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Abstract

We show the steps involved in the calculation and imaging of the second order wavefield at
depth using the inverse scattering series. In the calculations we employ only the part of the
perturbation operator which does not depend on a medium’s model type. The calculations and
result only require the recorded data and the Green’s function of the homogeneous background
without any a priori assumptions on the medium that’s being investigated.

1 Introduction

Inverse scattering series provides the opportunity to determine a multidimensional unknown medium
directly from the measured data without making any intermediate determinations of, or assump-
tions on, the medium under investigation. The inversion process can be thought of as a sequence
of independent tasks (1) free surface multiple removal (2) internal multiple removal (3) imaging
the reflectors at depth and (4) identifying the medium properties changing across the reflectors.
Each task can be associated with a subseries of the full inverse scattering series which only provides
the respective capability without affecting the other tasks. For a description of the logic and the
history of the subseries method see Weglein et al. (2003).

For the first two tasks, free surface and internal multiple elimination, model type independent
subseries and algorithms have been found and applied extensively in the oil industry (see e.g.
Weglein et al. (1997) and Weglein et al. (2003) and references therein). For the third task of imaging
the reflectors at depth, algorithms have been found and tested for 1D and multi-D acoustic media
(Shaw, 2001; Weglein et al., 2001; Shaw, 2002; Shaw and Weglein, 2003; Shaw et al., 2003; Shaw,
2003; Weglein et al., 2003; Shaw et al., 2004; Shaw, 2005; Liu et al., 2005, 2006, 2007).

This research investigates a possible model type independent methodology to calculate and image
the wavefield at depth from the inverse scattering series using only recorded data. Roughly speaking,
the method uses the calculated and task specific separated perturbation operator V , in the forward
scattering series, to calculate different orders of the scattered field at any depth. The subsequent
imaging of this wavefield at depth is performed similarly to the imaging step in f−k depth migration
algorithms. For an acoustic medium, the method was first described in Weglein et al. (2000) where
the first order wavefield at depth was calculated. In this paper we investigate the possibility of
performing these calculations in a model type independent environment for the first and the second
orders wavefield at depth.

One important conclusions that comes out of this calculations is that, when the actual medium
is unknown, calculating the wavefield at depth for one frequency requires all frequencies in the
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wavefield on the measurement surface (data). This is fundamentally different from migration algo-
rithms, which assume the medium is known, and which can extrapolate, at depth, each frequency
individually (by performing a phase-shift for example). This was originally noted in Weglein et al.
(2000) for the first order of the acoustic wavefield at depth calculated using the inverse scattering
series. Here we discover the same characteristic for the wavefield at depth without a specified model
type for both first and second order.

The paper starts with the necessary background, definitions and description of the method, in
Section 2, and then proceeds with the calculation of the first and second orders of the wavefield at
depth in Sections 3 and 4 respectively. Section 5 shows how this part of the field can be imaged. We
end the paper with conclusions and discussion of future research directions. Throughout the paper
we use the following conventions for Fourier transforming over the space and time coordinates. For
the Fourier transform over the horizontal variable x, we are going to use the different sign convention
for the transformation over the source and receiver coordinates. Accordingly, the forward Fourier
transform of a real function f over the horizontal source coordinate xs is going to be

f(kxs) =
∫ ∞

−∞
f(xs)eikxsxsdxs, (1)

where kxs is the associated horizontal wavenumber. The forward Fourier transform of f over the
horizontal receiver coordinate xg is going to be

f(kxg) =
∫ ∞

−∞
f(xg)e−ikxgxgdxg, (2)

where kxg is, same as before, the associated horizontal wavenumber. The corresponding inverse
Fourier transforms are

f(xs) =
1
2π

∫ ∞

−∞
f(kxs)e−ikxsxsdkxs (3)

and
f(xg) =

1
2π

∫ ∞

−∞
f(kxg)eikxgxgdkxg (4)

respectively. There will be no such distinction for the vertical coordinates/wavenumbers. The
Fourier transform of, say, f(z) will be

f(q) =
∫ ∞

−∞
f(z)eiqzdz (5)

and the inverse Fourier transform of f(q) will be

f(z) =
1
2π

∫ ∞

−∞
f(q)e−iqzdq (6)

The forward Fourier transform over the time coordinate t is

f(ω) =
∫ ∞

−∞
f(t)eiωtdt, (7)

where ω is the temporal frequency. Its corresponding inverse Fourier transform will be given by

f(t) =
1
2π

∫ ∞

−∞
f(ω)e−iωtdω. (8)
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2 Background

In operator form, the differential equations describing wave propagation in an actual and a reference
medium can be written as

LG = −I (9)

and
L0G0 = −I, (10)

where L, L0 and G, G0 are the actual and reference differential and Green’s operators, respectively,
for a single temporal frequency and I is the identity operator. The above equations (9) and (10)
assume that the source and receiver signatures have been deconvolved. The perturbation, V, and
the scattered field operator, ψs, are defined as

V = L− L0, (11)
ψs = G−G0. (12)

The fundamental equation of scattering theory, the Lippmann–Schwinger equation, relates ψs, G0,
V, and G (see, e.g., Taylor (1972)):

ψs = G−G0 = G0VG. (13)

The Lippmann-Schwinger equation (13) is valid everywhere, inside or outside the support of V.
Expressions for L, L0 and V, in the case of a pressure wavefield propagating in inhomogeneous
acoustic and elastic media, have been given in Clayton and Stolt (1981) and Stolt and Weglein
(1985). Equation (13) can be expanded in an infinite series by substituting G = G0 −G0VG into
the right-hand side repeatedly to obtain

ψs = G0VG0 + G0VG0VG (14)
ψs = G0VG0 + G0VG0VG0 + G0VG0VG0VG

...

and so on. By repeating this process an infinite number of times we imagine that we can drop the
last term containing the Green’s function of the actual medium, G, in favor of an infinite series,
and write the scattered field as

ψs ≡ G−G0 = G0VG0 + G0VG0VG0 + · · · . (15)

When convergent (see e.g. Matson (1996) and Nita et al. (2004)), this series, the forward scattering
series, constructs the scattered field operator ψs, everywhere inside or outside the medium, as
a sum of terms representing propagations in the reference medium (G0) and interactions with
the inhomogeneity represented by the perturbation operator V. For example, one could use this
expression to calculate the reflected or transmitted response of the medium everywhere. The data
recorded in a seismic experiment is usually considered to be the scattered field on the measurement
surface

(ψs)MS = D (16)
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Next we consider the expansion of the perturbation V and the scattered field ψs as a series in orders
of the data D and write

V = V1 + V2 + V3 + . . . (17)

and
ψs = ψ1

s + ψ2
s + ψ3

s + . . . (18)

respectively, where Vi and ψi
s are terms of order i in the data D. Notice, for example, that, on the

measurement surface, we have

(ψ1
s)MS = D (19)

(ψi
s)MS = 0, i ≥ 2.

Plugging the series in (17) and (18) into the forward scattering series (15) we find

ψ1
s + ψ2

s + ψ3
s + . . . = G0V1G0 + G0V2G0 + G0V3G0 . . . (20)

+ G0V1G0V1G0 + G0V1G0V2G0 + G0V2G0V1G0 + . . .

+ G0V1G0V1G0V1G0 + . . .

+ . . . .

Equating like orders in the data in the equation above we find

ψ1
s = G0V1G0 (21)

ψ2
s = G0V2G0 + G0V1G0V1G0 (22)

ψ3
s = G0V3G0 + G0V2G0V1G0 + G0V1G0V2G0 + G0V1G0V1G0V1G0 (23)

... .

On the measurements surface, and because of (19), equations (21)-(23) provide an algorithm for
computing Vi, i ≥ 1

D = (G0V1G0)ms (24)
0 = (G0V2G0 + G0V1G0V1G0)ms (25)
0 = (G0V3G0 + G0V2G0V1G0 + G0V1G0V2G0 + G0V1G0V1G0V1G0)ms (26)

... .

