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ABSTRACT

Depth imaging of seismic reflection data plays an fimportant role in discovering oil and gas
reservoirs as well as in characterizing and defining the extent of previously discovered reser-
voirs. The quality of the image produced by current depth imaging algorithms is inextricably
linked to the adequacy of the velocity model, which can be difficult to estimate, especially
in geologically complex areas.

The inverse scattering series, a multidimensional direct inversion procedure, can be applied
to the seismic inverse problem to directly achieve seismic processing objectives without a
priori knowledge of the Earth’s material properties. As a result, it has the potential to image
reflectors in depth without requiring the actual propagation velocity. The inverse series is
non-linear in the scattered field, which includes the source wavelet and a chosen reference
medium’s properties.

Building on concepts laid out by Weglein et al. (2001), an imaging subseries of the inverse
series for a 1-D constant density variable velocity acoustic medium is isolated and analyzed.
This imaging series is recognizable as a Taylor series expanded about each mislocated reflec-
tor whose approximate coefficients are leading order in the scattered field.

The leading order imaging series is shown numerically and analytically (through the deriva-
tion of a closed form) to converge for arbitrarily large finite contrasts between the actual and
reference velocities and for data whose maximum frequency is finite. A condition is derived
which, when satisfied, shows that the leading order imaging series improves the depths of
reflectors over a linear imaging algorithm using the reference velocity. The impact of residual
internal multiples on the imaging series is also studied. While the computational expense of
the series algorithm is proportional to the number of terms required for a particular example,
the closed form efficiently encapsulates an infinite number of terms in a single operation.

The impact of missing low frequencies on the leading order imaging series is examined. It is
found that, while the algorithm benefits from having low frequency information, it retains
effectiveness even when zero and some low frequencies are absent. Some improvement in the
effectiveness of the algorithm when low frequency information is missing can be achieved by
fixing the limits of the algorithm’s integral to be over the known extent of the perturbation.
The acquisition of lower frequency data, and the development of low frequency spectral
extrapolation techniques support the progression of this work to eventual field data tests.
To that end, some remarks are included that describe extensions of this algorithm to include
higher order imaging series terms, a variable background velocity, and more complex wave
propagation.
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1. PROBLEM STATEMENT AND RESEARCH

OBJECTIVES

The primary goal of depth imaging is to produce a spatially accurate map of reflectors below
the Earth’s surface. This structural map is important to the oil and gas industry because it
plays a key role in determining where to drill for hydrocarbon reserves which, in turn, can
have an enormous global economic, environmental and political impact. The same principles
that underly imaging the Earth’s subsurface also apply to problems in medical and space
imaging and other remote sensing and nondestructive testing methods.

Current depth imaging algorithms can be formulated from a linear inverse scattering model
in which the reference velocity is assumed to be close enough to the actual velocity that
reflectors are placed at their correct spatial locations. In practice, especially in complex
geological environments, the most accurate methods for deriving the reference velocity model
may be inadequate for linear imaging algorithms inasmuch as they fail to focus the reflected
wavefield at the correct location. This motivates the search for new imaging algorithms that
have the ability to accurately locate reflectors, even when the precise velocity model is not
known.

Weglein et al. (2000) have proposed using the inverse scattering series, a multidimensional
direct inversion procedure, to derive a velocity-independent imaging algorithm. The primary
objective of this thesis is to progress that idea by developing an embryonic algorithm for
the simplest models in which unknown reflectors may be imaged accurately without precise
knowledge of the velocity field. Once the algorithm is derived, it will then be analyzed for
convergence and under conditions where the input data are bandlimited.

1 Introduction, motivation and background

Producing oil and gas at a pace that meets current global demand while also replacing
reserves to meet future demand are important objectives that have enormous economic,
environmental and political implications in the world today. Seismic exploration plays a key
role in defining and characterizing existing reservoirs as well as in discovering new oil and
gas reservoirs.

In the seismic experiment (see Figure 1.1), a controlled source sends an incident wave into the
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Fig. 1.1: An illustration of the seismic experiment. A seismic survey consists of repeated shots
(excitations of the source) at different locations above the measurement surface. A wave
incident upon a reflector produces a reflected wave. The displayed travel paths give rise to
a primary event in the recorded data.

Earth. Rapid changes1 in Earth properties will cause the incident wave to reflect or diffract
and a portion of the reflected wave will return to the surface where it will be recorded by
groups of receivers. The reflected wave contains information about the source that created
it, the medium that the wave has travelled through, and the inhomogeneities (or reflectors)
that caused part of the incident wave to return to the surface.

The recorded seismic data are processed to reveal information about the Earth’s subsurface.
Ultimately, this information is interpreted to deduce the geological structure and the size and
type of possible hydrocarbon accumulation. The quality of the processed seismic data has
a direct impact on our ability to find and describe reservoirs. False or inaccurate reservoir
prediction can lead to drilling wells in the wrong location – an expensive mistake given that
an offshore deep water well can cost more than $70 million. Such high stakes motivate
research into new, more effective, seismic data processing algorithms.

Seismic data processing can be considered in the context of an inverse problem. Naturally, the
seismic inverse problem will be different depending on whether we consider acoustic, elastic,
or more complex wave propagation. Furthermore, methods to solve the inverse problem will
depend on how many acoustic or elastic parameters govern wave propagation, and on how
many spatial dimensions the Earth is considered to vary in. However, these details aside, to
solve the seismic inverse problem is to process seismic reflection data to reveal the Earth’s
subsurface properties, including the spatial location of reflectors and contrasts in density
and mechanical properties at these reflectors.

In practice, seismic data processing is carried out in a sequence of steps, e.g., random noise

1 “Rapid changes” means rapid relative to the wavelength of the incident wave, which is a function of its
temporal frequency.
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attenuation, source wavelet deconvolution, removal of multiple reflections, imaging and, fi-
nally, inversion for changes in Earth properties. The order in which these steps are carried
out can be important because most algorithms assume that the data have been precondi-
tioned by preceding processes. Imaging is the processing step addressed in this thesis. To
produce a seismic image is to generate a picture, or image, of the subsurface from the data
recorded on the measurement surface. The most ambitious seismic imaging algorithms out-
put a spatially accurate map of the reflectivity below the Earth’s surface. In these cases,
seismic imaging is the process of locating reflectors while also preserving the strength of
these reflectors, which will be proportional to the impedance contrasts.

There are many different ways to produce images from seismic data. Seismic data are, in
general, a function of five independent variables: source and receiver surface coordinates (xs,
ys, xg, yg)

2 and source-to-receiver travel time (t). A natural way to display raw seismic data
is to plot a subset of the traces (e.g., for a fixed source-receiver offset) as some function of
surface location (e.g., source-receiver midpoint) on the horizontal axis and time (increasing
down) on the vertical axis. A display such as this (an example of a seismic section) would be
considered to be one of the most primitive images of the subsurface. It is primitive because
the events on the section are (1) a superposition of primaries and reverberatory multiples
(2) distorted by the wave’s spatially-variable propagation velocity between the surface and
the subsurface reflectors, and (3) composed of diffracted energy that has scattered in all
directions from single points in the subsurface. In short, the events on this primitive seismic
section are not located in a position that well-represents the subsurface reflectivity and
therefore do not constitute a good image. Fortunately, many seismic processing and imaging
algorithms exist that can improve upon this primitive image.

In the development of seismic imaging theory and practice (e.g., Hagedoorn, 1954; Claerbout,
1971; French, 1974; Schneider, 1978; Stolt, 1978), the term “migration” is widely used.
Seismic migration refers to the moving, or migrating, of seismic events on a section to
locations that better represent the structure of the subsurface. For example, migrating the
primitive image just described would collapse diffractions thereby improving coherence, move
dipping reflectors in an up-dip direction while making them appear steeper, and correct the
distortions resulting from the wave propagating through the overburden.

Probably the most important prerequisite of current imaging algorithms is the need to know
the propagation velocity a priori. In order to know where an unknown reflector is located
in the Earth from travel times recorded at the surface, these algorithms require the velocity
with which the wave has travelled on its journey from the source down to the reflector and
then up to the receivers. To have this information is to have the “velocity model”, which
may be described in terms of, e.g., an interval velocity as a function of spatial coordinates.
In one spatial dimension, and for a normal incidence experiment, it is easy to see that the
relationship between the depth, zR, to a reflector buried below an overburden with interval

2 Consistent with much of the literature, subscript s derives from the word “shot” or “source” while
subscript g derives from the word “geophone” and signifies the receiver.
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velocity c(z) and the travel time, tR, for that reflection event is

tR =

∫ zR

zs

dz

c(z)
−

∫ zg

zR

dz

c(z)
= 2

∫ zR

0

dz

c(z)
(1.1)

where the source and receiver depths are, for convenience, assumed to be at zs = zg = 0.
The depth to the reflector may also be written as an integral:

zR =

∫ tR/2

0

c(t)dt (1.2)

where the velocity must be known as a function of the travel time, t. Equation (1.2), or some
approximation to it, is at the heart of all current imaging algorithms. These algorithms use
the velocity to predict the wavefield in the Earth from measurements at the surface. This
process is called “downward continuation of sources and receivers” or “survey sinking” and
is the map

D(xg, yg, zg = 0|xs, ys, zs = 0; t) → D(xp, yp, zp|xp, yp, zp; t). (1.3)

At each point (xp, yp, zp) in the Earth that the wavefield is predicted, an imaging condition
is applied that returns the strength of the local reflectivity, or image I, at that point (see,
e.g., Stolt and Benson, 1987, p. 141). The t = 0 imaging condition relies on the reflected
wavefield at small times carrying information only about the medium near the location of
the coincident source and receiver:

I(x, y, z) ∼ D(x, y, z|x, y, z; t = 0) (1.4)

There is an inherent paradox in current imaging theory called the velocity paradox (Stolt and
Benson, 1987). The data are back propagated through a volume, whose velocity is assumed
to be known, in search of sharp discontinuities (i.e., reflectors). However, reflectors are
themselves likely to be evidence of rapid changes in the velocity. How can we be propagating
the wavefield through the correct velocity model if we don’t know where the rapid changes
are? This dichotomy is also evident when we consider current imaging as part of the general
inverse problem. On the one hand, we often consider imaging as a preprocess to amplitude
versus angle (AVA) analysis, which is a procedure for estimating the changes in parameters
across reflectors in the Earth. Since velocity is one of these parameters, then how is it that
we need the velocity to image, and yet we still consider it an unknown when we perform
AVA analysis?

The velocity paradox has been explained by the fact that, while the wave does indeed
respond to rapid changes in the velocity, in the end, its net response is to an integral of
the velocity over the distance that it has propagated. Another point of view considers
the notion of “two velocities”: one slowly-varying known background velocity, upon which
is superimposed a rapidly-varying unknown velocity. The latter discontinuous velocity is
one possible mechanism responsible for generating the unknown reflectors. The background

7
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Fig. 1.2: The model behind current linear seismic imaging algorithms. In order to image a reflector,
the algorithms downward continue the data from the surface, S0, to points in the subsur-
face, e.g., ~xp = (xp, yp, zp), using a velocity model that is assumed to be adequately known
inside the source-free volume, V . By applying an imaging condition, the reflectivity in the
subsurface is estimated.

velocity is assumed to be adequate in its ability to focus the wavefield at depth and, hence,
it should correctly position reflectors.

The second viewpoint is closer to the one adopted in this thesis where we are using scattering
theory to address the problem of imaging. However, the important distinction between
current imaging and the approach we are taking here is that we formulate the problem in
terms of chosen background, or reference, velocity model that we anticipate is inadequate.
In doing so, the solution to the inverse problem is an infinite series: the inverse scattering
series. As a multidimensional direct inversion procedure, the inverse series has the ability, in
principle, to locate the sharp discontinuities using only the approximate reference velocity
model (Weglein et al., 2000). In the event that the chosen reference velocity is equal to the
actual velocity in the medium, then the solution to the imaging problem is linear in the data,
non-linear terms in the series will be zero, and the algorithm should behave in a manner
similar to a current, conventional, imaging algorithm.

The requirement in current imaging theory to have the velocity model can be illustrated
using a constant-density acoustic wave equation. Considering the situation illustrated in
Fig. 1.2, the wave equation valid inside and on the surface of the volume, V , is

(
∇2 +

ω2

c2(~x ′ )

)
ψ(~x ′ ; ω) = 0 (1.5)

where c is the velocity. Predicting the wavefield in the subsurface (i.e., inside the volume,
V ) from measurements on the surface is the first step in a current imaging algorithm and is

8
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the one that requires the velocity model. We write an equation for the Green function, G,
that has its source located at the subsurface point ~xp

(
∇2 +

ω2

c2(~x ′ )

)
G(~x ′ |~xp; ω) = −δ(~x ′ − ~xp) (1.6)

and then apply Green’s Theorem to derive a wavefield prediction formula (Morse and Fesh-
bach, 1953)

ψ(~xp|~xs ; ω) =

∮ (
ψ(~x ′ |~xs ; ω)

∂G(~x ′ |~xp; ω)

∂n
−G(~x ′ |~xp; ω)

∂ψ(~x ′ |~xs ; ω)

∂n

)
dS , ~x ′ ∈ S (1.7)

where the partial derivatives are with respect to the outward-pointing normal to the surface,
S = S0 + S1 + S2. While Eq. (1.7) is very general and applies to two-way wavefields (and
can be rederived for elastic wave propagation c.f. Betti’s Theorem), at first look, it appears
somewhat demanding. For one thing, it asks for two measurements: one of the pressure
field, ψ, and one of its normal derivative, ∂ψ/∂n. Furthermore, it requires these values on a
closed surface, S, which is not feasible in seismic exploration.

Equation (1.7) may be simplified in the following ways: (1) Assume that the radius of the
cylinder goes to infinity (R → +∞). In doing so, the contributions to the surface integral
from the sidewalls of the cylinder vanish (see, e.g., Wapenaar et al., 1989) leaving only
S0 and S2. This observation is not a consequence of the Sommerfeld radiation condition,
which applies only to causal wavefields (Bleistein, 1984). The consequence of collecting finite
aperture data is to ignore the contribution from the surface S1; (2) Assume that the wavefield
at the upper surface, S0 and inside the volume, V , is purely upgoing3 so that ψ = ψU . To
realize this, we should remove all downgoing waves from our data, including the direct
wave, source and receiver ghosts, free surface multiples and internal multiples. We may now
imagine that the waves arriving at the receivers have radiated from a secondary source – the
reflectors or point scatterers – below the surface S2. We then choose the anticausal (also
known as time-reversed or advanced) Green function, G = G∗. This assumption and choice
simultaneously removes the need for a measurement at S2 (save perhaps some contribution
from the evanescent part of the wavefield – see Stolt, 1984; Stolt and Benson, 1987; Wapenaar
et al., 1989; Wapenaar, 1992); (3) Lastly, we are free to choose boundary conditions for the
Green function, G∗. Equivalently, the medium and sources outside the volume, V , may be
defined purely for convenience. If we choose Dirichlet boundary conditions on S0 such that
G∗D(~x ′ = ~xg |~xp; ω) = 0, then we eliminate the need to measure the normal derivative of the
wavefield, ∂ψ/∂n, in Eq. (1.7). To realize this boundary condition on a horizontal acquisition
surface, we may imagine a second impulsive source located at a point ~xI

p = (xp, yp, 2zg − zp)
with opposite sign to the source at ~xp, and a medium that is symmetric about S0 so that
c(x′, y ′, zg − z ′) = c(x′, y ′, zg + z ′). Then G∗D satisfies the equation

(
∇2 +

ω2

c2(~x ′ )

)
G∗D(~x ′ |~xp, ~x

I
p; ω) = −δ(~x ′ − ~xp) + δ(~x ′ − ~xI

p) (1.8)

3 It may still be up- and down-going below S2.
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The resulting formula for the upgoing wavefield predicted inside the volume, V , is

ψU(~xp; ω) = −
∫∫∫ +∞

−∞
ψU(~xg ; ω)

∂G∗D(~xp|~xg ; ω)

∂zg

d~xg , where ~xg ∈ S0. (1.9)

The minus sign comes from taking the normal derivative on the upper surface, S0, given
that the z axis is defined to be positive down. We see that the wavefield at depth can be
computed through a weighted sum of the data recorded at the surface. It is the weighting
function ∂G∗D/∂zg that requires the velocity model in order to predict the wavefield in the
Earth4.

After downward continuing the receivers for each source experiment, we may invoke the
principle of reciprocity and then re-apply Eq. (1.9) to downward continue all sources to
the subsurface point ~xp. The last step in current imaging is to apply an imaging condition.
If there is a reflector just below ~xp (given the upgoing wave assumption) then the imaging
condition returns an amplitude proportional to the strength of that reflector. If there is no
reflector nearby, then the wavefield predicted at that point returns zero.

Almost universally, imaging is applied to primary seismic events and it is assumed that mul-
tiples have already been removed (or well attenuated) before the algorithm is applied. This
assumption still doesn’t guarantee that ψ = ψU inside the volume, V . There are velocity
models that produce turning waves and that cause the incident wave to be upgoing at the
reflector, rather than downgoing. Reverse time migration (Baysal et al., 1983; McMechan,
1983; Whitmore, 1983; Esmersoy and Oristaglio, 1988) accommodates two-way wave prop-
agation and can be applied to image primary seismic events under these conditions. In
principle, reverse time migration can also accept multiple reflections in the input data (e.g.,
Youn and Zhou, 2001; Mittet, 2002; Jiang et al., 2005).

How different migration algorithms incorporate the velocity model through Eq. (1.9) is what
differentiates time migration from depth migration. The nuances of time migration and
depth migration, and the details surrounding algorithms for pre-stack or post-stack data, that
accommodate velocity models c(z), c(x, z) or c(x, y, z), and that do or don’t make limiting
assumptions about wave propagation, e.g., Kirchhoff, Gaussian beam or wave-equation are all
beyond the scope of this thesis, but may be found in a number of texts (e.g., Claerbout, 1985;
Berkhout, 1985; Stolt and Benson, 1987; Scales, 1997). The implementation of migration
algorithms receives a great deal of attention in contemporary literature, whereas the theory
behind the algorithms essentially remains the same. When an adequate velocity model
is available, these algorithms, given their underlying assumptions, produce good images
of the subsurface. According to Gray (2001), the future of imaging research that stays
close to this established theory will tend to be focused on (a) improving the amplitude of
the wavefield predicted in the subsurface, (b) algorithm development for faster and higher
capacity computers, and (c) handling multi-component recordings of elastic wavefields. The

4 It can be shown that if we chose to not impose the boundary condition G∗D(~x ′ = ~xg |~xp;ω) = 0, then
we would, of course, derive an equivalent formula – just with the substitution ∂G∗D/∂zg = 2∂G∗/∂zg.
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quality, accuracy and reliability of the image from current imaging algorithms is inextricably
dependent on the adequacy of the velocity model.

In practice, imaging is itself one of the procedures used to estimate the velocity model.
Through an iterative process, the quality of an image may be quantitatively or qualitatively
measured and can be used to update the velocity model. Although critically important to
current seismic imaging, a detailed discussion of these and other velocity estimation tech-
niques is beyond the scope of this thesis. For an overview of, and references to, velocity
estimation methods, see, for example, Gray et al. (2001). One of the primary motivations
for this research is that, under many circumstances, especially in complex geological envi-
ronments, current best-practice velocity estimation techniques are inadequate for estimating
the velocity model with a high-enough degree of accuracy (e.g., Herron, 2000; Gray et al.,
2001; Paffenholz et al., 2002; Glogovsky et al., 2002). There are two responses to this prob-
lem: first, to improve our ability to estimate the velocity model and, second, to derive new
imaging algorithms that are less dependent on our ability to find the velocity model. The
research described in this thesis is an example of the second response.

In recent years, there has been some interest in velocity-independent imaging approaches.
A workshop titled “Velocity Model Independent Imaging for Complex Media” was held at
the 2001 SEG Annual Meeting in San Antonio, Texas. A number of different approaches
to the problem were presented at the workshop, including common focus point (Berkhout
and Verschuur, 2001), common reflection stacking (Bergler et al., 2002; Mann et al., 1999),
the inverse scattering series (Weglein et al., 2001), and multi-focusing analysis (Landa, 2004;
Gelchinsky, 1989; Berkovitch and Gelchinsky, 1989). With the exception of the inverse
series approach, these methods can be seen as generalizations of normal moveout (NMO)
and stack, some of which forgo knowing the velocity model in exchange for estimates of
one or more unknown parameters which are optimized to produce the “best” (e.g., most
coherent) image. The inverse series is the only one of these techniques that has the potential
to produce directly an image in depth, rather than an image in time. In all inverse scattering
approaches (both linear and non-linear), the reference velocity yields units of depth from
the data recorded in time. However, a non-linear series of equations is required to get an
accurate image in depth when the actual velocity deviates from the reference velocity.

2 Objectives

This thesis is part of a long-term research project aimed at solving the problem of seis-
mic imaging of, and inversion for, large-contrast and complex targets located beneath an
unknown, or poorly defined, overburden (Weglein et al., 2003). Complex geologic environ-
ments that currently present some of the greatest challenges to exploration include subsalt,
sub-basalt, and sub-karsted sediments. Estimating the velocity model in order to image
beneath these types of complex overburdens can be extraordinarily difficult. The objectives
of the research project are to study these problems and to propose, test and evaluate so-
lutions with a view to developing practical algorithms. A practical algorithm is one that
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provides value under real-world conditions and will become one tool in a toolbox of estab-
lished processing algorithms. Naturally, we would expect algorithms that provide benefit
under complex conditions to also provide value in more simple geological environments.

The objectives of this Ph.D. thesis are more narrowly defined. We are investigating the use
of the inverse scattering series to image reflectors at their correct depth. In principle, the
inverse series will accomplish this task using a reference velocity that may deviate from the
actual velocity below the measurement surface. At this stage, in order to make the problem
more tractable, we confine our analysis to the acoustic wave equation, and for a velocity that
varies only in the vertical direction. We follow closely the analysis of Weglein et al. (2001)
and Weglein et al. (2002), where the authors show that the first term in the inverse series
images reflectors at depths dictated linearly by the reference velocity and the data’s travel
times and that higher order terms contain parts that serve to shift reflectors towards their
true depths through Taylor series expanded about the mislocated interfaces. In this thesis,
we seek to use this analysis to further our understanding of how the inverse series performs
imaging, and to use the principle of task separation, originally developed for the purposes
of deriving free surface and internal multiple attenuation algorithms (Weglein et al., 1997),
to isolate an imaging subseries. Successful isolation of an imaging series must be followed
by an analysis of its convergence properties, and testing under increasingly realistic data
conditions, such as finite frequency bandlimits, additive noise, etc.

