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Abstract

The internal multiples attenuation algorithm derived from inverse scattering series
techniques can be interpreted as a sequence of un-collapsed migrations with the refer-
ence medium velocity and restricted to lower-higher-lower pseudo-depths (Weglein et
al. 1997, Weglein et al. 2003). The arrivals in the data are regarded as sub-events in
the creation of a multiple. These sub-events are imaged through these migrations with
t = 0 imaging condition. In this paper we discuss both the t = 0 and the τ = 0 imaging
condition and show that the latter is more general in its ability to image, in addition,
events that exhibit a horizontal propagation part in their path (e.g. headwaves along
a horizontal interface). This research is part of our strategy to include more of the
returning signal, information bearing or not, in our analysis and processing.

1 Introduction

The inverse scattering series is a multi-dimensional inversion procedure that directly deter-
mines physical properties using only recorded data and a reference medium. This inversion
process can be thought of as performing the following four tasks: (1) free surface multiple re-
moval, (2) internal multiple removal, (3) location of reflectors in space and (4) identification
of medium property changes across reflectors. These tasks were associated with subseries
of the full series, subseries which, if identified, would perform their job as if no other task
existed in the series. Two immediate advantages of this separation of tasks are the favorable
convergence properties of the subseries and the ability to judge the effectiveness of each step
before proceeding on to the next. Since the entire process requires only data and reference
medium information, it is reasonable to assume that intermediate steps that are associated
with achieving that objective would also be attainable with only the reference medium and
data.

Subseries that exhibit this property have been identified for all four tasks (Weglein et al. 2003
and references therein). Algorithms resulting from the subseries for the task of free surface
and internal multiple attenuation have been successfully applied to field data (Weglein et al.
2003). The internal multiples attenuation algorithm derived from inverse scattering series
techniques can be interpreted as a sequence of un-collapsed migrations with the reference
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medium velocity and restricted to lower-higher-lower pseudo-depths (Weglein et al. 1997,
Weglein et al. 2003). The arrivals in the data are regarded as sub-events in the creation of a
multiple. The sub-events are imaged through these migrations with t = 0 imaging condition.
In this paper we discuss the t = 0 versus the τ = 0 imaging condition and show that the
latter is more general in its ability to image, in addition, events that exhibit a horizontal
propagation part in their path, e.g. headwaves along a horizontal interface and reflections
from dipping reflectors. The purpose of this research is to expand our understanding of the
events and sub-events in the returning signal and it is part of our strategy to include more
of this signal, information bearing or not, in our analysis and processing.

The idea of using τ = 0 as an imaging condition has been used by Clayton and McMechan
(1981) to image refraction data to produce velocity-depth profiles from recorded data. Their
method involves a slant-stack of the data to produce a wavefield in the p− τ domain, where
p is the horizontal slowness, and a downward continuation and imaging with τ = 0.

The plan for this paper is as follows. In Section 2 we give a brief description of the internal
multiples attenuation algorithm derived from the inverse scattering series techniques. In
Section 3 we present headwaves as prime events or sub-events of composite events using
both ray and wave front diagrams; in Section 4, we briefly discuss the pre-stack constant
velocity phase-shift migration. Section 5 presents a comparison between the travel time t and
the vertical time τ . In Section 6 we present an analytic example of imaging headwaves from
horizontal interfaces using τ = 0 imaging condition. Some conclusions are drawn in Section
7. Throughout the paper, ”horizontal” refers to the direction parallel to the measurement
surface in a 3D seismic experiment.

2 Internal multiples attenuation algorithm

The second term in the inverse scattering subseries for internal multiple attenuation is (see
e.g. Weglein et al 2003)

b3(kg, ks, qg + qs) =
1

(2π)2

∫ ∫
dk1e

−iq1(εg−εs)dk2e
iq2(εg−εs)

×

∞∫
−∞

dz1e
i(qg+q1)z1b1(kg, k1, z1)

z1∫
−∞

dz2e
i(−q1−q2)z2b1(k1, k2, z2)

×

∞∫
z2

dz3e
i(q2+qs)z3b1(k2, ks, z3) (1)

where z1 > z2 and z2 > z3 and b1 is defined in terms of the original pre-stack data with free
surface multiples eliminated, D′, to be

D′(kg, ks, ω) = (−2iqs)
−1B(ω)b1(kg, ks, qg + qs) (2)
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with B(ω) being the source signature.