One can then calculate V as a series V = V1 + V2 + V3 + .... This approach and task specific
subseries associated with the series for V were studied (see e.g. Weglein et al. (2003) and references
therein) and continue to be studied. Most importantly, the subseries method provided model type
independent algorithms for free surface and internal multiple elimination. Subseries for moving
reflectors at the correct depth have been found for the acoustic case (Shaw (2005), Liu et al.
(2006)) and research efforts are under way to generalize the subseries to a model type independent
algorithm (Ramı́rez et al. (2007)).

However equations (21)-(23) also provide a different method for computing the wavefield at depth
in two steps (see also Weglein et al. (2000) and Weglein et al. (2006)). In the first step we restrict
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these equations to the measurement surface to obtain (24)-(26). From these equations we can
calculate Vi, i ≥ 1. In a second step we use the fully unrestricted equations (21)-(23), now with
known Vi’s, to calculate ψi

s, i ≥ 1, at any depth. The connection between the two steps is realized
through the perturbation operator V, a quantity which only depends on the actual medium (for a
fixed reference medium) and does not change from one equation to another. We emphasize that this
calculation of the wavefield at depth is performed starting with the data and a reference medium
and does not require any features of the actual medium. There are several important features of
this calculation that will be evident in the following section. First, in the calculation of Vi, only
the model type independent part (as described in Weglein et al. (2003), Ramı́rez et al. (2007)) is
retained and the part that depends on the medium properties is ignored. Second, since what we are
trying to achieve is the extrapolation of the wavefield at depth without any change in amplitude,
we only use the terms in the series that correct for the reflectors mislocation, as found in Shaw
(2005).

In the following sections we calculate the first and second orders of the wavefield at depth in terms
of the data and the reference medium only.

3 The calculation of the first order wavefield at depth ψ1
s

We start with equation (21)
ψ1

s = G0V1G0 (27)

or, in a coordinate system,

ψ1
s(x1, z1, x2, z2;ω1) =

∫
dx′dx′′dz′dz′′G0(x1, z1, x

′, z′;ω1)V1(x′, z′, x′′, z′′, ω1)G0(x′′, z′′, x2, z2;ω1)

(28)
where (see Appendix 6)

G0(x1, z1, x
′, z′, ω1) =

(
1
2π

)2
∞∫

−∞

dkg

∞∫
−∞

dq1
eikg(x1−x′)eiq1(z′−z1)

k2
g + q21 −

ω2
1

c20
− iε

(29)

and

G0(x′′, z′′, x2, z2, ω1) =
(

1
2π

)2
∞∫

−∞

dks

∞∫
−∞

dq2
eiks(x′′−x2)eiq2(z′′−z2)

k2
s + q22 −

ω2
1

c20
− iε

(30)

and where x1, z1, x2 and z2 are arbitrary coordinates. Notice that in the equations for the Green’s
functions given above we have associated the space variables x1, z1, x2 and z2 with the wavenumbers
kg, q1, ks, q2 satisfying the dispersion relations

k2
g + q21 =

ω2
1

c20
, k2

s + q22 =
ω2

1

c20
. (31)
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Fourier transforming equation (28) over all space variables (i.e. applying on both sides the integral

operators
∞∫

−∞
dx1e

−ik′gx1 ,
∞∫

−∞
dx2e

ik′sx2 ,
∞∫

−∞
dz1e

iq′1z1 and
∞∫

−∞
dz2e

iq′2z2) we find

ψ1
s(k

′
g, q

′
1, k

′
s, q

′
2;ω1) =

(
1
2π

)4 ∫
dx′dx′′dz′dz′′

∞∫
−∞

dkg

∞∫
−∞

dx1e
ix1(kg−k′g)

∞∫
−∞

dks

∞∫
−∞

dx1e
−ix2(ks−k′s)

×
∞∫

−∞

dq1

∞∫
−∞

dz1e
iz1(q′1−q1)

∞∫
−∞

dq2

∞∫
−∞

dz2e
iz2(q′2−q2)

× e−ix′kgeix
′′ks

k2
g + q21 −

ω2
1

c20
− iε

V1(x′, z′, x′′, z′′, ω1)
eiz

′q1eiz
′′q2

k2
s + q22 −

ω2
1

c20
− iε

(32)

which becomes

ψ1
s(k

′
g, q

′
1, k

′
s, q

′
2;ω1) =

(
1
2π

)4 ∫
dx′dx′′dz′dz′′

∞∫
−∞

dkgδ(kg − k′g)

∞∫
−∞

dksδ(ks − k′s)

×
∞∫

−∞

dq1δ(q′1 − q1)

∞∫
−∞

dq2δ(q′2 − q2)

× e−ix′kgeix
′′ks

k2
g + q21 −

ω2
1

c20
− iε

V1(x′, z′, x′′, z′′, ω1)
eiz

′q1eiz
′′q2

k2
s + q22 −

ω2
1

c20
− iε

(33)

or, after simplifying the delta functions and eliminating the primed notation from the wavenumbers,

ψ1
s(kg, q1, ks, q2;ω1) =

∫
dx′dx′′dz′dz′′

e−ix′kgeix
′′ks

k2
g + q21 −

ω2
1

c20
− iε

V1(x′, z′, x′′, z′′, ω1)
eiz

′q1eiz
′′q2

k2
s + q22 −

ω2
1

c20
− iε

.

(34)
The last four integrals can also be regarded as Fourier transforms over x′, x′′, z′ and z′′ so that the
last expression can be written as

ψ1
s(kg, q1, ks, q2;ω1) =

1

k2
g + q21 −

ω2
1

c20
− iε

V1(kg,−q1, ks,−q2, ω1)
1

k2
s + q22 −

ω2
1

c20
− iε

. (35)

From Appendix 6 equation (146) we have that

V1(kg,−qg,−ks,−qs, ω) = −4qgqseiqgzgeiqszsD(kg, ks, ω) (36)

where we emphasize that while the horizontal wavenumbers are the same in the two equations,
the vertical wavenumbers are different and are related to the horizontal ones through different
frequencies ω and ω1. To avoid confusions (see also Appendix 6) we rewrite the last equation as

V1(kg,−qg,−ks,−qs, ω) = −4qgqseiqgzgeiqszsD(kg, ks, qg + qs). (37)
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It is important to notice that the V1 on the left is the 3-dimensional projection of the fully 5-
dimensional V1 operator (so chosen by ignoring the P.V. part of the Green’s function, see Appendix
6). The independent variables on the left are kg, ks and qg + qs. With this in mind we write

V1(kg,−q1,−ks,−q2, ω1) =
1
2π

∞∫
−∞

d(−qg − qs)δ(qg + qs − q1 − q2)V1(kg,−qg,−ks,−qs, ω) (38)

or

V1(kg,−q1,−ks,−q2, ω1) = − 1
2π

∞∫
−∞

d(−qg− qs)δ(qg + qs− q1− q2)qgqseiqgzgeiqszsD(kg, ks, ω). (39)

Equation (39) leads to a relationship between the sums of the vertical wavenumbers,

qg + qs = q1 + q2, (40)

which, in turn, allows us to calculate ω1 in terms of ω as (see Appendix 6 equation (152)) as

ω2
1

c20
=

[
(qg + qs)2 + k2

g + k2
s

]2 − 4k2
gk

2
s

4(qg + qs)2
. (41)

With this particular ω1, equation (39) for V1 becomes

V1(kg,−q1, ks,−q2, ω1) = −4qgqseiqgzgeiqszsD(kg, ks, ω) (42)

so the final expression for ψ1
s

ψ1
s(kg, q1, ks, q2;ω1) =

−4qgqseiqgzgeiqszsD(kg, ks, ω)(
k2

g + q21 −
ω2

1

c20
− iε

)(
k2

s + q22 −
ω2

1

c20
− iε

) (43)

in which the variables are related by the dispersion relationships

k2
g + q21 =

ω2
1

c20
, k2

s + q22 =
ω2

1

c20
(44)

k2
g + q2g =

ω2

c20
, k2

s + q2s =
ω2

c20
(45)

and
ω2

1

c20
=

[
(qg + qs)2 + k2

g + k2
s

]2 − 4k2
gk

2
s

4(qg + qs)2
. (46)