3 Strategy – the importance of starting simple

As a multi-dimensional inversion procedure, the inverse series can be readily formulated for
all linear wave equations. Then why are we studying the relatively simple 1-D acoustic
problem when the Earth is, at best, a 3-D elastic medium? The straightforward answer
to this question is that if an algorithm shows no effectiveness for the simplest 1-D acoustic
models, then we can not justify the additional labor and mathematical formalism involved
in its generalization to more complex wave propagation.

Historically, the strategy employed in developing inverse scattering subseries algorithms to
seismic data processing objectives has been to first consider the simplest situation in which
the particular problem exists. Most often this is a 1-D normal incidence experiment in a
constant-density acoustic medium. The simplest reference medium is chosen that agrees with
the actual medium above the measurement surface and thereby confines the perturbation
to be below the receivers. Then the inverse series is analytically computed and a subseries
is sought that is responsible for achieving the specific processing task under investigation.
The inverse subseries is isolated through a combination of physical intuition and experience
garnered through studying the forward Born series which constructs the seismic wavefield
using only reference propagation.

For the task of imaging, the simplest example to study is that of two reflectors where we
know the velocity down to the shallowest reflector but do not know the velocity below it.

12



Problem statement and research objectives Ph.D. thesis

In this case, the first term in the series (computed with a homogeneous reference velocity)
will correctly locate the shallowest reflector, but incorrectly locate the deeper one. Further-
more, the first term will contain internal multiples that have reverberated between the two
reflectors, and the amplitudes of the events will be composed of reflection and transmission
coefficients rather than actual changes in the medium property. Collectively, the higher or-
der terms in the inverse scattering series are responsible for (1) removing internal multiples,
(2) moving the deeper reflector to its correct location, and (3) inverting the amplitudes for
changes in the Earth material properties. In this thesis, we are concerned with the terms
that act on the mislocated deeper reflector. We seek to isolate a subseries of the inverse
series that is responsible for locating reflectors in space when the actual velocity model is
unknown. If this subseries algorithm demonstrates an intrinsic ability to achieve its objective
for the simplest synthetic examples, then it will be reformulated and generalized so that it
may be tested on multidimensional field data.

13



2. THE INVERSE SCATTERING SERIES AND

TASK-SPECIFIC SUBSERIES

As a multidimensional direct inversion procedure, the inverse scattering series can be for-
mulated to invert seismic reflection data directly for the Earth’s material properties. Using
only the measured data, the source wavelet, and a reference medium’s material properties as
input, the inverse series is a procedure that achieves important seismic processing objectives
through combined linear and non-linear operations on the data. It serves as a general and
flexible foundation for deriving seismic processing algorithms that are effective when little or
no a priori information about the subsurface is available. In the context of this thesis, the
inverse series is a good candidate procedure for deriving an algorithm that can accurately
depth image seismic data in complex geological areas where the velocity model is difficult to
estimate.

To address issues of divergence or slow convergence of the inverse series, an effective strat-
egy has been to isolate subseries of the inverse series that are responsible for accomplishing
specific useful tasks in seismic processing. Series algorithms for the removal of free surface
multiples and the attenuation of internal multiples were presented by Weglein et al. (1997).
These two multiple attenuation algorithms were successfully tested on, and are now routinely
applied to, 2D and 3D field datasets. They are distinguished by the useful property of requir-
ing no knowledge of the Earth’s properties below the measurement surface. The potential
of the inverse series to image and invert primaries was outlined by Weglein et al. (2000)
and ideas for isolating terms that would constitute an imaging subseries were presented by
Weglein et al. (2002).

Inverse series algorithms are able to achieve their objectives without subsurface information
because they involve non-linear operations on the measured data. As such, they engage
the data more actively and inclusively than linear algorithms, which treat the data more
passively.

1 Scattering theory, the inverse series and seismic data processing

The research documented in this thesis applies inverse scattering theory to the seismic inverse
problem. In scattering theory, the difference in the behavior of an incident wave in two media
(referred to as the reference medium and the actual medium) is described in terms of the
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difference between the physical properties of these two media (see, e.g., Taylor, 1972). The
wave equations for the actual and reference wavefields (ψ and ψ0) are expressed by

Lψ = −A(ω)δ(~x − ~xs ) (2.1)

L0ψ0 = −A(ω)δ(~x − ~xs ) (2.2)

where L and L0 are the differential operators that describe wave propagation in the actual
and reference media, respectively, and A(ω) is the source wavelet as a function of angular
temporal frequency. The variables ~x and ~xs are the field point and source position vec-
tors. The Green functions for the actual medium and the reference medium (G and G0,
respectively) satisfy

LG = −δ(~x − ~xs ) (2.3)

L0G0 = −δ(~x − ~xs ) (2.4)

and so ψ = AG and ψ0 = AG0. The perturbation operator, V, and the scattered wavefield,
ψs, are defined by

V ≡ L− L0 (2.5)

ψs ≡ ψ − ψ0, (2.6)

respectively. The Lippmann-Schwinger equation relates the actual and reference wavefields
to the perturbation operator (or scattering potential):

ψ(~x |~xs ; ω) = ψ0(~x |~xs ; ω) +

∫∫∫ +∞

−∞
G0(~x |~x ′ ; ω)V (~x ′ ; ω)ψ(~x ′ |~xs ; ω)d~x ′ . (2.7)

This equation is not a solution for the actual wavefield, ψ, but can be successively iterated
for ψ on the right-hand side resulting in the forward, or Born, series:

ψ = ψ0 + ψ1 + ψ2 + . . . =
∞∑

n=0

ψn (2.8)

where

ψ1(~x |~xs ; ω) =

∫∫∫ +∞

−∞
G0(~x |~x ′ ; ω)V (~x ′ ; ω)ψ0(~x

′ |~xs ; ω)d~x ′ (2.8a)

ψ2(~x |~xs ; ω) =

∫∫∫ +∞

−∞
G0(~x |~x ′ ; ω)V (~x ′ ; ω)

×
∫∫∫ +∞

−∞
G0(~x

′ |~x ′′ ; ω)V (~x ′′ ; ω)ψ0(~x
′′ |~xs ; ω)d~x ′′ d~x ′ (2.8b)

...

Clearly, the forward series is a solution for the actual wavefield in terms of the reference
wavefield and the perturbation (the source wavelet, A, factors out and cancels on both
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sides of the equation but is still required if constructing ψ and not G). It describes the
wavefield that propagates in the actual medium in terms of an infinite series of propagations
in a reference medium and interactions with the potential, V , which contains the actual
and reference media properties. As a forward modelling tool, the forward series may be
considered unnecessarily complicated or inefficient because to know V is to know the Earth
(since references medium properties are a matter of choice), and therefore the wavefield
can be straightforwardly constructed using a conventional (e.g., finite difference) modelling
program that propagates waves through a known model. Nevertheless, the forward series is
worth studying for a number of reasons. Convergence of the forward series is a necessary,
but not sufficient, condition for convergence of the inverse series (Prosser, 1976). Also,
understanding how the forward series constructs one wavefield through the propagation of
another wavefield can offer clues as to how the inverse series processes the recorded wavefield
using only reference propagation (see, e.g., Matson, 1996; Innanen, 2003; Nita et al., 2004).

The inverse scattering series is a solution for the scattering potential in terms of the scattered
field on the measurement surface, (Ψ−Ψ0)m = (Ψs)m = ψs(~xg |~xs ; ω), and reference prop-
agation, G0. The inverse series can be derived by first writing V as the sum of constituent
terms (Jost and Kohn, 1952; Moses, 1956)

V = V1 + V2 + V3 + . . . =
∞∑

n=1

Vn (2.9)

where Vn is defined as the portion of V that is nth order in the measured values of the scat-
tered field, (Ψs)m. Substitution of Eq. (2.9) into the forward series (Eq. 2.8) and matching
terms that are equal order in (Ψs)m yields:

(G0V1Ψ0)m = (Ψs)m (2.9a)

(G0V2Ψ0)m = −(G0V1G0V1Ψ0)m (2.9b)

(G0V3Ψ0)m = −(G0V1G0V1G0V1Ψ0)m − (G0V2G0V1Ψ0)m − (G0V1G0V2Ψ0)m (2.9c)

...

To solve Eq. (2.9) given the source wavelet, A, one could invert Eq. (2.9a) for V1, then
substitute V1 into Eq. (2.9b) and invert for V2 using the same reference Green functions.
Then V1 and V2 may be substituted into Eq. (2.9c) to solve for V3, and so on. In this way,
V is constructed order by order in the data and the inverse problem may be solved. See, for
example, Weglein et al. (1981) for references to the development of the inverse series.

Equation (2.9a) should not be confused with the inverse Born approximation, which is

(G0VΨ0)m ≈ (Ψs)m. (2.10)

The first term in the inverse series, V1, becomes the inverse Born approximation only if we
assume that V1 ≈ V. In deriving the inverse series, there is no requirement that G0 ≈ G,
nor that the reference medium properties are close to the actual medium properties. This
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is the reason why algorithms derived from the inverse series have the potential to achieve
processing objectives without a priori information about the Earth’s material properties,
and is the reason why, in principle, the inverse series can locate unknown reflectors in the
subsurface without knowledge of the velocity model.

The inverse Born approximation, or linear inverse, underlies the vast majority of techniques
currently employed to process primaries, e.g., normal moveout (NMO), migration/imaging,
amplitude variation with angle (AVA) analysis and migration-inversion (see, e.g., Stolt and
Weglein, 1985). Linear approximate inverse methods are also at the heart of medical imag-
ing and other non-destructive testing methods. For the seismic problem, the inverse Born
approximation is a reasonable approximation for primary events (i.e., assuming multiples
have been removed), for precritical reflections, for small contrasts in material properties,
and for a reference medium that is close to the actual medium (Clayton and Stolt, 1981).
When these conditions do not apply, the inverse Born approximation may be inadequate as
a basis for deriving processing algorithms.

The inverse series only exists when L 6= L0 in which case V is non-zero. In the inverse
series, V1 is defined to be the first term in an infinite series for V and Eq. (2.9a) is an
exact equation, unlike Eq. (2.10) which is an approximation. The cumulative sum of the
second and higher terms in the inverse series can be viewed as correcting V1 towards V
when the series converges. The tasks of removing multiples, imaging primaries at their
correct depths, and inverting for large changes in Earth properties reside in the second and
higher order terms in the series. In other words, under circumstances where the inverse Born
approximation is invalid or inadequate, the inverse series offers an alternative solution to the
inverse problem.

The inverse scattering series is a multi-dimensional direct inversion procedure. The scatter-
ing medium’s properties are directly determined from the recorded data without iterative
updating of the reference medium towards the actual medium. Alternative approaches,
e.g., iterative linear inversion, involve updating the reference model so that the reference
wavefield, in some sense, fits the observed data (Tarantola, 1987). The inverse series is a
distinctly different method from iterative linear inversion. Equations (2.9a,b,c,...) are in-
verted for V1,V2,V3, . . . and hence for V directly in terms of the measured data, (Ψs)m,
and reference propagation, G0. Iterative linear inversion implicitly or explicitly updates the
reference medium and scattered field at each iteration.

2 Series convergence, task-separation and task-specific subseries

Series algorithms naturally carry with them questions of convergence. A body of work by
Prosser (1969–1992) has formerly addressed the topic of convergence of the inverse series
including the existence and uniqueness of its solution. The convergence of the inverse series
requires that the scattering potential be sufficiently weak to allow convergence of the forward
series. However, Prosser’s conditions are not easily translated into contrasts in Earth’s
material properties, such as actual/reference velocity contrasts.
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Empirical tests of the entire inverse series for a simple 1-D acoustic model have suggested
that it is slow to converge or that it does not converge unless reference medium properties
are chosen to be very close to the actual medium properties (Jacobs, 1980; Carvalho, 1992).
Based on these tests, the radius of convergence was considered to be too small for the series to
be of direct practical use when no a priori information is supplied. Rather than abandon the
inverse series, research was undertaken to isolate convergent subseries that perform individual
tasks associated with inversion and that have practical value all by themselves (e.g., multiple
removal). The fact that task-specific subseries can be isolated is quite remarkable and is not
at all obvious. The thought that the inverse series might provide some benefit as a multiple
removal procedure was suggested by Stolt and Jacobs (1980) and pursued by Carvalho et al.
(1991) and Weglein et al. (1992). To find and isolate subseries requires a clear definition of the
processing objective and a careful analysis of how the inverse series directly inverts seismic
data. When successful, this analysis provides an understanding of how to process seismic
data in the absence of a priori subsurface information, which leads to the development of
practical and useful algorithms (Weglein et al., 2003).

Inversion of seismic data can be viewed as performing a sequence of four tasks or processing
steps:

1. Removal of free-surface multiples;

2. Removal of internal multiples;

3. Positioning reflectors at their correct spacial locations (imaging); and

4. Inverting reflectivity for changes in Earth parameters (target identification).

As a direct inversion procedure, the inverse series accomplishes these tasks using only mea-
sured data, the source wavelet, and reference medium properties. It is anticipated that each
of these tasks is achieved through a series – a subseries of the inverse series. Isolating and
then employing subseries that perform these tasks is less ambitious than a wholesale direct
inversion for Earth properties using the entire series and so convergence properties and data
requirements may be more favorable. Also, by carrying out these tasks in sequential order,
tasks 2–4 may benefit from the simplification that derives from a reformulation of the inverse
problem to reflect the fact that some processing objectives have already been achieved. For
each task, the simplest possible reference medium is chosen that allows rapid convergence of
the subseries.

The strategy of task separation originally led to the development of a multi-dimensional
free surface multiple removal algorithm (Carvalho, 1992). Free surface multiples are events
in the data that have reflected in the subsurface, hit the free surface at least once, and
travelled back into the Earth to be recorded at a later time. These events usually have large
amplitudes and can obscure reflection events that have travelled further into the Earth but
arrive at the same time as the multiples. The presence of multiples often precludes accurate
estimation of the medium properties, such as the velocity model. The second task-specific
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subseries to be isolated was one that attenuates internal multiple reflections (Araújo, 1994).
Internal multiples are events that have all their downgoing reflections below the free surface.
Removing all multiples from the data is a prerequisite for most imaging algorithms which
expect a primaries-only wavefield as input. It is interesting to note that these subseries of
the inverse series act to remove multiples (thereby treating them as noise) rather than to
use them to extract information about the Earth.

Beyond multiple attenuation, Weglein et al. (2000) proposed using the inverse scattering
series to perform the third and fourth inversion tasks of imaging reflectors in depth and
inverting for Earth parameters, both in terms of reference medium information. The authors
described a scheme for predicting the wavefield in the subsurface order by order in the
wavefield measured at the surface and without knowing the velocity or any other properties
of the medium below the measurement surface.

The concepts surrounding the task of depth imaging using the inverse series were set out
by Weglein et al. (2002), where it was shown for a 1-D normal incidence experiment in an
acoustic medium, that the imaging subseries was a Taylor series in the data linearly imaged
with the reference velocity. This series shifts reflectors towards their true depths using the
amplitude and residual moveout information gleaned automatically from the imaged data
itself.

Zhang and Weglein (2003) generalized the task-separated formulation of Weglein et al. (2002)
to a two-parameter acoustic model and demonstrated the benefit of adding the second terms
to the first terms in the subseries for estimating changes in velocity and density across an
interface. The accuracy of the parameter estimation clearly improved for all precritical angles
of incidence. The authors have begun generalizing their work for elastic media (Zhang and
Weglein, 2004a).

For the same normal incidence acoustic case studied by Weglein et al. (2002), Innanen
(2003) isolated a subseries that simultaneously images and inverts for changes in the velocity.
This subseries includes so-called “mixed-task” terms that invert and image concurrently.
Numerical examples were presented that show good results for a suite of examples and
demonstrated robustness to small amounts of random noise.

3 Characteristics of inverse scattering series algorithms

The multiple attenuation algorithms derived using the inverse series have the unique property
that they expect the recorded seismic data and the source wavelet as input, but do not
require the propagation velocity or any other subsurface information (Weglein et al., 1997).
For marine seismic data, both the free surface and internal multiple subseries converge
for a simple homogeneous acoustic reference medium – water – which has the benefit of
making the algorithms more computationally efficient than if a reference medium more like
the actual Earth were required. More importantly, the algorithms predict and attenuate
multiples generated by actual Earth model types that are much more complicated than
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the homogeneous acoustic reference medium and include heterogeneous, anisotropic, elastic
and certain forms of anelastic media. This important property is referred to as “model-
type independence” because the same algorithm may be applied to a large class of different
Earth models to achieve the same seismic processing objective. It was shown by Weglein
et al. (2003) that if a processing task can be achieved with a subseries algorithm without
having to specify how the perturbation operator, V, depends on Earth properties, then that
algorithm is independent of Earth model type.

Although inverse series algorithms relieve us of requiring a priori knowledge about the sub-
surface, like all methods they are founded on a set of assumptions. Some of these assump-
tions are common to all wave-theoretic processing algorithms, e.g., they require adequate
sampling and source/receiver aperture. Also common to many other algorithms, by adopt-
ing the strategy of task separation, it is important that tasks are completed in sequence.
For example, the internal multiple attenuation algorithm must be applied after free surface
multiples have been removed (or are not significant, e.g., for a shallow target in a very deep
water environment). Initial analysis of the imaging series terms has considered only primary
events in the input data implying that all multiples have been removed, i.e., tasks 1 and 2
have been completed. The impact of violating this assumption is discussed in Chapter 3.

An important prerequisite of all inverse scattering series algorithms is knowledge of the
source wavelet. Methods for estimating the wavelet include field measurements (Ziolkowski,
1991) or direct estimations from the recorded data (e.g., Weglein et al., 2000; Guo, 2004).
The free surface and internal multiple attenuation algorithms can be divided into two steps:
(1) prediction of the multiples and (2) subtraction of the multiples from the data. It is
the prediction step that involves non-linear operations of the data, derived from the second
and higher order terms in the series. The subtraction step is, in principle, straightforward
but, in practice, must be executed with care. If the source wavelet is not known, then the
predicted multiples will be in error by factors of the unknown wavelet. Signal processing
techniques are applied that can compensate for these amplitude and phase effects during the
subtraction step (Verschuur et al., 1992; Carvalho and Weglein, 1994; Abma et al., 2002).
The most widely adopted subtraction technique uses the minimum energy criterion, which
designs a match filter to be applied to the predicted multiples so that, after subtraction from
the data, the energy will be minimized.

The first task of free-surface multiple removal requires that the input data have the direct
wave removed in order to compute the scattered field (usually this is achievable with a
surgical mute). The derivation of the algorithm also requires that source and receiver ghosts
are removed. While deghosting is in principle a simple process, in practice algorithms can
be sensitive to the accuracy of the source and receiver depths. Recently, new approaches
to deghosting have been proposed that avoid these particular stability issues (e.g., Weglein
et al., 2002; Robertsson and Kragh, 2002; Zhang and Weglein, 2004b). Often the adaptive
subtraction techniques are relied upon to correct for residual ghost effects as well as the
unknown source wavelet.

The fact that the sources and receivers are assumed to reside in the reference medium means
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that knowledge of the surface properties is required. In the case of marine exploration,
water properties are, in general, adequately known. For land and ocean-bottom seismic
experiments, this can add a level of complexity. Compared to most other current processing
algorithms, inverse series algorithms carry additional, but achievable, prerequisites on data
acquisition and a priori information at the surface, in exchange for little or no information
about the subsurface. This is usually a welcome trade-off.

Inverse series algorithms can achieve processing objectives without the traditional require-
ment for a priori subsurface information because they are more inquisitive of the data. The
non-linear property of these algorithms results in multiplicative communication between
events in the measured data. For example, all deghosted primary, free surface multiple and
internal multiple events in the data are used by the free surface multiple removal algorithm
to predict the correct amplitude and times of all free surface multiples. The seismic processor
is not required to identify or separate these subevents nor provide any information about
the subsurface model. In essence, these algorithms require that the data get more involved
in their own processing objectives, than do linear algorithms, which treat the data more
passively. As such, inverse series algorithms data-driven.

For a comprehensive review of the inverse scattering series and its application to seismic
exploration see Weglein et al. (2003).
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3. A LEADING ORDER IMAGING SERIES FOR A

LAYERED ACOUSTIC MEDIUM

Following Weglein et al. (2002), we isolate terms in the inverse series that are responsible for
locating reflectors in a 1-D constant density acoustic medium. After computing three terms
in the series, we recognize a pattern in the mathematical expressions for the leading order
contributions to the imaging series. These terms correspond to inverse scattering diagrams
with a particular geometric configuration. Recognizing this pattern allows us to write down
a formula that will predict any term without having to explicitly and laboriously isolate it
from the inverse series. By extension, we may then write the formula for a leading order
imaging series.

A closed form of the leading order imaging series is shown to exist and is used to analyze the
convergence properties of the series algorithm. The leading order imaging series converges
for any finite contrast between actual and reference velocities, and for finite maximum fre-
quency in the data. The rate of convergence is greater for lower maximum frequency, smaller
contrasts between the actual and reference velocities, and for angles of incidence closer to
normal.

The leading order imaging series is an approximation to the full depth imaging potential
of the inverse series in that its coefficients are leading order in the data. The first term
in the series images reflectors at the depths dictated by the reference velocity (chosen to
be constant in this case) and the data’s travel times. The remaining terms use the data’s
amplitudes and travel times as well as the reference velocity to shift the reflectors closer to
their correct location in depth.

Analytic examples demonstrate that, for moderate contrasts between the actual and reference
medium, the leading order imaging series significantly improves the predicted depths of the
reflectors at precritical angles, effectively acting to flatten the image gathers. We derive a
condition under which the leading order imaging series improves the predicted depth of a
reflector over linear imaging with the velocity. The impact of internal multiples is analyzed.