The terms b1(kg, ks, z) in formula (1) can be thought of as being obtained through the
following procedure. Start with the effective data in the f − k domain, b1(kg, ks, ω), and
downward continue the source and receiver by applying a phase-shift eikzzb1(kg, ks, ω). Sub-
sequent integration over kz to obtain b1(kg, ks, z) is a simple Jacobian away from integration
over ω (t = 0 imaging condition). The algorithm can hence be interpreted as a sequence
of un-collapsed migrations restricted to lower-higher-lower pseudo-depths. Notice that any
arrival in the data is regarded as a sub-event by the algorithm and imaged through the
process above. Three prime events in the data will create, and hence attenuate, a first order
multiple; subsequent composite arrivals will create and attenuate higher order multiples.

The presence of an implicit t = 0 imaging condition in the algorithm motivates its comparison
against imaging with τ = 0, where τ is the vertical time. We found the latter to be more
general in its ability to collapse any horizontal propagations and hence to image properly, in
addition, events which contain horizontal parts in their propagation paths, e.g. headwaves
along horizontal interfaces. To be able to image a larger class of events (or sub-events)
using a different imaging condition means to be able to attenuate a larger class of internal
multiples and reduce the number of artifacts in the de-multipled data.

Although the rest of the paper mainly discusses headwaves due to horizontal interfaces we
mention that the results apply to all prime events or sub-events of composite events which
contain horizontally propagating parts.

3 Headwaves as prime events or sub-events of compos-

ite events

The propagation path of the headwaves (see Figure 1), also known in the literature as
conical or lateral waves, was first recognized by Mohorovicic during his studies of the arrival
time of certain waves from an earthquake in 1909. The headwave has a linear relationship
between arrival time and horizontal range and, at sufficient offset, it is the first arriving wave
(attribute which accounts for its name). The one who originated the theory of headwaves
as recognizably distinct arrivals was Jeffreys (1926) although the source/medium geometries
needed for such a wave to develop have been known since 1904 and referred under the general
term ”Lamb’s Problem”. An excellent brief history of the headwaves can be found in Cerveny
and Ravindra (1971).

A simple picture of the headwave can be given using the Huygens Principle which was first
applied to these problems by Merten (1927) and is described in many books on seismology
or wave propagation. The simplest case, in which the physical conditions for headwaves to
occur are satisfied, is that of two semi-infinite homogeneous liquid media. We assume that
the point source is located at s at a distance z1 from a horizontal interface separating two
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Figure 1: A ray picture of the headwave.

media such that the velocity of propagation in the second medium, c1, is higher than the
velocity of propagation in the first medium, c0 (see Figure 2).

The cylindrical coordinates of an arbitrary point are (r, z, ϕ) where r is the distance from the
vertical axis in a horizontal plane. We will consider only the two dimensional section (r, z)
with ϕ = const. Assume that the source starts to emit waves at time t = 0. For t < z1/c0,
i.e. before the wave reaches the interface, only the incident wave exists (see Figure 2a). In
this picture, the point C indicates the critical incidence. The wavefront is a sphere with
the center at s and radius R =

