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Abstract

The inverse scattering series (ISS) internal-multiple-attenuation method predicts internal
multiples directly and without any subsurface information. The ISS leading-order attenuator of
first-order internal multiples is the leading-order term in the subseries that contributes to the
removal of first-order internal multiples. The basic idea behind the leading-order attenuator is
that all the events in the data are treated as subevents and combined nonlinearly (three data
sets are involved), and among all the combinations first-order internal multiples can be predicted
by the combination that has all subevents correspond to primaries. While the ISS leading-order
attenuator has demonstrated its capability for internal-multiple prediction/attenuation, it has
strengths and limitations as implied by “leading-order” and “attenuator”. On one hand, the
ISS internal-multiple leading-order attenuator predicts exact time and approximate amplitude,
but it has specific prerequisites such as knowledge of the source wavelet, as well as source
and receiver deghosting, and free-surface-multiple removal. The information omitted from any
prerequisite is left for the adaptive subtraction technique to clean up. On the other hand,
the entire data set, consisting of primaries and internal multiples, is input into the algorithm.
When internal multiples in the data themselves act as subevents, the leading-order attenuator
produces not only first-order internal multiples, but also higher-order internal multiples and,
at times, spurious events, which have been observed in the tests of Fu et al. (2010) and Luo
et al. (2011). Weglein et al. (2011) have also noted this and suggested that the resolution of the
problem would reside in other terms of the ISS. Ma et al. (2012) and Liang et al. (2012) identified
higher-order terms from the ISS that retain the benefits of the leading-order attenuator while
addressing the issues due to spurious events. The higher-order terms require the leading-order
term as an ingredient. This report specifically examines the effects of source wavelet on the
ISS internal-multiple leading-order attenuator and its higher-order modification. By comparing
the internal-multiple and spurious-event prediction results with and without source wavelet
deconvolution, we show how the source wavelet affects the shape and amplitude fidelity of the
prediction of internal multiples and spurious events.
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1 The leading-order ISS internal-multiple-attenuation algorithm

The ISS internal-multiple-attenuation algorithm is a subseries of the inverse scattering series. The
algorithm starts with the deghosted input data from which the reference wavefield and free-surface
multiples have been removed and source wavelet has been deconvolved, D(kg, ks, ω), where kg and
ks are the horizontal wavenumbers corresponding to receiver and source coordinates xg and xs,
respectively, and ω is the temporal frequency.

D(kg, ks, ω) = (−2iqs)
−1b1(kg, ks, ω), (1.1)

where b1(kg, ks, ω) corresponds to an uncollapsed FK migration of effective normal incident spike
plane-wave data (Weglein et al., 2003; Hsu et al., 2011). The second term in the algorithm is the
leading-order attenuator of first-order internal multiples, which predicts the negative of first-order
internal multiples and alters all higher-order internal multiples (the order of an internal multiple is
defined by the total number of downward reflections). The leading-order attenuator in a 2D earth
is given by Araújo et al. (1994) and Weglein et al. (1997)

b3(kg, ks, qg + qs) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dk1e

iq1(zs−zg)dk2e
iq2(zg−zs)

×
∫ ∞

−∞
dz1e

i(qg+q1)z1b1(kg,−k1, z1)

×
∫ z1−ε

−∞
dz2e

i(−q1−q2)z2b1(k1,−k2, z2)

×
∫ ∞

z2+ε
dz3e

i(q2+qs)z3b1(k2,−ks, z3), (1.2)

where c0 is the reference velocity, qg = sgn(ω)
√

( ωc0 )2 − k2
g and qs = sgn(ω)

√
( ωc0 )2 − k2

s are the
vertical wavenumbers, ε is a small positive parameter chosen to ensure that the relations between
pseudo-depths z1 > z2 and z3 > z2 are satisfied, and zg and zs are source and receiver depths,
respectively.

