type

independent imaging which only depends on velocity changes.
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Summary

In Chapter 4, the work on direct non-linear inversion for 1D two parameter (velocity and

density) acoustic media was extended to the three parameter (P-wave velocity, S-wave

velocity and density) elastic case. We presented the first set of direct non-linear inversion

equations for 1D elastic media. The terms for moving mislocated reflectors were separated

from inversion-only terms. Although in principle this elastic non-linear direct inversion in 2D

requires all four components of data, the elastic non-linear inversion showed benefit in all the

cases tested with D̂PP (PP data) only. This means that we could perform elastic inversion

in some situations with only pressure measurements available, i.e. towed streamer data.

How accurately PP data effectively synthesize PS, SP and SS data determined the degree

of benefit provided by the non-linear elastic inversion. For the case that all four components

of data are available, a consistent method was provided. We anticipate collecting PP, PS,

SP and SS would provide further benefit.

The direct non-linear elastic inversion method was also applied to the case of seismic time-

lapse data (with PP data only), which was under the mentor and guidance of Robert Keys,

Douglas Foster and Simon Shaw of ConocoPhillips. The goal is to distinguish pressure

changes from reservoir fluid changes in cases when conventional seismic methods have dif-

ficulties. The numerical tests show excellent results.

Although the work presented in this dissertation is mainly focused on 1D media, the proce-

dure can be generalized to multi-D. The objective of the direct non-linear inversion project

is to provide more reliable and more accurate earth property predictions for more complex

targets compared to current inversion methods. The future research will examine the multi-

D generalizations and the practical data requirements when move to field data tests. The

work presented in this dissertation is an initial part of the whole project. It would help to

demonstrate how this fundamentally new method would work in a simple 1D acoustic and

elastic world with perfect analytic data. Then, we could expect it to be useful in the real

world and field data application.
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A. ACOUSTIC CASE

1 Derivation of α1, β1 and α2, β2

1. α1 and β1

Since

V1(z,∇) =
ω2α1(z)

K0

+
1

ρ0

β1(z)
∂2

∂x2
+

1

ρ0

∂

∂z
β1(z)

∂

∂z

=
1

ρ0

[
k2α1(z) + β1(z)

∂2

∂x2
+

∂

∂z
β1(z)

∂

∂z

]
, (A.1)

and

D = G0V1G0, (A.2)

then, we have

D(xg, zg; xs, zs; ω) =
1

ρ0

+∞∫

−∞

dx′

+∞∫

−∞

dz′G0(xg, zg; x
′, z′; ω)

×
[
k2α1(z

′) + β1(z
′)

∂2

∂x′2
+

∂

∂z′
β1(z

′)
∂

∂z′

]
G0(x

′, z′; xs, zs; ω). (A.3)

Similar to the one parameter case, after the Fourier transform over xg and xs, Eq. (A.3)

becomes

D̃(kg, zg;−ks, zs; ω) =
1

ρ0

+∞∫

−∞

dx′

+∞∫

−∞

dz′G̃0(kg, zg; x
′, z′; ω)
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×
[
k2α1(z

′) − k2
sβ1(z

′) +
∂

∂z′
β1(z

′)
∂

∂z′

]
G̃0(x

′, z′;−ks, zs; ω), (A.4)

where (Suppose α1 and β1 are not zero only under the source and receiver.)

G̃0(kg, zg; x
′, z′; ω) = ρ0e

−ikgx′ eiqg(z′−zg)

4πiqg

, (A.5)

G̃0(x
′, z′;−ks, zs; ω) = ρ0e

iksx′ eiqs(z′−zs)

4πiqs

. (A.6)

Then, Eq. (A.4) becomes

D̃(kg, zg;−ks, zs; ω)

= − ρ0

4qgqs

(
1

2π

)2

e−i(qgzg+qszs)

+∞∫

−∞

dx′

+∞∫

−∞

dz′e−i(kg−ks)x′
[
k2α1(z

′) − k2
sβ1(z

′)
]
ei(qg+qs)z′

− ρ0

4qgqs

(
1

2π

)2

e−i(qgzg+qszs)

+∞∫

−∞

dx′

+∞∫

−∞

dz′e−i(kg−ks)x′

eiqgz′ ∂

∂z′
β1(z

′)
∂

∂z′
eiqsz′ . (A.7)

After partial integration, where

+∞∫

−∞

dz′eiqgz′ ∂

∂z′
β1(z

′)
∂

∂z′
eiqsz′ = qgqs

+∞∫

−∞

dz′β1(z
′)ei(qg+qs)z′ ,

then, we have

D̃(qg; zg, zs; ω) = −ρ0

4
e−iqg(zg+zs)

[
k2

q2
g

α̃1(−2qg) −
k2

g

q2
g

β̃1(−2qg) + β̃1(−2qg)

]
. (A.8)

Similarly, using the relation qg = k cos θ, Eq. (A.8) becomes

D̃(qg, θ; zg, zs) = −ρ0

4
e−iqg(zg+zs)

[
1

cos2 θ
α̃1(−2qg) + (1 − tan2 θ)β̃1(−2qg)

]
. (A.9)

This is Eq. (3.11).
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2. α2 and β2

Since

V2(z,∇) =
ω2α2(z)

K0

+
1

ρ0

β2(z)
∂2

∂x2
+

1

ρ0

∂

∂z
β2(z)

∂

∂z

=
1

ρ0

[
k2α2(z) + β2(z)

∂2

∂x2
+

∂

∂z
β2(z)

∂

∂z

]
, (A.10)

and

G0V2G0 = −G0V1G0V1G0, (A.11)

then, we have

+∞∫

−∞

dx′

+∞∫

−∞

dz′G0(xg, zg; x
′, z′; ω)

[
k2α2(z

′) + β2(z
′)

∂2

∂x′2
+

∂

∂z′
β2(z

′)
∂

∂z′

]
G0(x

′, z′; xs, zs; ω)

= −
+∞∫

−∞

dx′

+∞∫

−∞

dz′
+∞∫

−∞

dx′′

+∞∫

−∞

dz′′G0(xg, zg; x
′, z′; ω)

[
k2α1(z

′) + β1(z
′)

∂2

∂x′2
+

∂

∂z′
β1(z

′)
∂

∂z′

]

× G0(x
′, z′; x′′, z′′; ω)

[
k2α1(z

′′) + β1(z
′′)

∂2

∂x′′2
+

∂

∂z′′
β1(z

′′)
∂

∂z′′

]

× G0(x
′′, z′′; xs, zs; ω). (A.12)

After the Fourier transform over xg and xs, Eq. (A.12) becomes (Suppose α1 and β1 is not

zero only under the source and receiver.)

+∞∫

−∞

dz′
[
k2

q2
g

α2(z
′) +

(
1 −

k2
g

q2
g

)
β2(z

′)

]
e2iqgz′

=
i

2

+∞∫

−∞

dz′
+∞∫

−∞

dz′′
eiqgz′

qg

[
k2α1(z

′) − k2
gβ1(z

′) +
∂

∂z′
β1(z

′)
∂

∂z′

]

× eiqg|z′−z′′|

qg

[
k2α1(z

′′) − k2
gβ1(z

′′) +
∂

∂z′′
β1(z

′′)
∂

∂z′′

]
eiqgz′′

qg
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=
i

2q3
g

+∞∫

−∞

dz′
+∞∫

−∞

dz′′
[
k2α1(z

′) − k2
gβ1(z

′)
] [

k2α1(z
′′) − k2

gβ1(z
′′)

]
eiqg(z′+z′′)eiqg |z′−z′′|

+
i

2q3
g

+∞∫

−∞

dz′
+∞∫

−∞

dz′′eiqgz′
[
k2α1(z

′) − k2
gβ1(z

′)
]
eiqg |z′−z′′| ∂

∂z′′
β1(z

′′)
∂

∂z′′
eiqgz′′

+
i

2q3
g

+∞∫

−∞

dz′
+∞∫

−∞

dz′′eiqgz′ ∂

∂z′
β1(z

′)
∂

∂z′
eiqg|z′−z′′|

[
k2α1(z

′′) − k2
gβ1(z

′′)
]
eiqgz′′

+
i

2q3
g

+∞∫

−∞

dz′
+∞∫

−∞

dz′′eiqgz′ ∂

∂z′
β1(z

′)
∂

∂z′
eiqg|z′−z′′| ∂

∂z′′
β1(z

′′)
∂

∂z′′
eiqgz′′

=I1 + I2 + I3 + I4. (A.13)

Then, after the Fourier transformation over 2qg on both sides of Eq. (A.13) and divided by

π, the left side becomes

1

cos2 θ
α2(z) + (1 − tan2 θ)β2(z).

On the right side, where

I1 =
i

2q3
g

+∞∫

−∞

dz′
+∞∫

−∞

dz′′
[
k2α1(z

′) − k2
gβ1(z

′)
] [

k2α1(z
′′) − k2

gβ1(z
′′)

]
eiqg(z′+z′′)eiqg |z′−z′′|

=
i

q3
g

+∞∫

−∞

dz′
+∞∫

−∞

dz′′
[
k2α1(z

′) − k2
gβ1(z

′)
] [

k2α1(z
′′) − k2

gβ1(z
′′)

]
e2iqgz′H(z′ − z′′)

=iqg

+∞∫

−∞

dz′
+∞∫

−∞

dz′′
[
k2

q2
g

α1(z
′) −

k2
g

q2
g

β1(z
′)

] [
k2

q2
g

α1(z
′′) −

k2
g

q2
g

β1(z
′′)

]
e2iqgz′H(z′ − z′′)

=iqg

+∞∫

−∞

dz′
+∞∫

−∞

dz′′
[

1

cos2 θ
α1(z

′) − tan2 θβ1(z
′)

] [
1

cos2 θ
α1(z

′′) − tan2 θβ1(z
′′)

]

× e2iqgz′H(z′ − z′′),
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then, after the Fourier transformation over 2qg and divided by π, I1 becomes

Ĩ1 = − 1

2

∂

∂z

+∞∫

−∞

dz′
+∞∫

−∞

dz′′
[

1

cos2 θ
α1(z

′) − tan2 θβ1(z
′)

] [
1

cos2 θ
α1(z

′′) − tan2 θβ1(z
′′)

]

× δ(z − z′)H(z′ − z′′)

= − 1

2

∂

∂z

{[
1

cos2 θ
α1(z) − tan2 θβ1(z)

] +∞∫

−∞

dz′′
[

1

cos2 θ
α1(z

′′) − tan2 θβ1(z
′′)

]
H(z − z′′)

}

= − 1

2

[
1

cos2 θ
α1(z) − tan2 θβ1(z)

]2

− 1

2

[
1

cos2 θ
α′

1(z) − tan2 θβ′
1(z)

] z∫

−∞

dz′
[

1

cos2 θ
α1(z

′) − tan2 θβ1(z
′)

]

= − 1

2 cos4 θ
α2

1(z) − tan4 θ

2
β2

1(z) +
tan2 θ

cos2 θ
α1(z)β1(z)

− 1

2 cos4 θ
α′

1(z)

z∫

−∞

dz′α1(z
′) − tan4 θ

2
β′

1(z)

z∫

−∞

dz′β1(z
′)