√
r2 + (z − z1)2 proportional to t (i.e. t = R/c0). For

t = z1/c0, the wavefront of the incident wave reaches the interface and it is tangent to it. As
t increases further, reflected and refracted waves appear, as each point on the interface hit
by the incidence wave becomes a source of disturbance according to Huygens principle. The
wave fronts of these waves for z1/c0 < t < z1/ (c0 cos ic) are shown in Figure 2b. The wave
fronts of the incident, reflected and transmitted waves are connected at the point P on the
interface which moves along the interface with increasing time. The speed of the point P

along the interface can be calculated to be

cP =
c0

sin iP
(3)

where iP is the angle between the ray incident at the point P and the vertical. The angle
iP increases with horizontal distance r, and so does sin iP which means that the velocity of
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Figure 2: Wavefront diagrams showing the development of the headwave.
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the point P along the interface, cP , decreases. While cP > c1 the situation remains the same
with all three wavefronts connected at the point P . However, for t = z1/ (c0 cos ic), where
ic = sin−1 (c0/c1), the point P reaches the point C where we have

cP =
c0

sin ic
= c1. (4)

For larger t, we have cP < c1 and the transmitted wave, propagating from the point C in
the second medium will be more advanced than the incident and reflected waves (see Figure
??c). Points on the interface which are reached by the refracted wave first, i.e. all the
points with r coordinate bigger than the r coordinate of the point C, will become centers of
disturbances propagating back into the first medium with velocity c0. These disturbances
form the headwave, the envelop of these propagations being its wave front. As the velocities
c0 and c1 are constant, the wavefront of the headwave is a straight line (in three dimensions
it is the frustum of a cone).

An important feature that emerges from the wavefront diagram representation outlined above
is that the headwaves are due to the curvature of the wavefront and hence it would be
impossible to create headwaves if the wave impinging on the interface would be a plane-
wave. This, and the fact that the headwave itself is a plane-wave, leads to the conclusion
that a headwave cannot create a multiple of itself and hence the seismic event pictured in
Figure 3 is not a real one.

gs

z1

z2

Figure 3: An impossible event in which headwaves are sub-events.

However, headwaves can occur as sub-events in a composite event if for example the other
sub-events are regular reflections; we call these kind of events, i.e. containing a headwave
as a sub-event, refracted multiples. The refracted multiples can be divided into free-surface
and internal refracted multiples depending whether any downward reflection takes place at
the free-surface, or they all take place inside the actual medium (Figure 4 shows examples
of first order internal refracted multiples).

The free surface refracted multiples are presently removed by free-surface de-multiple algo-
rithms (Dragoset (2003)). In this paper we show that, while the t = 0 imaging condition is
not physically appropriate to handle events containing horizontally propagating parts (e.g.
headwaves from horizontal reflectors), the τ = 0 imaging condition has the ability to image
them at the correct depth. An analytic example showing this is given in Section 6.
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Figure 4: First order internal refracted multiples.

4 Pre-stack constant velocity phase-shift migration

In this section we give a brief mathematical account of the pre-stack constant velocity phase-
shift migration following Stolt and Benson (1986).

The data D(xg, yg|xs, ys; t) recorded on the measurement surface is the expression of an
up-going wavefield P calculated at z = 0, i.e.

D(xg, yg|xs, ys; t) = P (xg, yg, 0 | xs, ys, 0; t). (5)

In this equation t represents the travel-time of the wave, i.e. the time it takes for the signal
to travel from the source to the reflector and back to the receiver. The amplitude of the
returning signal is a function which depends on the reflectivity M(x, y, z) where (x, y, z)
denotes a point on the reflector. Migration is the operation of mapping the data D onto the
reflectivity M

D(xg, yg|xs, ys; t)→M(x, y, z). (6)

This mapping is achieved in two steps with the use of the wavefield P : 1. The first step,
the downward continuation, is to derive the wavefield at any depth P (xg, yg, z | xs, ys, z; t)
from the wavefield at the surface P (xg, yg, 0 | xs, ys, 0; t). The downward continuation is
possible because P is an up-going solution to the scalar wave equation, hence providing all
the necessary information for the extrapolation. 2. The second step, the imaging, is to
restrict P (xg, yg, z | xs, ys, z; t) by applying the so called imaging condition t = 0 and hence
obtaining a quantity which is a function of reflectivity, i.e. P (xg, yg, z | xs, ys, z; 0). The goal
of this second step is to pinpoint the exact moment when the wave ”turns”, i.e. transforms
from a down-going into an up-going wave due to the interaction with the reflector. The two
steps, and hence the entire migration concept, can be expressed as

M(x, y, z) = F [P (x, y, z | x, y, z; 0)] , (7)

i.e. the reflectivity M is a function F of the extrapolated data P at time t = 0. The
simplest choice of F is the unit operator although this is not the preferred choice (see Stolt
and Benson Ch 3).