For a 1D earth and a normal incidence, wave equation 1.2 reduces to

b3(k) = bPPP3 =

∫ ∞

−∞
dz1e

ikz1b1(z1)

∫ z1−ε

−∞
dz2e

−ikz2b1(z2)

∫ ∞

z2+ε
dz3e

ikz3b1(z3), (1.3)

where the deghosted data, D(t), for an incident spike wave, satisfy D(ω) = b1(2ω/c0), and where
b1(z) =

∫∞
−∞ e

−ikzb1(k)dk, and k = 2ω/c0 is the vertical wavenumber. Here, we introduce a new
notation, bPPP3 , in which the superscript (“P” represents primary, and “I” represents internal multi-
ple) indicates specific events in the data that are input into each of the three integrals. The events
indicated in this notation are the ones that the algorithm can accommodate in its goal of removing
first-order internal multiples. The data with first-order internal multiples attenuated are

D(t) +D3(t), (1.4)
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Figure 1: A first-order internal multiple constructed by three primary subevents that satisfy the
“lower-higher-lower” pattern in pseudo-depth domain.

whereD3(t) is the inverse Fourier transform ofD3(ω), and whereD3(ω) = b3(k) for an incident spike
wave. Weglein and Matson (1998) showed that this algorithm can be interpreted as the subevents
construction of internal multiples. Figure 1 illustrates the construction of a first-order internal
multiple using three primary subevents. The predicted time of the internal multiple is exact, and
the predicted amplitude approximates the true amplitude (Weglein et al., 2003).

2 The higher-order modification of the ISS internal-multiple leading-order-
attenuation algorithm

Early analysis of the ISS leading-order attenuator focused on the performance of internal multiples
prediction by using subevents that correspond to primaries. However, the input data contain both
primaries and internal multiples and all events in the data will be treated as subevents. Under some
circumstances treating internal multiples as subevents in the first-order internal-multiple algorithm
can lead to spurious events. Ma et al. (2012) and Liang et al. (2012) define the conditions when
that can occur and explain how terms further in the ISS address and remove those spurious events.
For instance, a spurious event may be generated by the leading-order attenuator when an internal
multiple itself is treated as a subevent in the second integral of equation 1.3, as shown in Figure 2. It
is worthing noting that in figure 2, the “lower-higher-lower” relationship between the psudeo-depths
is required by b3, and if it not satisfied this kind of subevent combination will not occur in b3, and
such type of a spurious event would not be produced.

Ma et al. (2012) identify a higher-order term from the inverse scattering series that can generate
the negative of the spurious event.

bPIP5 (k) =

∫ ∞

−∞
dz1e

ikz1b1(z1)

∫ z1−ε

−∞
dz2e

−ikz2b3(z2)

∫ ∞

z2+ε
dz3e

ikz3b1(z3). (2.1)
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Figure 2: Subevent construction of a spurious event when an internal multiple itself is treated as a
subevent in the second integral of the leading-order attenuator (number of reflectors N >= 3, and
2z2 − z1 < z3).

The output of the new ISS internal-multiple algorithm for this three-reflector case is

D(t) +D3(t) +DPIP
5 (t), (2.2)

where DPIP
5 (t) is the inverse Fourier transform of DPIP

5 (ω) and where DPIP
5 (ω) = bPIP5 (k) for

spike data. The original algorithm (see equation 1.4) attenuates the first-order internal multiples
and preserves primaries but can also output spurious events. The new algorithm in equation 2.2
provides the benefit of the original algorithm while addressing issues that are due to spurious events.

When there are more than three reflectors in the earth, other types of spurious events could also
be generated by the leading-order attenuator (Liang et al. (2012)). In this report, we will focus
only on the three-reflector case. Therefore, only the leading-order attenuator (equation 1.3) and the
higher-order term (equation 2.1) will be examined in this report.