1 A 3-D experiment over a laterally invariant acoustic medium

We consider a constant density acoustic medium with point sources and receivers located at
~x s = (xs, ys, zs) and ~x g = (xg, yg, zg), respectively. Wave propagation in this medium can be
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characterized by the wave equation
(
∇2 +

ω2

c2(z)

)
ψ(~x |~x s; ω) = −A(ω)δ(~x − ~x s) (3.1)

where ψ is the pressure field, A is the source wavelet, c is the propagation velocity and ω
is the angular temporal frequency. The field point, ~x = (x, y, z) is any point inside or on
the surface of the volume defined in Fig. 1.2. This derivation of the prestack leading order
imaging series is restricted to a medium that varies only in the z direction. For the first
steps in its generalization to a 2-D earth, see Liu et al. (2004). ψ0 is the pressure wavefield
due to the same source, A, in the reference medium which is chosen to be a wholespace with
velocity, c0: (

∇2 +
ω2

c2
0

)
ψ0(~x |~x s; ω) = −A(ω)δ(~x − ~x s). (3.2)

From Eq. (2.5), the scattering potential is

V = k2
0α. (3.3)

where k0 = ω/c0 and α is the velocity perturbation, a dimensionless parameter that relates
the actual velocity, c, to the constant reference velocity, c0, such that

1

c2(z)
=

1

c2
0

[1 + α (z)] . (3.4)

For this acoustic problem, the goal of inversion is to solve for α which can be written as an
infinite series (after Eq. 2.9):

α = α1 + α2 + α3 + . . . =
∞∑

n=1

αn (3.5)

where α1, the first term in the series for α, is linearly related to the scattered field on the
measurement surface, (Ψs)m = (Ψ−Ψ0)m = ψs(~xg |~xs ; ω). The second term, α2, is quadratic
in (Ψs)m, the third term, α3, is cubic and so on.

After using the inverse series (Eqs. 3.5 and 3.3 with 2.9a,b,...) to solve for α, we could then
use Eq. (3.4) to solve for the unknown velocity, c(z). However, the objective here is in fact
not to solve for the medium parameters (in this case just c), but to solve directly for the
location at which the perturbation, α, changes. This is the problem of imaging in a medium
whose velocity is not known before or after the imaging procedure.

2 Isolation of a leading order imaging series

2.1 The first term, α1, and its degree of freedom

The inverse scattering series takes the measured values of the scattered field as input. For a
homogeneous reference medium that agrees with the actual medium above the measurement
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surface, the reference wavefield, ψ0, is simply the direct wave – the wave that travels directly
from the source to the receiver. Therefore, to calculate (Ψs)m, we need to subtract the direct
wave from the measured total field, (Ψ)m. Deconvolving the source wavelet, we define the
data D = (Ψs)m/A, and then D is related to α1 by (see Eq. 2.9a)

D (~x g|~x s; ω) =

∫ +∞

−∞
G0 (~x g|~x ′ ; ω) k2

0α1 (z ′) G0 (~x ′ |~xs; ω) d~x ′ (3.6)

where G0 is the causal Green function satisfying the wave equation in the reference medium
(and is related to the reference wavefield by G0 = ψ0/A). The solution for α1 in cylindrical
coordinates is (see Appendix A)

α1(−2qg) = 2π
−4q2

g

k2
0

eiqg(zg+zs)

∫ ∞

0

D(r; ω)J0(krr)rdr (3.7)

where the vertical and horizontal wavenumbers, qg and kr, respectively, are related by

qg = k0

√
1− k2

r

k2
0

. (3.8)

J0(krr) is a zero order Bessel function of the first kind that arises due to the azimuthal
symmetry and is

J0(krr) =
1

2π

∫ 2π

0

eikrrcosφdφ. (3.9)

Figure 3.1 illustrates the relationship between the horizontal cartesian offset coordinates
(x, y) and the cylindrical coordinates (r, φ).

The fact that the solution for α1 is over-determined is evident in Eq. (3.7): whereas α1 is
only a function of qg, the right-hand side can be written as a function of two independent
variables, e.g., (qg, ω) or (kr, ω). Inverse Fourier transforming both sides of Eq. (3.7) gives

α1(z) =− 8

∫ +∞

−∞

q2
g

k2
0

e−iqg(2z−(zg+zs))

∫ ∞

0

D(r; ω)J0(krr)rdrdqg. (3.10)

Considering fixed angles of incidence, θ0, leads to a number of different estimates of α1(z).
Fixing θ0 is the same as fixing horizontal and vertical slownesses, p and ζ0, respectively,
where

p
.
=

sin θ0

c0

and ζ0
.
=

cos θ0

c0

.

Note that p and ζ0 are functions of the constant reference velocity and, as such, may be
referred to as reference slownesses. We have chosen to omit the subscript “0” after p for
brevity and because, in a 1-D medium, horizontal slowness is constant in each layer. Keeping
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Fig. 3.1: Plan view showing the relationship between the horizontal cartesian and cylindrical coor-
dinates. r is the source-receiver offset in the horizontal plane and φ is the azimuth. For
a 1-D medium, the data are invariant in azimuth.

the subscript “0” after ζ highlights the fact that the inverse series terms are computed using
only a (in this case constant) reference slowness whereas, in the inverse problem, the actual
vertical slowness, ζ(z), is an unknown function of depth. With θ0, p and ζ0 fixed, qg is
still allowed to vary through the variation in ω since qg = ωζ0. Therefore, to perform that
integral, we proceed by changing variables from qg to ω (and substituting kr = ωp):

α1(z, p) =− 8ζ0 cos2 θ0

∫ +∞

−∞
e−iωζ0(2z−(zg+zs))

∫ ∞

0

D(r; ω)J0(ωpr)rdrdω. (3.11)

By considering fixed θ0 we were able to move q2
g/k

2
0 = cos2 θ0 outside of the integral. Then

α1(z, p) denotes estimates of α1 for fixed p values which, for a 1-D medium, describes fixed
angles (θ0) at which the constituent plane waves leave the source and arrive at the receivers.
Defining the vertical time τ

.
= ζ0 (2z − (zg + zs)) and performing the inverse temporal Fourier

transform of the data D(r; ω), Eq. (3.11) becomes

α1(τ, p) =− 8ζ0 cos2 θ0

∫ 2π

0

∫ ∞

0

D(r; τ − pr cos φ)rdrdφ. (3.12)

Changing back to cartesian coordinates yields

α1(τ, p) =− 8ζ0 cos2 θ0

∫ +∞

−∞

∫ +∞

−∞
D(x, y; τ − px)dxdy (3.13)
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which is recognizable as a scaled slant stack of the recorded data (see, e.g., Treitel et al.,
1982). Both Eqs. (3.12) and (3.13) are derived in Appendix A. In cartesian coordinates, the
solution for α1 requires sums in the x and y directions, whereas in cylindrical coordinates,
as a result of the symmetry of a laterally invariant medium, these integrals are replaceable
by integrals over φ and r (Eq. 3.12) or ω and r (Eq. 3.11).

An alternative approach to handling the degree of freedom in Eq. (3.10) is to hold ω fixed and
integrate over angle, θ0, or vertical slowness ζ0 = cos θ0/c0 = qg/ω. This parameterization
will result in different estimates of α1 for constant ω values (see also the discussion in Chapter
4).

2.2 Task separation in the second term

The integral equation for the second term in the inverse series for this acoustic problem is
(from Eq. 2.9b)

∫ +∞

−∞
G0 (~x g|~x ′ ; ω) k2

0α2(z
′)G0 (~x ′ |~x s; ω) d~x ′ =

−
∫ +∞

−∞
d~x ′G0 (~x g|~x ′ ; ω) k2

0α1(z
′)

∫ +∞

−∞
d~x ′′G0 (~x ′ |~x ′′ ; ω) k2

0α1(z
′′)G0 (~x ′′ |~x s; ω) .

(3.14)

The solution is detailed in Appendix B where α2 as a function of vertical wavenumber is
shown to be separable into the sum of two parts (see Fig. 3.2):

α2(−2qg) =

∫ +∞

−∞
dz ′e2iqgz′ k2

0

2q2
g

(
α2

1(z
′) +

∫ z′

0

dz ′′α1(z
′′)

dα1(z
′)

dz ′

)
. (3.15)

As is the case for α1, there is a degree of freedom in Eq. (3.15) that results in a choice of
which variable to hold constant, and which to integrate over in the construction of α2(z).
For consistency, we choose to keep p constant, in which case performing the inverse Fourier
transform of Eq. (3.15) gives

α2(z, p) =
1

2 cos2 θ0

(
α2

1(z, p) +

[∫ z

0

α1(z
′, p)dz ′

]
∂α1(z, p)

∂z

)
. (3.16)

The separation of the second term in the inverse series (Eq. 3.16) into the sum α21 + α22

(defined below) is an example of task separation. As explained by Weglein et al. (2002) for
the normal incidence case, these two terms have distinctly different roles in the inversion for
α. The first piece

α21(z, p) =
1

2 cos2 θ0

α2
1(z, p) (3.17)
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Fig. 3.2: Diagrammatic representation of the solution for α2 given in Appendix B. The second term
has been divided into “self-interaction” and “separated” diagram contributions. The “ •”
symbol is used to illustrate that “self-interaction” is admitted, whereas the “–” signifies
that “self-interaction” is excluded.

is the portion of α2 that acts to correct the amplitude (and only the amplitude) of α1 towards
α whereas the second piece

α22(z, p) =
1

2 cos2 θ0

[∫ z

0

α1(z
′, p)dz ′

]
∂α1(z, p)

∂z
(3.18)

is the first non-linear term in the subseries that shifts the mislocated interfaces in α1 closer
to their true depths. We can justify the assertion that α22 is an imaging-related term by
considering a situation where the reference velocity agrees with the actual velocity model
down to a single reflector, in which case the first term, α1, should correctly locate the reflector
and hence the problem of imaging does not exist beyond the first term. In this case, we would
expect the non-linear imaging terms to be zero1. For a single interface at depth za, with a

1 Strictly speaking, the sum of all the non-linear imaging terms should be zero. For the sake of efficiency,
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reflection coefficient, R01, the data are (e.g., Ewing et al., 1957)

D(r; ω) =
iω

4π

∫ ∞

0

R01(p)

ζ0

eiωζ0(2za−zs−zg)J0(ωpr)pdp

=
−1

4π

∫ ∞

0

R01(kr/ω)

iωζ0

eiωζ0(2za−zs−zg)J0(krr)krdkr (3.19)

which we substitute into the formula for α1 (Eq. 3.11):

α1(z, p) =− 8ζ0 cos2 θ0

∫ +∞

−∞
e−iωζ0(2z−zg−zs)

(−1

4π

R01(p)

iωζ0

eiωζ0(2za−zs−zg)

)
dω

=
2

π
cos2 θ0R01(p)

∫ +∞

−∞

(
e−2iωζ0(z−za)

iω

)
dω

=
2

π
cos2 θ0R01(p)(−2ζ0)

∫ z

−∞
dz ′

∫ +∞

−∞
e−2iωζ0(z′−za)dω

=
2

π
cos2 θ0R01(p)(−2ζ0)

∫ z

−∞
dz ′

2πδ(z ′ − za)

2ζ0

=− 4 cos2 θ0R01(p)H(z − za). (3.20)

When the model consists of just a single reflector, and because the reference medium agrees
with the actual medium above that reflector, then α1 will correctly locate the interface at
z = za. However, the inversion for α is still a non-linear problem that requires higher order
terms in the series. Equation (3.20) is the first order approximation to the amplitude of
α(z, p), which is derived algebraically in Appendix C for comparison.

Since the first term has predicted the correct depth of the reflector, we would expect that any
and all portions of the inverse series beyond the first term that are responsible for imaging
should vanish when presented with these data as input. Proceeding to the second term,
Eq. (3.17) yields

α21(z, p) = 8 cos2 θ0R
2
01(p)H(z − za) (3.21)

which produces the second term in the series for the amplitude of α (compare with Eq. C.8).
Meanwhile Eq. (3.18) for this example gives

α22(z, p) = 8 cos2 θ0R
2
01(p)(z − za)H(z − za)δ(z − za) = 0. (3.22)

The product (z − za)× δ(z − za) is zero and so α22 is zero in this single interface example2.
This result is an indication that α22 is an imaging term (i.e., associated with task 3) that

we hope that all individual non-linear imaging terms are zero and that the subseries doesn’t compute non-
zero terms that it subsequently erases. Fortunately, it turns out that when the first term is adequate, then
all non-linear imaging terms are zero.

2 The product of the Heaviside and delta functions is undefined at z = za so how we evaluate α22 is
important. In practice, for bandlimited data, there is no ambiguity. However, in this case, we could replace
the upper limit of the integral in Eq. (3.18) with z − ε, where ε is a small positive number, and let ε → 0
after integrating.
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Fig. 3.3: A two reflector example: (i) Velocity model; (ii) α and the first term in the series, α1;
(iii) The superposition of α21 and α22. All inverse quantities are displayed for the same
constant p.

is concerned with correctly positioning the interfaces in α, whereas α21 is the parameter
estimation term (task 4) that is concerned with solving for the correct amplitude of α between
its interfaces.

To strengthen our argument that α22 is an imaging-related term, we imagine the simplest
example in which a reflector is mislocated by the constant reference velocity and show, in
that case, this term is non-zero. For a velocity profile c0 − c1 − c0, where the two interfaces
are located at za and zb (see Fig. 3.3i), then ignoring internal multiples, the data consist of
two primary reflections:

D(r; ω) =
iω

4π

∫ ∞

0

R01(p) + R̂12(p)eiωζ12zb

ζ0

eiωζ0(2za−zs−zg)J0(ωpr)pdp (3.23)

where R̂12 is the amplitude of the deeper primary event and ζ1 is the vertical slowness in the
layer. Following the same steps as before, we find3

α1(z, p) = −4 cos2 θ0

[
R01(p)H(z − za) + R̂12(p)H(z − ẑb)

]
(3.24)

α21(z, p) = 8 cos2 θ0

[
R2

01(p)H(z − za) +
(
R̂2

12(p) + 2R01(p)R̂12(p)
)

H(z − ẑb)
]

(3.25)

α22(z, p) = 8 cos2 θ0R01(p)R̂12(p)(z − za)H(z − za)δ(z − ẑb) (3.26)

3 We have made use of the identity H2(·) ≡ H(·) in Eq. (3.25).
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as depicted in Fig. 3.3 where ẑb is the incorrect depth at which the constant reference velocity
images the deeper reflector:

ẑb = za + (zb − za)
ζ1

ζ0

. (3.27)

Although not explicitly noted in Eqs. (3.24–3.26), ẑb is a function of the reference angle θ0

or p. In conventional or current imaging, this is observed as residual moveout. We see that
α22 in this example is definitely not zero. In fact, it is singular precisely at the mislocated
interface depth z = ẑb.

In this section, we have separated the second term in the inverse series into two parts and
shown that one of these parts exists (as a singular function) when there is a mislocated
reflector but is zero when the reflector is correctly located. This piece of the second term,
α22, corresponds to a separated inverse scattering diagram. In the next section, we turn to
the third term in the inverse series, isolate the imaging term that is analogous to α22 and
postulate the form of an imaging subseries.

2.3 Task separation in the third term and a postulated imaging subseries

The solution for α3 can be broken into several pieces, details of which are given in Ap-
pendix D. The separation, also discussed by Shaw et al. (2003) for the normal incidence case,
corresponds to combinations of self-interaction and separated inverse scattering diagrams.
The normal incidence analysis is straightforwardly generalizable to non-normal incidence
(i.e., for prestack data) when the horizontal slowness, p, is held constant. In summary, we
have

α3(z, p) =α31(z, p) + α32(z, p) + α33(z, p) + α34(z, p) + α35(z, p) (3.28)

where

α31(z, p) =
3

16 cos4 θ0

α3
1(z, p)

α32(z, p) =
1

8 cos4 θ0

[∫ z

0

α1(z
′, p)dz ′

]2
∂2α1(z, p)

∂z2

α33(z, p) =
−1

8 cos4 θ0

[∫ z

0

α2
1(z

′, p)dz ′
]

∂α1(z, p)

∂z

α34(z, p) =
3

4 cos4 θ0

α1(z)

[∫ z

0

α1(z
′, p)dz ′

]
∂α1(z, p)

∂z

α35(z, p) =
−1

16 cos4 θ0

∫ z

0

∫ z

0

∂α1(z
′, p)

∂z ′
∂α1(z

′′, p)

∂z ′′
α1(z

′′ + z ′ − z, p)dz ′dz ′′ = αIM
3 (z, p)

The last term α35(z, p) has been renamed αIM
3 (z, p) in recognition of its role in the elimination

of internal multiples which begins in the third term of the inverse series (Araújo, 1994).
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Fig. 3.4: Inverse scattering diagrams corresponding to the separation of terms in α3. The mathe-
matical derivations are provided in Appendix D.
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Figure 3.4 illustrates diagrammatically the separation of terms in α3. Notice the structural
similarities between α21 and α31: they correspond to purely self-interaction diagrams that
are second and third order in the data, respectively. Considering again the single interface
example introduced in the previous section (Eq. 3.20) where we found that

α21(z, p) = 8 cos2 θ0R
2
01(p)H(z − za), (3.29)

for the same example, we now have

α31(z, p) = −12 cos2 θ0R
3
01(p)H(z − za) (3.30)

which is recognizable as the third term in the series for the amplitude of α at a single interface
(see Appendix C).

Notice also the similarities between terms α22 and α32: they correspond to purely separated
inverse scattering diagrams (i.e., they are void of any self-interaction component) and have
a single reflection-like upward scattering point. Inspection of this second piece of the third
term shows that, for a single interface,

α32(z, p) = −8 cos2 θ0R
2
01(p)R̂12(p)(z − za)

2H(z − za)δ
′(z − za) = 0 (3.31)

where δ′ represents the derivative of the delta function with respect to z. We see that
when the first term has correctly located the reflector, then α32 = 0, just as with α22

(Eq. 3.22). This analysis suggests that α22 and α32 are both imaging-related terms because
they “disappear” when the reference velocity has correctly located the reflector. Similar
arguments can be made for the remaining terms in α3, but for now we focus on the specific
role that α22 and α32 play in imaging reflectors that have been mislocated in α1.

Weglein et al. (2001) showed that the task of locating reflectors is accomplished through
a Taylor series expanded about each mislocated reflector in α1. The Taylor series for a
Heaviside function f(z) = H(z − zb) expanded about ẑb may be written

f(z) =
∞∑

n=0

(zb − ẑb)
n

n!

∂nf(z)

∂zn


z=ẑb

= f(z)|z=ẑb
+ (zb − ẑb)

∂f(z)

∂z


z=ẑb

+
(zb − ẑb)

2

2

∂2f(z)

∂z2


z=ẑb

+ . . .

= H(z − ẑb) + (zb − ẑb)δ(z − ẑb) +
(zb − ẑb)

2

2
δ′(z − ẑb) + . . . (3.32)

This equation demonstrates how an interface can be constructed at the correct depth, zb,
through a sum of singular functions centered at the incorrect depth, ẑb, and suggests a role
for the delta function and its derivative in Eqs. (3.26) and (3.31), respectively. Notice that
the coefficients in the Taylor series in Eq. (3.32) are functions of the actual depth, zb, which
is unknown in the inverse problem. From the formula for the reflection coefficient at an
interface (Eq. C.3), we know that

ζ0

ζ1

=
1 + R01(p)

1−R01(p)
= 1 + 2R01(p) + 2R2

01(p) + 2R3
01(p) + . . . , |R01| < 1 (3.33)
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and combining Eq. (3.33) with Eq. (3.27), we have

(zb − ẑb) = 2(ẑb − za)
[
R01(p) + R2

01(p) + R3
01(p) + . . .

]
, |R01| < 1 (3.34)

which illustrates that we can write the shift of the deeper reflector from the wrong depth
to its correct depth as an infinite series in the angle-dependent reflection coefficient at the
shallower reflector. Substituting this expression into the Taylor series (Eq. 3.32) produces

H(z − zb) =H(z − ẑb) + 2(ẑb − za)[R01(p) + R2
01(p) + . . .]δ(z − ẑb)

+ 2(ẑb − za)
2[R2

01(p) + 2R3
01(p) + . . .]δ′(z − ẑb)

+ . . . (3.35)

Equation (3.35) demonstrates how the interface at the unknown depth, zb, can be predicted
through an infinite series in the amplitude of the shallower reflector and the pseudo-depths
of both reflectors (za and ẑb) given by the reference velocity. This is a cascaded series in that
the coefficients of the Taylor series are themselves geometric series.

We return to the two-reflector example discussed in the last section (Eqs. 3.23–3.26). Now
we have,

α32(z, p) = −8 cos2 θ0R
2
01(p)R̂12(p)(z − za)

2H(z − za)δ
′(z − ẑb). (3.36)

Summing the three terms that we have hypothesized play a role in imaging, we find

α1(z, p) + α22(z, p) + α32(z, p)

= −4 cos2 θ0

[
R01(p)H(z − za) + R̂12(p)

{
H(z − ẑb) + 2(ẑb − za)R01(p)δ(z − ẑb)

+ 2(ẑb − za)
2R2

01(p)δ′(z − ẑb)
}]

(3.37)

where the underlined terms are seen to be a reproduction of the first three terms in the
Taylor series of Eq. (3.35) to leading order in R01. From this analysis, it appears that the
sum α1 + α22 + α32 are leading order approximations to the series that shifts the mislocated
deeper reflector towards its true depth. Therefore, we infer that the leading order imaging
series (LOIS) is

αLOIS(z, p) =α1(z, p) + α22(z, p) + α32(z, p) + . . .

=α1(z, p) +
1

2 cos2 θ0

[∫ z

0

α1(z
′, p)dz ′

]
∂α1(z, p)

∂z

+
1

8 cos4 θ0

[∫ z

0

α1(z
′, p)dz ′

]2
∂2α1(z, p)

∂z2
+ . . .

=
∞∑

n=0

(1/2)n

n! cos2n θ0

[∫ z

0

α1(z
′, p)dz ′

]n
∂nα1(z, p)

∂zn
(3.38)
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Fig. 3.5: Inverse scattering diagrams corresponding to leading order imaging contributions from the
first three terms of the inverse series.

where α1(z, p) is given by Eq. (3.11). The conjecture that Eq. (3.38) is a leading order
imaging series is based on: (a) that it correctly predicts the inverse series terms α1, α22

and α32 which have been found to mirror an imaging Taylor series for a known analytic
example. The non-linear terms mirror the pattern of separated diagrams that have a single
reflection-like scattering point at their deepest position (see Fig. 3.5); and (b) that it also
correctly predicts the leading order contributions to the Taylor series in Eq. (3.35) up to and
beyond the third term, for that analytic example. Any term in this series may be calculated
using the formula

αLOIS
n+1 (z, p) =

(1/2)n

n! cos2n θ0

[∫ z

0

α1(z
′, p)dz ′

]n
∂nα1(z, p)

∂zn
, n = 0, 1, 2, . . . (3.39)

Analysis of the second term in the series gave us clues as to which terms are responsible for
imaging, and which terms were concerned with amplitude inversion. We found that the self-
interaction diagram contribution affected only amplitude inversion, whereas the separated
diagram contribution appeared to play a role in imaging. These lessons were carried through
to the third term in the series where it was found that the separated diagram term with a
single reflection-like scattering point produced a very similar mathematical expression to its
analogue in the second term. The evaluation of these terms for an analytic example lead to
the conclusion that these separated diagram terms constitute the leading order approxima-
tions to the imaging series.