When the velocity is constant, the wavefield at the measurement surface (the data) can
be decomposed into plane-wave components and the extrapolation at any depth z can be
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obtained simply by applying a phase-shift eikzz, on both source and receiver, to each com-
ponent, where kz is the vertical wave-number of the plane-wave component being downward
continued. To express this notion in mathematics, we first decompose P to planewaves using
a Fourier Transform written as

P (kgx, kgy, 0 | ksx, ksy, 0; ω) =

∫
dxg

∫
dyg

∫
dxs

∫
dys

∫
dt

ei(ωt−kgxxg−kgyyg+ksxxs+ksyys)P (xg, yg, 0 | xs, ys, 0; t), (8)

where k2
gx + k2

gy + k2
gz = ω2/c2

0 and k2
sx + k2

sy + k2
sz = ω2/c2

0 with c0 the wave speed in the
reference medium. This dispersion relation fixes kgz and kszonce the other parameters are
chosen so that

kgz = −sgn(ω)

√
ω2

c2
0

− k2
gx − k2

gy (9)

and

ksz = −sgn(ω)

√
ω2

c2
0

− k2
sx − k2

sy. (10)

Notice that both wavenumbers have the same sign even though the extrapolation of source
coordinates carries different sign than the extrapolation of receiver coordinates. This happens
however because, for reflection data, we have a down-going wave on the source side and an
up-going wave on the receiver side which changes the signs again hence canceling the previous
effect.

The downward continuation of both source and receiver at a common depth z takes the form

P (kgx, kgy, z | ksx, ksy, z; ω) = P (kgx, kgy, 0 | ksx, ksy, 0; ω)ei(kgz+ksz)z (11)

with kgz and ksz given by equations (9) and (10). To obtain P in the space domain we have
to take the inverse Fourier Transform

P (xg, yg, z | xs, ys, z; t) =
1

(2π)5

∫
dkgx

∫
dkgy

∫
dksx

∫
dksy

∫
dω (12)

ei(−ωt+kgxxg+kgyyg−ksxxs−ksyys)P (kgx, kgy, z | ksx, ksy, z; ω),

and by setting t = 0 in the above equation we obtain

P (xg, yg, z | xs, ys, z; 0) =
1

(2π)5

∫
dkgx

∫
dkgy

∫
dksx

∫
dksy

∫
dω (13)

ei(kgxxg+kgyyg−ksxxs−ksyys)P (kgx, kgy, z | ksx, ksy, z; ω).

The implementation of equation (13) is called phase-shift migration.
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5 A comparison between travel time t and intercept

time τ

The imaging concept in the migration procedure described in Section 4, assumes that the
turning point of the wavefield is a point in space and hence, by restricting the time t to zero,
we would obtain the location where an up-going wave would co-exist with the first arrival of
a down-going wave, hence the position in space of the reflector. While this is true for regular
reflections, it is not true for events which contain horizontal parts in their propagation paths.
As Figure 1 shows, the turning point of a headwave is not a point in space but an entire
linear horizontal propagation. In consequence, an imaging condition t = 0 on the data which
contains these kind of events would interpret them as regular reflections and hence it would
”create” reflectors at wrong depths to accommodate them. In this section we describe the
connection and differences between the travel time t and the intercept time τ and show that
the imaging condition τ = 0 is a generalization of t = 0 which would image the headwaves
from horizontal interfaces at the correct depth.

s r

0
(r  ,t )

0

τ

t

Line of slope p

Figure 5: The definition of the vertical time τ .