For the acoustic case, equation (43) was obtained in Weglein et al. (2000) and it was discussed in
Weglein et al. (2006). In the next section we calculate the second order wavefield at depth, ψ2

s .
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4 The calculation of the second order wavefield at depth ψ2
s

We start with equation (22)

ψ2
s = G0V2G0 + G0V1G0V1G0. (47)

For convenience, we will denote

ψ21
s = G0V1G0V1G0 (48)

ψ22
s = G0V2G0. (49)

4.1 The calculation of ψ21
s

We start with
ψ21

s = G0V1G0V1G0 (50)

or, with coordinates,

ψ21
s (x1, z1, x2, z2;ω1) =

∫
dx′dx′′dz′dz′′G0(x1, z1, x

′, z′;ω1)V1(x′, z′, x′′, z′′, ω1)

×
∫
dx′′′dxivdz′′′dzivG0(x′′, z′′, x′′′, z′′′;ω1)V1(x′′′, z′′′, xiv, ziv, ω1)G0(xiv, ziv, xs, zs;ω1) (51)

where x1, z1, x2 and z2 are arbitrary coordinates and, as before, the Green’s functions have the
expressions (see Appendix 6)

G0(x1, z1, x
′, z′, ω1) =

(
1
2π

)2
∞∫

−∞

dkg

∞∫
−∞

dq1
eikg(x1−x′)eiq1(z′−z1)

k2
g + q21 −

ω2
1

c20
− iε

, (52)

G0(xiv, ziv, x2, z2, ω1) =
(

1
2π

)2
∞∫

−∞

dks

∞∫
−∞

dq2
eiks(xiv−x2)eiq2(ziv−z2)

k2
s + q22 −

ω2
1

c20
− iε

. (53)

and

G0(x′′, z′′, x′′′, z′′′, ω1) =
1
2π

∞∫
−∞

dkλ1

eikλ1
(x′′−x′′′)eiqλ1

|z′′−z′′′|

2iqλ1

. (54)

where qλ1 =
√

ω2
1

c20
− k2

λ1
. In the expressions of the Green’s functions above we have associated

the spatial variables x1, z1, x2 and z2 with the wavenumbers kg, q1, ks and q2 respectively. The
wavenumbers satisfy the dispersion relations

k2
g + q21 =

ω2
1

c20
, k2

s + q22 =
ω2

1

c20
, k2

λ1
+ q2λ1

=
ω2

1

c20
. (55)
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Fourier transforming equation (51) over all spatial arguments of ψ21
s (i.e. applying on both sides

the integral operators
∞∫

−∞
dx1e

−ik′gx1 ,
∞∫

−∞
dx2e

ik′sx2 ,
∞∫

−∞
dz1e

iq′1z1 and
∞∫

−∞
dz2e

iq′2z2) we find

ψ21
s (k′g, q

′
1, k

′
s, q

′
2;ω1) =

(
1
2π

)5 ∫
dkλ1

1
2iqλ1

∫
dx′dx′′dz′dz′′dx′′′dxivdz′′′dziv∫

dkg

∫
dx1e

ix1(kg−k′g)

∫
dks

∫
dx1e

−ix2(ks−k′s)

∫
dq1

∫
dz1e

iz1(q′1−q1)

∫
dq2

∫
dz2e

iz2(q′2−q2)

× e−ix′kgeix
′′kλ1

k2
g + q21 −

ω2
1

c20
− iε

V1(x′, z′, x′′, z′′, ω1)
e−ix′′′kλ1eix

ivks

k2
s + q22 −

ω2
1

c20
− iε

V1(x′′′, z′′′, xiv, ziv, ω1)eiz
′q1eiqλ1

|z′′−z′′′|eiz
ivq2

(56)

which becomes

ψ21
s (k′g, q

′
1, k

′
s, q

′
2;ω1) =

(
1
2π

)5 ∫
dkλ1

1
2iqλ1

∫
dx′dx′′dz′dz′′dx′′′dxivdz′′′dziv

∫
dkgδ(kg − k′g)

×
∫
dksδ(ks − k′s)

∫
dq1δ(q′1 − q1)

∫
dq2δ(q′2 − q2)V1(x′, z′, x′′, z′′, ω1)

× e−ix′kgeix
′′kλ1

k2
g + q21 −

ω2
1

c20
− iε

e−ix′′′kλ1eix
ivks

k2
s + q22 −

ω2
1

c20
− iε

V1(x′′′, z′′′, xiv, ziv, ω1)eiz
′q1eiqλ1

|z′′−z′′′|eiz
ivq2 (57)

or, after simplifying the delta functions and eliminating the primed notation on the wavenumbers,

ψ21
s (kg, q1, ks, q2;ω1) =

1
2π

∞∫
−∞

dkλ1

1
2iqλ1

∫
dx′dx′′dz′dz′′dx′′′dxivdz′′′dziveiz

′q1eiqλ1
|z′′−z′′′|eiz

ivq2

× e−ix′kgeix
′′kλ1

k2
g + q21 −

ω2
1

c20
− iε

e−ix′′′kλ1eix
ivks

k2
s + q22 −

ω2
1

c20
− iε

V1(x′, z′, x′′, z′′, ω1)V1(x′′′, z′′′, xiv, ziv, ω1). (58)

The integrals over x′, x′′, x′′′, xiv, z′ and ziv are Fourier transform so we can further simplify into

ψ21
s (kg, q1, ks, q2;ω1) =

1
4πi

1

k2
g + q21 −

ω2
1

c20
− iε

1

k2
s + q22 −

ω2
1

c20
− iε

∫
dkλ1

1
qλ1

∫
dz′′

× V1(kg,−q1,−kλ1 , z
′′, ω1)

∫
dz′′′eiqλ1

|z′′−z′′′|V1(kλ1 , z
′′′,−ks,−q2, ω1). (59)

Next we use the Heaviside step function H to express the absolute values and write

eiqλ1
|z′′−z′| = eiqλ1

(z′−z′′)H(z′ − z′′) + eiqλ1
(z′′−z′)H(z′′ − z′). (60)

Moreover we use the integral representation of H (reference)

H(z) = lim
ε→0

1
2π

∞∫
−∞

dp
1

i(p− iε)
e−ipz. (61)
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With this, the expression of ψ21
s becomes

ψ21
s (kg, q1, ks, q2;ω1) =

1
4πi

1

k2
g + q21 −

ω2
1

c20
− iε

1

k2
s + q22 −

ω2
1

c20
− iε

∫
dkλ1

1
qλ1

∫
dz′′V1(kg,−q1,−kλ1 , z

′′, ω1)

×

∫ dz′′′eiqλ1
(z′′−z′′′) lim

ε→0

1
2π

∞∫
−∞

dp
1

i(p− iε)
e−ip(z′′−z′′′)V1(kλ1 , z

′′′,−ks,−q2, ω1)

+
∫
dz′′′eiqλ1

(z′′′−z′′) lim
ε→0

1
2π

∞∫
−∞

dp
1

i(p− iε)
e−ip(z′′′−z′′)V1(kλ1 , z

′′′,−ks,−q2, ω1)

 (62)

Rearranging the order of integration and solving the Fourier transforms over dz′′ and dz′′′ we find

ψ21
s (kg, q1, ks, q2;ω1) =

1
8π2i

1

k2
g + q21 −

ω2
1

c20
− iε

1

k2
s + q22 −

ω2
1

c20
− iε

∞∫
−∞

dkλ1

1
qλ1

×

lim
ε→0

∞∫
−∞

dp
V1(kg,−q1,−kλ1 ,−qλ1 + p, ω1)V1(kλ1 , qλ1 − p,−ks,−q2, ω1)

i(p− iε)

+ lim
ε→0

∞∫
−∞

dp
V1(kg,−q1,−kλ1 , qλ1 − p, ω1)V1(kλ1 ,−qλ1 + p,−ks,−q2, ω1)

i(p− iε)

 (63)

The two dp integrals can be separated into a principal value and a contribution from contour
integrals around the pole p = iε. The portion of V2 which depends on the principal value part
of that integral, is not computable in terms of the data without specifying a model type. In
conclusion we will exclude that part from the computation. The contribution from integrating
around the contour integrals around the pole leads to