+
tan2 θ

2 cos2 θ
α′

1(z)

z∫

−∞

dz′β1(z
′) +

tan2 θ

2 cos2 θ
β′

1(z)

z∫

−∞

dz′α1(z
′),

and

I2 =
i

2q3
g

+∞∫

−∞

dz′
+∞∫

−∞

dz′′eiqgz′
[
k2α1(z

′) − k2
gβ1(z

′)
]
eiqg |z′−z′′| ∂

∂z′′
β1(z

′′)
∂

∂z′′
eiqgz′′

=
i

2q3
g

+∞∫

−∞

dz′
+∞∫

−∞

dz′′eiqgz′
[
k2α1(z

′) − k2
gβ1(z

′)
]

× eiqg|z′−z′′|
[
(iqg)

2β1(z
′′)eiqgz′′ + iqgβ

′
1(z

′′)eiqgz′′
]

= − iqg

2 cos2 θ

+∞∫

−∞

dz′
+∞∫

−∞

dz′′α1(z
′)β1(z

′′)
[
e2iqgz′H(z′ − z′′) + e2iqgz′′H(z′′ − z′)

]

+ iqg tan2 θ

+∞∫

−∞

dz′
+∞∫

−∞

dz′′β1(z
′)β1(z

′′)e2iqgz′H(z′ − z′′)
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− 1

2 cos2 θ

+∞∫

−∞

dz′
+∞∫

−∞

dz′′α1(z
′)β′

1(z
′′)

[
e2iqgz′H(z′ − z′′) + e2iqgz′′H(z′′ − z′)

]

+
tan2 θ

2

+∞∫

−∞

dz′
+∞∫

−∞

dz′′β1(z
′)β′

1(z
′′)

[
e2iqgz′H(z′ − z′′) + e2iqgz′′H(z′′ − z′)

]
,

then, after the Fourier transformation over 2qg and divided by π, I2 becomes

Ĩ2 =
1

4 cos2 θ
α′

1(z)

z∫

−∞

dz′β1(z
′) +

1

4 cos2 θ
β′

1(z)

z∫

−∞

dz′α1(z
′) +

1

2 cos2 θ
α1(z)β1(z)

− tan2 θ

2
β2

1(z) − tan2 θ

2
β′

1(z)

z∫

−∞

dz′β1(z
′)

− 1

2 cos2 θ
α1(z)β1(z) − 1

2 cos2 θ
β′

1(z)

z∫

−∞

dz′α1(z
′)

+
tan2 θ

2
β2

1(z) +
tan2 θ

2
β′

1(z)

z∫

−∞

dz′β1(z
′)

=
1

4 cos2 θ
α′

1(z)

z∫

−∞

dz′β1(z
′) − 1

4 cos2 θ
β′

1(z)

z∫

−∞

dz′α1(z
′),

and

I3 =
i

2q3
g

+∞∫

−∞

dz′
+∞∫

−∞

dz′′eiqgz′ ∂

∂z′
β1(z

′)
∂

∂z′
eiqg |z′−z′′|

[
k2α1(z

′′) − k2
gβ1(z

′′)
]
eiqgz′′

=
i

2q3
g

+∞∫

−∞

dz′
+∞∫

−∞

dz′′eiqgz′ ∂

∂z′

[
β1(z

′)iqgsign(z′ − z′′)eiqg|z′−z′′|
] [

k2α1(z
′′) − k2

gβ1(z
′′)

]
eiqgz′′

=
i

2q3
g

+∞∫

−∞

dz′
+∞∫

−∞

dz′′
[
β′

1(z
′)iqgsign(z′ − z′′)eiqg|z′−z′′| + β1(z

′)2iqgδ(z
′ − z′′)

+β1(z
′)(iqg)

2eiqg |z′−z′′|
] [

k2α1(z
′′) − k2

gβ1(z
′′)

]
eiqg(z′+z′′)

= − 1

2

+∞∫

−∞

dz′
+∞∫

−∞

dz′′β′
1(z

′)

[
1

cos2 θ
α1(z

′′) − tan2 θβ1(z
′′)

]
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×
[
e2iqgz′H(z′ − z′′) − e2iqgz′′H(z′′ − z′)

]

−
+∞∫

−∞

dz′β1(z
′)

[
1

cos2 θ
α1(z

′) − tan2 θβ1(z
′)

]
e2iqgz′

− iqg

2

+∞∫

−∞

dz′
+∞∫

−∞

dz′′β1(z
′)

[
1

cos2 θ
α1(z

′′) − tan2 θβ1(z
′′)

]

×
[
e2iqgz′H(z′ − z′′) + e2iqgz′′H(z′′ − z′)

]
,

then, after the Fourier transformation over 2qg and divided by π, I3 becomes

Ĩ3 = − 1

2 cos2 θ
β′

1(z)

z∫

−∞

dz′α1(z
′) +

1

2
tan2 θβ′

1(z)

z∫

−∞

dz′β1(z
′) +

1

2 cos2 θ
α1(z)β1(z)

− 1

2
tan2 θβ2

1(z) − 1

cos2 θ
α1(z)β1(z) + tan2 θβ2

1(z)

+
1

4 cos2 θ
β′

1(z)

z∫

−∞

dz′α1(z
′) +

1

4 cos2 θ
α′

1(z)

z∫

−∞

dz′β1(z
′) +

1

2 cos2 θ
α1(z)β1(z)

− 1

2
tan2 θβ′

1(z)

z∫

−∞

dz′β1(z
′) − 1

2
tan2 θβ2

1(z)

= − 1

4 cos2 θ
β′

1(z)

z∫

−∞

dz′α1(z
′)

+
1

4 cos2 θ
α′

1(z)

z∫

−∞

dz′β1(z
′),

and

I4 =
i

2q3
g

+∞∫

−∞

dz′
+∞∫

−∞

dz′′eiqgz′ ∂

∂z′
β1(z

′)
∂

∂z′
eiqg|z′−z′′| ∂

∂z′′
β1(z

′′)
∂

∂z′′
eiqgz′′

=
i

2q3
g

+∞∫

−∞

dz′
+∞∫

−∞

dz′′eiqgz′ ∂

∂z′
β1(z

′)
∂

∂z′
eiqg|z′−z′′|

[
(iqg)

2β1(z
′′)eiqgz′′ + iqgβ

′
1(z

′′)eiqgz′′
]
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=
i

2q3
g

+∞∫

−∞

dz′
+∞∫

−∞

dz′′eiqgz′ ∂

∂z′
β1(z

′)
[
iqgsign(z′ − z′′)eiqg|z′−z′′|

]

×
[
(iqg)

2β1(z
′′)eiqgz′′ + iqgβ

′
1(z

′′)eiqgz′′
]

=
i

2q3
g

+∞∫

−∞

dz′
+∞∫

−∞

dz′′eiqg(z′+z′′)β1(z
′)

[
(iqg)

2eiqg|z′−z′′| + 2iqgδ(z
′ − z′′)

]

×
[
(iqg)

2β1(z
′′) + iqgβ

′
1(z

′′)
]

+
i

2q3
g

+∞∫

−∞

dz′
+∞∫

−∞

dz′′eiqg(z′+z′′)β′
1(z

′)
[
iqgsign(z′ − z′′)eiqg |z′−z′′|

]

×
[
(iqg)

2β1(z
′′) + iqgβ

′
1(z

′′)
]

=iqg

+∞∫

−∞

dz′
+∞∫

−∞

dz′′β1(z
′)β1(z

′′)e2iqgz′H(z′ − z′′)

+
1

2

+∞∫

−∞

dz′
+∞∫

−∞

dz′′β1(z
′)β′

1(z
′′)

[
e2iqgz′H(z′ − z′′) + e2iqgz′′H(z′′ − z′)

]

+

+∞∫

−∞

dz′β2
1(z

′)e2iqgz′

− i

qg

+∞∫

−∞

dz′β′
1(z

′)β1(z
′)e2iqgz′

+
1

2

+∞∫

−∞

dz′
+∞∫

−∞

dz′′β′
1(z

′)β1(z
′′)

[
e2iqgz′H(z′ − z′′) − e2iqgz′′H(z′′ − z′)

]
,

then, after the Fourier transformation over 2qg and divided by π, I4 becomes

Ĩ4 = − 1

2
β2

1(z) − 1

2
β′

1(z)

z∫

−∞

dz′β1(z
′)

+
1

2
β2

1(z) +
1

2
β′

1(z)

z∫

−∞

dz′β1(z
′)

+ β2
1(z)
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− β2
1(z)

+
1

2
β′

1(z)

z∫

−∞

dz′β1(z
′) − 1

2
β2

1(z)

= − 1

2
β2

1(z) +
1

2
β′

1(z)

z∫

−∞

dz′β1(z
′),

where we use

1

π

+∞∫

−∞

dz′
+∞∫

−∞

dqg

(
− i

qg

)
β′

1(z
′)β1(z

′)e2iqg(z′−z)

= − 2

z∫

−∞

dz′β′
1(z

′)β1(z
′) = −β2

1(z).

Then, the right side should be:

Ĩ1 + Ĩ2 + Ĩ3 + Ĩ4

= − 1

2 cos4 θ
α2

1(z) − tan4 θ

2
β2

1(z) +
tan2 θ

cos2 θ
α1(z)β1(z)

− 1

2 cos4 θ
α′

1(z)

z∫

−∞

dz′α1(z
′) − tan4 θ

2
β′

1(z)

z∫

−∞

dz′β1(z
′)

+
tan2 θ

2 cos2 θ
α′

1(z)

z∫

−∞

dz′β1(z
′) +

tan2 θ

2 cos2 θ
β′

1(z)

z∫

−∞

dz′α1(z
′)

+
1

4 cos2 θ
α′

1(z)

z∫

−∞

dz′β1(z
′) − 1

4 cos2 θ
β′

1(z)

z∫

−∞

dz′α1(z
′)

− 1

4 cos2 θ
β′

1(z)

z∫

−∞

dz′α1(z
′) +

1

4 cos2 θ
α′

1(z)

z∫

−∞

dz′β1(z
′)

− 1

2
β2

1(z) +
1

2
β′

1(z)

z∫

−∞

dz′β1(z
′)

= − 1

2 cos4 θ
α2

1(z) − 1

2
(1 + tan4 θ)β2

1(z) +
tan2 θ

cos2 θ
α1(z)β1(z)
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− 1

2 cos4 θ
α′

1(z)

z∫

−∞

dz′[α1(z
′) − β1(z

′)]

+
1

2
(tan4 θ − 1)β′

1(z)

z∫

−∞

dz′[α1(z
′) − β1(z

′)].

After letting left side = right side, we have

1

cos2 θ
α2(z) + (1 − tan2 θ)β2(z)

= − 1

2 cos4 θ
α2

1(z) − 1

2
(1 + tan4 θ)β2

1(z) +
tan2 θ

cos2 θ
α1(z)β1(z)

− 1

2 cos4 θ
α′

1(z)

z∫

−∞

dz′[α1(z
′) − β1(z

′)]

+
1

2
(tan4 θ − 1)β′

1(z)

z∫

−∞

dz′[α1(z
′) − β1(z

′)]. (A.14)

This is Eq. (3.12).

2 Expressing
(

∆c
c

)
1
,
(

∆c
c

)
2
,
(

∆I
I

)
1

and
(

∆I
I

)
2

in terms of α1, β1 and α2, β2

The following is the derivation of writing
(

∆c
c

)
1
,
(

∆c
c

)
2
,
(

∆I
I

)
1

and
(

∆I
I

)
2

in terms of α1, β1

and α2, β2. Define ∆c = c − c0, ∆I = I − I0, ∆K = K − K0 and ∆ρ = ρ − ρ0.