3 A closed form of the leading order imaging series and an analysis of
convergence properties

If we substitute the Fourier transform

∂nα1(z, p)

∂zn
=

1

2π

∫ +∞

−∞
(ikz)

nα1(kz, p)eikzzdkz
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into Eq. (3.38), where kz is the Fourier conjugate variable to z, we have

αLOIS(z, p) =
1

2π

∫ +∞

−∞
α1(kz, p)

∞∑
n=0

1

n!

[
ikz

2 cos2 θ0

∫ z

0

α1(z
′, p)dz ′

]n

eikzzdkz (3.40)

=
1

2π

∫ +∞

−∞
α1(kz, p)e

ikz

(
z+

[
1

2 cos2 θ0

∫ z
0 α1(z′,p)dz′

])
dkz. (3.41)

The power series

∞∑
n=0

1

n!

[
ikz

2 cos2 θ0

∫ z

0

α1(z
′, p)dz ′

]n

= exp

[
−ikz/(2 cos2 θ0)

∫ z

0

α1(z
′, p)dz ′

]
(3.42)

is recognized in Eq. (3.40) to arrive at Eq. (3.41). Now substitute

α1(kz, p) =

∫ +∞

−∞
α1(z

′′, p)e−ikzz′′dz ′′

into Eq. (3.41):

αLOIS(z, p) =
1

2π

∫ +∞

−∞
dz ′′α1(z

′′, p)

∫ +∞

−∞
dkze

ikz

(
z−z′′+

[
1

2 cos2 θ0

∫ z
0 α1(z′,p)dz′

])

=
1

2π

∫ +∞

−∞
dz ′′α1(z

′′, p)2πδ

(
z − z ′′ +

[
1

2 cos2 θ0

∫ z

0

α1(z
′, p)dz ′

])

=α1 (z + ∆, p) (3.43)

where

∆(z) =
1

2 cos2 θ0

∫ z

0

α1(z
′, p)dz ′. (3.44)

This closed form of the leading order imaging series and was first derived by Keys (2002) for
the normal incidence case. The prestack leading order imaging series for a point source in a
laterally invariant acoustic medium can be implemented by slant-stacking (or τ -p transform-
ing) the data, weighting each p trace by the factor −8ζ0 cos2 θ0, and then operating on each
trace with the formula provided in Eq. (3.43). When p = 0, Eqs. (3.38) and (3.43) reduce
to the normal incidence algorithms given by Shaw et al. (2003)4. The leading order imaging
series can be visualized as a squeeze/stretch of the data “conventionally imaged” with the
reference velocity. As such, it has the flavor of a residual migration in that it is improving
the location of reflectors that were mislocated by the reference velocity in the first term.

Besides the fact that it efficiently encapsulates an infinite number of terms through a straight-
forward manipulation of the depth variable in the first term, the closed form also allows us
to study the convergence properties of the leading order imaging series. Since we have seen
that the power series for ex (Eq. 3.42) is the engine behind the leading order imaging series,
we can conclude the following:

4 The alternate definition of α in Shaw et al. (2003) produces a minus sign difference.
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1. Conditions for convergence:

(a) Finite
∫ z

0
α1(z

′)dz ′. For finite contrasts between the actual and reference veloci-
ties, and because we are integrating to a finite depth, z, then this condition will
be satisfied.

(b) Finite kz. As long as the maximum frequency (ω) in the data is finite, then kz

will be finite. It is difficult to imagine when this condition will not be satisfied.

2. Rate of convergence:

(a) The leading order imaging series converges faster for smaller values of the integral∫ z

0
α1(z

′)dz ′. This indicates that a reference velocity closer to the actual velocity
will improve the rate of convergence. In particular, the series cares about the
cumulative error in the velocity down to the output point, z.

(b) Smaller values of kz will aid the rate of convergence. In practice, this implies that
a higher resolution image will take longer to converge.

(c) It will converge faster for small incident angles, θ0. This is the angle at the
surface, not the angle at depth although the two are related via Snell’s Law to
the velocity model. It should be noted that kz ∼ ω

c0
cos θ0 which means that the

net dependence is proportional to 1/ cos θ0 rather than 1/ cos2 θ0.

As long as the convergence criteria hold, we can use the closed form of the leading order
imaging series in which case the rate of convergence is of little consequence.

4 Evaluation of the leading order imaging series shift

Consider a reflector that is located at depth zR. It is imaged at depth ẑR by the constant
reference velocity and at depth ẑLOIS

R by the leading order imaging series (see Fig. 3.6). We
would like to know how good an approximation ẑLOIS

R is to zR and, more importantly, whether
ẑLOIS

R is an improvement over ẑR. From the travel time equation, the two-way vertical time
to this reflector is

τ(zR) =2

∫ zR

0

ζ(z ′)dz ′ (3.45)

where, for simplicity, we assume that the sources and receivers are located at zs = zg = 0.
Linear imaging with the constant reference velocity will predict its depth at

ẑR =
τ(zR)

2ζ0

=
1

ζ0

∫ zR

0

ζ(z ′)dz ′. (3.46)
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Fig. 3.6: Errors in the predicted depths. zR is a reflector’s true depth, ẑR is the depth predicted
by the reference velocity in the first term, and ẑLOIS

R is the depth predicted by the leading
order imaging series.

This is its position in α1. Only if the actual slowness happens to be ζ0, will ẑR = zR. Given
the information in α1, the leading order imaging series will reposition the reflector at

ẑLOIS
R = ẑR − 1

2 cos2 θ0

∫ ẑR

0

α1(z
′)dz ′. (3.47)

We would like to know whether ẑLOIS
R is, in general, closer to zR than ẑR is, i.e., under what

conditions the leading order imaging series is an improvement over current imaging methods
that use an inadequate reference velocity. From the definition of α (Eq. 3.4),

ζ(z) =ζ0
+
√

1 + α(z)

=ζ0

(
1 +

1

2
α(z)− 1

8
α2(z) + . . .

)
. (3.48)

If we substitute this equation into Eq. (3.46), we find that the error in the depth predicted
by the first term is

εREF = ẑR − zR =

∫ zR

0

ζ(z ′)− ζ0

ζ0

dz ′ =
∫ zR

0

(
1

2
α(z ′)− 1

8
α2(z ′) + . . .

)
dz ′ (3.49)

which, when substituted into Eq. (3.47), gives the error in the depth predicted by αLOIS :

εLOIS = ẑLOIS
R − zR =

∫ zR

0

(
1

2
α(z ′)− 1

8
α2(z ′) + . . .

)
dz ′ − 1

2 cos2 θ0

∫ ẑR

0

α1(z
′)dz ′.

Both εREF and εLOIS will be smaller when the integral of α is smaller, which will be the case
when the actual velocity model is closer to the chosen reference velocity. The leading order
imaging series is an improvement over a linear imaging algorithm when

|εLOIS| < |εREF| (3.50)
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i.e., when

∣∣∣∣
∫ zR

0

(
1

2
α(z ′)− 1

8
α2(z ′) + . . .

)
dz ′ − 1

2 cos2 θ0

∫ ẑR

0

α1(z
′)dz ′

∣∣∣∣

<

∣∣∣∣
∫ zR

0

(
1

2
α(z ′)− 1

8
α2(z ′) + . . .

)
dz ′

∣∣∣∣

or in terms of slownesses, this condition can be written (using Eq. 3.49)

∣∣∣∣
∫ zR

0

ζ(z ′)− ζ0

ζ0

dz ′ − 1

2 cos2 θ0

∫ ẑR

0

α1(z
′)dz ′

∣∣∣∣ <

∣∣∣∣
∫ zR

0

ζ(z ′)− ζ0

ζ0

dz ′
∣∣∣∣ .

We can rearrange this inequality via the following manipulations

|A−B| < |A|∣∣∣∣A
(

1− B

A

)∣∣∣∣ < |A|

−1 <

(
1− B

A

)
< 1

0 <

(
B

A

)
< 2 (3.51)

where

A = ẑR − zR = εREF (see Eq. 3.49)

and B = ẑR − ẑLOIS
R =

1

2 cos2 θ0

∫ ẑR

0

α1(z
′)dz ′.

If the condition in Eq. (3.51) can be satisfied, then the leading order imaging series will
predict a depth that is more accurate than current imaging with the reference velocity. For
the simple example of two reflectors, we can show that the condition will be satisfied. We
consider a two-reflector model where the vertical slowness profile is (see Fig. 3.7)

ζ(z) = ζ0(z) + (ζ1 − ζ0)H(z − za) + [ζ2 − (ζ1 − ζ0)] H(z − zb).

Then for this example

A =

∫ zb

0

(
ζ(z ′)− ζ0

ζ0

)
dz ′ =

ζ1 − ζ0

ζ0

(zb − za)

B =
1

2 cos2 θ0

∫ ẑb

0

α1(z
′)dz ′ =

1

2 cos2 θ0

(
−4 cos2 θ0

ζ0 − ζ1

ζ0 + ζ1

(ẑb − za)

)

= −2

(
ζ1

ζ0

(ζ0 − ζ1)

(ζ0 + ζ1)
(zb − za)

)
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Fig. 3.7: A multi-layer 1-D constant density acoustic model. In the absence of a free surface, all
reflected waves at the receiver are upgoing.

which, upon substitution into Eq. (3.51), gives

0 <
2ζ1

ζ0 + ζ1

< 2.

This result tells us that the downgoing transmission coefficient at the upper interface satisfies
the condition necessary to show that the leading order imaging series improves the predicted
depth of the second interface independent of (a) the depths of the two interfaces, or (b) the
actual velocity below the first interface.

5 More analytic examples

5.1 Analytic examples with three interfaces

Analysis of the imaging subseries becomes more interesting for three or more reflectors
because of the effect of transmission loss in the overburden. Consider a model that consists
of three horizontal interfaces at depths za, zb and zc and a discontinuous velocity profile c(z)
as depicted in Fig. 3.7. The wavefield in the upper halfspace, ψ0, consists of an incident field,
ψi, and a reflected field, ψr. The measured reflected wavefield can be derived by decomposing
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the incident field into a sum of plane waves (the Sommerfeld integral) and then matching
boundary conditions at each interface (see, e.g., Ewing et al., 1957; Aki and Richards, 2002).
The result is

ψr(r; ω) =
iω

4π

∫ ∞

0

(
R01 + R̂12e

2iωζ1(zb−za) + R̂23e
2iω[ζ1(zb−za)+ζ2(zc−zb)] + . . .

)

ζ0

× eiωζ0(2za−zs−zg)J0(ωpr)pdp (3.52)

where the reflection and transmission coefficients are functions of angle and are given by

Rjk =
ζj − ζk

ζj + ζk

j = 0, 1, 2, 3; k = j + 1 (3.53)

Tjk = 1− ζj − ζk

ζj + ζk

= 1−Rjk j = 0, 1, 2, 3; k = j + 1. (3.54)

We have further defined the amplitudes R̂12 = T01R12T10 and R̂23 = T01T12R23T21T10. The
vertical slownesses are functions of the incident angles in each layer:

ζj =
cos θj

cj

, j = 0, 1, 2, . . . (3.55)

The “+ . . .” in Eq. (3.52) are the internal multiple reflections in the data. For now, an
internal multiple removal algorithm, a subseries that begins in the third term of the inverse
series, is assumed to have been applied before the imaging subseries. This results in a new
effective data and a new effective α1 that contain only primary reflection events. This step
is part of the strategy of inverse series task separation described by Weglein et al. (2003).
For the two reflector examples studied earlier, the internal multiples were of no consequence
since the imaging series only uses information recorded earlier than the primary event being
imaged, which excluded the multiples. In the next section, we will study the effect of a
residual first order internal multiple that arrives before the deepest primary being imaged.

Reverting to the symbol D for data that contain only primary reflections, and changing the
integration variable from p to kr, Eq. (3.52) becomes

D(r; ω) =

∫ ∞

0

(
R01 + R̂12e

2iωζ1(zb−za) + R̂23e
2iω[ζ1(zb−za)+ζ2(zc−zb)]

)

−4πiωζ0

× eiωζ0(2za−zs−zg)J0(krr)krdkr. (3.56)

Performing a linear inversion of the data (Eq. 3.11), the first term in the series for α(z) for
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this three-reflector example can be written:

α1(z, p) =− 8ζ0 cos2 θ0

∫ +∞

−∞
e−iωζ0(2z−(zg+zs))

∫ ∞

0

D(r; ω)J0(krr)rdrdω

=8 cos2 θ0

∫ +∞

−∞

R01 + R̂12e
2iωζ1(zb−za) + R̂23e

2iω[ζ1(zb−za)+ζ2(zc−zb)]

4πiωζ0

e−2iωζ0(z−za)dω

=− 4 cos2 θ0

[
R01H (z − za) +

(
R01 + R̂12

)
H (z − ẑb)

+
(
R01 + R̂12 + R̂23

)
H (z − ẑc)

]
(3.57)

where the dependence of both the amplitudes and the predicted depths on p is implicit. The
shallowest reflector is correctly located at za (since the velocity down to za was correct) but
the deeper reflectors are mislocated at depths

ẑb = za + (zb − za)
ζ1

ζ0

(3.58)

and ẑc = ẑb + (zc − zb)
ζ2

ζ0

. (3.59)

Inserting Eq. (3.57) into the leading order imaging series will result in a shift of the two
mislocated interfaces to depths

ẑLOIS
b = ẑb + 2(ẑb − za)R01 (3.60)

ẑLOIS
c = ẑc + 2(ẑb − za)R01 + 2(ẑc − ẑb)(R01 + R̂12). (3.61)

We have already seen that Eq. (3.60) is the approximation to zb that is leading order in R01

(see Eq. 3.34). We can show that Eq. (3.61) is the approximation to zc that is leading order
in the amplitudes of the scattered field. Equations (3.58) and (3.59) can be combined to give

zc = za + (ẑb − za)
ζ0

ζ1

+ (ẑc − ẑb)
ζ0

ζ2

(3.62)

and then the slowness ratios can be expanded as series in the reflection coefficients where
(see also Eq. 3.33)

ζ0

ζ1

=
1 + R01

1−R01

= 1 + 2R01 + 2R2
01 + 2R3

01 + . . . , |R01| < 1

ζ0

ζ2

=

(
1 + R01

1−R01

)(
1 + R12

1−R12

)

= 1 + 2R01 + 2R12 + 2R2
01 + 2R2

12 + 4R01R12 + . . . , |R01| < 1, |R12| < 1. (3.63)

Substituting these expressions into Eq. (3.62) gives

zc = ẑc + 2 (ẑb − za)
[
R01 + R2

01 + R3
01 + . . .

]

+ 2 (ẑc − ẑb)
[
R01 + R12 + R2

01 + R2
12 + 2R01R12

+R3
01 + R3

12 + 2R01R
2
12 + 2R2

01R12 + . . .
]

(3.64)
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The shift calculated by the leading order imaging series (Eq. 3.61) is an approximation to
the series in Eq. 3.64 to leading order in the data’s amplitudes. The approximation reduces
to

(ẑb − za)R01 + (ẑc − ẑb)(R01 + R̂12) ≈ (ẑb − za)
[
R01 + R2

01 + R3
01 + . . .

]

+ (ẑc − ẑb)
[
R01 + R12 + R2

01 + R2
12 + 2R01R12 + . . .

]
(3.65)

where we observe that leading order in the amplitudes of the scattered field, in general,
implies non-linearity in the reflection coefficients:

R̂12 = T01R12T10 = R12 + R2
01R12. (3.66)

The leading order approximation to the shift of the reflector at ẑc contains contributions that
are linear and cubic in the reflection coefficients. For deeper reflectors, these contributions
will be of increasingly higher order due to the transmission coefficients in the measured
scattered field. It is to be expected leading order approximation will deteriorate for deeper
reflectors due to the fact that the shift is a function of approximations (truncated geometric
series) at all shallower reflectors. Higher order imaging terms are expected to improve the
approximation and will be explored in Chapter 5.

Figures 3.8 and 3.9 illustrate the results for two choices of model parameters given in Table
3.1. In the first example, the layer velocity c1 > c0 and in the second example, c1 < c0 by
the same amount (roughly 13%). As a result, the first term in the series “under-corrects”
the deeper reflectors in Fig. 3.8 and “over-corrects” them in Fig. 3.9. In both cases, the
leading order imaging series (computed analytically) shifts the mislocated interfaces closer
to their true depths. It is interesting to note that, in the second example, αLOIS positions the
reflectors a small distance shallower than their actual depths, whereas the first term placed
them a much greater distance deeper. Therefore, the sign of the depth error can change.
The leading order imaging series has the effect of flattening image gathers closer to their
true depths than a current linear imaging algorithm using the reference velocity.

In the next section we will study the impact of violating the assumption that internal mul-
tiples have been removed.

Layer velocities (m/sec) Interface depths (m)
c0 c1 c2 za zb zc

Fig. 3.8 1500 1700 1800 100 140 170
Fig. 3.9 1500 1300 1600 100 140 170

Tab. 3.1: Model parameters corresponding to the results in Figs. 3.8 and 3.9.
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Fig. 3.8: (i) Travel time curves for three primaries. (ii) Depths predicted by the first term, za, ẑb

and ẑc, and the leading order imaging series, za, ẑLOIS
b and ẑLOIS

c . Model parameters are
given in Table 3.1.

5.2 The impact of internal multiples on the leading order imaging series

The strategy of isolating task-specific subseries of the inverse series that achieve important
seismic processing objectives has proven to be a successful one (Weglein et al., 2003). As
part of this strategy, subseries algorithms are applied in sequence using the output from a
preceding algorithm as input to the current one. While progress is being made in extending
the inverse scattering internal multiple attenuation algorithm (Weglein et al., 1997) towards
an internal multiple removal algorithm (Ramirez and Weglein, 2005), the current high-water
mark in multiple attenuation when the Earth model is unknown is that free surface multiples
can be removed and internal multiples can be well-attenuated for a large class of models.

The scattered field that includes three primary reflectors and a first order internal multiple
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Fig. 3.9: (i) Travel time curves for three primaries. (ii) Depths predicted by the first term, za, ẑb

and ẑc, and the leading order imaging series, za, ẑLOIS
b and ẑLOIS

c . Model parameters are
given in Table 3.1.

that has reverberated in the first layer can be written analytically as

D(r; ω) =
iω

4π

∫ ∞

0

(
R01 + R̂12e

2iωζ1(zb−za) + R̂IMe4iωζ1(zb−za)

ζ0

+
R̂23e

2iω[ζ1(zb−za)+ζ2(zc−zb)]

ζ0

)
eiωζ0(2za−zs−zg)J0(ωpr)pdp. (3.67)

The amplitude of the internal multiple is

R̂IM(p) = T01R12R10R12T10 = −T01R
2
12R01T10 (3.68)

which, after application of the inverse scattering internal multiple attenuation algorithm is
reduced to (Weglein and Matson, 1998)

R̂IM(p) = −T01R
2
12R01T10(1− T01T10) (3.69)
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For this example, the first term in the series is

α1(z, p) =− 4 cos2 θ0

[
R01H (z − za) +

(
R01 + R̂12

)
H (z − ẑb)

+
(
R01 + R̂12 + R̂IM

)
H (z − ẑIM) +

(
R01 + R̂12 + R̂IM + R̂23

)
H (z − ẑc)

]

(3.70)

where ẑIM is the depth that the internal multiple is imaged at. The impact of residual
multiples on the imaging series is two-fold. First, the multiples themselves will be imaged by
the series and, second, they will impact the distance that events below them (or that arrive
later in time) are shifted by the imaging series. In the following examples, we illustrate the
latter effect only.

Figures 3.10 and 3.11 show the results of the leading order imaging series for the two spe-
cific models described in Table 3.2 and in the presence of a first order multiple that has
reverberated between the interfaces at za and zb.

Layer velocities (m/sec) Interface depths (m)
c0 c1 c2 za zb zc

Fig. 3.10 1500 2000 1900 100 125 170
Fig. 3.11 1500 2000 2120 100 125 220

Tab. 3.2: Model parameters corresponding to the results in Figs. 3.10 and 3.11 in which the impact
on the leading order imaging series of a first order internal multiple is analyzed.

It is interesting to note that in Fig. 3.10, the impact of the internal multiple is actually to
improve the predicted depth of the reflector whereas in Fig. 3.11 the opposite is true. This
implies that the effect of residual internal multiples on the leading order imaging series is
not predictable without knowing the model, and therefore the strategy to remove multiples
before applying this algorithm is a prudent one.

5.3 Further Discussion

The analytic results of the prestack leading order imaging series have highlighted a number
of interesting characteristics of the algorithm. Given a choice of how to handle the degree
of freedom afforded by the source-receiver offset in the seismic experiment, we chose to keep
the angle of incidence in the reference medium (θ0 or p = p0) constant and let ω vary.
This allowed for a straightforward generalization of the normal incidence case to non-normal
incidence.

For the acoustic examples considered here, the first term in the imaging series more ac-
curately locates reflectors at small incident angles. This is because the decomposed plane
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waves at larger angles spend proportionally longer times in the layers with the wrong veloc-
ity. However, the magnitude of the amplitudes at larger angles is greater, which generally
assists the non-linear terms of the leading order imaging series in shifting the reflectors the
required distance to their actual locations. This larger “effective contrast” at higher angles
(its AVA property) highlights the fact that the imaging subseries is leading order in the
data’s amplitudes and that higher order imaging terms may be required for larger contrasts
between actual and reference media properties.

The leading order approximation is better at small angles and is the reason why the leading
order imaging series leaves a small amount of residual moveout more noticeable at the higher
angles. Data at larger angles of incidence will benefit more from the higher order terms
currently being left out. On the other hand, the rate of convergence of the series form of the
algorithm will benefit from the fact that the maximum kz is smaller at large angles (since
kz ∼ k0 cos θ0). For higher contrasts, or when greater accuracy is desired, then higher order
imaging terms are required that go beyond the leading order terms identified and analyzed
here.