ψ21
s (kg, q1, ks, q2;ω1) =

1
8π2i

1

k2
g + q21 −

ω2
1

c20
− iε

1

k2
s + q22 −

ω2
1

c20
− iε

∞∫
−∞

dkλ1

1
qλ1

×

lim
ε→0

∞∫
−∞

dp iπδ(p− iε)V1(kg,−q1,−kλ1 ,−qλ1 + p, ω1)V1(kλ1 , qλ1 − p,−ks,−q2, ω1)

+ lim
ε→0

∞∫
−∞

dp iπδ(p− iε)V1(kg,−q1,−kλ1 , qλ1 − p, ω1)V1(kλ1 ,−qλ1 + p,−ks,−q2, ω1)

 (64)

or

ψ21
s (kg, q1, ks, q2;ω1) =

1
8π

1

k2
g + q21 −

ω2
1

c20
− iε

1

k2
s + q22 −

ω2
1

c20
− iε

∞∫
−∞

dkλ1

1
qλ1
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× [V1(kg,−q1,−kλ1 ,−qλ1 , ω1)V1(kλ1 , qλ1 ,−ks,−q2, ω1)
+V1(kg,−q1,−kλ1 , qλ1 , ω1)V1(kλ1 ,−qλ1 ,−ks,−q2, ω1)] . (65)

Next we relate V1 in vertical numbers q1, q2 and V1 in vertical numbers qg, qs. As noted before,
this leads to two sets of relationships between the sums of the vertical wavenumbers,

qg + qλ = q1 + qλ1 (66)
qλ − qs = qλ1 − q2 (67)

and

qg − qλ = q1 − qλ1 (68)
qλ + qs = qλ1 + q2. (69)

where

qλ1 =

√
ω2

1

c20
− k2

λ, qλ =

√
ω2

c20
− k2

λ. (70)

Each of the two sets of equations for the vertical wavenumbers has to be satisfied simultaneously.
Notice that these equations provide a unique and consistent formula for ω1, in terms of ω, which
can be discovered by, for example, subtracting equations (66) and (67) and adding equations (68)
and (69). The relationship is (see also equation (40))

qg + qs = q1 + q2, (71)

which leads to (see Appendix 6 equation (152) and also Section 3)

ω2
1

c20
=

[
(qg + qs)2 + k2

g + k2
s

]2 − 4k2
gk

2
s

4(qg + qs)2
. (72)

With this particular ω1, equation (65) for ψ21
s becomes

ψ21
s (kg, q1, ks, q2;ω1) =

1
8π

1

k2
g + q21 −

ω2
1

c20
− iε

1

k2
s + q22 −

ω2
1

c20
− iε

∫
dkλ

1
qλ1

× [V1(kg,−qg,−kλ,−qλ, ω)V1(kλ, qλ,−ks,−qs, ω) + V1(kg,−qg,−kλ, qλ, ω)V1(kλ,−qλ,−ks,−q2, ω)] .
(73)

Next we plug in the expressions for V1’s in terms of the measured data. From equations (172),
(173), (174) and (175) in Appendix 6 we have

V1(kg,−qg,−kλ,−qλ, ω) = −4qgqλeiqgzgeiqλzsD(kg, kλ, qg + qλ), (74)

V1(kλ, qλ,−ks,−qs, ω) = 4qλqse−iqλzgeiqszsD(kλ, ks,−qλ + qs) (75)

V1(kg,−qg,−kλ, qλ, ω) = 4qgqλeiqgzge−iqλzsD(kg, kλ, qg − qλ) (76)
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and
V1(kλ,−qλ,−ks,−q2, ω) = −4qλqseiqλzgeiqszsD(kλ, ks, qλ + qs) (77)

and so equation (73) becomes

ψ21
s (kg, q1, ks, q2;ω1) = −2qgqs

π

eiqgzg

k2
g + q21 −

ω2
1

c20
− iε

eiqszs

k2
s + q22 −

ω2
1

c20
− iε

×
∞∫

−∞

dkλ
q2λ
qλ1

[
eiqλ(zs−zg)D(kg, kλ, qg + qλ)D(kλ, ks,−qλ + qs)

+ eiqλ(zg−zs)D(kg, kλ, qg − qλ)D(kλ, ks, qλ + qs)
]
. (78)

Similar to what is described in Appendix 6 we are going to separate the expression of ψ21
s into an

imaging part and an inversion part and use the former and discard the latter for our calculation of
the second order wavefield at depth. To separate, we write the data terms as Fourier integrals over
vertical wavenumbers as

D(kg, kλ, qg + qλ) =

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1), (79)

D(kλ, ks,−qλ + qs) =

∞∫
−∞

dz2e
iz2(−qλ+qs)D(kλ, ks, z2) (80)

D(kg, kλ, qg − qλ) =

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3) (81)

D(kλ, ks, qλ + qs) =

∞∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4), (82)

and rewrite equation (78) as

ψ21
s (kg, q1, ks, q2;ω1) = −2qgqs

π

eiqgzg

k2
g + q21 −

ω2
1

c20
− iε

eiqszs

k2
s + q22 −

ω2
1

c20
− iε

∞∫
−∞

dkλ
q2λ
qλ1eiqλ(zs−zg)

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
−∞

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+ eiqλ(zg−zs)

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

∞∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 . (83)
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Depending on the relative position of the two pseudo-depths z1, z2, z3 and z4 we can further
separate the last expression into

ψ21
s (kg, q1, ks, q2;ω1) = −2qgqs

π

eiqgzg

k2
g + q21 −

ω2
1

c20
− iε

eiqszs

k2
s + q22 −

ω2
1

c20
− iε

∞∫
−∞

dkλ
q2λ
qλ1

eiqλ(zs−zg)

 ∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
−∞

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)δ(z2 − z1)

+

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
z1+ε

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

z1−ε∫
−∞

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)


− 2qgqs

π

eiqgzg

k2
g + q21 −

ω2
1

c20
− iε

eiqszs

k2
s + q22 −

ω2
1

c20
− iε

∞∫
−∞

dkλ
q2λ
qλ1

eiqλ(zg−zs)

 ∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

∞∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)δ(z3 − z4)

+

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

∞∫
z3+ε

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

+

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

z3−ε∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 (84)

or, after solving the integral containing the delta function,

ψ21
s (kg, q1, ks, q2;ω1) = −2qgqs

π

eiqgzg

k2
g + q21 −

ω2
1

c20
− iε

eiqszs

k2
s + q22 −

ω2
1

c20
− iε

∞∫
−∞

dkλ
q2λ
qλ1

eiqλ(zs−zg)

2π

∞∫
−∞

dz1e
iz1(qg+qs)D(kg, kλ, z1)D(kλ, ks, z1)

+

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
z1+ε

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

z1−ε∫
−∞

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)


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− 2qgqs
π

eiqgzg

k2
g + q21 −

ω2
1

c20
− iε

eiqszs

k2
s + q22 −

ω2
1

c20
− iε

∞∫
−∞

dkλ
q2λ
qλ1

eiqλ(zg−zs)

2π

∞∫
−∞

dz3e
iz3(qg+qs)D(kg, kλ, z3)D(kλ, ks, z3)

+

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

∞∫
z3+ε

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

+

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

z3−ε∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 . (85)

As also noted in Appendix 6, the first term in each square bracket in equation (85) is similar to
an amplitude corrector and it will be ignored in the following calculations. The second term in the
first square bracket and the third in the second square bracket are similar to depth correctors (see
e.g. Shaw (2005), Liu et al. (2006) Ramirez and Otnes (2007)). For the purpose of this paper we
will only keep these (imaging) terms and arrive to our final expression

ψ21IM
s (kg, q1, ks, q2;ω1) = −2qgqs

π

eiqgzg

k2
g + q21 −

ω2
1

c20
− iε

eiqszs

k2
s + q22 −

ω2
1

c20
− iε

∞∫
−∞

dkλ
q2λ
qλ1eiqλ(zs−zg)