Since K = c2ρ, then we have

(c − ∆c)2 =
K − ∆K

ρ − ∆ρ
.

Divided by c2, the equation above will become

2

(
∆c

c

)
−

(
∆c

c

)2

=

∆K
K

− ∆ρ

ρ

1 − ∆ρ

ρ

.
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Remember that α = ∆K
K

and β = ∆ρ

ρ
, the equation above can be rewritten as

2

(
∆c

c

)
−

(
∆c

c

)2

=
α − β

1 − β
.

Then we have

2

(
∆c

c

)
−

(
∆c

c

)2

= (α − β)(1 + β + β2 + · · · ), (A.15)

where the series expansion is valid for |β| < 1.

Similar to Eqs. (3.7) and (3.8), ∆c
c

can be expanded as

(
∆c

c

)
=

(
∆c

c

)

1

+

(
∆c

c

)

2

+ · · · . (A.16)

Then substitute Eqs. (A.16), (3.7) and (3.8) into Eq. (A.15), and set those terms of equal

order equal on both sides of Eq. (A.15), we can get

(
∆c

c

)

1

=
1

2
(α1 − β1), (A.17)

and (
∆c

c

)

2

=
1

2

[
1

4
(α1 + β1)

2 − β2
1 + (α2 − β2)

]
. (A.18)

Similarly, using I = cρ, we have

(I − ∆I)2 = (K − ∆K)(ρ − ∆ρ).

Divided by I2, the equation above will become

2

(
∆I

I

)
−

(
∆I

I

)2

= α + β − αβ. (A.19)
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Expanding ∆I
I

as (
∆I

I

)
=

(
∆I

I

)

1

+

(
∆I

I

)

2

+ · · · , (A.20)

and substitute Eqs. (A.20), (3.7) and (3.8) into Eq. (A.19), setting those terms of equal

order equal on both sides of Eq. (A.19), we can get

(
∆I

I

)

1

=
1

2
(α1 + β1), (A.21)

and (
∆I

I

)

2

=
1

2

[
1

4
(α1 − β1)

2 + (α2 + β2)

]
. (A.22)

3 Showing
(

∆c
c

)
1

having the same sign as ∆c

For the single interface example, from Eq. (3.25), we have

(
∆c

c

)

1

= 2
R(θ1) − R(θ2)

tan2 θ1 − tan2 θ2

.

The reflection coefficient is

R(θ) =
(ρ1/ρ0)(c1/c0)

√
1 − sin2 θ −

√
1 − (c2

1/c
2
0) sin2 θ

(ρ1/ρ0)(c1/c0)
√

1 − sin2 θ +
√

1 − (c2
1/c

2
0) sin2 θ

.

Let

A(θ) = (ρ1/ρ0)(c1/c0)
√

1 − sin2 θ,

B(θ) =
√

1 − (c2
1/c

2
0) sin2 θ.

Then

R(θ1) − R(θ2) = 2
A(θ1)B(θ2) − B(θ1)A(θ2)

[A(θ1) + B(θ1)] [A(θ2) + B(θ2)]
,
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where the denominator is greater than zero. The numerator is

2 [A(θ1)B(θ2) − B(θ1)A(θ2)] =2(ρ1/ρ0)(c1/c0)

[√
1 − sin2 θ1

√
1 − (c2

1/c
2
0) sin2 θ2

−
√

1 − sin2 θ2

√
1 − (c2

1/c
2
0) sin2 θ1

]
.

Let

C =
√

1 − sin2 θ1

√
1 − (c2

1/c
2
0) sin2 θ2,

D =
√

1 − sin2 θ2

√
1 − (c2

1/c
2
0) sin2 θ1.

Then,

C2 − D2 =

(
c2
1

c2
0

− 1

)
(sin2θ1 − sin2θ2).

When c1 > c0 and θ1 > θ2 , we have (Noticing that both C and D are positive.)

(
c2
1

c2
0

− 1

)
(sin2θ1 − sin2θ2) > 0,

so

R(θ1) − R(θ2) > 0;

Similarly, when c1 < c0 and θ1 > θ2 , we have

(
c2
1

c2
0

− 1

)
(sin2θ1 − sin2θ2) < 0,

so

R(θ1) − R(θ2) < 0.

Remembering that
(

∆c
c

)
1

= 2 R(θ1)−R(θ2)
tan2 θ1−tan2 θ2

. So for c1 > c0, (∆c)1 > 0 and for c1 < c0,

(∆c)1 < 0 .
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B. ELASTIC CASE

1 Background for elastic 2D wave equation

For an isotropic solid, the relations between stress and strain are (Sheriff and Geldart, 1994)




σxx

σyy

σzz

σxy

σyz

σzx




=




λ + 2µ λ λ 0 0 0

λ λ + 2µ λ 0 0 0

λ λ λ + 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ







ǫxx

ǫyy

ǫzz

ǫxy

ǫyz

ǫzx




The six components of strain, in terms of displacements, are ǫxx = ∂ux

∂x
, ǫyy = ∂uy

∂y
, ǫzz = ∂uz

∂z
,

ǫxy = ǫyx = ∂ux

∂y
+ ∂uy

∂x
, ǫyz = ǫzy = ∂uy

∂z
+ ∂uz

∂y
, ǫzx = ǫxz = ∂uz

∂x
+ ∂ux

∂z
. The equations of motion

for an isotropic solid are (Body forces are set to zero.):

∂σxx

∂x
+

∂σxy

∂y
+

∂σzx

∂z
= ρ

∂2ux

∂t2
,

∂σxy

∂x
+

∂σyy

∂y
+

∂σyz

∂z
= ρ

∂2uy

∂t2
,

∂σzx

∂x
+

∂σyz

∂y
+

∂σzz

∂z
= ρ

∂2uz

∂t2
,
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then, the 2D (x,z) equations of motion in terms of displacement are:

ρω2ux +
∂

∂x
(λ + 2µ)

∂ux

∂x
+

∂

∂z
µ

∂ux

∂z
+

∂

∂x
λ

∂uz

∂z
+

∂

∂z
µ

∂uz

∂x
= 0,

ρω2uz +
∂

∂z
λ

∂ux

∂x
+

∂

∂x
µ

∂ux

∂z
+

∂

∂z
(λ + 2µ)

∂uz

∂z
+

∂

∂x
µ

∂uz

∂x
= 0,

where λ + 2µ = ρα2 = γ, µ = ρβ2.

2 Derivation of Rpp, Rps, Tpp, Tps, Rsp and Rss

1. Derivation of Rpp, Rps, Tpp and Tps

Non-normal incidence of P-plane wave on a horizontal interface between two elastic solids

will generate four independent propagating waves, the reflected P-wave (Rpp), the reflected

shear wave (Rps), the transmitted P-wave (Tpp) and the transmitted shear wave (Tps). The

incident P-wave and the resulting reflected and transmitted waves are shown in Fig. 4.1 of

Chapter 4. The amplitudes (coefficients) of these waves are given by the conditions that the

normal and tangential components of stress and displacement must be continuous across the

boundary between the two elastic solids. From these boundary conditions, four equations

are derived for the coefficients of the four plane waves (See e.g., Achenbach, 1973; Sheriff

and Geldart, 1994; Foster et al., 1997). In matrix form, the four equations are

M




Rpp

Rps

Tpp

Tps




=




x
√

1 − x2

2b2x
√

1 − x2

1 − 2b2x2




, (B.1)
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where M is the matrix




−x −
√

1 − b2x2 cx −
√

1 − d2x2

√
1 − x2 −bx

√
1 − c2x2 dx

2b2x
√

1 − x2 b(1 − 2b2x2) 2ad2x
√

1 − c2x2 −ad(1 − 2d2x2)

−(1 − 2b2x2) 2b2x
√

1 − b2x2 ac(1 − 2d2x2) 2ad2x
√

1 − d2x2




, (B.2)

a = ρ2/ρ1, b = β1/α1, c = α2/α1, d = β2/α1 and x = sinθ.

The angle θ is the angle of incidence measured counter-clockwise from the normal to the

reflecting boundary.

Let D denote the determinant of M , and let NRpp be the determinant of the matrix obtained

by replacing the first column of M with the vector on the right hand side of Eq. (B.1). The

compressional wave reflection coefficient is given by Rpp = NRpp/D, where

NRpp = − (1 + 2kx2)2b
√

1 − c2x2
√

1 − d2x2 − (1 − a + 2kx2)2bcdx2

+ (a − 2kx2)2cd
√

1 − x2
√

1 − b2x2

+ 4k2x2
√

1 − x2
√

1 − b2x2
√

1 − c2x2
√

1 − d2x2 − ad
√

1 − b2x2
√

1 − c2x2

+ abc
√

1 − x2
√

1 − d2x2. (B.3)

D =(1 + 2kx2)2b
√

1 − c2x2
√

1 − d2x2 + (1 − a + 2kx2)2bcdx2

+ (a − 2kx2)2cd
√

1 − x2
√

1 − b2x2

+ 4k2x2
√

1 − x2
√

1 − b2x2
√

1 − c2x2
√

1 − d2x2 + ad
√

1 − b2x2
√

1 − c2x2

+ abc
√

1 − x2
√

1 − d2x2, (B.4)

where k = ad2 − b2.

D is positive for all precritical angles of incidence; i.e., for all |x| less than or equal to the

125



minimum of 1 and 1/c. N is real over the same range of angles. Therefore, the compressional

wave reflection coefficient is real and continuous for all precritical angles of incidence.

Let NRps be the determinant of the matrix obtained by replacing the second column of M

with the vector on the right hand side of Eq. (B.1). The shear wave reflection coefficient is

given by Rps = NRps/D. Where

NRps = − 4kx(1 + 2kx2)
√

1 − x2
√

1 − c2x2
√

1 − d2x2

− 2cdx(2kx2 − a)(2kx2 − a + 1)
√

1 − x2. (B.5)

Let NTpp be the determinant of the matrix obtained by replacing the third column of M

with the vector on the right hand side of Eq. (B.1). The P wave transmission coefficient is

given by Tpp = NTpp/D, where

NTpp =2b
(
1 + 2kx2

)√
1 − x2

√
1 − d2x2

+ 2d
(
a − 2kx2

)√
1 − x2

√
1 − b2x2. (B.6)

Let NTps be the determinant of the matrix obtained by replacing the fourth column of M

with the vector on the right hand side of Eq. (B.1). The shear wave transmission coefficient

is given by Tps = NTps/D. Where

NTps =4kx
√

1 − x2
√

1 − b2x2
√

1 − c2x2

+ 2bcx
(
1 − a + 2kx2

)√
1 − x2. (B.7)

2. Derivation of Rsp and RSS

For non-normal incidence of SV-plane wave on a horizontal interface between two elastic

solids will generate four independent propagating waves, the reflected P-wave (Rsp), the

reflected shear wave (Rss), the transmitted P-wave (Tsp) and the transmitted shear wave
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(Tss).