6 Summary and Conclusions

The imaging series for a single parameter acoustic medium is a Taylor series for the differ-
ence of two Heaviside functions expanded about the depth of each mislocated interface. The
prestack form of a leading order imaging series has been isolated whose coefficients are the
products of a scalar with the integral of α1 to increasingly higher powers. The integral of α1

sends residual moveout and amplitude information from reflectors in the overburden to all
mislocated deeper reflectors, thereby establishing a “communication between events” that
acts to the correct the depths of the reflectors. The leading order imaging subseries has favor-
able convergence properties and also has a closed form that straightforwardly encapsulates
an infinite number of terms.

The leading order imaging series has been formulated for constant angles of incidence over
a 1D layered medium and has been analyzed for several analytic examples. A condition was
derived that, when satisfied, shows the leading order imaging series will improve upon the
depths predicted by the constant reference velocity.

Results of the analytic examples illustrate the improvement in the predicted depths of the
reflectors that are mislocated by current depth imaging algorithms (and that correspond to
the first term in the series). The effect of the leading order imaging series can be visualized
as correcting the residual moveout of common image gathers that are imaged with the
homogeneous reference velocity. The impact of residual internal multiples was shown by
example to depend on the model and therefore, in general, it is best to remove multiples
before applying the imaging algorithm.
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Fig. 3.10: (i) Travel time curves for three primaries and a first order internal multiple. (ii) Depths
predicted by the first term, za, ẑb and ẑc, and the leading order imaging series, za, ẑLOIS

b

and ẑLOIS
c (all with the same colors and line styles as in Figs. 3.8 and 3.9). The depth

ẑLOIS
cIM

is the depth of the interface at zc predicted by the leading order imaging series in
the presence of the internal multiple. Model parameters are given in Table 3.2. In this
case, ẑLOIS

cIM
is an improvement over ẑLOIS

c .
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Fig. 3.11: (i) Travel time curves for three primaries and a first order internal multiple. (ii) Depths
predicted by the first term, za, ẑb and ẑc, and the leading order imaging series, za, ẑLOIS

b

and ẑLOIS
c . The depth ẑLOIS

cIM
is the depth of the interface at zc predicted by the leading

order imaging series in the presence of the internal multiple. Model parameters are given
in Table 3.2. In this case, ẑLOIS

cIM
is not an improvement over ẑLOIS

c , which is predicted
in the absence of internal multiples.
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4. NUMERICAL EXAMPLES OF A LEADING

ORDER IMAGING SERIES AND AN ANALYSIS

FOR BANDLIMITED INPUT DATA

A subseries of the inverse series has been isolated and has been shown analytically for a
suite of interval velocity models to improve the depths of reflectors compared with a linear
imaging algorithm using the reference velocity. The next step is to systematically analyze this
leading order imaging series under progressively more realistic conditions with the objective
of developing it into an algorithm ready for field data application.

We test the 1D prestack acoustic leading order imaging series for a variety of velocity models
and bandlimited synthetic datasets. One of our primary objectives is to analyze its perfor-
mance under conditions when the input data are missing low frequencies. It is demonstrated
that, while it benefits from low frequency information, the leading order imaging series retains
effectiveness even when zero and some low frequency information are absent. Its effective-
ness is enhanced with offset data where the conjugate to depth, kz = 2(ω/c0) cos θ0, allows
for a lower minimum kz away from normal incidence and for the same temporal frequency
bandwidth.

The relationship between the leading order imaging series and low frequency information is
analyzed by examining the imaging series’ integral with respect to depth of the first term,
α1. It is shown that the fidelity of the construction of the first term in the low kz band
is important. The integration limits of the integral in the algorithm are not from −∞ to
+∞ and so the imaging series does not call strictly for the zero frequency component of the
data. We demonstrate using numerical reflectivity data examples that, even when missing
zero and low temporal frequency information, the leading order imaging series can improve
the predicted depth of reflectors over current imaging with the reference velocity. Greater
effectiveness is achieved when lower frequency information is present, which merits the study
of existing and new spectral extrapolation techniques and is in alignment with the current
trend to acquisition systems that record lower frequency data.

1 Introduction

The development of inverse scattering series algorithms for seismic data processing begins
with the isolation of a subseries that accomplishes a specific task, for example, free surface
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multiple removal, internal multiple attenuation or depth imaging (Weglein et al., 2003). Once
a candidate subseries has been identified for the simplest earth and acquisition models, it
is systematically analyzed under progressively more realistic conditions, with the objective
being to develop an algorithm ready for field data application.

The imaging series is a subseries of the inverse scattering series, a direct multidimensional
inversion procedure, and is non-linear in the measured wavefield. Other non-linear inverse
methods (e.g., Tarantola, 1987) have been found to fail in practice because field data are
always bandlimited, and missing low frequencies precludes a successful updating of the ref-
erence model towards the actual model. One important distinction between the inverse
scattering series and iterative linear inversion is that, with the inverse series, the reference
model is never updated. Every term in the inverse series is computed through an inversion
that requires only the recorded dataset and the original reference medium properties. Fur-
thermore, the inverse subseries and task separation approach (see Chapter 3), which inverts
seismic data one step at a time, is in contrast to iterative linear inversion, which uses the to-
tal wavefield to directly invert for earth properties at once. This important difference makes
any one of the inverse series algorithms less ambitious than a procedure that attempts a
wholesale direct inversion for earth parameters from the recorded data.

Despite significant differences between the inverse scattering subseries procedure and other
non-linear inversion methods, it might be expected that at least one of the subseries al-
gorithms would benefit from low frequency information. After all, they achieve seismic
processing objectives without subsurface information by engaging the data more actively
than algorithms that expect accurate a priori details about the medium. If the algorithms
expect more from the data, then it is reasonable to imagine that at least one of them might
benefit from a broad frequency spectrum. According to the convolutional model, a single
frequency component from the source will experience the medium in a manner described by
a linear differential operator before it is recorded at the receiver. The convolutional model
applies to even the most complex absorptive elastic wave equations currently employed to
describe wave propagation. However, direct inversion of even the simplest single-parameter
acoustic wave equation using the inverse scattering series requires multiplicative communica-
tion between different frequencies. This is also a characteristic of the leading order imaging
series.

The leading order imaging series has been shown analytically in Chapter 3 to image reflectors
closer to their correct spatial location than a linear depth imaging algorithm using the
same reference velocity. It does so without solving for the actual velocity model. In this
chapter, we continue evaluating the prestack leading order imaging series with a succession
of numerical examples. The synthetic datasets are necessarily frequency bandlimited which
is also the situation with data acquired in the field. It was also shown in Chapter 3 that the
leading order imaging series will not converge for infinite kz (vertical wavenumber), and it
was commented that the temporal band-limit of recorded seismic data will naturally satisfy
this convergence criterion. In this chapter, we numerically demonstrate convergence of the
leading order imaging series for a variety of normal and non-normal incidence 1-D acoustic
synthetic datasets, and for different high- and low-frequency apertures.
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One of our primary objectives is to analyze the role of low frequency information in the
leading order imaging series and, specifically, to answer the question of whether it retains
any benefit when low frequency information is absent from the data. We utilize the 1-D
prestack form of the algorithm which more closely represent the actual seismic experiment
than a normal incidence algorithm because the source-receiver offset leads to a lower vertical
wavenumber, kz. The issue of missing low frequency in non-linear inversion is more usefully
thought of in terms of missing low kz, rather than missing low temporal frequency, ω.

We begin by studying bandlimited numerical examples that contain zero and low frequencies
and then progress to examples that are missing information from the low end of the frequency
spectrum.

2 Numerical examples

2.1 Numerical examples at normal incidence

We consider again the simplest imaging problem of two reflectors in a constant density
acoustic medium with no free surface. The two interfaces are defined by the following
parameters (see the model depicted in Fig. 3.7):

Layer velocities (m/sec) Interface depths (m)
c0 1500
c1 1650 za 100
c2 1510 zb 140

Tab. 4.1: Model parameters corresponding to the results in Figs. 4.1, 4.2 and 4.3.

The source wavelet is designed to be zero phase with an amplitude A(ω) = 1 in the frequency
band 0 ≤ f ≤ 125 Hz where ω = 2πf . The p = 0 (normal incidence) component of the data
are displayed in the left-hand panel of Fig. 4.1 as a function of vertical travel time, τ . In
accordance with the strategy of task separation, there are no multiple reflections in these
input data. The remaining panels show the results of the first six terms in the leading order
imaging series computed using Eq. (3.39). The second term is recognizable as a weighted
sinc function – a bandlimited version of the delta function in Eq. (3.26) – centered at the
reference velocity depth, ẑb. Increasingly higher order derivatives of the sinc function in the
higher order terms are alternately antisymmetric and symmetric about ẑb. The amplitudes
of the non-linear terms in this example are seen to diminish gradually with successive terms.
In Fig. 4.2, the cumulative sums of these first six terms are displayed. For this model, the
leading order imaging series is observed to converge after approximately six terms and the
mislocated interface has been shifted from the reference depth, ẑb, in α1 closer to the actual
depth, zb, in αLOIS. Summing more terms in the leading order imaging series for this example
does not further correct the depth because the seventh and higher order terms are too small.

51



Numerical examples and an analysis for bandlimited data Ph.D. thesis

Figure 4.3 compares the result of summing the first six terms in the series algorithm with
computing the closed form (Eq. 3.43). The two results are observed to be very similar
although the computation of the closed form is much simpler to implement and faster to
execute than the series formula. Furthermore, implementation of the series formula involves
taking high-order derivatives which can raise certain practical issues (see, e.g., Corrêa et al.,
2002). Performing accurate and stable numerical derivatives is not required by the closed
form algorithm. To avoid issues related to numerical implementation, the closed form will
be used for the analysis of the leading order imaging series in the remainder of this chapter.

Figure 4.3 shows clearly that the leading order imaging series does not alter the amplitude
of α1 and that it only moves the mislocated interface. This is because terms that correct
the amplitude of α1 towards α are excluded. Therefore, the result of applying αLOIS is to
have an α1-like quantity with its interfaces more accurately located than in α1. Since we
don’t know α before or after computing αLOIS, we are unable to find the actual velocity by
this procedure. This is a fascinating property of direct inversion: the method can achieve
certain inversion objectives without knowing the medium properties before, during or after
application of the algorithm.

Figure 4.4 illustrates the results of the closed form algorithm on a four layer model described
by the following values (see Fig. 3.7):

Layer velocities (m/sec) Interface depths (m)
c0 1500 za 100
c1 1650 zb 150
c2 1550 zc 200
c3 1600 zd 300
c4 1550 ze 400

Tab. 4.2: Model parameters corresponding to the results in Fig. 4.4.

The input data were synthesized for the same bandlimited source as in the previous exam-
ple. To a high degree of accuracy, the leading order imaging series has well-positioned the
interfaces at their correct depths.

2.2 Pre-stack numerical examples

We test the prestack leading order imaging series on data synthesized using an acoustic
reflectivity algorithm (see, e.g., Kennett, 1983) and select the option to synthesize a point
source exploding in a three dimensional space. The velocity varies only in the z-direction and
density is held constant. The data are synthesized in the τ -p domain and can be considered to
have been generated from an experiment with infinite spatial aperture. The source wavelet
is designed to be a bandlimited delta function with a frequency spectrum A(2πf) where
fmin ≤ f ≤ fmax.
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First, two specific cases are considered: one representing the situation where the reference
velocity is slower than the actual velocity, and one where the reference velocity is faster. In
the former example, the velocities are c0 = 1500 m/s, c1 = 1650 m/s and c2 = 1500 m/s,
and so the critical angle for a downgoing plane wave at the first interface is 65◦. In the latter
example, the velocities are c0 = 1500 m/s, c1 = 1350 m/s and c2 = 1500 m/s, and there is
no critical reflection at the first interface. The depths of the two interfaces in both examples
are za = 1000 m and zb = 1075 m.

Figure 4.5 shows the reflectivity data for the two models. In both cases, the minimum and
maximum source frequencies are fmin = 0.25 Hz and fmax = 62.5 Hz, respectively. We choose
to display the result as “spike-like” data, rather than “box-like” α1, by taking the derivative
of the result with respect to z. This is done because it is easier to view the shifting of
reflectors when displayed in “spike-like” form. Figure 4.6 shows the results of imaging the
data in Fig. 4.5 using the constant reference velocity, c0. The mislocated reflector exhibits
residual moveout when imaged with the first term in the series (left). The leading order
imaging series (right) improves the depth at all angles and acts to “flatten” the imaged
reflector. As expected from the analysis of the leading order approximation in Chapter 3, a
small amount of residual moveout remains.

Figure 4.7 shows the velocity profile and synthetic data for a six-layer model. Using the
same source wavelet (0.25 ≤ f ≤ 62.5 Hz), the imaging results are compared in Fig. 4.8.
The leading order imaging series improves the location of all the reflectors mislocated by the
first term. The remaining errors in the predicted depths would presumably be corrected by
higher order imaging terms (see Chapter 5). A small cumulative error in depth noticeable
in Fig. 4.8 is attributed primarily to the fact that the integral of the data in the overburden
necessarily includes transmission coefficients that introduce small errors in the shifts (as
discussed in Chapter 3).

We have demonstrated the effectiveness of the leading order imaging series on synthetic data
for a variety of 1-D models. In all the examples so far, the input data contained information
down to relatively low frequency (fmin = 0.25 Hz). From Eq. (3.43), it is clear that the
shift of each interface is proportional to the integral of α1 above the reflector being imaged.
This integral captures amplitude and residual moveout information in the overburden of
each reflector and emphasizes α1 at low kz values over α1 at high kz values (because it is a
division by kz in the Fourier domain). The fidelity of α1 and its integral will have a direct
impact on the performance of the imaging series. In the next section, we take a closer look
at the role of low frequencies in α1 and in the leading order imaging series.

3 The role of low frequency information in the leading order imaging series

For the medium in which Eq. (3.1) describes acoustic wave propagation, and a velocity
perturbation, α, defined by Eq. (3.4), the leading order imaging series can be written as an
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infinite sum of operations on the first term:

αLOIS(z, p) =
∞∑

n=0

(1/2)n

n! cos2n θ0︸ ︷︷ ︸
Angle-dependent

scalar

×
(∫ z

0

α1(z
′, p)dz ′

)n

︸ ︷︷ ︸
Emphasizes low

frequency

× ∂nα1(z, p)

∂zn︸ ︷︷ ︸
Emphasizes high

frequency

(4.1)

where we have labelled the parts of the algorithm according to their effect on the frequency
spectrum of αLOIS. The closed form solution is

αLOIS(z, p) =α1(z + ∆, p) (4.2)

where

∆(z) = 1/(2 cos2 θ0)︸ ︷︷ ︸
Angle-dependent

scalar

∫ z

0

α1(z
′, p)dz ′

︸ ︷︷ ︸
Emphasizes low

frequency

(4.3)

which retains the series algorithm’s emphasis of the low frequency information in α1 but has
cast out the high-frequency derivatives which were summed in Eq. (3.42). In other words,
the dependence of the leading order imaging series on the integral of α1 is present in both
its series and closed forms.

It is important to remember that Eqs. (4.1) and (4.2) reflect a particular choice of param-
eterization that arose due to the degree of freedom in the data (see Chapter 3). The first
term, α1, is computed directly from the data via (Eq. 3.11):

α1(z, p) =− 8ζ0 cos2 θ0

∫ +∞

−∞
e−iωζ0(2z−(zg+zs))

∫ ∞

0

D(r; ω)J0(ωpr)rdrdω (4.4)

where the dispersion relationship is (see Fig. 4.9)

kz = −2
ω

c0

√
1− k2

rc
2
0

ω2
= −2ωζ0 = −2

ω

c0

cos θ0. (4.5)

The choice of constant-p (or constant-θ0) is illustrated in Fig. 4.10. In practice, data are
acquired with both temporally- and spatially-limited apertures: we record for a finite amount
of time, it is logistically difficult to record zero or very small offsets, we can only record a
finite maximum offset, and conventional 3D surveys have limited crossline aperture or source-
receiver azimuth.

To keep the current discussion to the effect of missing low temporal frequency, it is assumed
that the source-receiver offset aperture r = 0 →∞. Therefore, the integral of the data over r
in Eq. (4.4) is assumed to be accurately computable. In the event that source-receiver offset
is limited, methods exist to compute the finite aperture integrals (e.g., Stolt and Benson,
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1987). The minimum kz in α1 is a function of the reference angle of incidence and the
minimum source frequency:

(kz)min =
(ω)min

c0

cos θ0. (4.6)

An alternative approach to handling the degree of freedom in the data (see, e.g., Eq. 3.10) is
to keep ω fixed and integrate over angle or the reference vertical slowness, ζ0. This parame-
terization (illustrated in Fig. 4.11) will result in different estimates of α1(z) for constant ω
values. Throughout this thesis, we have chosen to hold p fixed.

The emphasis of low frequencies in the leading order imaging series is really an emphasis of
the vertical wavenumber, kz. There is more than one way to compute α1(kz). For example,
to compute α1(kz = 0), we can either set ω = 0 or kr = ω/c0. Since kz = −2k0 cos θ0, then
kz → 0 when θ0 → 90◦. In other words, large angles of incidence can construct α1 at low kz

values.

The issue of missing low frequency is considered in the context of the source wavelet being
frequency bandlimited. Therefore, as a consequence of the convolutional model, the recorded
data will have finite aperture in frequency as depicted in Fig. 4.12. The two integrals of the
data in Eq. (4.4) call for infinite apertures in angular temporal frequency and offset (ω and
r, respectively). Although the Bessel function contains an integral over azimuth, it is not a
function of the data. To compute α1 as a function of vertical time, τ , these are replaceable
by integrals of the data over azimuth, φ, and offset (Eq. 3.12) or, in cartesian coordinates,
x and y (Eq. 3.13).

3.1 The effect of missing low frequency information at normal incidence

For the general two-reflector analytic example in Chapter 3, and given all temporal frequen-
cies, α1(z, p) consists of two Heaviside functions, one for each reflector:

α1(z, p) = 4 cos2 θ0

[
R01(p)H (z − za) + R̂12(p)H (z − zb′)

]
. (4.7)

We proceed by first considering the special case of normal incidence, i.e., θ0 = p = 0.
The effect on α1(z, p) when the ω spectrum is bandlimited is to produce kz-bandlimited
Heaviside functions1. This is illustrated in Fig. 4.13 for a particular model (c0=1500 m/sec,
c1=1650 m/sec, c2=1510 m/sec, za=1000 m, zb′=1075 m) and a range of different minimum
frequencies (fmin = ωmin/2π = 0, 1, 2, 3 Hz). Plotted beside each α1(z, θ0 = 0) is its integral,
which is an indication of how the leading order imaging series shift will be affected by missing
low frequency information.

As low frequency information is erased from the input data, the integral of α1 deviates from
its analytically computed values for infinite bandwidth. This error will impact the shift
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computed by the leading order imaging series as shown in Fig. 4.14. Even though the data
contain no information below 1 Hz, the second interface still shifts towards the correct depth
zb because the integral of α1 is a fair approximation to the exact value computed with infinite
bandwidth. As a result of the error in the integral for z ≤ za, the reflector that was correctly
imaged at za by α1, is shifted slightly to a shallower depth.

The results in Fig. 4.14 can be significantly improved by recognizing that the area under
the α1 curve for z < za is largely responsible for the error in the integral of α1 at z >
za (see Fig. 4.13). It is known a priori that the perturbation α(z < za) = 0 (and, by
extension, α1(z < za) = 0) because the reference medium agrees with the actual medium
at the measurement surface. It is not physically possible for the perturbation to be non-
zero before the onset of the recorded reflectivity. This effect of missing low frequency can
be straightforwardly rectified: rather than integrate from the measurement surface through
an α1 that is obviously in error, we choose to begin computing the integral at some small
distance ε above the first reflector whose location is well-defined. We can further improve
the integral of α1, and impose a known condition, by fixing the value of the perturbation
at α1(za − ε) to be zero and shifting all values of α1 for z > za − ε by the value at za − ε.
Figure 4.15 illustrates the significant improvement in α1 and its integral when making this
simple correction. Implementing this causality-like condition in the leading order imaging
series gives

α̂LOIS(z, p) =α1

(
z + ∆̂, p

)
. (4.8)

where

∆̂ =
1

2 cos2 θ0

(∫ z

za−ε

α1(z
′, p)dz ′ − α1(za − ε, p)

)
(4.9)

In all subsequent examples, we implement the leading order imaging series by imposing the
condition that the perturbation must be zero before the onset of the scattered field. Then,
for the same example as in Fig. 4.14, Fig. 4.16 shows the improvement in the result of the
leading order imaging series when provided with this new integral of α1.

Figures 4.17–4.19

1 The identity Hn(·) ≡ H(·) (see, e.g., Eq. 3.31) is only valid for full bandwidth Heaviside functions but
is avoided in the closed form.
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Fig. 4.1: The normal incidence component of the data, D(τ, θ0 = p = 0), and the first six terms in
the leading order imaging series for a two-interface model. After summing six terms, the
deeper interface has shifted from ẑb towards zb.
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Fig. 4.2: The normal incidence component of the data, D(τ, θ0 = p = 0), and the cumulative sums
of the first six terms in the leading order imaging series for a two-interface model.
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Fig. 4.3: A comparison of summing the first six terms in the leading order imaging series (left)
versus computing the closed form (right). The thin line is the full-bandwidth α and the
blue line is α1. The green line is the leading order imaging series, αLOIS computed two
different ways.
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Fig. 4.4: A four-layer velocity model (left) and the closed form leading order imaging series (green,
right) compared with the first term (blue, right).
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Fig. 4.5: Velocity model and synthetic reflectivity data in the τ -p domain for two specific two-
interface examples. The time derivatives of the data are displayed and the polarity is
consistent with the wave equation (Eq. 3.1). The red lines overlying the seismic data are
the analytically computed τ values for each reflector.
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Fig. 4.6: Results of imaging the two datasets in Fig. 4.5. At top is the example where the velocity
increased, and at bottom is the example where the velocity decreased. On the left is the
first term in the series: the result of an imaging algorithm that is linear in the data. On
the right is the result of the leading order imaging series. The derivatives with respect to
depth of αLOIS are displayed. The yellow lines are the actual depths of the two reflectors.
The red and green lines are the predicted depths computed analytically using Eqs. (3.58)
and (3.60), respectively.
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Fig. 4.7: Velocity profile and synthetic reflectivity data in the τ -p domain for a six-layer model.
The time derivatives of the data are displayed. The red lines overlying the seismic data
are the analytically computed τ values for each reflector.
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Fig. 4.8: Results of imaging the data in Fig. 4.7. On the left is the first term in the series: the
result of an imaging algorithm that is linear in the data. On the right is the result of the
leading order imaging series. The yellow lines are the actual depths of the reflectors.
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Fig. 4.9: The dispersion relationship between the vertical and horizontal wavenumbers and temporal
frequency.
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Fig. 4.10: The constraints imposed by bandlimited ω for two different angles of incidence, θ1
0 and

θ2
0. Both (kz)min and (kz)max will be smaller for larger angles.
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Fig. 4.11: The constraints imposed by bandlimited ω on the bandwidth of kz when integrating over
angle. On the left is the kz spectrum constrained by the minimum frequency of the source,
(ω)min, and on the right is the kz spectrum constrained by the maximum frequency of the
source, (ω)max. This constant-frequency parametrization is an alternative to the one
illustrated in Fig. 4.10.