By definition, the intercept or vertical time τ of an event arriving at offset r0 in travel-time
t0 is the vertical component of the travel-time t0 or, in other words, t0 projected to zero
offset along a line of slope p through the point (r0, t0). (see Figure 5). The slope p of the
tangent to the curve representing a reflection in the shot record pictured can be calculated
as

p =

(
dt

dr

)
(r0,t0)

(14)

and hence it represent the horizontal slowness associated with that particular arrival. The
equation of the tangent line gives a relationship between the travel-time t and the vertical
time τ of a particular arrival

t = τ + pr. (15)

This formula represents a decomposition of the total time into a horizontal time, pr, and a
vertical time τ . To better understand this decomposition, consider a plane-wave component
of constant horizontal slowness p of a wavefield produced by a 3D point source and moving
through a medium with constant velocity c0. The points of intersections of this planewave
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with the horizontal interface and the vertical line, move along them with constant respective
speeds cH and cV such that

sin i =
c0

cH

(16)

and
cos i =

c0

cV

(17)

(see Figure 6a). The horizontal and the vertical slowness, p and q, are defined as

p =
1

cH

=
sin i

c0

(18)

and

q =
1

cV

=
cos i

c0

(19)

and they are related through

p2 + q2 =
1

c2
0

. (20)

0
c

(a)
(b)

s

IprA

i

s

I z1z1 C h

C v
qz= τ

i

Figure 6: The relationship between t and τ .

Notice (from Figure 6b) that for the plane-wave to go from the source s to the incidence
point I in time t is equivalent for the projection point onto the vertical to go from s to A

along the vertical with the speed cV and for the projection point onto the horizontal to go
from A to I along the interface with the speed cH . In this way the total time t is decomposed
into two parts, a vertical and a horizontal time corresponding to the horizontal and vertical
motion of the projection points as follows

t =
z1

cV

+
r

cH

= qz1 + pr = τ + pr. (21)

From the previous equation (21), the condition t = 0 always implies τ = 0. The converse
is not true. For a regular reflection τ = 0 does imply that t = 0. To show this notice that
τ = 0 implies that no vertical propagation takes place, hence z1 = 0. However for this type

213



Headwaves in imaging and multiple attenuation MOSRP03

of event there is a relationship between the horizontal and the vertical coordinates , r and
z, namely

z tan i = r (22)

and so z1 = 0 implies r = 0 and they both imply t = 0 (from equation (21)).

The same statement (and argument to prove it) applies to other events for which there is
a similar relationship between the horizontal and the vertical coordinates (for example for
a turning wave). However this is not true for all seismic events. For events that contain
horizontal parts in their propagation paths, for example a headwave from a horizontal in-
terface, there is no relationship between r and z; in fact, for the part where the ray travels
horizontally, we have z = 0 (no vertical propagation) while r �= 0. In this case it is obvious
that τ = 0 does not imply t = 0.

Figure 7: Events in t and τ : the left column shows a reflection and a headwave in traveltime t; the right
column is showing the same events in the vertical time τ .

The result we want to emphasize is that

t = 0 ⇒ τ = 0 (23)

τ = 0 � t = 0

which implies that the imaging condition τ = 0 is more general than t = 0. To image with
τ = 0 means to consider only the up-down motion of the wave and disregard any horizontal
displacement that it might have (see Figure 7). This way, headwaves from horizontal inter-
faces are regarded as a down-up motion, rather than the down-lateral-up, and the imaging
condition seeks the point where the wave turns, i.e. it changes from a downward into an
upward propagation.

6 Analytic example

In this section we describe an analytic example of imaging headwaves with constant velocity
phase-shift migration but with τ = 0 imaging condition instead of t = 0. The purpose of
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the example is to show, as stated before, that the both headwaves from horizontal interfaces
and reflections are imaged at the correct depth with τ = 0.