3 The source wavelet effects on ISS internal-multiple prediction exemplified
using two examples

In the previous section, the input data are assumed to be source wavelet deconvolved, deghosted,
and with free-surface multiples removed. If the data are generated by using a source wavelet instead
of an incident spike wave in a 1D case, b1(k) is obtained by the following equation:

D(ω) = A(ω)b1(2ω/c0). (3.1)

Then, the internal multiples predicted by the leading-order attenuator (equation 1.3), which has
opposite polarity as the true internal multiples, are obtained by
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D3(ω) = A(ω)b3(ω/c0). (3.2)

When adding equation 3.2 to equation 3.1, all the first-order internal multiples are attenuated, and
higher-order internal multiples are altered. More details on incorporating source wavelet deconvo-
lution into the ISS internal multiple attenuation algorithm can be referred to Yang and Weglein
(2013). Including source wavelet deconvolution in the higher-order term for removing spurious event
require this initial step in the leading-order attenuator. The predicted spurious events (with oppo-
site polarity as the actual spurious event generated by the leading-order attenuator) are obtained
by

DPIP
5 (ω) = A(ω)bPIP5 (ω/c0). (3.3)

Equations 3.1, 3.2, and 3.3 can be easily extended to multi-dimensional cases. In this section, we will
examine the effects of a source wavelet on the prediction of internal multiples and spurious events.
we apply the ISS internal-multiple leading-order attenuator and its higher-order modification with
and without inclusion of source wavelet deconvolution for both 1D normal incidence and 1.5D shot
gather examples, and then compare the results. In this report, we use the spectral division method
to deconvolve the source wavelet from the input data. Other methods (e.g., Wiener filter) could
also be used and more details about source wavelet deconvolution can be referred to Tang et al.
(2012).

3.1 1D normal incidence example

Here we will examine the source wavelet effect on the leading-order attenuator and its higher-order
modification (using the exact source wavelet that are used to generate synthetic data). Figure 3
shows a trace generated by the 1D normal-incidence reflectivity method (Ricker source wavelet with
peak frequency 30Hz, and sampling interval in time dt=4ms). The reflectivity method can be used
to generate primaries and internal multiples separately. In this figure three primaries are shown in
red, and all the internal multiples are shown in blue.

Figure 4 shows the actual internal multiples in the data (top) and the internal multiples predicted
by using the ISS leading-order attenuator (−D3) without source wavelet deconvolution (bottom).
These two results then are normalized by their respective maximum sample value, and plotted
together in Figure 5. From Figures 4 and 5 we can see that the predicted time is exact, but the
amplitude and shape of the predicted internal multiples are not matched with those of actual internal
multiples. From Figure 5 we can also see the spurious event, at time 1.33s (in green circle), that is
generated by the ISS leading-order attenuator. This event does not exist in the original input data
and that’s why it is called a spurious event. Figure 6 shows the comparison of the spurious event
generated by the leading-order attenuator and the spurious event predicted by the higher-order
term (equation 2.1). Both results are obtained without source wavelet deconvolution, and we can
see that again the predicted amplitude and shape do not matched with the real ones.
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Figure 3: An input trace, including three primaries (red) and all internal multiples (blue).

Next we apply the procedures described in equations 3.1, 3.2, and 3.3 to incorporate the source
wavelet deconvolution into internal multiple and spurious event predictions. Figure 7 shows the
true internal multiples in the data (red) and internal multiples predicted by the ISS leading-order
attenuator (−D3) with source wavelet deconvolution (blue). It is shown that with the source wavelet
deconvolution the shape of the internal multiple prediction matches the actual internal multiples
very well. Also, the predicted time is exact and the predicted amplitude is approximate.

Figure 8 shows the comparison of the spurious events in D3 and the spurious event predicted by the
higher-order modification(−DPIP

5 ), and both results are obtained with source wavelet deconvolution.
From the figure we can see that the predicted spurious event matches the one generated by the
leading-order attenuator very well. By adding DPIP

5 to D3 the spurious event is greatly attenuated
and the internal multiple prediction is almost unchanged (compared to Figure 7), as shown in
Figure 9. From Figure 9 we can conclude that the modified internal-multiple-prediction algorithm in
equation 2.2 provides the benefit of original algorithm (equation 1.4) while addressing the limitation
due to spurious events.