Fig. 4.12: In practice, ω will be bandlimited between ωmin and ωmax.
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Fig. 4.13: The effect of missing low frequencies on α1(z) (left) and its integral (right). The thin
black lines are analytically computed values of α1 and its integral for infinite bandwidth.
The thick blue lines are the numerically computed values for bandlimited input data.
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Fig. 4.14: The effect of missing low frequencies on α1(z) (in red) and αLOIS(z) (in green). Despite
not having any information below 1 Hz, the second interface still shifts towards the correct
depth zb. There is a small error at the first interface which can be eradicated by changing
the integration limits (Fig. 4.16).
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Fig. 4.15: The effect of missing low frequencies on α1(z) and its integral when changing the inte-
gration limits from

∫ z
0 to

∫ z
za−ε. Compared with Fig. 4.13, the results are significantly

better when constraining the perturbation.
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Fig. 4.16: By truncating the integral from
∫ z
0 to

∫ z
za−ε, the major effect of missing low frequencies

on αLOIS(z) (in green) is greatly mitigated. In comparison with Fig. 4.14, the mislocated
reflector has been accurately located by the imaging series.
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Fig. 4.17: A five-layer model comparing α1 (in red) with αLOIS (in green) for θ0 = 0 and different
low frequency limits. The mislocated reflectors shift towards their true depths.
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Fig. 4.18: A five-layer model comparing the derivatives with respect to z of α1 (in red) and αLOIS

(in green) for θ0 = 0 and different low frequency limits. The mislocated reflectors shift
towards their true depths.
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show results of the leading order imaging series for a five-layer model (c0=1500 m/sec,
c1=1600 m/sec, c2=1550 m/sec, c3=1625 m/sec, c4=1510 m/sec, za=1000 m, zb=1075 m,
zc=1125 m, zd=1200 m) and a range of missing low frequencies up to 8 Hz. Figure 4.18 shows
the same information as Fig. 4.17 except the derivatives with respect to z are displayed in
order to more clearly identify the location of the reflectors. As demonstrated in Fig. 4.19,
even after removing all information below 8 Hz (in this example), the leading order imaging
series shows an improvement in the location of all reflectors. However, the accuracies of the
predicted depths are better when more low frequency information is present.

Reducing the contrast between the actual and reference media is akin to having a reference
velocity model that is a better estimate of the actual velocity. The effect will be apparent in
the first term, α1, because reducing the difference in the velocities means that the reflectors
will be imaged closer to their true depths even before the non-linear terms are computed.
This is illustrated Fig. 4.20 where the velocity contrasts of the model in the top panel
(labelled “Highest contrast”) have been increased by 50% over those in the middle panel
(labelled “Middle contrast”) which are 50% greater than those in the bottom panel (labelled
“Lowest contrast”). In each case, the lower frequency limit is 4 Hz and the proportional
correction to the depths of the mislocated reflectors is approximately the same. Therefore,
an increase in contrast would seem to not be more sensitive to missing low frequencies. The
obvious benefit of lower contrasts, however, is that the closer the reference velocity is to
the actual velocity, the better the leading order approximation is in the imaging series and
the faster the series algorithm will converge. This observation regarding contrast and low
frequency content is relevant to the next step in our analysis, which is to consider higher
angles of incidence, where the effective contrast is greater.

3.2 The effect of missing low frequency information at higher angles of incidence

As illustrated in Fig. 4.10, the degree of freedom afforded by the seismic experiment’s source-
receiver offset leads to a lower minimum vertical wavenumber, (kz)min, in the construction
of α1 for higher angles of incidence through the relationship in Eq. (4.6)

(kz)min =
(ω)min

c0

cos [(θ0)max] . (4.10)

There are two factors that affect the amplitude of α1(z, p) as a function of angle. The first
is data-driven: the magnitude of the data’s amplitudes (for these acoustic models) will tend
to increase with angle. The second is algorithm-driven: the computation of α1 involves a
multiplication by cos2 θ0. The net result, illustrated in Fig. 4.21 for the first interface (where
there is no transmission loss in the recorded data), is that the amplitude of α1(z, p) will tend
to vary only gradually with angle. However, the leading order imaging series undoes the first
term’s algorithmic angle dependent scalar, cos2 θ0, because higher angles of incidence will
tend to have more residual moveout that needs to be corrected (Fig. 4.22). It is the larger
magnitudes of the amplitudes with higher angles (Fig. 4.21) that set about correcting the
greater error in depth (Fig. 4.22) through the imaging series algorithm.
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Fig. 4.19: A five-layer model comparing the derivatives with respect to z of α1 (in red) and αLOIS

(in green) for θ0 = 0 and different low frequency limits (missing up to 8 Hz). Although
there is a gradual degradation of the results when more low frequency is missing, in all
cases the mislocated reflectors shift towards their true depths providing an improvement
over linear imaging with the reference velocity.
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 0−62.5 Hz: Highest contrast model.
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Fig. 4.20: The effect of contrast between the actual and reference medium on the leading order
imaging series for data missing low temporal frequency. A comparison of the derivatives
with respect to z of α1 (in red) and αLOIS (in green) for θ0 = 0 and three different five-
layer models. At top is the result for data that have all low frequencies, including zero
frequency. In the other cases the low frequency limit is 4 Hz. The “middle contrast”
model is the same as in Figs. 4.17–4.19 and the other two deviate from it by ±50% in
their interval velocities.
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Fig. 4.21: The variation of reflection coefficient at the first interface (z = za) as a function of
angle for two different models. The first term in the inverse series, α1, is proportional
to cos2 θ0 times the data’s amplitudes. The net result is that the amplitudes in α1 will
tend to vary more gradually with angle than the amplitudes in the data.

The relevant question in the current analysis is how does the performance of the imaging
series vary with angle when low temporal frequencies are missing? The results displayed
in Fig. 4.20 would suggest that the higher “effective contrast” experienced at higher angles
would be neither more nor less sensitive to missing low frequencies. However, in the leading
order approximation to the imaging series that is currently being studied, higher contrasts
will directly impact the accuracy of the predicted depths.Specifically, the smaller the dif-
ference between the actual and reference media velocities, the more accurately the leading
order imaging series will predict the precise locations of the reflectors.

Figure 4.23 demonstrates how higher angles of incidence fill in the low end of the kz spectrum
for 4−62.5 Hz bandlimited input data. At θ0 = 0◦, the kz spectrum derives no additional
benefit at the low end in the sense that the (kz)min is equal to (ω)min/c0. However, at
θ0 = 45◦, (kz)min is reduced by the factor cos θ0 and is equivalent to 2.8 Hz (as opposed to
4 Hz) at normal incidence. At higher angles, there is more residual moveout to be corrected
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Fig. 4.22: The residual moveout for two different models corresponding to Fig. 4.21. zb is the actual
depth of a reflector and zb′ is its depth predicted by the first term in the imaging series
(i.e., through a conventional migration).

for the nonlinear imaging terms.

Figure 4.24 shows results of the imaging series, for a fixed angle of incidence (θ0 = 45◦),
and a range of minimum temporal frequencies. It is encouraging to see that the difference
in the predicted depths for fmin = 0.125 Hz and fmin = 2 Hz are extremely close and there
are improvements over the first term for all cases where information below at least 6 Hz is
missing.
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Fig. 4.23: Filling in the low end of the kz spectrum according to Eq. (4.6) for 4−62.5 Hz bandlimited
input data. A comparison, for four different angles of incidence, of α1, (in red) and αLOIS

(in green) and the kz spectrum of α1 in each instance (on right).
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Fig. 4.24: A comparison of α1 (in red) and αLOIS (in green) and the kz spectrum of α1 (on right)
for four different low frequency limits. The filling in of the low end of the kz spectrum
according to Eq. (4.6) is apparent. The difference in the depths predicted by the imaging
series when having down to 0.125 Hz (top) and only having down to 2 Hz (second from
top) is hardly noticeable.

80



Numerical examples and an analysis for bandlimited data Ph.D. thesis

In Fig. 4.25, the effect of missing low frequency on the prestack leading order imaging
series is demonstrated on angle gathers over a range of precritical angles. While a gradual
deterioration in effectiveness is evident as more low frequency information is removed, in all
cases (at least up to fmin = 4 Hz) for this example, the results of the imaging series are
an improvement over current imaging with the reference velocity (i.e., the depths are more
accurate than those predicted by the first term in the series).

It is interesting to consider whether the low kz information at high angles can be transplanted
to low angles of incidence to improve the performance of the leading order imaging series
in the latter range. Figure 4.26 shows the effect of transplanting the low end of the kz

amplitude spectrum from α1(z, θ0 = 50◦) to the normal incidence trace, α1(z, θ0 = 0◦) over
the range that it is missing and then computing the leading order imaging series. A small
improvement in the location of the deepest reflector is noticeable. This procedure resembles
the alternative parameterization discussed earlier in which we can choose to keep omega
constant and sum of angles to compute each term in the series, thereby collecting high angle
information for each estimate of αLOIS. This parameterization and procedure require further
investigation.

4 Discussion

Analysis of the leading order imaging series algorithm for a 1-D acoustic earth that varies
only in the z-direction, would suggest that low frequency information is important to its
effectiveness because of its integral with respect to z. However, the limits of the integral
are the reason why the algorithm can tolerate missing low frequencies while still providing
benefit. The algorithm does not call for

∫ +∞

−∞
α1(z

′)dz ′ (4.11)

which is exactly the zero frequency component of the data. We have investigated procedures
for improving the actual integral

∫ z

0

α1(z
′)dz ′ (4.12)

which collects the amplitude and moveout information in the overburden and acts to shift
the mislocated reflectors towards their true locations in depth. One effective procedure that
improves the accuracy of this integral derives from recognizing that the perturbation is before
the onset of a reflector (say, at depth za). Redefining the integral to be

∫ z

za−ε

α1(z
′)dz ′ (4.13)

significantly improves the results of the leading order imaging series when low frequencies are
missing. To implement this causality-like condition, the first reflector could be automatically
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picked or else, if we had a good estimate of the medium velocity down to the onset of an
unknown, or less well-defined, medium (see, e.g., Fig. 4.27), we could build that into the
reference medium and begin the imaging series at some depth below the subsurface.

The importance of low frequency information to the accuracy of the leading order imaging
series motivates the study of methods for spectral extrapolation (Walker and Ulrych, 1983;
Innanen et al., 2004). Larger angles of incidence and the concomitant lower kz information
is also expected to improve the accuracy of the depths predicted by the imaging series. We
note that trends in seismic data acquisition are towards the recording of lower frequencies.
This is a welcome development as these and other new methods are developed that make
full use of the recorded data’s frequency spectrum.

5 Conclusion

We have demonstrated using reflectivity data in the precritical regime for a 1-D acoustic
medium and 3-D wave propagation, that the leading order imaging series retains effectiveness,
even when the input data are absent zero and low frequency information. This finding is
critically important in the progression to a practical algorithm ready for application to field
data. These conclusions merit the generalization to a multidimensional earth (Liu et al.,
2004) and more complex wave equations (Zhang and Weglein, 2004a). The imaging of
primaries at higher angles, especially in the post-critical regime is also of keen interest (Nita
et al., 2004).

The imaging series is shown to benefit from having lower frequency information, in that
reflectors will tend to move closer to their true depths than if the low frequency information
is absent. Therefore, current trends towards acquiring lower frequency data, as well as
existing and new methods for extrapolating this information will both be important to the
practical implementation of the imaging series.
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Fig. 4.25: Prestack leading order imaging series for different low frequency limits. The left panel
is the first term in the series and the other three panels are the leading order imaging
series results. As more low frequency information is removed, the leading order imaging
series results deteriorate but, in all cases, the results are an improvement over the first
term. 83
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Fig. 4.26: The effect of transplanting low kz information from the trace at 50◦ to the normal inci-
dence trace for 4−62.5 Hz bandlimited input data. A small improvement is noticeable at
the deepest reflector.
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Fig. 4.27: The problem of subsalt imaging is sometimes described as a combination of complex,
rugose top and bottom of salt and weak reflectivity below salt. The velocity down to
the top of salt can often be adequately estimated using conventional velocity analysis
techniques.
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5. HIGHER ORDER IMAGING TERMS,

EXTENSIONS TO A VARIABLE BACKGROUND

AND MORE COMPLEX WAVE PROPAGATION

We have isolated an imaging series for the simplest acoustic model, and demonstrated that
it improves the predicted depths of reflectors over conventional imaging with the reference
velocity even when the input data are frequency bandlimited.

In this last chapter, we address some of the limitations of the current form of the algorithm.
Firstly, the leading order imaging series is an approximation to the full imaging potential
of the inverse series. Secondly, the homogeneous reference velocity does not represent the
current best-practice linear depth imaging algorithms, which can accommodate velocities
that vary vertically and laterally. Lastly, a 1-D constant density acoustic model is far from
a 3-D viscoelastic medium that almost certainly better describes the actual Earth.

1 Higher order imaging terms

For the problem considered in this thesis, in which the Earth is characterized by a single
parameter, the imaging series is written

αIS = α1 + αIS
2 + αIS

3 + . . . (5.1)

where αIS
i is the term in the imaging series that is ith order in the scattered field and is

found in the ith term of the inverse series. The leading order imaging series, αLOIS, is the
contribution to the imaging series that is leading order in the scattered field:

αLOIS = α1 + αLOIS
2 + αLOIS

3 + . . . (5.2)

where

αLOIS
i ≈ αIS

i .

The extent to which the leading order imaging series, αLOIS, is a good approximation to
the entire imaging series, αIS, depends on the magnitude of the velocity perturbation above
the reflector being imaged. Higher order imaging series that go beyond the leading order
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Fig. 5.1: Higher order imaging components from the third and fourth terms in the inverse series.

approximation include successively more amplitude terms in the geometric series for the
coefficients of the Taylor series that shift the mislocated reflectors. For example, for the
second interface the shift is (see Eq. 3.34)

(zb − ẑb) = −2(ẑb − za)[R01(p) + R2
01(p) + R3

01(p) + . . .] (5.3)

and the leading order imaging series reproduces on the leading order approximation to this
shift. For models containing more than two interfaces, the leading order imaging series
produces an approximation to the shift at each mislocated interface that is an infinite series
in reflection and transmission coefficients in the overburden. It is postulated that higher
terms in the imaging series will act to unravel these transmission coefficients.

Figure 5.1 (left) illustrates the inverse scattering diagram corresponding to the higher order
imaging component of the third term in the inverse series. This term is written mathemati-
cally as (see Eq. 3.28)

α33(z, p) =
−1

8 cos4 θ0

[∫ z

0

α2
1(z

′, p)dz ′
]

∂α1(z, p)

∂z
. (5.4)

We observe that higher order imaging terms are “mixed task” terms because they contain
both separated and self-interaction diagram components. The self-interaction component
(above the output point) serves to non-linearly invert the overburden by going further into
the series.

For the reflector mislocated at ẑb by the first term, this portion of α3 reproduces the expected
second order coefficient in Eq. (5.3):

α33(z, p) = 8 cos2 θ0R
2
01(p)R̂12(p)(z − za)H(z − za)δ(z − ẑb). (5.5)

This follows the first order term found in α2 (Eq. 3.26):

α22(z, p) = 8 cos2 θ0R01(p)R̂12(p)(z − za)H(z − za)δ(z − ẑb). (5.6)
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Fig. 5.2: Low contrast analytic example. Depths predicted by the first term in the series and three
different imaging series as a function of angle for two specific examples: za = 1000 m,
zb = 1075 m, c0 = 1500 m/sec and c1 = 1650 m/s (i), c1 = 1350 m/sec (ii).

Combining the leading and next higher order term, we have

α22(z, p) + α33(z, p) = −2(ẑb − za)
[
R01(p) + R2

01(p)
]

︸ ︷︷ ︸×4 cos2 θ0R̂12(p)δ(z − ẑb) (5.7)

where the bracketed portion of Eq. (5.7) corresponds to the first two terms in Eq. (5.3).
These are the leading order term and one higher order term, respectively.

Consider two specific examples where the reference velocity c0 = 1500 m/sec and the two
reflectors are located at za = 1000 m and zb = 1075 m. In the first case c1 = 1650 m/sec
and in the second case c1 = 1350 m/sec. Figure 5.2 illustrates the depths predicted by
the first term in the series and three approximations to the imaging series for two different
velocity models. The variation of zb′ with angle is the residual moveout. At higher angles,
the depth of the second reflector predicted by the first term in the series is less accurate.
This is because the constituent plane waves travelling at higher angles of incidence spend a
proportionally longer time in the layer with the wrong velocity. Therefore, the non-linear
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Fig. 5.3: High contrast analytic example. Depths predicted by the first term in the series and three
different imaging series as a function of angle for two specific examples: za = 1000 m,
zb = 1075 m, c0 = 1500 m/sec and c1 = 1800 m/sec (i), c1 = 1200 m/sec (ii).

terms in the imaging series have to shift the interface further at higher angles. The fact that
the magnitude of the reflection coefficient at the first interface, |R01|, increases with angle
aids the imaging terms in shifting greater distances with angle. On the other hand, this
increase in amplitude will tend to make the leading order approximation in Eq. (3.60) less
justifiable. Figure 5.2 shows, for two examples, that including higher order imaging terms
improves the accuracy of the predicted depth, especially at higher angles where they are
needed more. Figure 5.3 shows two more examples where the contrasts are twice as large as
in Fig. 5.2. These examples show how higher order imaging terms become more important
for higher contrasts between the actual and reference velocity.
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2 Extension to a variable background

There are two important advantages to formulating the leading order imaging series for
a reference medium that may vary in one or more dimensions. First, if a closed form of
the imaging series does not exist in multi-D, then there is a computational advantage to
reformulating the series algorithm for a reference medium in which the background velocity
varies spatially. We have seen that for a constant reference velocity, the rate of convergence
is greater for actual velocity models that deviate less from this constant background. For
realistic earth models in which there may be large and/or rapid velocity variations in the
velocity, an imaging series algorithm formulated for a constant reference may turn out to be
prohibitively expensive to compute.

The second advantage to formulating the leading order imaging series to accommodate a
variable background velocity is in the accuracy of the leading order approximation. For
either the series or the closed form, the depths predicted by the leading order imaging series
will be more accurate for smaller cumulative differences between the actual and reference
media.

In practice, velocity analysis could be used to estimate the actual velocity trend which would
more accurately locate reflectors in the first term, and would also subsequently improve the
rate of convergence and the accuracy of the leading order imaging series.

For a 1-D normal incidence experiment, we may formulate the inverse problem using a
reference medium whose velocity varies with depth (e.g., Clayton and Stolt, 1981; Foster
and Carrion, 1984). In this case, the perturbation, α, is related to the actual velocity, c,
through the reference velocity, c0, by

1

c2(z)
=

1

c2
0(z)

[1 + α(z)]. (5.8)

We choose a WKBJ form of the reference Green’s function, which in 1-D is (e.g., Liu and
Weglein, 2003)

G0(z|z ′; ω) =

√
c0(z)c0(z ′)

2iω
e

iω| ∫ z
z′

dζ
c0(ζ)

|
. (5.9)

We observe that the amplitude of this wave is a function of the reference velocity, c0, at the
depth of the source, z ′, and at the evaluation depth, z. Using the one-dimensional form of
Eq. (3.6), we have

D(zg = 0|zs = 0; ω) =

∫ +∞

−∞
G0(zg = 0|z ′; ω)

ω2

c2
0(z

′)
α1(z

′)G0(z
′|zs = 0; ω)dz ′

=
−c0(0)

4

∫ +∞

−∞

α1(z
′)

c0(z ′)
e
2iω| ∫ z′

0
dζ

c0(ζ)
|
dz ′. (5.10)
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Strictly speaking, the scattered field, D, is different from the constant velocity reference case
since the reference wavefield, G0 now has a spatially varying amplitude. Solving for α1(z)
through an inverse Fourier transform yields

α1(z) = −8
c0(z)

c0(0)
D(τ). (5.11)

where

τ(z) = 2

∫ z

0

dζ

c0(ζ)
. (5.12)

In contrast to the constant reference velocity case, the phase of α1 is now a function of the
integral of the reference velocity and the amplitude is weighted by the ratio c0(z)/c0(0).

Solving for the second term in the inverse series using the same WKBJ Green function yields

α2(z) = −1

2
. . . (5.13)

By analogy with the constant reference case, the variable background leading order imaging
series can be shown to be

αLOIS(z) =
∞∑

n=0

(1/2)n(c0(0))n

n!

[∫ z

0

α1(z
′)

c0(z ′)
dz ′

]n
∂nα1(z)

∂zn
(5.14)

where the first term, α1, is computed via Eq. (5.11). Clearly Eq. (5.14) also has a closed
form which is (see the derivation of Eq. 3.43):

αLOIS(z) = α1 (z −∆ (z)) (5.15)

where the vertical shift is computed via

∆(z) =
c0(z)

2

∫ z

0

α1(z
′)

c0(z ′)
dz ′. (5.16)

Keys (2003) arrived at this same formula by comparing the constant-background velocity
leading order imaging series with the variable-background velocity forward scattering series
to recursively construct the variable-background leading order imaging series. As might be
expected, Eqs. (5.14) and (5.15) reduce to the constant velocity background formulae when
c0(z) = c0(0). They are also straightforwardly generalized to the situation where we have
pre-stack input data and we choose horizontal slowness, p, as a parameter.

More here.
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3 Model-type dependence

As it stands, the current formulation of the leading order imaging series is restricted to a
constant density acoustic model. Furthermore, the algorithm outputs outputs an imaged
parameter (actually an estimate of a parameter: α1), rather than a data-like quantity. If
we consider the current derivation as a simple blueprint for deriving an algorithm applicable
to more complex multi-parameter (e.g., velocity, bulk modulus, shear modulus, etc.) model
types, then we would arrive at multiple imaging formulae – one for each of these parameters.
This is in contrast to conventional imaging algorithms that output data-like image gathers
which are then input to an inversion procedure to estimate the parameters. An algorithm
that images parameters in space is certainly a model-type dependent algorithm because we
need to specify the model type in order to know which parameters to image. This approach
involves a dissection of the perturbation operator, which in Chapters 3 and 4, was simply
V = k2

0α.