The amplitudes (coefficients) of these waves are given by the conditions that the normal and

tangential components of stress and displacement must be continuous across the boundary

between the two elastic solids. From these boundary conditions, four equations are derived

for the coefficients of the four plane waves. In matrix form, the four equations are

M




Rsp

Rss

Tsp

Tss




=




√
1 − b2x2

−bx

b (1 − 2b2x2)

−2b2x
√

1 − b2x2




, (B.8)

where M is the same matrix as the P-wave incidence case,




−x −
√

1 − b2x2 cx −
√

1 − d2x2

√
1 − x2 −bx

√
1 − c2x2 dx

2b2x
√

1 − x2 b(1 − 2b2x2) 2ad2x
√

1 − c2x2 −ad(1 − 2d2x2)

−(1 − 2b2x2) 2b2x
√

1 − b2x2 ac(1 − 2d2x2) 2ad2x
√

1 − d2x2




,

a = ρ2/ρ1, b = β1/α1, c = α2/α1, d = β2/α1 and x = sinθ.

The angle θ is the angle of P-wave reflection measured counter-clockwise from the normal

to the reflecting boundary.

Let NRsp be the determinant of the matrix obtained by replacing the first column of M

with the vector on the right hand side of Eq. (B.8). The P wave reflection coefficient is

given by Rsp = NRsp/D, where

NRsp = − 4kbx(1 + 2kx2)
√

1 − b2x2
√

1 − c2x2
√

1 − d2x2

− 2cdbx(2kx2 − a)(2kx2 − a + 1)
√

1 − b2x2. (B.9)
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Let NRss be the determinant of the matrix obtained by replacing the second column of M

with the vector on the right hand side of Eq. (B.8). The shear wave reflection coefficient is

given by Rss = NRss/D, where

NRss =(1 + 2kx2)2b
√

1 − c2x2
√

1 − d2x2 + (1 − a + 2kx2)2bcdx2

− (a − 2kx2)2cd
√

1 − x2
√

1 − b2x2

− 4k2x2
√

1 − x2
√

1 − b2x2
√

1 − c2x2
√

1 − d2x2 − ad
√

1 − b2x2
√

1 − c2x2

+ abc
√

1 − x2
√

1 − d2x2. (B.10)

2.2.1 Something more about the reflection and transmission coefficients and energy

distribution

1. The reflection coefficients and transmission coefficients given by the Zoeppritz’ equations

are not the same as that from Knott’s equations. Sheriff and Geldart (1994) use the Zoep-

pritz’ equations to define the coefficients, while Ewing et al. (1957) use Knott’s equations.

The differences between those two groups of coefficients are some constants (the velocity

ratios) respectively. So only those coefficients experiencing velocity changes are different.

For example, Rpp from both of the two kinds of equations are the same while Tpp are different.

As θ = 0 (normal incidence) and ρ1 = ρ0, using the Zoeppritz’ equations (e.g., Eq. 3.15 in

Sheriff and Geldart, 1994 or the matrix form from Foster et al., 1997)

Tpp =
2c0

c0 + c1

,

and if using Knott’s equations (e.g., Eq. 3-19 in Ewing et al., 1957)

Tpp =
2c1

c0 + c1

.

In summary, among the references, e.g., Ewing et al. (1957) use Knott’s equations; while
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Achenbach (1973), Aki and Richards (2002) and Foster et al. (1997) use Zoeppritz’ equa-

tions. And Sheriff and Geldart (1994) give both methods.

2. Energy distribution equations:

Using Knott’s equations, the corresponding energy distribution equation is:

R2
pp +

cot δ1

cot θ1

R2
ps +

ρ2

ρ1

cot θ2

cot θ1

T 2
pp +

ρ2

ρ1

cot δ2

cot θ1

T 2
ps = 1.

Using Zoeppritz’ equations, we derived the corresponding energy distribution equation ac-

cording to Sheriff and Geldart (1994) as

R2
pp +

cot δ1

cot θ1

β2
1

α2
1

R2
ps +

ρ2

ρ1

cot θ2

cot θ1

α2
2

α2
1

T 2
pp +

ρ2

ρ1

cot δ2

cot θ1

β2
2

α2
1

T 2
ps = 1.

3 The form of perturbation V̂

From Eq. (4.14), we have

V = −ρ0




aρω
2 + α2

0aγ∂
2
1 + β2

0∂2aµ∂2 (α2
0aγ − 2β2

0aµ)∂1∂2 + β2
0∂2aµ∂1

∂2(α
2
0aγ − 2β2

0aµ)∂1 + β2
0aµ∂1∂2 aρω

2 + α2
0∂2aγ∂2 + β2

0aµ∂
2
1


 . (B.11)

Then, in PS domain, using the relation in Eq. (4.22), i.e.,

V̂ = ΠV Π−1Γ−1
0 =




V̂ PP V̂ PS

V̂ SP V̂ SS


 , (B.12)

where, as before, the left superscripts of the matrix elements represent the type of measure-

ment and the right ones are the source type. The form of V̂ PP , V̂ PS, V̂ SP and V̂ SS can be

written, respectively, as

V̂ PP
1 = −∇2a(1)

γ − ω2

α2
0

(
a(1)

ρ ∂2
1 + ∂2a

(1)
ρ ∂2

) 1

∇2
−

[
−2∂2

2a
(1)
mu∂

2
1 − 2∂2

1a
(1)
mu∂

2
2 + 4∂2

1∂2a
(1)
mu∂2

] 1

∇2
,
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V̂ PS
1 =

α2
0

β2
0

[
ω2

α2
0

(
∂1a

(1)
ρ ∂2 − ∂2a

(1)
ρ ∂1

)
+ 2∂1∂2a

(1)
mu

(
∂2

2 − ∂2
1

)
− 2

(
∂2

2 − ∂2
1

)
a(1)

mu∂2∂1

]
1

∇2
,

V̂ SP
1 = −

[
ω2

α2
0

(
∂1a

(1)
ρ ∂2 − ∂2a

(1)
ρ ∂1

)
+ 2∂1∂2a

(1)
mu

(
∂2

2 − ∂2
1

)
− 2

(
∂2

2 − ∂2
1

)
a(1)

mu∂2∂1

]
1

∇2
,

V̂ SS
1 = − α2

0

β2
0

[
ω2

α2
0

(
a(1)

ρ ∂2
1 + ∂2a

(1)
ρ ∂2

)
+ (∂2

2 − ∂2
1)a

(1)
mu(∂

2
2 − ∂2

1) + 4∂1∂2a
(1)
mu∂1∂2

]
1

∇2
,

where amu = µ−µ0

γ0
=

β2
0

α2
0
aµ. We make this definition only for convenience, also we have

amu = 0 as β = β0 = 0. We can also rewrite the forms above as the following

V̂ PP
1 = −∇2a(1)

γ − ω2

α2
0

(
a(1)

ρ ∂2
1 + ∂2a

(1)
ρ ∂2

) 1

∇2
−

[
−2(∂2

1 + ∂2
2)a

(1)
mu∂

2
1 − 2∂2

1a
(1)
mu(∂

2
1 + ∂2

2)

+4∂2
1a

(1)
mu∂

2
1 + 4∂2

1∂2a
(1)
mu∂2

] 1

∇2

= −∇2a(1)
γ − ω2

α2
0

(
a(1)

ρ ∂2
1 + ∂2a

(1)
ρ ∂2

) 1

∇2
+ 2∂2

1a
(1)
mu + 2∂2

1∇2a(1)
mu

1

∇2

− 4∂2
1

(
a(1)

mu∂
2
1 + ∂2a

(1)
mu∂2

) 1

∇2
,

V̂ PS
1 =

α2
0

β2
0

[
ω2

α2
0

(
∂1a

(1)
ρ ∂2 − ∂2a

(1)
ρ ∂1

)
+ 2∂1∂2a

(1)
mu

(
∂2

2 + ∂2
1

)
− 4∂1∂2a

(1)
mu∂

2
1

−2
(
∂2

2 + ∂2
1

)
a(1)

mu∂2∂1 + 4∂2
1a

(1)
mu∂2∂1

] 1

∇2

=
α2

0

β2
0

2∂1∂2a
(1)
mu +

α2
0

β2
0

[
ω2

α2
0

(
∂1a

(1)
ρ ∂2 − ∂2a

(1)
ρ ∂1

)
− 4∂1∂2a

(1)
mu∂

2
1 − 2∇2a(1)

mu∂2∂1

+4∂2
1a

(1)
mu∂2∂1

] 1

∇2
.

Similarly, V̂ SP
1 can be written as

V̂ SP
1 = −2∂1∂2a

(1)
mu −

[
ω2

α2
0

(
∂1a

(1)
ρ ∂2 − ∂2a

(1)
ρ ∂1

)
− 4∂1∂2a

(1)
mu∂

2
1 − 2∇2a(1)

mu∂2∂1

+4∂2
1a

(1)
mu∂2∂1

] 1

∇2
,
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and V̂ SS
1 as

V̂ SS
1 =

α2
0

β2
0

[
−∇2a(1)

mu −
ω2

α2
0

(
a(1)

ρ ∂2
1 + ∂2a

(1)
ρ ∂2

) 1

∇2
+ 2∂2

1a
(1)
mu + 2∂2

1∇2a(1)
mu

1

∇2

−4∂2
1

(
a(1)

mu∂
2
1 + ∂2a

(1)
mu∂2

) 1

∇2

]
.

4 1
∇2 acting on the middle causal Green’s function

Considering term

ĜP
0 a(1)

ρ

1

∇2
ĜP

0 a(1)
ρ ĜP

0 , (B.13)

writing in the integral form

I =
1

(2π)6

∫ ∫ ∫ ∫
dz′dz′′dx′dx′′

∫ ∫
dk′

xdk′
z

eik′

x(xg−x′)eik′

z(zg−z′)

k2 − k′2
x − k′2

z

a(1)
ρ (z′)

1

∇′2

×
∫ ∫

dk′′
xdk′′

z

eik′′

x(x′−x′′)eik′′

z (z′−z′′)

k2 − k′′2
x − k′′2

z

a(1)
ρ (z′′)

∫ ∫
dk′′′

x dk′′′
z

eik′′′

x (x′′−xs)eik′′′

z (z′′−zs)

k2 − k′′′2
x − k′′′2

z

.