3.2 1.5D shot-gather example

In this section, we examine the source wavelet effects on the ISS internal-multiple leading-order
attenuator and its higher-order modification for a 1.5D shot-gather example. The data are generated
by using finite-difference code within the M-OSRP group (code courtesy of Fang Liu and Di Chang,
and the source wavelet is a Ricker wavelet with 25Hz peak frequency). Figure 10 shows the three-
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Figure 4: Top: actual internal multiples in the data; bottom: predicted multiples (−D3) without
source wavelet deconvolution.
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Figure 5: Internal multiples in the data (red) and predicted multiples (−D3) without source wavelet
deconvolution (blue). Both results are normalized by their maximum sample value, respectively.
The green circle shows the spurious event.
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Figure 6: Top is the result of D3 (spurious event at time 1.33s) and bottom is the result of −DPIP
5

(predicted spurious event at time 1.33s). Both results are obtained without source wavelet decon-
volution. Green circles show the spurious events.
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Figure 7: Actual internal multiples in the data (red) and internal multiples predicted by the ISS
leading-order attenuator with source wavelet deconvolution (blue).
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Figure 8: Comparison of spurious events (in green circle) in D3 and spurious event prediction
represented by −DPIP

5 , and the upper right box shows the zoomed part in the circle; both results
are obtained with source wavelet deconvolution.
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Figure 9: Comparison of actual internal multiples in data (red) and modified prediction represented
by −(D3 + DPIP

5 ) (with source wavelet deconvolution). Green circles correspond to the spurious
events.
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reflector 1D model for data generation. Figures 11a and 11b show the shot gather without and with
source wavelet deconvolution, respectively. The first five events in Figure 11a are: the first primary,
the second primary, the first-order and second-order internal multiples generated between the first
and second reflectors, and the third primary.

We first examine the source wavelet effects on the leading-order attenuator (b3 term). Figures 12a
and 12b show the predicted multiple (−D3) with (right) and without (left) source wavelet decon-
volution. We can see that without source wavelet deconvolution the predicted multiples spread
out, and also the amplitudes of the predicted multiples in the two results are very different. Fig-
ure 13 shows for comparison wiggle plots of the multiple prediction without deconvolution (13a),
the input shot gather (13b), and the multiple prediction with deconvolution (13c). We choose the
time window so that all the events shown in the wiggle plots are internal multiples. The results
show that with the source wavelet deconvolution, the shapes of the predicted internal multiples are
more similar to those of actual internal multiples in the data. Then we compare the amplitudes
of the actual internal multiples with those of the multiples predicted using two different schemes,
respectively. Figure 14a shows the amplitude comparison of the zero-offset traces from the input
shot gather (red) and the multiple predicted without source wavelet deconvolution (blue), and Fig-
ure 14b shows the amplitude comparison of zero-offset traces from the input shot gather (red) and
the multiple predicted with source wavelet deconvolution (blue). In each of these two figures, the
red event at about 1.25s is the third primary and the rest of the events are internal multiples. From
these two figures we can see that by including the source wavelet deconvolution, the amplitudes of
the predicted internal multiples approximate those of the actual internal multiples.

Next we will examine the source wavelet effects on the higher-order term addressing issues due
to spurious events, i.e., the bPIP5 term. Figures 15a and 15b show the results of −D3 and DPIP

5

without source wavelet deconvolution, and Figures 16a and 16b show the corresponding results
with source wavelet deconvolution. We extract the zero traces from each set of two figures and then
compare them in the same plot. Figure 17a shows the comparison of zero-offset traces from −D3

and DPIP
5 , both of which are obtained without source wavelet deconvolution. Figure 17b shows the

comparison of zero-offset traces from −D3 and DPIP
5 obtained with source wavelet deconvolution.

From the results in these two figures, we can see that with the source wavelet deconvolution, both
the amplitude and shape of the predicted spurious event match well those of actual spurious event
generated by the leading-order attenuator.