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
z1+ε

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+ eiqλ(zg−zs)

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

z3−ε∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 , (86)

in which the variables are related by the dispersion relationships

k2
g + q21 =

ω2
1

c20
k2

s + q22 =
ω2

1

c20
(87)

k2
g + q2g =

ω2

c20
k2

s + q2s =
ω2

c20
(88)

and
ω2

1

c20
=

[
(qg + qs)2 + k2

g + k2
s

]2 − 4k2
gk

2
s

4(qg + qs)2
. (89)

234



Calculation and imaging of the non-linear 2D wavefield at depth in terms of the data MOSRP06

4.2 The calculation of ψ22
s

For ψ22
s the calculations are similar to the ones in Section 3 and we can find

ψ22
s (kg, q1, ks, q2;ω1) =

1

k2
g + q21 −

ω2
1

c20
− iε

V2(kg,−q1,−ks,−q2, ω1)
1

k2
s + q22 −

ω2
1

c20
− iε

. (90)

It is again important to notice that the V2 on the right is the 3-dimensional projection of the fully
5-dimensional V2 operator. The independent variables on the right are kg, ks and q1 + q2. With
this in mind we write (see also Appendix 6)

V2(kg,−q1,−ks,−q2, ω1) =
1
2π

∞∫
−∞

d(−qg − qs)δ(qg + qs − q1 − q2)V2(kg,−qg,−ks,−qs, ω). (91)

This last equation leads to the same relationship between the sums of the vertical wavenumbers,

qg + qs = q1 + q2, (92)

which, in turn, allows us to calculate ω1 in terms of ω as (see Appendix 6 equation (152))

ω2
1

c20
=

[
(qg + qs)2 + k2

g + k2
s

]2 − 4k2
gk

2
s

4(qg + qs)2
. (93)

Note that this value of ω1 is consistent with the previous values obtained in the calculation of V1

and ψ1
s . With this particular ω1, the equation for V2 becomes

V2(kg,−q1,−ks,−q2, ω1) = V2(kg,−qg,−ks,−qs, ω). (94)

In this expression, consistent with our previous remarks, we will only use the imaging part of V2 as
calculated in equation (185) in Appendix 6

V IM
2 (kg,−q1,−ks,−q2, ω1) = V IM

2 (kg,−qg,−ks,−qs, ω) =
2qgqsei(qgzg+qszs)

π

∞∫
−∞

dkλqλ

×

eiqλ(zs−zg)

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
z1+ε

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+eiqλ(zg−zs)

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

z3−ε∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 . (95)

The final expression for ψ22IM
s is then

ψ22IM
s (kg, q1, ks, q2;ω1) =

2
π

qgqs

k2
g + q21 −

ω2
1

c20
− iε

ei(qgzg+qszs)

k2
s + q22 −

ω2
1

c20
− iε

∞∫
−∞

dkλqλ
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×

eiqλ(zs−zg)

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
z1+ε

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+eiqλ(zg−zs)

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

z3−ε∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 . (96)

in which the variables are related by the dispersion relationships

k2
g + q21 =

ω2
1

c20
, k2

s + q22 =
ω2

1

c20
, (97)

k2
g + q2g =

ω2

c20
, k2

s + q2s =
ω2

c20
, k2

λ + q2λ =
ω2

c20
(98)

and
ω2

1

c20
=

[
(qg + qs)2 + k2

g + k2
s

]2 − 4k2
gk

2
s

4(qg + qs)2
. (99)

4.3 Solution for ψ2IM
s

Combining equations (86) and (96) we find

ψ2IM
s (kg, q1, ks, q2;ω1) =

2qgqs
π

eiqgzg

k2
g + q21 −

ω2
1

c20
− iε

eiqszs

k2
s + q22 −

ω2
1

c20
− iε

∞∫
−∞

dkλ
qλ
qλ1

(qλ1 − qλ)

×

eiqλ(zs−zg)

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
z1+ε

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+eiqλ(zg−zs)

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

z3−ε∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 (100)

in which, again, the variables are related by the dispersion relationships

k2
g + q21 =

ω2
1

c20
, k2

s + q22 =
ω2

1

c20
, k2

λ + q2λ1
=
ω2

1

c20
(101)

k2
g + q2g =

ω2

c20
, k2

s + q2s =
ω2

c20
, k2

λ + q2λ =
ω2

c20
(102)

and
ω2

1

c20
=

[
(qg + qs)2 + k2

g + k2
s

]2 − 4k2
gk

2
s

4(qg + qs)2
. (103)
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5 Imaging the wavefield at depth

Equation (18) provides a formula for the scattered wavefield everywhere inside or outside the actual
medium

ψs = ψ1
s + ψ2

s + ψ3
s + . . . . (104)

Plugging in the expressions we found for the first and second orders, ψ1
s and ψ2

s , in equations (43)
and (100) respectively, we find

ψ2nd
s (kg, q1, ks, q2;ω1) =

−4qgqseiqgzgeiqszs(
k2

g + q21 −
ω2

1

c20
− iε

)(
k2

s + q22 −
ω2

1

c20
− iε

)
D(kg, zg, ks, zs, ω) +

1
2π

∞∫
−∞

dkλ
qλ
qλ1

(qλ − qλ1)

×

eiqλ(zs−zg)

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
z1+ε

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+eiqλ(zg−zs)

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

z3−ε∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 . (105)

To image this wavefield we first transform it into the depth domain by inverse Fourier transforming
over the vertical wavenumbers to obtain

ψ2nd
s (kg, ks, z;ω1) =

∞∫
−∞

dkz e
ikzzψ2nd

s (kg, q1, ks, q2;ω1) (106)

where kz = q1 + q2. Then we integrate over all temporal frequencies, which amounts in applying
the imaging condition, to obtain

I(kg, ks, z) =

∞∫
−∞

dω1ψ
2nd
s (kg, ks, z;ω1), (107)

and finally we transform over the horizontal wavenumbers to obtain the image in the space domain

I(x, z) =
1
2π

∞∫
−∞

d(kg − ks)e−i(kg−ks)xI(kg, ks, z). (108)

6 Conclusions

In this report we describe an approach to calculating and imaging the wavefield at depth using
the inverse scattering series. The method does not make any assumptions on the medium under
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investigations and only inputs the recorded data on the measurement surface and a background
acoustic Green’s function. Roughly speaking, the method uses the calculated and task specific
separated perturbation operator V, in the forward scattering series, to calculate different orders of
the scattered field at any depth. For an acoustic medium, the method was presented in Weglein
et al. (2000) where the first order wavefield was calculated. Here we proceed without specifying
an actual model type. The main results of this paper are the calculated first and second orders
wavefield at depth, equations (43) and (100) respectively.

It is important to notice that the calculation of the second order wavefield at depth uses the formula
(see equation (22))

ψ2
s = G0V2G0 + G0V1G0V1G0 (109)

and hence V1 and V2 are required for the calculation (see theri calculated expressions in the
Appendices). There are two important related choices that we made in this calculation and that
are worth mentioning. First, instead of putting through the equation the full expression of V2, we
separated it and determined just the piece which corrects for the wrong depth and used that part
only. Second, consistently with the first choice, instead of using the full second term on the right
side of the above equation for ψ2

s we, again, separated the term, determined the part which corrects
for the wrong depth and used that part only. The motivation behind these choices is simple: the
full expression of V will construct the full wavefield at depth, including primaries and multiples
(as shown for example in Matson (1996)). Since what we are trying to construct is the image at
depth of data containing primaries only, it was reasonable to assume that this will be achieved by
the part in V which only corrects for depth. Further analytical and numerical examples will verify
this hypothesis.