Fourier transform over xs and xg, multiply 1
(2π)2

∫ ∫
dxgdxse

−ikgxgeiksxs on both sides, we

get (assume z′ > zg and z′′ > zs)

Ĩ =
1

(2π)6

∫ ∫ ∫ ∫
dz′dz′′dx′dx′′e−ikgx′

(−πi)
eiνg(z′−zg)

νg

a(1)
ρ (z′)

1

∇′2

×
∫ ∫

dk′′
xdk′′

z

eik′′

x(x′−x′′)eik′′

z (z′−z′′)

k2 − k′′2
x − k′′2

z

a(1)
ρ (z′′)eiksx′′

(−πi)
eiνs(z′′−zs)

νs

,

where ν2
g = k2 − k2

g , ν2
s = k2 − k2

s . After integration over x′′, and then over k′′
x, we get

Ĩ = − 2π3 1

(2π)6

∫ ∫
dz′dz′′

eiνg(z′−zg)

νg

a(1)
ρ (z′)

∫
dx′e−ikgx′ 1

∇′2

×
∫

dk′′
z

eiksx′

eik′′

z (z′−z′′)

ν2
s − k′′2

z

a(1)
ρ (z′′)

eiνs(z′′−zs)

νs
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= − 2π3 1

(2π)6

∫ ∫
dz′dz′′

eiνg(z′−zg)

νg

a(1)
ρ (z′)

∫
dx′e−ikgx′

×
∫

dk′′
z

eiksx′

eik′′

z (z′−z′′)

(ν2
s − k′′2

z )(−k2
s − k′′2

z )
a(1)

ρ (z′′)
eiνs(z′′−zs)

νs

,

After the integration over x′, we get

Ĩ = − 4π4 1

(2π)6

∫ ∫
dz′dz′′

eiνg(z′−zg)

νg

a(1)
ρ (z′)

∫
dk′′

z

eik′′

z (z′−z′′)

(ν2
g − k′′2

z )(−k2
g − k′′2

z )
a(1)

ρ (z′′)
eiνg(z′′−zs)

νg

= − 4π4 1

(2π)6

∫ ∫
dz′dz′′

eiνg(z′−zg)

νg

a(1)
ρ (z′)

∫
dk′′

z

eik′′

z (z′−z′′)

(k′′2
z − ν2

g )(k
′′2
z + k2

g)
a(1)

ρ (z′′)
eiνg(z′′−zs)

νg

,

where

∫
dk′′

z

eik′′

z (z′−z′′)

(k′′2
z − ν2

g )(k
′′2
z + k2

g)
,

in the complex plane

= lim
ǫ→0+

∫
dk′′

z

eik′′

z (z′−z′′)

[k′′2
z − (νg + iǫ)2] (k′′2

z + k2
g)

,

For νg > 0, kg > 0 and z′ > z′′,

Resf(k′′
z = νg + iǫ) =

ei(νg+iǫ)(z′−z′′)

[(νg + iǫ) + (νg + iǫ)]
[
(νg + iǫ)2 + k2

g

]

=
ei(νg+iǫ)(z′−z′′)

(2νg + 2iǫ)
[
(νg + iǫ)2 + k2

g

] ,

Resf(k′′
z = ikg) =

ei(ikg)(z′−z′′)

[
−k2

g − (νg + iǫ)2
]
2ikg

=
e−kg(z′−z′′)

[
−k2

g − (νg + iǫ)2
]
2ikg

,
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Then,

lim
ǫ→0+

∫
dk′′

z

eik′′

z (z′−z′′)

[k′′2
z − (νg + iǫ)2] (k′′2

z + k2
g)

=2πi lim
ǫ→0+

[Resf(k′′
z = νg + iǫ) + Resf(k′′

z = ikg)]

=2πi

[
eiνg(z′−z′′)

2νg(ν2
g + k2

g)
+

e−kg(z′−z′′)

(−k2
g − ν2

g )2ikg

]

=
−πi

−k2
g − ν2

g

[
eiνg(z′−z′′)

νg

− e−kg(z′−z′′)

ikg

]
,

Similarly, for νg > 0, kg > 0 and z′ < z′′,

∫
dk′′

z

eik′′

z (z′−z′′)

(k′′2
z − ν2

g )(k
′′2
z + k2

g)

= − 2πi

[
e−iνg(z′−z′′)

−2νg(ν2
g + k2

g)
+

ekg(z′−z′′)

(−k2
g − ν2

g )(−2ikg)

]

=
−πi

−k2
g − ν2

g

[
e−iνg(z′−z′′)

νg

− ekg(z′−z′′)

ikg

]
,

Then, for νg > 0 and kg > 0,

∫
dk′′

z

eik′′

z (z′−z′′)

(k′′2
z − ν2

g )(k
′′2
z + k2

g)

=
−πi

−k2
g − ν2

g

[
eiνg |z′−z′′|

νg

− e−kg|z′−z′′|

ikg

]
,

Therefore,

Ĩ = − 4π4 1

(2π)6

∫ ∫
dz′dz′′

eiνg(z′−zg)

νg

a(1)
ρ (z′)

−πi

−k2
g − ν2

g

[
eiνg|z′−z′′|

νg

− e−kg|z′−z′′|

ikg

]

× a(1)
ρ (z′′)

eiνg(z′′−zs)

νg

=
4π5i

−k2
g − ν2

g

1

(2π)6

∫ ∫
dz′dz′′

eiνg(z′−zg)

νg

a(1)
ρ (z′)

[
eiνg |z′−z′′|

νg

− e−kg|z′−z′′|

ikg

]
a(1)

ρ (z′′)
eiνg(z′′−zs)

νg

,

(B.14)
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We know that, for

ĜP
0 a(1)

ρ ĜP
0 a(1)

ρ ĜP
0 , (B.15)

written in the integral form

I ′ =
1

(2π)6

∫ ∫ ∫ ∫
dz′dz′′dx′dx′′

∫ ∫
dk′

xdk′
z

eik′

x(xg−x′)eik′

z(zg−z′)

k2 − k′2
x − k′2

z

a(1)
ρ (z′)

×
∫ ∫

dk′′
xdk′′

z

eik′′

x(x′−x′′)eik′′

z (z′−z′′)

k2 − k′′2
x − k′′2

z

a(1)
ρ (z′′)

∫ ∫
dk′′′

x dk′′′
z

eik′′′

x (x′′−xs)eik′′′

z (z′′−zs)

k2 − k′′′2
x − k′′′2

z

,

After fourier transform over xs and xg, multiply 1
(2π)2

∫ ∫
dxgdxse

−ikgxgeiksxs on both sides,

we get

Ĩ ′ =4π5i
1

(2π)6

∫ ∫
dz′dz′′

eiνg(z′−zg)

νg

a(1)
ρ (z′)

eiνg |z′−z′′|

νg

a(1)
ρ (z′′)

eiνg(z′′−zs)

νg

, (B.16)

Compare the result Eq. (B.14) of Eq. (B.13) with Eq. (B.16) of Eq. (B.15), we can know

that

1

∇′2

[
eiνg|z′−z′′|

νg

eikgx′

]
= − 1

ν2
g + k2

g

[
eiνg |z′−z′′|

νg

− e−kg|z′−z′′|

ikg

]
eikgx′

.

5 Typical integrations

For PPP case, considering

()ĜP
0 a(1)

µ ĜP
0 a(1)

ρ ĜP
0 ,
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where “()” is the coefficient in terms of kg, qg and some constants. After Fourier transform

over xs, xg, i.e., multiply

1

(2π)2

+∞∫

−∞

dxg

+∞∫

−∞

dxse
−ikgxgeiksxs ,

and then Fourier transform over νg, i.e., multiply

2π
1

π

+∞∫

−∞

dνge
−2iνgz,

= ()
1

8ν4
g


−a(1)

µ (z)a(1)
ρ (z) − 1

2
a(1)′

µ (z)

z∫

−∞

dz′a(1)
ρ (z′) − 1

2
a(1)′

ρ (z)

z∫

−∞

dz′a(1)
µ (z′)


 ,

and for

()ĜP
0 a(1)

µ ĜP
0 a(1)

ρ sgn(z′ − z′′)ĜP
0 ,

after Fourier transform over xs, xg, and νg,

= ()
1

8ν4
g


−1

2
a(1)′

µ (z)

z∫

−∞

dz′a(1)
ρ (z′) +

1

2
a(1)′

ρ (z)

z∫

−∞

dz′a(1)
µ (z′)


 ,

and for

()ĜP
0 a(1)

µ ĜP
0 a(1)

ρ δ(z′ − z′′)ĜP
0 ,

after Fourier transform over xs, xg, and νg,

= ()
i

8ν3
g

[
a(1)

µ (z)a(1)
ρ (z)

]
,
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For PSP case, considering

()ĜP
0 a(1)

µ ĜS
0 a(1)

ρ ĜP
0 ,

where “()” is the coefficient in terms of kg, qg and some constants. After Fourier transform

over xs, xg, and νg,

=()

(
1

8ηgν3
g

)
2

C + 1


−a(1)

µ (z)a(1)
ρ (z) − 1

2

z∫

−∞

dz′a(1)
µ z

(
2z + (C − 1)z′

C + 1

)
a(1)

ρ (z′)

−1

2

z∫

−∞

dz′a(1)
µ (z′)a(1)

ρ z

(
2z + (C − 1)z′

C + 1

)
 ,

where C satisfies ηg = Cνg. For

()ĜP
0 a(1)

µ ĜS
0 a(1)

ρ sgn(z′ − z′′)ĜP
0 ,

after Fourier transform over xs, xg, and νg,

=()

(
1

8ηgν3
g

)
2

C + 1


−1

2

z∫

−∞

dz′a(1)
µ z

(
2z + (C − 1)z′

C + 1

)
a(1)

ρ (z′)

+
1

2

z∫

−∞

dz′a(1)
µ (z′)a(1)

ρ z

(
2z + (C − 1)z′

C + 1

)
 ,

and for

()ĜP
0 a(1)

µ ĜS
0 a(1)

ρ δ(z′ − z′′)ĜP
0 ,

after Fourier transform over xs, xg, and νg,

= ()
i

8ηgν2
g

[
a(1)

µ (z)a(1)
ρ (z)

]
,
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For SSS case, considering

()ĜS
0 a(1)

µ ĜS
0 a(1)

ρ ĜS
0 ,

where “()” is the coefficient in terms of kg, qg and some constants. After Fourier transform

over xs, xg, and νg, where Fourier transform over νg is to multiply

2π
1

π

+∞∫

−∞

dηge
−2iηgz,

=()

(
1

8η4
g

) 
−a(1)

µ (z)a(1)
ρ (z) − 1

2
a(1)′

µ (z)

z∫

−∞

dz′a(1)
ρ (z′) − 1

2
a(1)′

ρ (z)

z∫

−∞

dz′a(1)
µ (z′)


 ,

and for

()ĜS
0 a(1)

µ ĜS
0 a(1)

ρ sgn(z′ − z′′)ĜS
0 ,

after Fourier transform over xs, xg, and νg,

= ()
1

8η4
g


−1

2
a(1)′

µ (z)

z∫

−∞

dz′a(1)
ρ (z′) +

1

2
a(1)′

ρ (z)

z∫

−∞

dz′a(1)
µ (z′)


 ,

and for

()ĜS
0 a(1)

µ ĜS
0 a(1)

ρ δ(z′ − z′′)ĜS
0 ,

after Fourier transform over xs, xg, and νg,

= ()
i

8η3
g

[
a(1)

µ (z)a(1)
ρ (z)

]
,
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For SPS case, considering

()ĜS
0 a(1)

µ ĜP
0 a(1)

ρ ĜS
0 ,

where “()” is the coefficient in terms of kg, qg and some constants. After Fourier transform

over xs, xg, and νg, where Fourier transform over νg is to multiply

2π
1

π

+∞∫

−∞

dηge
−2iηgz,

=()

(
1

8η3
gνg

)
2C

C + 1


−a(1)

µ (z)a(1)
ρ (z) − 1

2

z∫

−∞

dz′a(1)
µ z

(
2Cz − (C − 1)z′

C + 1

)
a(1)

ρ (z′)

−1

2

z∫

−∞

dz′a(1)
µ (z′)a(1)

ρ z

(
2Cz − (C − 1)z′

C + 1

)
 ,

where C satisfies ηg = Cνg. For

()ĜS
0 a(1)

µ ĜP
0 a(1)

ρ sgn(z′ − z′′)ĜS
0 ,

after Fourier transform over xs, xg, and νg,

=()

(
1

8η3
gνg

)
2C

C + 1


−1

2

z∫

−∞

dz′a(1)
µ z

(
2Cz − (C − 1)z′

C + 1

)
a(1)

ρ (z′)

+
1

2

z∫

−∞

dz′a(1)
µ (z′)a(1)