3.3 Internal multiple prediction using estimated wavelet

In this section we estimated the source wavelet using the Green’s theorem-derived method (Weglein
and Secrest (1990)) and then use this estimated source wavelet to repeat the process in the Section
3.2. Further details about the source wavelet estimation based on Green’s theorem and its appli-
cation can be referred to Mayhan et al. (2012). It is worth noting that in this report the actual
medium is an inhomogeneous acoustic medium with water on the top and the reference medium is
a whole-water medium. Therefore, the total wavefield in the actual medium contains direct wave,
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21Figure 10: 1D model with both velocity and density variations.
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Figure 11: (a) Shot gather without source wavelet deconvolution; (b) shot gather with source wavelet
deconvolution.
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Figure 12: Internal-multiple prediction (−D3) without (a) and with (b) source wavelet deconvolu-
tion.
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Figure 13: Wiggle plots of selected traces: (a) a multiple prediction without source wavelet decon-
volution, (b) an input shot gather, (c) and a multiple prediction with deconvolution.
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Figure 14: (a) Comparison of the zero-offset traces extracted from Figures 11a (red) and 12a (blue);
(b) Comparison of the zero-offset traces extracted from Figures 11a (red) and 12b (blue).

primaries and internal multiples while the reference wavefield in the reference medium contains
direct wave only. The key equation of the source wavelet estimation is as follows,

Ã(ω)G0(r, rs, ω) =

∮

S
[P̃ (r′, rs, ω)∇′G0(r′, r, ω)−G0(r′, r, ω)∇′P̃ (r′, rs, ω)] · ndS , (3.4)

where rs, r′, r represent the locations of source, receiver and prediction points, respectively;
˜P (r′, rs, ω) is the Fourier transform of the pressure field, G0(ri, rj, ω) is the Fourier transform of the

Green’s function in the reference medium. The source wavelet A(ω) can be obtained by averaging
the reference wavefield divided by a Green’s function:

A(ω) =
1

N

N∑

i=1

P̃0(ri, rs, ω)

G0(ri, rs, ω)
. (3.5)

From the equation 3.4 we can see that both the total wavefield and its derivative are needed to
estimate the source wavefield. We calculate the derivative of the wavefield using the measured
wavefield at two different depths:

dP

dz
=
P (205m)− P (200m)

5m
. (3.6)
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Figure 15: Results without source wavelet deconvolution: (a) multiple prediction (−D3) and (b)
spurious-event prediction (DPIP

5 ).
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Figure 16: Results with source wavelet deconvolution: (a) multiple prediction (-D3) and (b) spurious
event prediction (DPIP

5 ).
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Figure 17: (a) Comparison of the zero-offset traces extracted from Figures 15a (red) and 15b (blue);
(b) Comparison of the zero-offset traces extracted from Figures 16a (red) and 16b (blue).

Figure 18a shows that the estimated source wavelet (blue) matches well the actual source wavelet
(red). Figure 18b shows zero-offset traces of predicted internal multiples using actual (red) and
estimated source wavelet (blue), and Figure 18c shows zero-offset traces of predicted spurious event
using actual (red) and estimated source wavelet (blue). We can see that the results by using the
estimated waevlets matches the resutls by using the actual wavelet.

4 Summary and discussion

We examine the source wavelet effects on both the ISS internal-multiple leading-order attenuator
and higher-order term for removing spurious event by comparing the internal-multiple-prediction
results with and without source wavelet deconvolution. From the comparison we can see that by
including the source wavelet deconvolution in the ISS internal-multiple prediction, both the shape
and amplitude of the predicted internal multiples can be improved (made closer to the true internal
multiples). The accuracy of the source wavelet is important for the test results, and we have shown
that the source wavelet can be estimated using Green’s theorem.
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Figure 18: (a) Comparison of actual (red) and estimated (blue) source wavelets; (b) zero-offset traces
of predicted internal multiples using actual (red) and estimated source wavelet (blue) (c) zero-offset
traces of predicted spurious events using actual (red) and estimated source wavelet (blue).

5 Acknowledgements

The first author would like to thank Schlumberger/Westerngeco for the internship during Fall 2012
and for the permission to present the work. We are also grateful to all M-OSRP sponsors for their
support of this research. Special thanks to Wilberth Herrera and Chao Ma for reviewing this report,
and Jim Mayhan and Lin Tang for their help.

References

Araújo, F. V., A. B. Weglein, P. M. Carvalho, and R. H. Stolt. “Inverse scattering series for multiple
attenuation: An example with surface and internal multiples.” SEG Technical Program Expanded
Abstracts (1994): 1039–1041.