We emphasize one important conclusion that comes out of the two expressions of the first and second
orders wavefield at depth. When using inverse scattering methods, the actual medium is assumed
to be unknown and no a priori assumptions are made about its properties. As a consequence,
calculating the wavefield at depth for one frequency requires all frequencies in the data. This is
fundamentally different from well known migration algorithms, which assume the velocity profile
of the medium can be a priori found, and which, hence, can extrapolate, at depth, each frequency
individually (by performing a phase-shift in the wavenumber-frequency domain for example). This
was originally noted in Weglein et al. (2000) for the first order of the acoustic wavefield at depth
calculated using the inverse scattering series. Here we discovered the same characteristic for the
wavefield at depth without a specified model type for both first and second order.
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Appendices

A. Green’s function in an infinite homogeneous space

Consider the homogeneous acoustic wave equation (see also equation (10))

∇2φ(x, t)− 1
c20

∂2φ(x, t)
∂t2

= −δ(x)δ(t) (110)

where x = (xg − xs, zg − zs) is the vector connecting the source of the wave to the point where the
wave is measured (the receiver) and where we assume that the source goes off at time t = 0. In the
frequency domain, the solution to equation (110) in an infinite homogeneous space is (see e.g. Aki
and Richards (2002))

φ(x, ω) =
1
R
e
iω

“
R
c0

”
(111)

where R = |x| =
√

(xg − xs)2 + (zg − zs)2. This is the Green’s function of the acoustic wave
equation in an infinite homogeneous space and it is usually denoted by

G0(xg, zg, xs, zs, ω) =
1
R
e
iω

“
R
c0

”
(112)

In the following we will use φ and G0 interchangeably.

In terms of its Fourier transform over all space coordinates, we can also write φ as

φ(x, t) =
1

(2π)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dqφ(k, t)eik·x (113)

where k = (k, q) is the wavenumber vector, with horizontal and vertical components, associated
with x. Notice that we also have

∇2φ(x, t) =
1

(2π)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dqφ(k, t)(−k2

x − q2)eik·x, (114)

− 1
c20

∂2φ(x, t)
∂t2

=
1

(2π)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dqφ(k, t)

ω2

c20
eik·x (115)

and
−δ(x) = − 1

(2π)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dqeik·x. (116)

Putting these last three expressions back into equation (110) and transforming to frequency domain
we find

1
(2π)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dqφ(k, ω)

(
ω2

c2
− k2 − q2

)
eik·x = − 1

(2π)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dqeik·x. (117)
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By equating the integrands we find

G0(k, q, ω) = φ(k, q, ω) =
1

k2 + q2 − ω2

c20

. (118)

Then from (112) and the double inverse Fourier transform of (118)

G0(xg, zg, xs, zs, ω) =
1
R
e
iω

“
R
c0

”
=

1
(2π)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dq

eik·x

k2 + q2 − ω2

c20

. (119)

The first expression is a cylindrical wave propagating from the source to the receiver with speed
c0. The right side represents a superposition of planewaves over the entire range of wavenumbers
k and q. These planewaves have the arbitrary velocity ω

|k| which varies from 0 to ∞. In order to
write the expression on the right as a superposition of planewaves traveling at the same speed c0,
we have to perform one of the integrations with respect to one of the two wavenumbers. We will do
this over the vertical wavenumber q, then comment on this calculation to obtain equivalent forms
for the Green’s function.

The Weyl Integral form of the Green’s function

To integrate the right side of equation (119) with respect to q we apply residue theorem. We
complexify q and notice that the poles of the integrand are at

q = ±

√
ω2

c20
− k2 (120)

with some of them lying on the real q axis, i.e. along the integration path. To make the integrand
analytic along the real q axis, a small attenuation is introduced through an imaginary part in the
velocity c0 (see Aki and Richards (2002)) so that the new velocity cnew

0 is

1
cnew
0

=
1
c0

+ iε (121)

with ε being a small parameter such that ε > 0 for ω > 0. This attenuation effects in a shift of the
poles away from the real q axis and into the first and the third quadrant in the complex q plane.
We define the poles in the first quadrant as

q = +

√
ω2

c20
− k2 (122)

and the poles in the third quadrant as

q = −

√
ω2

c20
− k2. (123)
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Notice that in the first quadrant both the imaginary and the real part of q are positive, while in
the third quadrant both the imaginary and the real part of q are negative. We now apply Cauchy’s
theorem to calculate the integral.

For positive zg − zs a factor of eiq(zg−zs) will cancel the integrand if taken around a sufficiently
large semicircle in the upper half complex q-plane. This implies that adding this semicircle to the
integration path will not change the value of the integral and hence it can be used to close the
integration path. Cauchy’s theorem implies

φ = P.V.+ iπδ

(
q −

√
ω2

c20
− k2

)
= P.V.+

e−iωt

2π

∫ ∞

−∞
dkx

ei[k(xg−xs)+iq(zg−zs)]

2iq
, (124)

where k and q now satisfy the dispersion relation

k2 + q2 =
ω2

c20
. (125)

For negative zg−zs the same factor eiq(zg−zs) will cancel the integrand if taken around a sufficiently
large semicircle in the lower half complex q-plane. We add the semicircle to close the integration
path and obtain, from Cauchy’s theorem,

φ = P.V + iπδ

(
q +

√
ω2

c20
− k2

)
= P.V.+

e−iωt

2π

∫ ∞

−∞
dkx

ei[k(xg−xs)+iq(zs−zg)]

2iq
. (126)

where, again, k and q satisfy the dispersion relation

k2 + q2 =
ω2

c20
. (127)

The results in equations (124) and (126) can be summarized in the Weyl integral

G(xg, zg, xs, zs;ω) = P.V.+
1
2π

∫ ∞

−∞
dkx

ei[k(xg−xs)+iq|zg−zs|]

2iq
(128)

where

q =

√
ω2

c20
− k2 (129)

and the sign of q is chosen such that the Im q > 0.

In the history of the development of a model type independent internal multiple algorithm it was
determined that the portion of V2 which depends on the principal value part of the contribution
from G0 is not computable from surface data without assuming a model type. For this reason we
will also ignore the principal value part of the Green’s function and investigate the usefulness of
a wavefield at depth formula derived by considering the model type independent part of V2 only.
The Green’s function that we are going to use hence is

G(xg, zg, xs, zs;ω) =
1
2π

∫ ∞

−∞
dkx

ei[k(xg−xs)+iq|zg−zs|]

2iq
. (130)
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An alternative formula for the Green’s function

It is also useful to have an alternative expression for the Green’s function, e.g. in the wavenumber
/ frequency domain. Recall from equation (118) that such a form is close to

G0(k, q, ω) =
1

k2 + q2 − ω2

c20

. (131)

However, because of the dispersion relations, which we now have to impose, and the poles located
on the real q axis we have to rewrite it as

G0(k, q, ω) =
1

k2 + q2 − ω2

c20
− iε

(132)

where the selection of ±ε leads to a causal/anticausal Green’s function (here chosen as causal) and
where, as before,

q =

√
ω2

c20
− k2 (133)

and the sign of q is chosen such that the Im q > 0. If we wanted to work with this form in the
space domain we would have to double inverse Fourier transform over the horizontal and vertical
wavenumbers and obtain

G(xg, zg, xs, zs;ω) =
(

1
2π

)2
∞∫

−∞

dk

∞∫
−∞

dq
e−ik(xg−xs)e−iq(zg−zs)

k2 + q2 − ω2

c20
− iε

. (134)

It is worth mentioning, even though this does not appear explicitly, that this Green’s function
represents only the part equivalent to the iπδ contribution described by formula (130) and with
the principal value discarded.

B. The calculation of V1

Start with equation (24)
D = (G0V1G0)ms (135)

where D is the data, G0 is the Greens function of the reference medium and V1(x′, z′, x′′, z′′, ω) is
the first order component of the perturbation V . In coordinates, this equation can be written as

D(xg, xs, ω) =
∫
dx′dx′′dz′dz′′G0(xg, zg, x

′, z′, ω)V1(x′, z′, x′′, z′′, ω)G0(x′′, z′′, xs, zs, ω) (136)

where xg, zg, xs and zs are the spatial coordinates of the source of the wave and the receiver used
to record the data and where we have omitted the vertical coordinates arguments in the data since
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they are fixed given numbers (not actual variables). In this equation we will use the following
expressions for the Green’s functions

G0(xg, zg, x
′, z′, ω) =

1
2π

∞∫
−∞

dkg
eikg(xg−x′)eiqg |z′−zg |

2iqg
(137)

and

G0(x′′, z′′, xs, zs, ω) =
1
2π

∞∫
−∞

dks
eiks(x′′−xs)eiqs|z′′−zs|

2iqs
(138)

where kg, qg, ks and qs are the wavenumbers associated with xg, zg, xs and zs respectively and
which satisfy the dispersion relations

k2
g + q2g =

ω2

c20
, k2

s + q2s =
ω2

c20
. (139)

Plugging these expressions of the Green’s functions into equation (136) we find

D(xg, xs, ω) =
∫
dx′dx′′dz′dz′′

1
2π

∞∫
−∞

dkg
eikg(xg−x′)eiqg |z′−zg |

2iqg
V1(x′, z′, x′′, z′′, ω)

1
2π

∞∫
−∞

dks
eiks(x′′−xs)eiqs|z′′−zs|

2iqs
.