ρ z

(
2Cz − (C − 1)z′

C + 1

)
 ,

and for

()ĜS
0 a(1)

µ ĜP
0 a(1)

ρ δ(z′ − z′′)ĜS
0 ,
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after Fourier transform over xs, xg, and νg,

= ()
i

8η2
gνg

[
a(1)

µ (z)a(1)
ρ (z)

]
,

For SPP case, considering

()ĜS
0 a(1)

µ ĜP
0 a(1)

ρ ĜP
0 ,

where “()” is the coefficient in terms of kg, qg and some constants. After Fourier transform

over xs, xg, and νg, where Fourier transform over νg is to multiply

2π
1

2π

+∞∫

−∞

d(νg + ηg)e
−i(νg+ηg)z,

=()

(
1

8ηgν3
g

) 
− 1

C + 1
a(1)

µ (z)a(1)
ρ (z) − 1

C + 1
a(1)′

µ (z)

z∫

−∞

dz′a(1)
ρ (z′)

−1

2
a(1)

µ (z)a(1)
ρ (z) − 1

2

z∫

−∞

dz′a(1)
µ (z′)a(1)

ρ z

(
(C + 1)z − (C − 1)z′

2

)
 ,

where C satisfies ηg = Cνg. For

()ĜS
0 a(1)

µ ĜP
0 a(1)

ρ sgn(z′ − z′′)ĜP
0 ,

after Fourier transform over xs, xg, and νg,

=()

(
1

8ηgν3
g

) 
− 1

C + 1
a(1)

µ (z)a(1)
ρ (z) − 1

C + 1
a(1)′

µ (z)

z∫

−∞

dz′a(1)
ρ (z′)

+
1

2
a(1)

µ (z)a(1)
ρ (z) +

1

2

z∫

−∞

dz′a(1)
µ (z′)a(1)

ρ z

(
(C + 1)z − (C − 1)z′

2

)
 ,
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and for

()ĜS
0 a(1)

µ ĜP
0 a(1)

ρ δ(z′ − z′′)ĜP
0 ,

after Fourier transform over xs, xg, and νg,

= ()
i

8ηgν2
g

[
a(1)

µ (z)a(1)
ρ (z)

]
,

For SSP case, considering

()ĜS
0 a(1)

µ ĜS
0 a(1)

ρ ĜP
0 ,

where “()” is the coefficient in terms of kg, qg and some constants. After Fourier transform

over xs, xg, and νg, where Fourier transform over νg is to multiply

2π
1

2π

+∞∫

−∞

d(νg + ηg)e
−i(νg+ηg)z,

=()

(
1

8η2
gν

2
g

) 
− 1

2C
a(1)

µ (z)a(1)
ρ (z) − 1

2C

z∫

−∞

dz′a(1)
µ z

(
(C + 1)z + (C − 1)z′

2C

)
a(1)

ρ (z′)

− 1

C + 1
a(1)

µ (z)a(1)
ρ (z) − 1

C + 1
a(1)′

ρ (z)

z∫

−∞

dz′a(1)
µ (z′)


 ,

where C satisfies ηg = Cνg. For

()ĜS
0 a(1)

µ ĜS
0 a(1)

ρ sgn(z′ − z′′)ĜP
0 ,
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after Fourier transform over xs, xg, and νg,

=()

(
1

8η2
gν

2
g

) 
− 1

2C
a(1)

µ (z)a(1)
ρ (z) − 1

2C

z∫

−∞

dz′a(1)
µ z

(
(C + 1)z + (C − 1)z′

2C

)
a(1)

ρ (z′)

+
1

C + 1
a(1)

µ (z)a(1)
ρ (z) +

1

C + 1
a(1)′

ρ (z)

z∫

−∞

dz′a(1)
µ (z′)


 ,

and for

()ĜS
0 a(1)

µ ĜS
0 a(1)

ρ δ(z′ − z′′)ĜP
0 ,

after Fourier transform over xs, xg, and νg,

= ()
i

8η2
gνg

[
a(1)

µ (z)a(1)
ρ (z)

]
,

For PPS case, considering

()ĜP
0 a(1)

µ ĜP
0 a(1)

ρ ĜS
0 ,

where “()” is the coefficient in terms of kg, qg and some constants. After Fourier transform

over xs, xg, and νg, where Fourier transform over νg is to multiply

2π
1

2π

+∞∫

−∞

d(νg + ηg)e
−i(νg+ηg)z,

=()

(
1

8ηgν3
g

) 
−1

2
a(1)

µ (z)a(1)
ρ (z) − 1

2

z∫

−∞

dz′a(1)
µ z

(
(C + 1)z − (C − 1)z′

2

)
a(1)

ρ (z′)

− 1

C + 1
a(1)

µ (z)a(1)
ρ (z) − 1

C + 1
a(1)′

ρ (z)

z∫

−∞

dz′a(1)
µ (z′)


 ,
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where C satisfies ηg = Cνg. For

()ĜP
0 a(1)

µ ĜP
0 a(1)

ρ sgn(z′ − z′′)ĜS
0 ,

after Fourier transform over xs, xg, and νg,

=()

(
1

8ηgν3
g

) 
−1

2
a(1)

µ (z)a(1)
ρ (z) − 1

2

z∫

−∞

dz′a(1)
µ z

(
(C + 1)z − (C − 1)z′

2

)
a(1)

ρ (z′)

+
1

C + 1
a(1)

µ (z)a(1)
ρ (z) +

1

C + 1
a(1)′

ρ (z)

z∫

−∞

dz′a(1)
µ (z′)


 ,

and for

()ĜP
0 a(1)

µ ĜP
0 a(1)

ρ δ(z′ − z′′)ĜS
0 ,

after Fourier transform over xs, xg, and νg,

= ()
i

8ηgν2
g

[
a(1)

µ (z)a(1)
ρ (z)

]
,

For PSS case, considering

()ĜP
0 a(1)

µ ĜS
0 a(1)

ρ ĜS
0 ,

where “()” is the coefficient in terms of kg, qg and some constants. After Fourier transform

over xs, xg, and νg, where Fourier transform over νg is to multiply

2π
1

2π

+∞∫

−∞

d(νg + ηg)e
−i(νg+ηg)z,
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=()

(
1

8η2
gν

2
g

) 
− 1

C + 1
a(1)

µ (z)a(1)
ρ (z) − 1

C + 1
a(1)′

µ (z)

z∫

−∞

dz′a(1)
ρ (z′)

− 1

2C
a(1)

µ (z)a(1)
ρ (z) − 1

2C

z∫

−∞

dz′a(1)
µ (z′)a(1)

ρ z

(
(C + 1)z + (C − 1)z′

2C

)
 ,

where C satisfies ηg = Cνg. For

()ĜP
0 a(1)

µ ĜS
0 a(1)

ρ sgn(z′ − z′′)ĜS
0 ,

after Fourier transform over xs, xg, and νg,

=()

(
1

8η2
gν

2
g

) 
− 1

C + 1
a(1)

µ (z)a(1)
ρ (z) − 1

C + 1
a(1)′

µ (z)

z∫

−∞

dz′a(1)
ρ (z′)

+
1

2C
a(1)

µ (z)a(1)
ρ (z) +

1

2C

z∫

−∞

dz′a(1)
µ (z′)a(1)

ρ z

(
(C + 1)z + (C − 1)z′

2C

)
 ,

and for

()ĜP
0 a(1)

µ ĜS
0 a(1)

ρ δ(z′ − z′′)ĜS
0 ,

after Fourier transform over xs, xg, and νg,

= ()
i

8η2
gνg

[
a(1)

µ (z)a(1)
ρ (z)

]
.
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6 The coefficients before every linear quantity (a
(1)
γ , a

(1)
ρ , a

(1)
µ ) — different

incidence angle θ

For P to P case, we have

kPP
g =

ω

α0

sin θPP ,

νPP
g =

ω

α0

cos θPP .

For S to P case,

kPS
g =

ω

β0

sin θPS,

νPS
g =

ω

α0

√
1 − α2

0

β2
0

sin2 θPS,

ηPS
g =

ω

β0

cos θPS.

For P to S case,

kSP
g =

ω

α0

sin θSP ,

νSP
g =

ω

α0

cos θSP ,

ηSP
g =

ω

β0

√
1 − β2

0

α2
0

sin2 θSP .

For S to S case,

kSS
g =

ω

β0

sin θSS,

ηSS
g =

ω

β0

cos θSS.

144



Let the arguments of a
(1)
ρ and a

(1)
µ in Eqs. (4.41), (4.42), (4.43) and (4.44) equal, we need

−2νPP
g = −νPS

g − ηPS
g = −νSP

g − ηSP
g = −2ηSS

g ,

which leads to

2
ω

α0

cos θPP =
ω

α0

√
1 − α2

0

β2
0

sin2 θPS +
ω

β0

cos θPS =
ω

α0

cos θSP +
ω

β0

√
1 − β2

0

α2
0

sin2 θSP

= 2
ω

β0

cos θSS.

From the expression above, given θPP , we can find the corresponding θPS, θSP and θSS.

θPS = cos−1

[
4b2 cos2 θPP + 1 − b2

4b cos θPP

]
,

θSP = cos−1

[
4b2 cos2 θPP − 1 + b2

4b2 cos θPP

]
,

θSS = cos−1
(
b cos θPP

)
,

where b = β0

α0
.

7 Expressing a
(1)
R and a

(2)
R in terms of a

(1)
γ , a

(2)
γ , a

(1)
µ and a

(2)
µ

The following is the derivation of expressing a
(1)
R and a

(2)
R in terms of a

(1)
γ , a

(2)
γ , a

(1)
µ and a

(2)
µ .

Since

aγ =
γ

γ0

− 1 =
ρα2

ρ0α2
0

− 1,

aµ =
µ

µ0

− 1 =
ρβ2

ρ0β2
0

− 1,

and

aR =
α/β

α0/β0

− 1,
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then we have

(aR + 1)2 =
aγ + 1

aµ + 1
,

then

a2
R + 2aR + 1 = (aγ + 1)(1 − aµ + a2

µ − · · · ),

where the series expansion is valid for |aµ| < 1.

Expanding the relative changes, we have

aγ = a(1)
γ + a(2)

γ + a(3)
γ + · · · ,

aµ = a(1)
µ + a(2)

µ + a(3)
µ + · · · ,

aR = a
(1)
R + a

(2)
R + a

(3)
R + · · · ,

then after substitutions, we obtain

a
(1)
R =

1

2

(
a(1)

γ − a(1)
µ

)
,

a
(2)
R =

1

2

(
a(2)

γ − a(2)
µ + a(1)2

µ − a
(1)2

R − a(1)
γ a(1)

µ

)
.
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C. TWO PARAMETER CASE: ELASTIC REDUCE TO ACOUSTIC

In the acoustic case, if we start directly with the pressure wave equation and choose θ as

the free parameter, α and β as the two material property parameters as shown in Chapter

3, we arrive at the following equation for the second order (first term beyond linear) Eq.

(3.12):

1

cos2 θ
α2(z) + (1 − tan2 θ)β2(z)

= − 1

2 cos4 θ
α2

1(z)

− 1

2
(1 + tan4 θ)β2

1(z)

+
tan2 θ

cos2 θ
α1(z)β1(z)

− 1

2 cos4 θ
α′

1(z)

z∫

0

dz′[α1(z
′) − β1(z

′)]

+
1

2
(tan4 θ − 1)β′

1(z)

z∫

0

dz′[α1(z
′) − β1(z

′)].