The advantage of deriving an algorithm that does not require the explicit description of the
perturbation operator is that it will be model-type independent and therefore will be appli-
cable to a wide class of model types. The free surface multiple removal and internal multiple
attenuation subseries are examples of model-type independent algorithms. Task-separation
based on inverse scattering diagrams is transferable from the single acoustic parameter to
a more general operator as discussed by Weglein et al. (2003). We may surmise that the
self-interaction and separated diagram components play the same role in inversion as for the
specific one parameter acoustic case. This logic held true for the earlier generalization of the
free-surface and internal multiple attenuation algorithms derived from the inverse series.

In the imaging case, an alternative approach is to investigate model-type independent imag-
ing. More here.
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APPENDIX



A. DERIVATION OF THE FIRST TERM, α1

We derive the first term in the inverse series for a constant density acoustic medium and
a reference medium that consists of a 3-D wholespace with velocity c0. The perturbation
V = k2

0α where k0 = ω/c0 and the solution for α1 is a linear inversion of the scattered field,
D. Beginning with Eq. (3.6), D are related to α1 by

D (~x g|~x s; ω) =

∫ +∞

−∞
d~x ′G0 (~x g|~x ′ ; ω) k2

0α1 (~x ′ ) G0 (~x ′ |~xs; ω) . (A.1)

Implicit in Eq. (A.1) is that the incident field is the result of a point source and not a plane
wave. The two reference Green functions in Eq. (A.1) satisfy

(
∇2 +

ω2

c2
0

)
G0 = −δ (A.2)

and the causal solutions are

G0(~x g|~x ′ ; ω) =
−1

(2π)3

∫ +∞

−∞
d~k′

eikx′ (xg−x′)eiky′ (yg−y′)eikz′ (zg−z′)
[
k0 − (|~k′| − iε)

] [
k0 + (|~k′|+ iε)

] (A.3)

where |~k′| = +

√
k2

x′ + k2
y′ + k2

z′ and

G0(~x
′ |~x s; ω) =

−1

(2π)3

∫ +∞

−∞
d~kxs

eikxs (x′−xs)eikys (y′−ys)eikzs (z′−zs)

[
k0 − (|~kxs| − iε)

] [
k0 + (|~kxs|+ iε)

] (A.4)

where |~kxs| = +
√

k2
xs

+ k2
ys

+ k2
zs

. The parameter ε > 0 shifts the poles in the integrand to
ensure that the Green functions are causal (see, e.g., DeSanto, 1992, p.45). For reasons that
will become clear later (in Eqs. A.13 and A.14), we add the small imaginary part to k0 by
defining k0+

.
= k0 + iε. In that case, substituting the Green functions into Eq. (A.1) yields

D (~x g|~x s; ω) =
1

(2π)6

∫ +∞

−∞
d~x ′

∫ +∞

−∞
dkx′

∫ +∞

−∞
dky′

×
∫ +∞

−∞
dkz′

eikx′ (xg−x′)eiky′ (yg−y′)eikz′ (zg−z′)

k2
0+ − k2

x′ − k2
y′ − k2

z′
k2

0α1(~x
′ )

×
∫ +∞

−∞
dkxs

∫ +∞

−∞
dkys

∫ +∞

−∞
dkzs

eikxs(x′−xs)eikys (y′−ys)eikzs (z′−zs)

k2
0+ − k2

xs
− k2

ys
− k2

zs

. (A.5)
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Performing a double Fourier transform over xg and yg

D(kxg , kyg , zg|~x s; ω) =

∫ +∞

−∞
dxg

∫ +∞

−∞
dygD (xg, yg, zg|~x s; ω) e−ikxg xge−ikyg yg

=
1

(2π)6

∫ +∞

−∞
dxg

∫ +∞

−∞
dyg

︸ ︷︷ ︸

∫ +∞

−∞
d~x ′

∫ +∞

−∞
dkx′

∫ +∞

−∞
dky′

× eixg(kx′−kxg )eiyg(ky′−kyg )︸ ︷︷ ︸
∫ +∞

−∞
dkz′

e−ikx′x
′
e−iky′y

′
eikz′ (zg−z′)

k2
0+ − k2

x′ − k2
y′ − k2

z′
k2

0α1(~x
′ )

×
∫ +∞

−∞
dkxs

∫ +∞

−∞
dkys

∫ +∞

−∞
dkzs

eikxs (x′−xs)eikys (y′−ys)eikzs (z′−zs)

k2
0+ − k2

xs
− k2

ys
− k2

zs

.

(A.6)

Carrying out the integrals over xg and yg (braced terms) produces two delta functions:
(2π)2δ(kx′ − kxg)δ(ky′ − kyg). Then the integrals over kx′ and ky′ can be performed giving

D(kxg , kyg , zg|~x s; ω) =
1

(2π)4

∫ +∞

−∞
d~x ′

∫ +∞

−∞
dkz′

e−ikxg x′e−ikyg y′eikz′ (zg−z′)

k2
0+ − k2

xg
− k2

yg
− k2

z′
k2

0α1(~x
′ )

×
∫ +∞

−∞
dkxs

∫ +∞

−∞
dkys

∫ +∞

−∞
dkzs

eikxs (x′−xs)eikys (y′−ys)eikzs (z′−zs)

k2
0+ − k2

xs
− k2

ys
− k2

zs

.

(A.7)

Now assume that the velocity perturbation, α, is invariant in the x and y directions, which
implies that

α1(~x ) ≡ α1(z). (A.8)

Collecting the exponentials in x′ and y ′ and then carrying out the integrations with respect to
these variable produces two more delta functions (braced terms below) allowing integration
over kxs and kys :

D(kxg , kyg , zg|~x s; ω) =
1

(2π)4

∫ +∞

−∞
dx′

∫ +∞

−∞
dy ′

︸ ︷︷ ︸

∫ +∞

−∞
dz ′

∫ +∞

−∞
dkz′

× eikz′ (zg−z′)

k2
0+ − k2

xg
− k2

yg
− k2

z′
k2

0α1(z
′)

×
∫ +∞

−∞
dkxs eix′(kxs−kxg )︸ ︷︷ ︸

∫ +∞

−∞
dkys eiy′(kys−kyg )︸ ︷︷ ︸

×
∫ +∞

−∞
dkzs

e−ikxsxse−ikysyseikzs (z′−zs)

k2
0+ − k2

xs
− k2

ys
− k2

zs

=
1

(2π)2

∫ +∞

−∞
dz ′

∫ +∞

−∞
dkz′

eikz′ (zg−z′)

k2
0+ − k2

xg
− k2

yg
− k2

z′

× k2
0α1(z

′)
∫ +∞

−∞
dkzs

e−ikxg xse−ikyg yseikzs (z′−zs)

k2
0+ − k2

xg
− k2

yg
− k2

zs

. (A.9)
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Note that the integrals over x′ and y ′ in Eq. (A.9), for a laterally invariant medium where α1

is not a function of x′ or y ′, demonstrates that kxg = kxs and kyg = kys reducing the number
of independent variables from five to three. As result, the vertical wavenumbers defined by

q2
g

.
= k2

0+ − k2
xg
− k2

yg
(A.10)

and

q2
s

.
= k2

0+ − k2
xs
− k2

ys
(A.11)

are also equal (i.e., qg = qs). Substituting Eq. (A.10) into Eq. (A.9) gives

D(kxg , kyg , zg|~x s; ω) =
1

(2π)2
e−ikxg xse−ikyg ys

∫ +∞

−∞
dz ′k2

0α1(z
′)

×
∫ +∞

−∞
dkz′

eikz′ (zg−z′)

q2
g − k2

z′

∫ +∞

−∞
dkzs

eikzs (z′−zs)

q2
g − k2

zs

. (A.12)

We are now in a position to perform the integrals with respect to kz′ and kzs . Treating the
singularities in these integrals is straightforward because qg has a small positive imaginary
part due to our use of the causal Green functions in Eqs. (A.3) and (A.4). Therefore, we
have two 1-D causal Green functions (see, e.g., DeSanto, 1992, p. 57):

∫ +∞

−∞
dkz′

eikz′ (zg−z′)

q2
g − k2

z′
= −

∫ +∞

−∞
dkz′

eikz′ (zg−z′)

(kz′ − qg)(kz′ + qg)
= −πi

qg

eiqg |zg−z′| (A.13)

and similarly

∫ +∞

−∞
dkzs

eikzs (z′−zs)

q2
g − k2

zs

= −πi

qg

eiqg |z′−zs|. (A.14)

After performing these integrals, we let ε → 0 and so k0+ → k0. Substituting Eqs. (A.13)
and (A.14) into Eq. (A.12) gives

D(kxg , kyg , zg|~x s; ω) =
1

(2π)2
e−ikxg xse−ikyg ys

∫ +∞

−∞
dz ′k2

0α1(z
′)

(
−πi

qg

eiqg |zg−z′|
)(

−πi

qg

eiqg |z′−zs|
)

=
e−ikxg xse−ikyg ys

−4q2
g

∫ +∞

−∞
dz ′eiqg(z′−zg)k2

0α1(z
′)eiqg(z′−zs)

=
k2

0

−4q2
g

e−ikxg xse−ikyg yse−iqg(zg+zs)α1(−2qg) (A.15)

where in Eq. (A.15) we have made use of the fact that the scattering points are below
the measurement surface (z ′ > zg and z ′ > zs). Furthermore, we recognized the Fourier
transform of α1 where 2qg is the Fourier conjugate variable to depth, z. We could rearrange
Eq. (A.15) and perform and inverse Fourier transform over 2qg to solve for α1(z). Instead
we set about changing from cartesian to cylindrical coordinates.
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Fig. A.1: Plan view showing the relationship between the horizontal cartesian and cylindrical coor-
dinates. r is the source-receiver offset in the horizontal plane and φ is the azimuth. For
a 1-D medium, the data are invariant in azimuth.

Performing a double inverse Fourier transform over kxg and kyg yields

D(~x g|~x s; ω) =
1

(2π)2

∫ +∞

−∞
dkxge

ikxg xg

∫ +∞

−∞
dkyge

ikyg ygD(kxg , kyg , zg|~x s; ω)

=
1

(2π)2

∫ +∞

−∞
dkxge

ikxg xg

∫ +∞

−∞
dkyge

ikyg yg
k2

0

−4q2
g

e−ikxg xse−ikyg yse−iqg(zg+zs)α1(−2qg)

=
1

(2π)2

∫ +∞

−∞
dkxg

∫ +∞

−∞
dkyg

k2
0

−4q2
g

α1(−2qg)e
ikxg (xg−xs)eikyg (yg−ys)e−iqg(zg+zs).

(A.16)

Since source and receiver depths zs and zg are fixed, both sides of Eq. (A.16) appear to
be functions of five variables: xg, xs, yg, ys and ω (left-hand side) or qg (right-hand side).
However, we found in Eq. (A.9) that the source and receiver horizontal wavenumbers were
equal (kxg = kxs and kyg = kys) reducing the number of independent variables from five
to three. Similarly, we may note that D in Eq. (A.16) is a function of the differences
x = (xg − xs) and y = (yg − ys) and that the conjugate variables to these differences are
kxg = kx and kyg = ky, respectively. Physical intuition would suggest that the data are
really only a function of two independent variables for a 1-D Earth: source-receiver offset, r,
and time or temporal frequency, ω. We will change from cartesian to cylindrical coordinates
where the offset variables satisfy (see Fig. A.1)
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x = xg − xs = r cos φ (A.17)

y = yg − ys = r sin φ (A.18)

and recalling the definition of qg in Eq. (A.10), we have (for this 1-D case)

q2
g =k2

0 − k2
x − k2

y (A.19)

=k2
0 − k2

r (A.20)

where kr is defined by

k2
r

.
= k2

x + k2
y. (A.21)

Rewriting Eq. (A.16) in terms of the cartesian offset variables

D(x, y; ω) =
1

(2π)2

∫ +∞

−∞
dkx

∫ +∞

−∞
dky

k2
0

−4q2
g

α1(−2qg)e
ikxxeikyye−iqg(zg+zs), (A.22)

and changing from cartesian to cylindrical coordinates where the conjugate variables satisfy

∫ +∞

−∞
dkx

∫ +∞

−∞
dky =

∫ ∞

0

krdkr

∫ 2π

0

dφ̃, (A.23)

we substitute Eq. (A.23) into Eq. (A.22) yielding

D(r, φ; ω) =
1

(2π)2

∫ ∞

0

dkr

∫ 2π

0

dφ̃
k2

0kr

−4q2
g

α1(−2qg)e
ikr cos φ̃r cos φeikr sin φ̃r sin φe−iqg(zg+zs). (A.24)

Then, since,

∫ 2π

0

eikrr(cos φ̃ cos φ+sin φ̃ sin φ)dφ̃ =

∫ 2π

0

eikrr[cos(φ̃−φ)]dφ̃ = 2πJ0(krr), (A.25)

where J0(krr) is a zero order Bessel function of the first kind, Eq. (A.24) becomes

D(r; ω) =
1

(2π)

∫ ∞

0

k2
0

−4q2
g

α1(−2qg)e
−iqg(zg+zs)J0(krr)krdkr (A.26)

which is an expression, in cylindrical coordinates, for the scattered field in terms of α1. The
data are now clearly seen to be a function of two independent variables. Equation (A.26)
can be inverted by recognizing the Fourier-Bessel transform pairs:

f(r) =

∫ ∞

0

F (kr)J0(krr)krdkr (A.27)

F (kr) =

∫ ∞

0

f(r)J0(krr)rdr (A.28)
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which leads to

α1(−2qg) = 2π
−4q2

g

k2
0

eiqg(zg+zs)

∫ ∞

0

D(r; ω)J0(krr)rdr (A.29)

where

qg = k0

√
1− k2

r

k2
0

. (A.30)

From Eq. (A.29), we see that α1 is over-determined (there are more free variables on the
right-hand side than on the left). Inverse Fourier transforming both sides of Eq. (A.29) gives

α1(z) = −8

∫ +∞

−∞

q2
g

k2
0

e−iqg(2z−(zg+zs))

∫ ∞

0

D(r; ω)J0(krr)rdrdqg. (A.31)

How we perform the qg integral has implications for handling the over-determinedness. Con-
sidering fixed angles of incidence, θ0, will lead to a number of different estimates of α1. Fixing
θ0 is the same as fixing horizontal and vertical slownesses, p and ζ, respectively, which are
defined by

p
.
=

sin θ0

c0

and ζ
.
=

cos θ0

c0

. (A.32)

Note that these slownesses are functions of the reference velocity only, and so do not require
knowledge of the actual velocity. They might be more usefully described as reference slow-
nesses. With our decision to hold θ0 fixed, qg is still allowed to vary through the variation
in ω (since qg = ωζ). We proceed by changing variables from qg to ω:

α1(z, p) =− 8ζ cos2 θ0

∫ +∞

−∞
e−iωζ(2z−zg−zs)

∫ ∞

0

D(r; ω)J0(ωpr)rdrdω (A.33)

where Eq. (A.32) leads to the relationship

q2
g

k2
0

=
ω2ζ2

k2
0

= c2
0ζ

2 = cos2 θ0 (A.34)

Defining the two-way vertical travel time, τ
.
= ζ (2z − (zg + zs)), and substituting (a) the

temporal Fourier transform of the data D(r, t) for D(r; ω) and (b) the integral form of the
Bessel function gives

α1(τ, p) =− 8ζ cos2 θ0

∫ +∞

−∞
dωe−iωτ

∫ ∞

0

rdr

(∫ +∞

−∞
D(r; t)eiωtdt

1

2π

∫ 2π

0

eiωpr cos φdφ

)

=− 8ζ cos2 θ0

∫ +∞

−∞
dω

∫ ∞

0

rdr
1

2π

∫ 2π

0

dφ

(∫ +∞

−∞
D(r; t)eiω(t−(τ−pr cos φ))dt

)

=− 8ζ cos2 θ0

∫ ∞

0

rdr
1

2π

∫ 2π

0

dφ

(∫ +∞

−∞
D(r; t)2πδ(t− (τ − pr cos φ))dt

)

=− 8ζ cos2 θ0

∫ 2π

0

∫ ∞

0

D(r; τ − pr cos φ)rdrdφ. (A.35)
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We may decide to change back to cartesian coordinates, where

r =
√

x2 + y2, φ = arccos

(
x√

x2 + y2

)
, φ = arcsin

(
y√

x2 + y2

)
,

x = (xg − xs) and y = (yg − ys) as illustrated in Fig. 3.1. The partial derivatives are then

∂r

∂x
=

x√
x2 + y2

=
x

r

∂r

∂y
=

y√
x2 + y2

=
y

r

∂φ

∂x
=

−1√
1−

(
x√

x2+y2

)2
×

(√
x2 + y2 − x2√

x2+y2

)

(x2 + y2)

=

(
x2

r
− r

)

r2

√
1− (

x2

r2

) =
1
r
(x2 − r2)

r
√

r2 − x2
=
−y

r2

∂φ

∂y
=

1√
1−

(
y√

x2+y2

)2
×

(√
x2 + y2 − y2√

x2+y2

)

(x2 + y2)

=

(
r − y2

r

)

r2

√
1−

(
y2

r2

) =
1
r
(r2 − y2)

r
√

r2 − y2
=

x

r2
.

So the Jacobian is

∂r

∂x

∂φ

∂y
− ∂r

∂y

∂φ

∂x
=

x2

r3
+

y2

r3
=

1

r

and therefore Eq. (A.35) can be rewritten

α1(τ, p) =− 8ζ cos2 θ0

∫ +∞

−∞

∫ +∞

−∞
D(x, y; τ − px)dxdy. (A.36)

Equation (A.36) is recognizable as a scaled slant stack of the recorded data (see, e.g., Treitel
et al., 1982).
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B. SEPARATION OF α2 INTO TASK-SPECIFIC TERMS

The integral equation for the second term in the inverse series for the 1-D single parameter
acoustic problem is

∫ +∞

−∞
G0 (~x g|~x ′ ; ω) k2

0α2(z
′)G0 (~x ′ |~x s; ω) d~x ′

=−
∫ +∞

−∞
d~x ′G0 (~x g|~x ′ ; ω) k2

0α1(z
′)

×
∫ +∞

−∞
d~x ′′G0 (~x ′ |~x ′′ ; ω) k2

0α1(z
′′)G0 (~x ′′ |~x s; ω) . (B.1)

Upon substitution of the causal Green functions, the left-hand side becomes

LHS =
1

(2π)6

∫ +∞

−∞
d~x ′

∫ +∞

−∞
dkx′

∫ +∞

−∞
dky′

∫ +∞

−∞
dkz′

eikx′ (xg−x′)eiky′ (yg−y′)eikz′ (zg−z′)

k2
0+ − k2

x′ − k2
y′ − k2

z′

× k2
0α2(z

′)
∫ +∞

−∞
dkxs

∫ +∞

−∞
dkys

∫ +∞

−∞
dkzs

eikxs (x′−xs)eikys (y′−ys)eikzs (z′−zs)

k2
0+ − k2

xs
− k2

ys
− k2

zs

(B.2)

and the right-hand side is

RHS =
1

(2π)9

∫ +∞

−∞
d~x ′

∫ +∞

−∞
dkx′

∫ +∞

−∞
dky′

∫ +∞

−∞
dkz′

eikx′ (xg−x′)eiky′ (yg−y′)eikz′ (zg−z′)

k2
0+ − k2

x′ − k2
y′ − k2

z′

× k2
0α1(z

′)
∫ +∞

−∞
d~x ′′

∫ +∞

−∞
dkx′′

∫ +∞

−∞
dky′′

∫ +∞

−∞
dkz′′

eikx′′ (x
′−x′′)eiky′′ (y

′−y′′)eikz′′ (z
′−z′′)

k2
0+ − k2

x′′ − k2
y′′ − k2

z′′

× k2
0α1(z

′′)
∫ +∞

−∞
dkxs

∫ +∞

−∞
dkys

∫ +∞

−∞
dkzs

eikxs (x′′−xs)eikys (y′′−ys)eikzs (z′′−zs)

k2
0+ − k2

xs
− k2

ys
− k2

zs

(B.3)

where k0+
.
= k0+iε and ε is a small positive parameter (see Appendix A). Diagrammatically,

forgiving some k0 factors, we may interpret this equation as shown in Figure B.1 where the
scattering points are confined to be deeper than the source and receiver depths.