(140)
Next we apply Fourier transforms on xg and xs, i.e. we apply, on both sides, the integral operators
∞∫

−∞
dxge

−ik′gxg and
∞∫

−∞
dxse

ik′sxs and obtain

D(k′g, k
′
s, ω) =

1
2π

∞∫
−∞

dkg

∞∫
−∞

dxge
−ixg(k′g−kg) 1

2π

∞∫
−∞

dks

∞∫
−∞

dxse
ixs(k′s−ks) (141)

×
∫
dx′dx′′dz′dz′′

e−ikgx′eiqg |z′−zg |

2iqg
V1(x′, z′, x′′, z′′, ω)

eiksx′′eiqs|z′′−zs|

2iqs

or

D(k′g, k
′
s, ω) =

1
2π

∞∫
−∞

dkgδ(k′g − kg)
1
2π

∞∫
−∞

dksδ(k′s − ks) (142)

×
∫
dx′dx′′dz′dz′′

e−ikgx′eiqg |z′−zg |

2iqg
V1(x′, z′, x′′, z′′, ω)

eiksx′′eiqs|z′′−zs|

2iqs

After solving the first two integrals and changing the notation for the wavenumbers from prime to
non primed quantities (for simplicity) we obtain

D(kg, ks, ω) =
∫
dx′dx′′dz′dz′′

e−ikgx′eiqg |z′−zg |

2iqg
V1(x′, z′, x′′, z′′, ω)

eiksx′′eiqs|z′′−zs|

2iqs
(143)
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and, after factoring and additional assumption that z′ > zg and z′ > zs (which is reasonable since
the depth of the scatterer is always larger than the depth of the sources and receivers in a surface
seismic experiment and when the positive z-axis points downward), we find

D(kg, ks, ω) =
e−iqgzge−iqszs

−4qgqs

∫
dx′dx′′dz′dz′′eiz

′qgeiqsz′′e−ix′kgeiksx′′V1(x′, z′, x′′, z′′, ω), (144)

and finally

D(kg, ks, ω) =
e−iqgzge−iqszs

−4qgqs
V1(kg,−qg,−ks,−qs, ω). (145)

From here we can calculate V1 in the wavenumbers domain to be

V1(kg,−qg,−ks,−qs, ω) = −4qgqseiqgzgeiqszsD(kg, ks, ω). (146)

C. Relation between ω1 and ω

Here we show how we can calculate ω1 in terms of ω such that equation (40)

qg + qs = q1 + q2, (147)

is satisfied. Squaring both sides of

qg + qs =

√
ω2

1

c20
− k2

g +

√
ω2

1

c20
− k2

s (148)

we find, after rearranging terms,

(qg + qs)2 + k2
g + k2

s − 2
ω2

1

c20
= 2

√(
ω2

1

c20
− k2

g

)(
ω2

1

c20
− k2

s

)
. (149)

After squaring one more time we find[
(qg + qs)2 + k2

g + k2
s − 2

ω2
1

c20

]2

= 4
(
ω2

1

c20
− k2

g

)(
ω2

1

c20
− k2

s

)
(150)

or, after some cancellations,

[
(qg + qs)2 + k2

g + k2
s

]2 − 4
ω2

1

c20
(qg + qs)2 = 4k2

gk
2
s . (151)

From here we obtain
ω2

1

c20
=

[
(qg + qs)2 + k2

g + k2
s

]2 − 4k2
gk

2
s

4(qg + qs)2
(152)

which is the desired formula.
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D. The calculation and separation of V2

Start with equation (25)
0 = (G0V2G0 + G0V1G0V1G0)ms (153)

or
(−G0V1G0V1G0)ms = (G0V2G0)ms. (154)

For the right hand-side of equation (154) we find similarly to the calculation of V1 (see equation
(145))

RHS = G0V2G0 =
e−i(qgzg+qszs)

−4qgqs
V2(kg,−qg,−ks,−qs, ω), (155)

where, as before, kg, qg, ks and qs are the wavenumbers associated with xg, zg, xs and zs (source
and receiver coordinates) respectively and which satisfy the dispersion relations

k2
g + q2g =

ω2

c20
, k2

s + q2s =
ω2

c20
. (156)

The left hand-side of equation (154) is

LHS = −(G0V1G0V1G0) = −
∫
dx′dx′′dz′dz′′G0(xg, zg, x

′, z′, ω)V1(x′, x′′, z′, dz′′, ω)

×
∫
dx′′′dxivdz′′′dzivG0(x′′, z′′, x′′′, z′′′, ω)V1(x′′′, xiv, z′′′, dziv, ω)G0(xiv, ziv, xs, zs, ω) (157)

where the Green’s functions are (see Appendix 6)

G0(xg, zg, x
′, z′, ω) =

1
2π

∞∫
−∞

dkg
eikg(xg−x′)eiqg |z′−zg |

2iqg
, (158)

G0(x′′, z′′, x′′′, z′′′, ω) =
1
2π

∞∫
−∞

dkλ
eikλ(x′′−x′′′)eiqλ|z′′′−z′′|

2iqλ
(159)

and

G0(xiv, ziv, xs, zs, ω) =
1
2π

∞∫
−∞

dks
eiks(xiv−xs)eiqs|ziv−zs|

2iqs
. (160)

Plugging these expressions into equation (157) and then Fourier transforming it over xg and xs (i.e.

applying on both sides the integral operators
∞∫

−∞
dxge

−ikgxg and
∞∫

−∞
dxse

iksxs) we find

LHS =
e−i(qgzg+qszs)

16πiqgqs

∫
dkλ

1
qλ

∫
dz′′dz′′′eiqλ|z′′−z′′′|V1(kg,−qg,−kλ, z

′′, ω)V1(kλ, z
′′′,−ks,−qs, ω).

(161)
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Next we use the Heaviside step function H to express the absolute values and write

eiqλ|z′′−z′′′| = eiqλ(z′′−z′′′)H(z′′ − z′′′) + eiqλ(z′′′−z′′)H(z′′′ − z′′). (162)

Moreover we use the integral representation of H (reference)

H(z) = lim
ε→0

1
2π

∞∫
−∞

dp
1

i(p− iε)
e−ipz. (163)

With these considerations, the LHS term becomes

LHS =
1
2π

e−iqgzge−iqszs

8iqgqs

∫
dkλ

1
qλ

∫
dz′′dz′′′V1(kg,−qg,−kλ, z

′′, ω)V1(kλ, z
′′′,−ks,−qs, ω)

×

eiqλ(z′′−z′′′) lim
ε→0

1
2π

∞∫
−∞

dp
1

i(p− iε)
e−ip(z′′−z′′′) + eiqλ(z′′′−z′′) lim

ε→0

1
2π

∞∫
−∞

dp
1

i(p− iε)
e−ip(z′′′−z′′)


(164)

or

LHS =
(

1
2π

)2 e−iqgzge−iqszs

8iqgqs

[∫
dkλ

1
qλ

lim
ε→0

∫
dp

1
i(p− iε)

∫
dz′′dz′′′

× eiqλ(z′′−z′′′)e−ip(z′′−z′′′)V1(kg,−qg,−kλ, z
′′, ω)V1(kλ, z

′′′,−ks,−qs, ω)

+
∫
dkλ

1
qλ

lim
ε→0

∫
dp

1
i(p− iε)