But if we start with the displacement domain, as discussed in the elastic case (Chapter 4),

letting µ0, β0, µ, and β = 0 and choosing θ as the free parameter, aγ and aρ as the two

material property parameters, what kind of solution for the second order would we get?

In the following, we give the detailed derivations and show that the two results agree with

each other.
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According to Appendix B, we have the following forms for V̂ PP
1 , V̂ PS

1 and V̂ SP
1 , respectively

V̂ PP
1 = −∇2a(1)

γ − ω2

α2
0

(
a(1)

ρ ∂2
1 + ∂2a

(1)
ρ ∂2

) 1

∇2
+ 2∂2

1a
(1)
mu + 2∂2

1∇2a(1)
mu

1

∇2

− 4∂2
1

(
a(1)

mu∂
2
1 + ∂2a

(1)
mu∂2

) 1

∇2
,

V̂ PS
1 =

α2
0

β2
0

[
ω2

α2
0

(
∂1a

(1)
ρ ∂2 − ∂2a

(1)
ρ ∂1

)
+ 2∂1∂2a

(1)
mu

(
∂2

2 − ∂2
1

)
− 2

(
∂2

2 − ∂2
1

)
a(1)

mu∂2∂1

]
1

∇2
,

V̂ SP
1 = −

[
ω2

α2
0

(
∂1a

(1)
ρ ∂2 − ∂2a

(1)
ρ ∂1

)
+ 2∂1∂2a

(1)
mu

(
∂2

2 − ∂2
1

)
− 2

(
∂2

2 − ∂2
1

)
a(1)

mu∂2∂1

]
1

∇2
,

For the first equation of the non-linear elastic inversion

ĜP
0 V̂ PP

2 ĜP
0 = −ĜP

0 V̂ PP
1 ĜP

0 V̂ PP
1 ĜP

0 − ĜP
0 V̂ PS

1 ĜS
0 V̂ SP

1 ĜP
0 , (C.1)

Left side: after Fourier transforming over xs, xg and νg, let β, β0 = 0, we get

−1

4

1

cos2 θ
a(2)

γ (z) − 1

4
(1 − tan2 θ)a(2)

ρ (z).

Right side: the first term, −ĜP
0 V̂ PP

1 ĜP
0 V̂ PP

1 ĜP
0 , let β, β0 = 0, we get

V̂ PP
1 = −∇2a(1)

γ − ω2

α2
0

(
a(1)

ρ ∂2
1 + ∂2a

(1)
ρ ∂2

) 1

∇2
,

then, in this case, we have

− ĜP
0 V̂ PP

1 ĜP
0 V̂ PP

1 ĜP
0

= − ĜP
0

[
−∇2a(1)

γ − ω2

α2
0

(
a(1)

ρ ∂2
1 + ∂2a

(1)
ρ ∂2

) 1

∇2

]
ĜP

0

×
[
−∇2a(1)

γ − ω2

α2
0

(
a(1)

ρ ∂2
1 + ∂2a

(1)
ρ ∂2

) 1

∇2

]
ĜP

0

= − ĜP
0

[
−∇2a(1)

γ

]
ĜP

0

[
−∇2a(1)

γ

]
ĜP

0

− ĜP
0

[
−∇2a(1)

γ

]
ĜP

0

[
−ω2

α2
0

(
a(1)

ρ ∂2
1 + ∂2a

(1)
ρ ∂2

) 1

∇2

]
ĜP

0
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− ĜP
0

[
−ω2

α2
0

(
a(1)

ρ ∂2
1 + ∂2a

(1)
ρ ∂2

) 1

∇2

]
ĜP

0

[
−∇2a(1)

γ

]
ĜP

0

− ĜP
0

[
−ω2

α2
0

(
a(1)

ρ ∂2
1 + ∂2a

(1)
ρ ∂2

) 1

∇2

]
ĜP

0

[
−ω2

α2
0

(
a(1)

ρ ∂2
1 + ∂2a

(1)
ρ ∂2

) 1

∇2

]
ĜP

0

=term1 + term2 + term3 + term4.

Using some partial integrals, we replace all the ∂2
1 as −k2

g , and for term1

−ĜP
0

[
−∇2a(1)

γ

]
ĜP

0

[
−∇2a(1)

γ

]
ĜP

0 , (C.2)

replace the first ∇2 as −ω2

α2
0
, and the second ∇2 as −ω2

α2
0

+ 2iνgδ(z
′ − z′′), then, written in

integrals and after Fourier transforming over xs and xg, Eq. (C.2) becomes

− ω4

α4
0

(
i

16πν3
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′a(1)
γ (z′)eiνg|z′−z′′|a(1)

γ (z′′)eiνgz′′

+ 2iνg

ω2

α2
0

(
i

16πν3
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′a(1)
γ (z′)δ(z′ − z′′)eiνg |z′−z′′|a(1)

γ (z′′)eiνgz′′ ,

After Fourier transforming over νg, it becomes

1

8 cos4 θ


a(1)

γ (z)a(1)
γ (z) + a(1)′

γ (z)

z∫

−∞

dz′a(1)
γ (z′)




− 1

4 cos2 θ
a(1)

γ (z)a(1)
γ (z).

Similarly, for term2

−ĜP
0

[
−∇2a(1)

γ

]
ĜP

0

[
−ω2

α2
0

(
a(1)

ρ ∂2
1 + ∂2a

(1)
ρ ∂2

) 1

∇2

]
ĜP

0 ,

we replace the ∇2 as −ω2

α2
0
, first ∂2 as −iνgsgn(z′′ − z′), second ∂2 as iνg, and 1

∇2 as −α2
0

ω2 ,
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then, written in integrals and after Fourier transforming over xs and xg, the term2 becomes

ω2

α2
0

k2
g

(
i

16πν3
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′a(1)
γ (z′)eiνg |z′−z′′|a(1)

ρ (z′′)eiνgz′′

+
ω2

α2
0

ν2
g

(
i

16πν3
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′a(1)
γ (z′)sgn(z′ − z′′)eiνg|z′−z′′|a(1)

ρ (z′′)eiνgz′′ ,

After Fourier transforming over νg, it becomes

− tan2 θ

16 cos2 θ


2a(1)

γ (z)a(1)
ρ (z) + a(1)′

γ (z)

z∫

−∞

dz′a(1)
ρ (z′) + a(1)′

ρ (z)

z∫

−∞

dz′a(1)
γ (z′)




− 1

16 cos2 θ


a(1)′

γ (z)

z∫

−∞

dz′a(1)
ρ (z′) − a(1)′

ρ (z)

z∫

−∞

dz′a(1)
γ (z′)


 .

For term3,

− ĜP
0

[
−ω2

α2
0

(
a(1)

ρ ∂2
1 + ∂2a

(1)
ρ ∂2

) 1

∇2

]
ĜP

0

[
−∇2a(1)

γ

]
ĜP

0

= − ĜP
0

[
ω2

α2
0

(
a(1)

ρ ∂2
1 + ∂2a

(1)
ρ ∂2

)]
ĜP

0

[
a(1)

γ

]
ĜP

0 ,

after the first ∂2 is replaced by −iνg, and the second ∂2 is replaced by iνgsgn(z′−z′′), term3

leads to the same result as that of the term2. Therefore, after Fourier transforming over

xs, xg and νg, term3 will be the same as term2

− tan2 θ

16 cos2 θ


2a(1)

γ (z)a(1)
ρ (z) + a(1)′

γ (z)

z∫

−∞

dz′a(1)
ρ (z′) + a(1)′

ρ (z)

z∫

−∞

dz′a(1)
γ (z′)




− 1

16 cos2 θ


a(1)′

γ (z)

z∫

−∞

dz′a(1)
ρ (z′) − a(1)′

ρ (z)

z∫

−∞

dz′a(1)
γ (z′)


 .
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For term4,

− ĜP
0

[
−ω2

α2
0

(
a(1)

ρ ∂2
1 + ∂2a

(1)
ρ ∂2

) 1

∇2

]
ĜP

0

[
−ω2

α2
0

(
a(1)

ρ ∂2
1 + ∂2a

(1)
ρ ∂2

) 1

∇2

]
ĜP

0

=ĜP
0

[
ω2

α2
0

(
a(1)

ρ ∂2
1 + ∂2a

(1)
ρ ∂2

) 1

∇2

]
ĜP

0

(
a(1)

ρ ∂2
1 + ∂2a

(1)
ρ ∂2

)
ĜP

0 ,

where

1

∇′2

[
eiνg|z′−z′′|

νg

eikgx′

]
= − 1

ν2
g + k2

g

[
eiνg |z′−z′′|

νg

− e−kg|z′−z′′|

ikg

]
eikgx′

,

(please see the detail derivation in Appendix B about the 1
∇2 acting on the middle Green’s

causal function), where 1
ν2

g+k2
g

=
α2

0

ω2 , then, after Fourier transforming over xs and xg, the

term4 becomes

−
(

i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′
[
a(1)

ρ (z′)(−k2
g) +

∂

∂z′
a(1)

ρ (z′)
∂

∂z′

]

×
[
eiνg |z′−z′′|

νg

− e−kg|z′−z′′|

ikg

]
×

[
a(1)

ρ (z′′)(−k2
g) +

∂

∂z′′
a(1)

ρ (z′′)
∂

∂z′′

]
eiνgz′′

= − k4
g

(
i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′a(1)
ρ (z′)

[
eiνg |z′−z′′|

νg

− e−kg |z′−z′′|

ikg

]
a(1)

ρ (z′′)eiνgz′′

+ k2
g

(
i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′a(1)
ρ (z′)

[
eiνg|z′−z′′|

νg

− e−kg|z′−z′′|

ikg

]

×
[

∂

∂z′′
a(1)

ρ (z′′)
∂

∂z′′

]
eiνgz′′

+ k2
g

(
i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′
[

∂

∂z′
a(1)

ρ (z′)
∂

∂z′

]
×

[
eiνg|z′−z′′|

νg

− e−kg |z′−z′′|

ikg

]

× a(1)
ρ (z′′)eiνgz′′

−
(

i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′
[

∂

∂z′
a(1)

ρ (z′)
∂

∂z′

]
×

[
eiνg|z′−z′′|

νg

− e−kg|z′−z′′|

ikg

]

×
[

∂

∂z′′
a(1)

ρ (z′′)
∂

∂z′′

]
eiνgz′′
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= − k4
g

(
i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′a(1)
ρ (z′)

[
eiνg |z′−z′′|

νg

− e−kg |z′−z′′|

ikg

]
a(1)

ρ (z′′)eiνgz′′

−
(

i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′
[

∂

∂z′
a(1)

ρ (z′)
∂

∂z′

]
×

[
eiνg|z′−z′′|

νg

− e−kg|z′−z′′|

ikg

]

×
[

∂

∂z′′
a(1)

ρ (z′′)
∂

∂z′′

]
eiνgz′′ ,

where

−
(

i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′
[

∂

∂z′
a(1)

ρ (z′)
∂

∂z′

]
×

[
eiνg|z′−z′′|

νg

− e−kg|z′−z′′|

ikg

]

×
[

∂

∂z′′
a(1)

ρ (z′′)
∂

∂z′′

]
eiνgz′′

= −
(

i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′
[
−iνga

(1)
ρ (z′)

]

×
[
iνgsgn(z′ − z′′)

eiνg |z′−z′′|

νg

+ kgsgn(z′ − z′′)
e−kg|z′−z′′|

ikg

]
×

[
∂

∂z′′
a(1)

ρ (z′′)iνg

]
eiνgz′′

= − ν2
g

(
i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′a(1)
ρ (z′)

×
[(

2iνgδ(z
′ − z′′) − ν2

g

) eiνg|z′−z′′|

νg

+
(
2kgδ(z

′ − z′′) − k2
g

) e−kg|z′−z′′|

ikg

]
× a(1)

ρ (z′′)eiνgz′′

= − ν2
g

(
i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′a(1)
ρ (z′)

[
−ν2

g

eiνg |z′−z′′|

νg

− k2
g

e−kg |z′−z′′|

ikg

]
a(1)

ρ (z′′)eiνgz′′ .