We consider a 3D acoustic experiment with source and receiver located at the same depth
(z = 0) and one horizontal interface located at depth z1 separating two media with wave
propagation velocities c0 and c1. The media are assumed to have no lateral variation. The
post-critical data in such an experiment is (see e.g. Aki and Richards Ch. 6)

P (xg, yg, 0 | xs, ys, 0; ω) = PR(xg, yg, 0 | xs, ys, 0; ω) + PH(xg, yg, 0 | xs, ys, 0; ω) (24)

where

PR(xg, yg, 0 | xs, ys, 0; ω) =
R

d
exp (ikrr + iν02z1) (25)

is the reflected event and

PH(xg, yg, 0 | xs, ys, 0; ω) =
i

ω

c2
0

(1 − c2
0/c

2
1)

1

r1/2L3/2
exp

(
iω

r

c1

+ iν02z1

)
(26)

is the headwave. In these expressions (xs, ys, 0) and (xg, yg, 0) are the positions of the source
and receiver respectively, ω is the temporal frequency, R is the angle-dependent reflection
coefficient, d is the total distance from the source to reflection point to receiver, r is the

horizontal offset and satisfies r =
√

(xg − xs)
2 + (yg − ys)

2, kr is its conjugate in the K-space

domain, ν0 is the vertical wavenumber of the first medium and satisfies ν2
0 +k2

r = ω2/c2
0, and

L is the length of the horizontal part of the ray representation of the headwave.

We downward continue both the source and receiver to same arbitrary depth and obtain

P (xg, yg, z | xs, ys, z; ω) = PR(xg, yg, z | xs, ys, z; ω) + PH(xg, yg, z | xs, ys, z; ω) (27)

where

PR(xg, yg, z | xs, ys, z; ω) =
R

d
exp (ikrr + iν02(z1 − z)) (28)

and

PH(xg, yg, z | xs, ys, z; ω) =
i

ω

c2
0

(1 − c2
0/c

2
1)

1

r1/2L3/2
exp

(
iω

r

c1

+ iν02(z1 − z)

)
. (29)

The reflection can be easily imaged with the t = 0 imaging condition to obtain the reflectivity
of the reflection point at the correct depth z1. The same procedure, applied to the part of
the data representing the headwave, would assume that the turning point of that event is a
point in space and it would seek that point hence creating an image at the wrong depth.

To image the headwave with τ = 0 we first inverse Fourier Transform to bring the data back
to the time domain. However, ω is conjugated to the travel time t and we want to bring
the data back to the vertical time τ domain where we can apply the imaging condition. We
define the image I to be

I(τ) =

∫
dΩe−iΩτPH(xg, yg, z | xs, ys, z; ω) (30)
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where

Ω = ω

(
1 +

r

c1τ

)
. (31)

With the full expression for PH we have

I(τ) =

∫
dΩe−iΩτA(ω) exp

(
iω

r

c1

+ iν02(z1 − z)

)
(32)

where A(ω) is the amplitude in equation (29). By plugging in the expression (31) for Ω we
obtain

I(τ) =

∫
dΩe−iωτA(ω) exp (iν02(z1 − z)) (33)

and after imaging with τ = 0 we find

I(τ = 0) =

∫
dΩA(ω) exp (iν02(z1 − z)) . (34)

This last expression represents a delta like event at the correct depth z1 hence showing that
the headwave is imaged correctly.

Notice that the new condition discards any horizontal propagation (and time associated with
it) and only takes into consideration down-up propagations, as one can also see from Figure
7. For the headwave this means discarding the horizontal propagation along the interface.
It is not difficult to see that the procedure outlined above also images the reflection data at
the correct depth.

7 Conclusions

The purpose of this paper is to present the advantages of imaging with τ = 0 versus imaging
with t = 0. The former condition is a generalization of the latter which has the ability to
image headwaves from horizontal interfaces at the correct depth. This suggests that using
τ = 0 in the internal multiples attenuation algorithm derived from inverse scattering series
techniques would generalize it to address internal multiples constructed with this kind of
sub-events. This research is part of our strategy to include more of the returning signal,
information bearing or not, in our analysis and processing.
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