Fu, Q., Y. Luo, G. K. Panos, S. Huo, G. Sindi, S. Hsu, and A. B. Weglein. “The inverse scattering
series approach towards the elimination of land internal multiples.” SEG Technical Program
Expanded Abstracts (2010): 3456–3461.

Hsu, S., P. Terenghi, and A. B. Weglein. “The properties of the inverse scattering series in-
ternal multiple attenuation algorithm: Analysis and evaluation on synthetic data with lateral
variations, choosing reference velocity and examining its sensitivity to near surface properties.”
Mission-Oriented Seismic Research Program (M-OSRP), Annual Report (2011): 16–28.

173



Multiple attenuation part II M-OSRP12

Liang, H., C. Ma, and A. B. Weglein. “A further general modification of the leading order ISS atten-
uator of first order internal multiples to accommodate primaries and internal multiples when an
arbitrary number of reflectors generate the data: theory, development, and examples.” M-OSRP
2011 Annual meeting (2012).

Luo, Y., P. G. Kelamis, Q. Fu, S. Huo, G. Sindi, S. Hsu, and A. B. Weglein. “Elimination of land
internal multiples based on the inverse scattering series.” The Leading Edge (2011): 884–889.

Ma, C., H. Liang, and A. B. Weglein. “Modifying the leading order ISS attenuator of first-order
internal multiples to accommodate primaries and internal multiples: fundamental concept and
theory, development, and examples exemplified when three reflectors generate the data.” M-OSRP
2011 Annual meeting (2012).

Mayhan, J., A. B. Weglein, and P. Terenghi. “Green’s theorem-derived preprocessing of marine
seismic data.” Mission-Oriented Seismic Research Program (M-OSRP), Annual Report (2012):
9–113.

Tang, L., P. Terenghi, and A. B. Weglein. “Application of the Wiener filter in wavelet estimation
using Kristin data.” Mission-Oriented Seismic Research Program (M-OSRP), Annual Report
(2012): 267–276.

Weglein, A. B., F. V. Araújo, P. M. Carvalho, R. H. Stolt, K. H. Matson, R. T. Coates, D. Corrigan,
D. J. Foster, S. A. Shaw, and H. Zhang. “Inverse Scattering Series and Seismic Exploration.”
Inverse Problems (2003): R27–R83.

Weglein, A. B., F. A. Gasparotto, P. M. Carvalho, and R. H. Stolt. “An inverse-scattering series
method for attenuating multiples in seismic reflection data.” Geophysics (1997): 1975–1989.

Weglein, A. B., S. Hsu, P. Terenghi, X. Li, and R. Stolt. “Multiple attenuation: Recent advances
and the road ahead 2011.” The Leading Edge (2011): 864–875.

Weglein, A. B. and K. H. Matson. “Inverse scattering internal multiple attenuation: an analytic
example and subevent interpretation.” Mathematical Methods in Geophysical Imaging V (1998):
108–117.

Weglein, A. B. and B. G. Secrest. “Wavelet estimation for a multidimensional acoustic or elastic
earth.” Geophysics (1990): 902–913.

Yang, J. and A. B. Weglein. “ISS internal multiple attenuation algorithm with source wavelet.”
Mission-Oriented Seismic Research Program (M-OSRP), Annual Report (2013).

174


	Weglein: Introduction
	Weglein et al.: Part I
	Weglein et al.: Part II
	Mayhan and Weglein
	Tang and Weglein
	Wu et al.
	Yang and Weglein
	Ayadi and Weglein
	Ma and Weglein
	Liang and Weglein
	Herrera et al.
	Zou and Weglein
	Lin and Weglein
	Herrera and Weglein
	Liu and Weglein
	Fu
	Weglein: Antidote
	Jiang  et al.
	Attachment 1
	Attachment 2
	Attachment 3
	Attachment 4
	Attachment 5
	Attachment 6
	Attachment 7
	Attachment 8
	Attachment 9
	Attachment 10
	Attachment 11