Then, term4 becomes

= − k4
g

(
i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′a(1)
ρ (z′)

[
eiνg|z′−z′′|

νg

− e−kg|z′−z′′|

ikg

]
a(1)

ρ (z′′)eiνgz′′

− ν2
g

(
i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′a(1)
ρ (z′)

[
−ν2

g

eiνg|z′−z′′|

νg

− k2
g

e−kg|z′−z′′|

ikg

]
a(1)

ρ (z′′)eiνgz′′
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=(ν4
g − k4

g)

(
i

16πν3
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′a(1)
ρ (z′)eiνg |z′−z′′|a(1)

ρ (z′′)eiνgz′′

+ (k4
g + ν2

gk
2
g)

(
i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′a(1)
ρ (z′)

[
e−kg|z′−z′′|

ikg

]
a(1)

ρ (z′′)eiνgz′′

=I1 + I2,

where I1 after Fourier transforming over νg becomes

Ĩ1 = −1 − tan2 θ

8 cos2 θ


a(1)

ρ (z)a(1)
ρ (z) + a(1)′

ρ (z)

z∫

−∞

dz′a(1)
ρ (z′)


 .

Considering the second term of the right hand side of Eq. (C.1)

− ĜP
0 V̂ PS

1 ĜS
0 V̂ SP

1 ĜP
0

=ĜP
0

α2
0

β2
0

[
ω2

α2
0

(
∂1a

(1)
ρ ∂2 − ∂2a

(1)
ρ ∂1

)
+ 2∂1∂2a

(1)
mu

(
∂2

2 − ∂2
1

)
− 2

(
∂2

2 − ∂2
1

)
a(1)

mu∂2∂1

]
1

∇2
ĜS

0

×
[
ω2

α2
0

(
∂1a

(1)
ρ ∂2 − ∂2a

(1)
ρ ∂1

)
+ 2∂1∂2a

(1)
mu

(
∂2

2 − ∂2
1

)
− 2

(
∂2

2 − ∂2
1

)
a(1)

mu∂2∂1

]
1

∇2
ĜP

0 ,

where

1

∇′2

[
eiηg|z′−z′′|

ηg

eikgx′

]
= − 1

η2
g + k2

g

[
eiηg |z′−z′′|

ηg

− e−kg|z′−z′′|

ikg

]
eikgx′

,

where 1
η2

g+k2
g

=
β2
0

ω2 .

Then, after Fourier transforming over xs and xg, the second term can be written as

=
α4

0

ω4

(
i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′
[
ω2

α2
0

(
ikga

(1)
ρ ∂2 − ∂2a

(1)
ρ ikg

)

+ 2∂1∂2a
(1)
mu

(
∂2

2 − ∂2
1

)
− 2

(
∂2

2 − ∂2
1

)
a(1)

mu∂2∂1

]
×

[
eiηg |z′−z′′|

ηg

− e−kg|z′−z′′|

ikg

]

×
[
ω2

α2
0

(
ikga

(1)
ρ ∂2 − ∂2a

(1)
ρ ikg

)
+ 2∂1∂2a

(1)
mu

(
∂2

2 − ∂2
1

)
− 2

(
∂2

2 − ∂2
1

)
a(1)

mu∂2∂1

]
eiνgz′′
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For acoustic case, let β, β0 = 0, and ignore terms with ĜS
0 , the second term reduces to

α4
0

ω4

(
i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′ ω
2

α2
0

(
ikga

(1)
ρ (z′)

∂

∂z′
− ∂

∂z′
a(1)

ρ (z′)ikg

)[
−e−kg |z′−z′′|

ikg

]

× ω2

α2
0

(
ikga

(1)
ρ (z′′)

∂

∂z′′
− ∂

∂z′′
a(1)

ρ (z′′)ikg

)
eiνgz′′

=k2
g

(
i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′
(

a(1)
ρ (z′)

∂

∂z′
− ∂

∂z′
a(1)

ρ (z′)

)[
e−kg|z′−z′′|

ikg

]

×
(

a(1)
ρ (z′′)

∂

∂z′′
− ∂

∂z′′
a(1)

ρ (z′′)

)
eiνgz′′

=k2
g

(
i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′
(

a(1)
ρ (z′)

∂

∂z′

)[
e−kg|z′−z′′|

ikg

]
×

(
a(1)

ρ (z′′)
∂

∂z′′

)
eiνgz′′

− k2
g

(
i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′
(

a(1)
ρ (z′)

∂

∂z′

)[
e−kg |z′−z′′|

ikg

]
×

(
∂

∂z′′
a(1)

ρ (z′′)

)
eiνgz′′

− k2
g

(
i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′
(

∂

∂z′
a(1)

ρ (z′)

)[
e−kg |z′−z′′|

ikg

]
×

(
a(1)

ρ (z′′)
∂

∂z′′

)
eiνgz′′

+ k2
g

(
i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′
(

∂

∂z′
a(1)

ρ (z′)

)[
e−kg|z′−z′′|

ikg

]
×

(
∂

∂z′′
a(1)

ρ (z′′)

)
eiνgz′′

= − k2
g

(
i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′
(

a(1)
ρ (z′)

∂

∂z′

)[
e−kg |z′−z′′|

ikg

]
×

(
∂

∂z′′
a(1)

ρ (z′′)

)
eiνgz′′

− k2
g

(
i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′
(

∂

∂z′
a(1)

ρ (z′)

)[
e−kg |z′−z′′|

ikg

]
×

(
a(1)

ρ (z′′)
∂

∂z′′

)
eiνgz′′

= − k2
g

(
i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′a(1)
ρ (z′)

[
−2kgδ(z

′ − z′′) + k2
g

] [
e−kg|z′−z′′|

ikg

]
a(1)

ρ (z′′)eiνgz′′

− k2
gν

2
g

(
i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′a(1)
ρ (z′)

[
e−kg |z′−z′′|

ikg

]
a(1)

ρ (z′′)eiνgz′′

=2k3
g

(
i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′a(1)
ρ (z′)δ(z′ − z′′)

[
e−kg |z′−z′′|

ikg

]
a(1)

ρ (z′′)eiνgz′′
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− k2
g(k

2
g + ν2

g )

(
i

16πν2
g

) +∞∫

−∞

dz′
+∞∫

−∞

dz′′eiνgz′a(1)
ρ (z′)

[
e−kg|z′−z′′|

ikg

]
a(1)

ρ (z′′)eiνgz′′

=I3 + I4,

where I4 = −I2, and I3, after Fourier transforming over νg, we have

Ĩ3 =
tan2 θ

4
a(1)

ρ (z)a(1)
ρ (z).

PS. When working on the second term, after 1
∇2 acts on the middle ĜS

0 , then ignore terms

with β, β0 and ĜS
0 , then do the partial integration for further detail.

Then, the right hand side of Eq. (C.1) is (after Fourier transforming over xs, xg and νg)

1

8 cos4 θ


a(1)

γ (z)a(1)
γ (z) + a(1)′

γ (z)

z∫

−∞

dz′a(1)
γ (z′)




− 1

4 cos2 θ
a(1)

γ (z)a(1)
γ (z)

− 2
tan2 θ

16 cos2 θ


2a(1)

γ (z)a(1)
ρ (z) + a(1)′

γ (z)

z∫

−∞

dz′a(1)
ρ (z′) + a(1)′

ρ (z)

z∫

−∞

dz′a(1)
γ (z′)




− 2
1

16 cos2 θ


a(1)′

γ (z)

z∫

−∞

dz′a(1)
ρ (z′) − a(1)′

ρ (z)

z∫

−∞

dz′a(1)
γ (z′)




+
tan2 θ

4
a(1)

ρ (z)a(1)
ρ (z)

=
1

8
(tan4 θ − 1)a(1)

γ (z)a(1)
γ (z) − tan2 θ

4 cos2 θ
a(1)

γ (z)a(1)
ρ (z) +

1

8

(
1

cos4 θ
− 2

)
a(1)

ρ (z)a(1)
ρ (z)

+
1

8 cos4 θ
a(1)′

γ (z)

z∫

−∞

dz′
[
a(1)

γ (z′) − a(1)
ρ (z′)

]

+
1

8
(1 − tan4 θ)a(1)′

ρ (z)

z∫

−∞

dz′
[
a(1)

γ (z′) − a(1)
ρ (z′)

]
.

Hence, for acoustic case, choosing aγ and aρ as the two material property parameters, after
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left side = right side, we get

1

cos2 θ
a(2)

γ (z) + (1 − tan2 θ)a(2)
ρ (z)

= − 1

2
(tan4 θ − 1)a(1)2

γ (z)

− 1

2

(
1

cos4 θ
− 2

)
a(1)2

ρ (z)

+
tan2 θ

cos2 θ
a(1)

γ (z)a(1)
ρ (z)

− 1

2 cos4 θ
a(1)′

γ (z)

z∫

0

dz′[a(1)
γ (z′) − a(1)

ρ (z′)]

+
1

2
(tan4 θ − 1)a(1)′

ρ (z)

z∫

0

dz′[a(1)
γ (z′) − a(1)

ρ (z′)], (C.3)

where the definition of θ is the same as that of Eq. (3.12), a
(1)′

γ =
da

(1)
γ

dz
and a

(1)′

ρ =
da

(1)
ρ

dz
.

Next, we will show that the two results Eqs. (3.12) and (C.3) agree with each other.

Since α = 1 − γ0

γ
, then

aγ =
γ

γ0

− 1 =
α

1 − α
= α + α2 + α3 + · · · ,

where the series expansion is valid for |α| < 1, and then we have

a(1)
γ = α1,

a(2)
γ = α2 + α2

1,

....

Similarly, since β = 1 − ρ0

ρ
, then

aρ =
ρ

ρ0

− 1 =
β

1 − β
= β + β2 + β3 + · · · ,
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where the series expansion is valid for |β| < 1, and then we have

a(1)
ρ = β1,

a(2)
ρ = β2 + β2

1 ,

....

Then, after substitutions, Eq. (C.3) becomes

1

cos2 θ
α2(z) + (1 − tan2 θ)β2(z)

= − 1

2 cos4 θ
α2

1(z)

− 1

2
(1 + tan4 θ)β2

1(z)

+
tan2 θ

cos2 θ
α1(z)β1(z)

− 1

2 cos4 θ
α′

1(z)

z∫

0

dz′[α1(z
′) − β1(z

′)]

+
1

2
(tan4 θ − 1)β′

1(z)

z∫

0

dz′[α1(z
′) − β1(z

′)],

which is Eq. (3.12) exactly. Therefore Eq. (3.12) and Eq. (C.3) agree with each other.
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