∫
dz′′dz′′′

× eiqλ(z′′′−z′′)e−ip(z′′′−z′′)V1(kg,−qg,−kλ, z
′′, ω)V1(kλ, z

′′′,−ks,−qs, ω)
]
. (165)

Next we treat the dz′ and dz′′ integrals as Fourier transforms and obtain

LHS =
(

1
2π

)2 e−iqgzge−iqszs

8iqgqs

×

 ∞∫
−∞

dkλ
1
qλ

lim
ε→0

∞∫
−∞

dp
V1(kg,−qg,−kλ,−qλ + p, ω)V1(kλ, qλ − p,−ks,−qs, ω)

i(p− iε)

+

∞∫
−∞

dkλ
1
qλ

lim
ε→0

∞∫
−∞

dp
V1(kg,−qg,−kλ, qλ − p, ω)V1(kλ,−qλ + p,−ks,−qs, ω)

i(p− iε)

 (166)

The two dp integrals can be separated into a principal value and a contribution from contour
integrals around the pole p = iε. The portion of V2 which depends on the principal value part
of that integral, is not computable in terms of the data without specifying a model type. In
conclusion we will exclude that part from the computation. The contribution from integrating
around the contour integrals around the pole leads to

LHS =
(

1
2π

)2 e−iqgzge−iqszs

8iqgqs
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×
[∫

dkλ
1
qλ

lim
ε→0

∫
dp iπδ(p− iε)V1(kg,−qg,−kλ,−qλ + p, ω)V1(kλ, qλ − p,−ks,−qs, ω)

+
∫
dkλ

1
qλ

lim
ε→0

∫
dp iπδ(p− iε)V1(kg,−qg,−kλ, qλ − p, ω)V1(kλ,−qλ + p,−ks,−qs, ω)

]
(167)

or

LHS =
1
4π

e−iqgzge−iqszs

8qgqs

∫
dkλ

1
qλ

[V1(kg,−qg,−kλ,−qλ, ω)V1(kλ, qλ,−ks,−qs, ω)

+ V1(kg,−qg,−kλ, qλ, ω)V1(kλ,−qλ,−ks,−qs, ω)] . (168)

Next, we relate V1 to the data. From equation (146) obtained in Appendix 6 we have

V1(kg,−qg,−ks,−qs, ω) = −4qgqseiqgzgeiqszsD(kg, ks, ω). (169)

To avoid confusion we will relate the temporal frequency ω with the sum of the vertical wavenumbers
and write

V1(kg,−qg,−ks,−qs, ω) = −4qgqseiqgzgeiqszsD(kg, ks, qg + qs). (170)

To calculate the first V1 in the equation (168) we write

V1(kg,−qg, x, z, ω) =
1
2π

∫
d(−ks)e−i(−ks)x 1

2π

∫
d(−qs)ei(−qs)zV1(kg,−qg,−ks,−qs, ω), (171)

and then

V1(kg,−qg,−kλ,−qλ, ω) =
∫
dxei(−kλ)x

∫
dze−i(−qλ)zV1(kg,−qg, x, z, ω)

=
∫
dxei(−kλ)x

∫
dze−i(−qλ)z 1

2π

∫
d(−ks)e−i(−ks)x 1

2π

∫
d(−qs)ei(−qs)zV1(kg,−qg,−ks,−qs, ω)

=
1
2π

∫
d(−ks)δ(ks − kλ)

1
2π

∫
d(−qs)δ(qs − qλ)

[
−4qgqseiqgzgeiqszsD(kg, ks, qg + qs)

]
= −4qgqλeiqgzgeiqλzsD(kg, kλ, qg + qλ). (172)

Similarly we find

V1(kλ, qλ,−ks,−qs, ω) = 4qλqse−iqλzgeiqszsD(kλ, ks,−qλ + qs), (173)

V1(kg,−qg,−kλ, qλ, ω) = 4qgqλeiqgzge−iqλzsD(kg, kλ, qg − qλ) (174)

and
V1(kλ,−qλ,−ks,−qs, ω) = −4qλqseiqλzgeiqszsD(kλ, ks, qλ + qs). (175)

With these expressions, equation (168) becomes

LHS = − 1
2π

∫
dkλqλ

[
eiqλ(zs−zg)D(kg, kλ, qg + qλ)D(kλ, ks,−qλ + qs)

+ eiqλ(zg−zs)D(kg, kλ, qg − qλ)D(kλ, ks, qλ + qs)
]
. (176)
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To separate this expression into imaging-only and inversion-only parts we write all data terms as
Fourier integrals over vertical wavenumbers as

D(kg, kλ, qg + qλ) =
∫
dz1e

iz1(qg+qλ)D(kg, kλ, z1), (177)

D(kλ, ks,−qλ + qs) =
∫
dz2e

iz2(−qλ+qs)D(kλ, ks, z2) (178)

D(kg, kλ, qg − qλ) =
∫
dz3e

iz3(qg−qλ)D(kg, kλ, z3) (179)

D(kλ, ks, qλ + qs) =
∫
dz4e

iz4(qλ+qs)D(kλ, ks, z4), (180)

then we rewrite equation (176) as

LHS = − 1
2π

∫
dkλqλ

[
eiqλ(zs−zg)

∫
dz1e

iz1(qg+qλ)D(kg, kλ, z1)
∫
dz2e

iz2(−qλ+qs)D(kλ, ks, z2)

+ eiqλ(zg−zs)

∫
dz3e

iz3(qg−qλ)D(kg, kλ, z3)
∫
dz4e

iz4(qλ+qs)D(kλ, ks, z4)
]
. (181)

Depending on the relative position of the two pseudo-depths z1, z2, z3 and z4 we can further
separate the last expression into

LHS = − 1
2π

∫
dkλqλe

iqλ(zs−zg) ∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
−∞

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)δ(z2 − z1)

+

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
z1+ε

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

z1−ε∫
−∞

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)


− 1

4π

∞∫
−∞

dkλqλe
iqλ(zg−zs)

 ∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

∞∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)δ(z3 − z4)

+

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

∞∫
z3+ε

dz4e
iz4(qλ+qs)D(kλ, ks, z4)
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+

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

z3−ε∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 (182)

or, after solving the integrals containing the delta function,

LHS = − 1
2π

∞∫
−∞

dkλqλe
iqλ(zs−zg)

2π

∞∫
−∞

dz1e
iz1(qg+qs)D(kg, kλ, z1)D(kλ, ks, z1)

+

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
z1+ε

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

z1−ε∫
−∞

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)


− 1

4π

∞∫
−∞

dkλqλe
iqλ(zg−zs)

2π

∞∫
−∞

dz3e
iz3(qg+qs)D(kg, kλ, z3)D(kλ, ks, z3)

+

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

∞∫
z3+ε

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

+

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

z3−ε∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 . (183)

The first term in each square bracket in equation (183) is similar to an amplitude corrector (see
e.g. Shaw (2005)) and it will be ignored for the purpose of this paper. The second term in the first
square bracket and the third in the second square bracket are similar to depth correctors (see e.g.
Shaw (2005), Liu et al. (2006) Ramirez and Otnes (2007)). For the purpose of this paper we will
only keep these (imaging) terms and arrive to our final expression

LHS = − 1
2π

∫
dkλqλ

eiqλ(zs−zg)

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
z1+ε

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+eiqλ(zg−zs)

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

z3−ε∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 . (184)

Combining equations (155) and (184) we find the imaging part of V2 to be

V IM
2 (kg,−qg,−ks,−qs, ω) =

2qgqsei(qgzg+qszs)

π

∞∫
−∞

dkλqλ
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×

eiqλ(zs−zg)

∞∫
−∞

dz1e
iz1(qg+qλ)D(kg, kλ, z1)

∞∫
z1+ε

dz2e
iz2(−qλ+qs)D(kλ, ks, z2)

+eiqλ(zg−zs)

∞∫
−∞

dz3e
iz3(qg−qλ)D(kg, kλ, z3)

z3−ε∫
−∞

dz4e
iz4(qλ+qs)D(kλ, ks, z4)

 . (185)

252