As with deriving the equation for α1, the invariability of the perturbation in the horizontal
coordinates simplifies the equations significantly. We Fourier transform both sides over xg
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Fig. B.1: Inverse scattering diagrams representing Eq.(B.1).

and yg and perform the integrals over kx′ and ky′ . Therefore,

LHS → 1

(2π)4

∫ +∞

−∞
d~x ′

∫ +∞

−∞
dkz′

e−ikxg x′e−ikyg y′eikz′ (zg−z′)

k2
0+ − k2

xg
− k2

yg
− k2

z′

× k2
0α2(z

′)
∫ +∞

−∞
dkxs

∫ +∞

−∞
dkys

∫ +∞

−∞
dkzs

eikxs (x′−xs)eikys (y′−ys)eikzs(z′−zs)

k2
0+ − k2

xs
− k2

ys
− k2

zs

(B.4)

RHS → 1

(2π)7

∫ +∞

−∞
d~x ′

∫ +∞

−∞
dkz′

e−ikxg x′e−ikyg y′eikz′ (zg−z′)

k2
0+ − k2

xg
− k2

yg
− k2

z′
k2

0α1(z
′)

∫ +∞

−∞
d~x ′′

×
∫ +∞

−∞
dkx′′

∫ +∞

−∞
dky′′

∫ +∞

−∞
dkz′′

eikx′′ (x
′−x′′)eiky′′ (y

′−y′′)eikz′′(z
′−z′′)

k2
0+ − k2

x′′ − k2
y′′ − k2

z′′
k2

0α1(z
′′)

×
∫ +∞

−∞
dkxs

∫ +∞

−∞
dkys

∫ +∞

−∞
dkzs

eikxs (x′′−xs)eikys (y′′−ys)eikzs (z′′−zs)

k2
0+ − k2

xs
− k2

ys
− k2

zs

. (B.5)

Collecting the exponentials in the horizontal coordinates of the scattering points x′, y ′, x′′

and y ′′, and performing the integrals with respect to these variables produces delta functions
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allowing for the kxs and kys integrals, respectively, to be carried out:

LHS → 1

(2π)4

∫ +∞

−∞
dx′

︸ ︷︷ ︸

∫ +∞

−∞
dy ′

︸ ︷︷ ︸

∫ +∞

−∞
dz ′

∫ +∞

−∞
dkz′

eikz′ (zg−z′)

k2
0+ − k2

xg
− k2

yg
− k2

z′

× k2
0α2(z

′)
∫ +∞

−∞
dkxs

∫ +∞

−∞
dkys

∫ +∞

−∞
dkzs ei(kxs−kxg )x′︸ ︷︷ ︸ ei(kys−kyg )y′︸ ︷︷ ︸

× e−ikxsxse−ikysyseikzs (z′−zs)

k2
0+ − k2

xs
− k2

ys
− k2

zs

→ 1

(2π)2

∫ +∞

−∞
dz ′

∫ +∞

−∞
dkz′

eikz′ (zg−z′)

k2
0+ − k2

xg
− k2

yg
− k2

z′
k2

0α2(z
′)

×
∫ +∞

−∞
dkzs

e−ikxg xse−ikyg yseikzs (z′−zs)

k2
0+ − k2

xg
− k2

yg
− k2

zs

(B.6)

RHS → 1

(2π)7

∫ +∞

−∞
dx′

︸ ︷︷ ︸

∫ +∞

−∞
dy ′

︸ ︷︷ ︸

∫ +∞

−∞
dz ′

∫ +∞

−∞
dkz′

eikz′ (zg−z′)

k2
0+ − k2

xg
− k2

yg
− k2

z′

× k2
0α1(z

′)
∫ +∞

−∞
dx′′

︸ ︷︷ ︸

∫ +∞

−∞
dy ′′

︸ ︷︷ ︸

∫ +∞

−∞
dz ′′

∫ +∞

−∞
dkx′′

∫ +∞

−∞
dky′′

∫ +∞

−∞
dkz′′

× ei(kx′′−kxg )x′︸ ︷︷ ︸ ei(ky′′−kyg )y′︸ ︷︷ ︸
eikz′′ (z

′−z′′)

k2
0+ − k2

x′′ − k2
y′′ − k2

z′′
k2

0α1(z
′′)

∫ +∞

−∞
dkxs

∫ +∞

−∞
dkys

×
∫ +∞

−∞
dkzs ei(kxs−kx′′ )x

′′
︸ ︷︷ ︸ ei(kys−ky′′ )y

′′
︸ ︷︷ ︸

e−ikxsxse−ikysyseikzs (z′′−zs)

k2
0+ − k2

xs
− k2

ys
− k2

zs

(B.7)

→ 1

(2π)3

∫ +∞

−∞
dz ′

∫ +∞

−∞
dkz′

eikz′ (zg−z′)

k2
0+ − k2

xg
− k2

yg
− k2

z′
k2

0α1(z
′)

×
∫ +∞

−∞
dz ′′

∫ +∞

−∞
dkz′′

eikz′′ (z
′−z′′)

k2
0+ − k2

xg
− k2

yg
− k2

z′′
k2

0α1(z
′′)

×
∫ +∞

−∞
dkzs

e−ikxg xse−ikyg yseikzs (z′′−zs)

k2
0+ − k2

xg
− k2

yg
− k2

zs

. (B.8)

Having performed all the integrals in the horizontal coordinates, we can evaluate the 1-D
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vertical wavenumber integrals:

LHS → k2
0

(2π)2
e−ikxg xse−ikyg ys

∫ +∞

−∞
dz ′α2(z

′)
(
−

∫ +∞

−∞
dkz′

eikz′ (zg−z′)

(kz′ − qg)(kz′ + qg)

)

×
(
−

∫ +∞

−∞
dkzs

eikzs (z′−zs)

(kzs − qg)(kzs + qg)

)

→ k2
0

(2π)2
e−ikxg xse−ikyg ys

∫ +∞

−∞
dz ′α2(z

′)
(
−πi

qg

eiqg |zg−z′|
)(

−πi

qg

eiqg |z′−zs|
)

→−k2
0

4q2
g

e−ikxg xse−ikyg yse−iqg(zg+zs)

∫ +∞

−∞
dz ′α2(z

′)e2iqgz′ (B.9)

where q2
g

.
= k2

0+−k2
xg
−k2

yg
and we have explicitly set z ′ > {zg, zs}. Meanwhile, the right-hand

side can be simplified:

RHS → 1

(2π)3

∫ +∞

−∞
dz ′

(
−πi

qg

eiqg(z′−zg)

)
k2

0α1(z
′)

×
∫ +∞

−∞
dz ′′

(
−πi

qg

eiqg |z′−z′′|
)

k2
0α1(z

′′)e−ikxg xse−ikyg ys

(
−πi

qs

eiqs(z′′−zs)

)

→ ik4
0

8q3
g

e−ikxg xse−ikyg yse−iqg(zg+zs)

∫ +∞

−∞
dz ′eiqgz′α1(z

′)
∫ +∞

−∞
dz ′′eiqg |z′−z′′|α1(z

′′)eiqgz′′

(B.10)

where, for a 1-D medium, q2
s = q2

g and we have confined {z ′, z ′′} > {zg, zs}. Having served its
purpose, we now let ε → 0 and so k0+ → k0. Expanding the absolute value in the exponential
and simplifying:

RHS → ik4
0

8q3
g

e−ikxg xse−ikyg yse−iqg(zg+zs)

∫ +∞

−∞
dz ′eiqgz′α1(z

′)

×
(∫ +∞

−∞
dz ′′H(z ′ − z ′′)eiqg(z′−z′′)α1(z

′′) +

∫ +∞

−∞
dz ′′H(z ′′ − z ′)eiqg(z′′−z′)α1(z

′′)
)

eiqgz′′

→ ik4
0

8q3
g

e−ikxg xse−ikyg yse−iqg(zg+zs)

∫ +∞

−∞
dz ′α1(z

′)

×
(

2

∫ +∞

−∞
dz ′′H(z ′ − z ′′)eiqg(z′−z′′)α1(z

′′)
)

eiqg(z′+z′′)

→ ik4
0

4q3
g

e−ikxg xse−ikyg yse−iqg(zg+zs)

∫ +∞

−∞
dz ′α1(z

′)e2iqgz′
∫ +∞

−∞
dz ′′H(z ′ − z ′′)α1(z

′′).

(B.11)

Figure B.2 illustrates the simplification in Eq. (B.11) that arises due to the vertical axis of
symmetry. Now equating the two sides, Eqs. (B.9) and (B.11), the phases exp(−ikxgxs),
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Fig. B.2: Inverse scattering diagrams representing the simplification in Eq. (B.11) that arises due
to the vertical axis of symmetry. The “ •” symbol signifies the end-point contributions
z ′ = z ′′.

exp(−ikygys) and exp (−iqg (zg + zs)) cancel leaving

∫ +∞

−∞
dz ′α2(z

′)e2iqgz′ =
−ik2

0

qg

∫ +∞

−∞
dz ′α1(z

′)e2iqgz′
∫ +∞

−∞
dz ′′H(z ′ − z ′′)α1(z

′′). (B.12)

This step is equivalent to source and receiver downward continuation with the constant
reference velocity. We can break apart the right hand-side into self-interaction (z ′ = z ′′) and
separated (z ′ 6= z ′′) daigrams. To effect this separation, we integrate by parts:

∫ ∞

−∞
udv = uv

∣∣∣∣
∞

−∞
−

∫ ∞

−∞
vdu

where

u =

∫ +∞

−∞
dz ′′α1(z

′′)H(z ′ − z ′′)α1(z
′)

dv =
−ik2

0

qg

e2iqgz′dz ′

du

dz ′
=α2

1(z
′) +

∫ +∞

−∞
dz ′′α1(z

′′)H(z ′ − z ′′)
dα1(z

′)
dz ′

=α2
1(z

′) +

∫ z′

−∞
dz ′′α1(z

′′)
dα1(z

′)
dz ′

v =
−k2

0

2q2
g

e2iqgz′
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Fig. B.3: The break-up of the second term in the inverse series into “self-interaction” and “sepa-
rated” diagram terms (Eq. B.14).

and so

∫ +∞

−∞
dz ′e2iqgz′α2(z

′) =

[
−k2

0

2q2
g

e2iqgz′
∫ z′

−∞
dz ′′α1(z

′′)α1(z
′)

]∞

z′=−∞

+

∫ +∞

−∞
dz ′e2iqgz′ k2

0

2q2
g

(
α2

1(z
′) +

∫ z′

−∞
dz ′′α1(z

′′)
dα1(z

′)
dz ′

)
. (B.13)

The boundary terms are zero (assuming α1, like α, is confined to a finite region) and so

α2(−2qg) =

∫ +∞

−∞
dz ′e2iqgz′ k2

0

2q2
g

(
α2

1(z
′) +

∫ z′

0

dz ′′α1(z
′′)

dα1(z
′)

dz ′

)
. (B.14)

Figure B.3 illustrates the break-up that takes place when we integrate by parts. We have
divided α2 into self-interaction and separated diagram terms1.

As in Eq. (A.31), the left-hand-side is a function of one variable (qg), whereas the right-
hand-side is a function of two (qg and ω = k0c0). For consistency, we choose to keep p
constant recognizing that we are estimating α = α1 + α2 + . . . for fixed p values. Therefore,
the inverse Fourier transform yields

α2(z, p) =
1

2 cos2 θ0

(
α2

1(z, p) +

∫ z

0

α1(z
′, p)dz ′

∂α1(z, p)

∂z

)
(B.15)

where θ0 and p are related by Eq. (A.32).

1 This particularly useful separation step was taken by Foster (2000).
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C. A FORMULA FOR THE VELOCITY PERTURBATION IN TERMS
OF THE REFLECTION COEFFICIENT AT A SINGLE INTERFACE

We algebraically derive an expression for the velocity perturbation, α, in terms of the angle-
dependent reflection coefficient at a single interface. The reference velocity and the velocity
in the upper half-space is c0 and the velocity in the lower half-space is c1. The interface is
at depth z = za, and so the velocity model is

c(z) = c0 + (c1 − c0)H (z − za)

= c0 [1 + (γ − 1)H (z − za)] (C.1)

where we have introduced the parameter γ = c1/c0. From the definition of α (Eq. 3.4), we
have

α(z) =
c2
0

c2(z)
− 1 =

1

[1 + (γ − 1)H (z − za)]
2 − 1

=

[
1

1 + (γ2 − 1)
− 1

]
H (z − za)

=

(
1

γ2
− 1

)
H (z − za) . (C.2)

Meanwhile, we can write the reflection coefficient as a function of the change in velocity at
the interface, the incident angle, θ0, and the transmitted angle, θ1 :

R01(p) =
ζ0 − ζ1

ζ0 + ζ1

=
c1 cos θ0 − c0 cos θ1

c1 cos θ0 + c0 cos θ1

=
γ cos θ0 − cos θ1

γ cos θ0 + cos θ1

. (C.3)

Using Snell’s Law

sin θ1 = γ sin θ0 (C.4)

we can substitute

cos θ1 =
√

1− sin2 θ1 =

√
1− γ2 sin2 θ0 (C.5)

into Eq. (C.3) to eliminate θ1 :

R01(p) =
γ cos θ0 −

√
1− γ2 sin2 θ0

γ cos θ0 +
√

1− γ2 sin2 θ0

=
cos θ0 −

√
1/γ2 − sin2 θ0

cos θ0 +
√

1/γ2 − sin2 θ0

. (C.6)
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Rearranging this equation gives

1/γ2(p) = sin2 θ0 + cos2 θ0

(
1−R01(p)

1 + R01(p)

)2

= 1− cos2 θ0

(
1−

(
1−R01(p)

1 + R01(p)

)2
)

= 1− cos2 θ0

(
1− [

1− 4R01(p) + 8R2
01(p)− 12R3

01(p) + . . .
])

= 1− cos2 θ0

[
4R01(p)− 8R2

01(p) + 12R3
01(p)− . . .

]
. (C.7)

Finally, we can substitute Eq. (C.7) into Eq. (C.2) to derive an angle-dependent formula
for α :

α(z, p) =
[−4R01(p) + 8R2

01(p)− 12R3
01(p) + . . .

]
cos2 θ0H (z − za) . (C.8)

The first term (that is first order in the measured data, i.e., O(R01), is

α1(z, p) =− 4R01(p) cos2 θ0H (z − za) . (C.9)

This is quantitatively equal to the inverse Born approximation (see, e.g., Bleistein et al.,
2000, p.105, for the zero-offset result). The consequence of making the Born approximation
is to ignore the sum of all the higher order terms. We observe that, for this single interface
example,

α2(z, p) =8R2
01(p) cos2 θ0H (z − za) (C.10)

α3(z, p) =− 12R3
01(p) cos2 θ0H (z − za) (C.11)

α4(z, p) =16R4
01(p) cos2 θ0H (z − za) (C.12)

...

For contrasts where higher powers in R01 are not negligible, we must take more terms in the
series (Zhang and Weglein, 2003).
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D. SEPARATION OF α3 INTO TASK-SPECIFIC TERMS

The integral equation for the third term in the inverse series for the single parameter acoustic
problem is

∫ +∞

−∞
d~x ′G0 (~x g|~x ′ ; ω) k2

0α3(z
′)G0 (~x ′ |~x s; ω)

=−
∫ +∞

−∞
d~x ′G0 (~x g|~x ′ ; ω) k2

0α2(z
′)

×
∫ +∞

−∞
d~x ′′G0 (~x ′ |~x ′′ ; ω) k2

0α1(z
′′)G0 (~x ′′ |~x s; ω)

−
∫ +∞

−∞
d~x ′G0 (~x g|~x ′ ; ω) k2

0α1(z
′)

×
∫ +∞

−∞
d~x ′′G0 (~x ′ |~x ′′ ; ω) k2

0α2(z
′′)G0 (~x ′′ |~x s; ω)

−
∫ +∞

−∞
d~x ′G0 (~x g|~x ′ ; ω) k2

0α1(z
′)

×
∫ +∞

−∞
d~x ′′G0 (~x ′ |~x ′′ ; ω) k2

0α1(z
′′)

×
∫ +∞

−∞
d~x ′′′G0 (~x ′′ |~x ′′′ ; ω) k2

0α1(z
′′′)G0 (~x ′′′ |~x s; ω) . (D.1)

Figure D.1 represents Eq. (D.1) using scattering diagrams (once again forgiving some k0

factors). Fourier transforming both sides of Eq. (D.1) over xg and yg and following the same
steps as in deriving Eq. (B.9), the left-hand side becomes

LHS →−k2
0

4q2
g

e−ikxg xse−ikyg yse−iqg(zg+zs)

∫ +∞

−∞
α3(z

′)e2iqgz′dz ′. (D.2)
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Fig. D.1: Inverse scattering diagrams representing Eq. (D.1).

Meanwhile, doing the same thing to the right-hand side, we get

RHS → k4
0

(2π)3
e−ikxg xse−ikyg ys

∫ +∞

−∞
dz ′

∫ +∞

−∞
dkz′

eikz′ (zg−z′)

q2
g − k2

z′
α2(z

′)

×
∫ +∞

−∞
dz ′′

∫ +∞

−∞
dkz′′

eikz′′ (z
′−z′′)

q2
g − k2

z′′
α1(z

′′)
∫ +∞

−∞
dkz′

eikzs (z′′−zs)

q2
g − k2

zs

+
k4

0

(2π)3
e−ikxg xse−ikyg ys

∫ +∞

−∞
dz ′

∫ +∞

−∞
dkz′

eikz′ (zg−z′)

q2
g − k2

z′
α1(z

′)

×
∫ +∞

−∞
dz ′′

∫ +∞

−∞
dkz′′

eikz′′ (z
′−z′′)

q2
g − k2

z′′
α2(z

′′)
∫ +∞

−∞
dkz′

eikzs (z′′−zs)

q2
g − k2

zs

− k6
0

(2π)4
e−ikxg xse−ikyg ys

∫ +∞

−∞
dz ′

∫ +∞

−∞
dkz′

eikz′ (zg−z′)

q2
g − k2

z′
α1(z

′)

×
∫ +∞

−∞
dz ′′

∫ +∞

−∞
dkz′′

eikz′′ (z
′−z′′)

q2
g − k2

z′′
α1(z

′′)

×
∫ +∞

−∞
dz ′′′

∫ +∞

−∞
dkz′′′

eikz′′′ (z
′′−z′′′)

q2
g − k2

z′′′
α1(z

′′′)
∫ +∞

−∞
dkzs

eikzs (z′′′−zs)

q2
g − k2

zs

. (D.3)

The various “kz” integrals are handled according to the poles shifted in exactly the same
way as in the calculations of α1 and α2 (see Appendices A and B). This is not a choice but
a consequence of the causal Green functions in the Lippmann-Schwinger equation (Eq. 2.7).
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Performing the contour integrals yields

RHS → 2ik4
0

(2qg)3
e−ikxg xse−ikyg yse−iqg(zg+zs)

∫ +∞

−∞
dz ′α2(z

′)
∫ +∞

−∞
dz ′′H(z ′ − z ′′)α1(z

′′)e2iqgz′

+
2ik4

0

(2qg)3
e−ikxg xse−ikyg yse−iqg(zg+zs)

∫ +∞

−∞
dz ′α1(z

′)
∫ +∞

−∞
dz ′′H(z ′ − z ′′)α2(z

′′)e2iqgz′

− k6
0

(2qg)4
e−ikxg xse−ikyg ys

∫ +∞

−∞
dz ′eiqgz′α1(z

′)
∫ +∞

−∞
dz ′′eiqg |z′−z′′|α1(z

′′)

×
∫ +∞

−∞
dz ′′′eiqg |z′′−z′′′|α1(z

′′′)eiqgz′′′ . (D.4)

The first two terms are mathematically analogous to Eq. (B.11) in the derivation of α2.
Equating both sides, cancelling common factors (effectively downward continuing sources
and receivers with the reference velocity) gives

∫ +∞

−∞
α3(z

′)e2iqgz′dz ′ = −2ik2
0

2qg

∫ +∞

−∞
dz ′α2(z

′)
∫ +∞

−∞
dz ′′H(z ′ − z ′′)α1(z

′′)e2iqgz′

−2ik2
0

2qg

∫ +∞

−∞
dz ′α1(z

′)
∫ +∞

−∞
dz ′′H(z ′ − z ′′)α2(z

′′)e2iqgz′

+
k4

0

(2qg)2

∫ +∞

−∞
dz ′

∫ +∞

−∞
dz ′′

∫ +∞

−∞
dz ′′′α1(z

′)α1(z
′′)α1(z

′′′)

×
(
H(z ′ − z ′′)H(z ′′ − z ′′′)e2iqgz′

+ H (z ′ − z ′′)H(z ′′′ − z ′′)e2iqgz′e−2iqgz′′e2iqgz′′′

+ H (z ′′ − z ′)H(z ′′ − z ′′′)e2iqgz′′

+ H (z ′′ − z ′)H(z ′′′ − z ′′)e2iqgz′′′
)

. (D.5)

Figure D.2 illustrates this equation diagrammatically where some additional symmetries
have been noted. Incorporating these symmetries, we have

∫ +∞

−∞
α3(z

′)e2iqgz′dz ′ = I3(qg) =2I31(qg) + 2I32(qg) + 2I33(qg) + I34(qg) (D.6)

117



Ph.D. thesis

Fig. D.2: Inverse scattering diagrams representing Eqs. (D.5) and (D.6).

where

I31(qg) =k2
0

∫ +∞

−∞
dz ′α2(z

′)
∫ +∞

−∞
dz ′′H(z ′ − z ′′)α1(z

′′)
e2iqgz′

2iqg

I32(qg) =k2
0

∫ +∞

−∞
dz ′α1(z

′)
∫ +∞

−∞
dz ′′H(z ′ − z ′′)α2(z

′′)
e2iqgz′

2iqg

I33(qg) =− k4
0

∫ +∞

−∞
dz ′

∫ +∞

−∞
dz ′′

∫ +∞

−∞
dz ′′′α1(z

′)α1(z
′′)α1(z

′′′)H(z ′′ − z ′)H(z ′′ − z ′′′)
e2iqgz′′

(2iqg)2

I34(qg) =− k4
0

∫ +∞

−∞
dz ′

∫ +∞

−∞
dz ′′

∫ +∞

−∞
dz ′′′α1(z

′)α1(z
′′)α1(z

′′′)H(z ′ − z ′′)H(z ′′′ − z ′′)

× e2iqgz′

(2iqg)2
e−2iqgz′′e2iqgz′′′ .
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By analogy with Eq. (B.14),

I31(qg) = −
∫ +∞

−∞
dz ′e2iqgz′ k2

0

(2iqg)2

(
α1(z

′)α2(z
′) +

∫ +∞

−∞
dz ′′H(z ′ − z ′′)α1(z

′′)
dα2(z

′)
dz ′

)

(D.7)

I32(qg) = −
∫ +∞

−∞
dz ′e2iqgz′ k2

0

(2iqg)2

(
α1(z

′)α2(z
′) +

∫ +∞

−∞
dz ′′H(z ′ − z ′′)α2(z

′′)
dα1(z

′)
dz ′

)

(D.8)

and the third term may be integrated as follows:

I33(qg) =− k4
0

∫ +∞

−∞
dz ′

∫ +∞

−∞
dz ′′′α1(z

′)α1(z
′′′)

∫ +∞

−∞
dz ′′α1(z

′′)H(z ′′ − z ′′′)H(z ′′ − z ′)
e2iqgz′′

(2iqg)2

=k4
0

∫ +∞

−∞
dz ′

∫ +∞

−∞
dz ′′′α1(z

′)α1(z
′′′)

∫ +∞

−∞
dz ′′

dα1(z
′′)

dz ′′
H(z ′′ − z ′′′)H(z ′′ − z ′)

e2iqgz′′

(2iqg)3

+ 2k4
0

∫ +∞

−∞
dz ′

∫ +∞

−∞
dz ′′′α2

1(z
′)α1(z

′′′)H(z ′ − z ′′′)
e2iqgz′

(2iqg)3

=− k4
0

∫ +∞

−∞
dz ′′

∫ z′′

−∞
dz ′

∫ z′′

−∞
α1(z

′)dz ′′′α1(z
′′′)

d2α1(z
′′)

dz ′′2
e2iqgz′′

(2iqg)4

− 2k4
0

∫ +∞

−∞
dz ′α1(z

′)
∫ z′

−∞
dz ′′′α1(z

′′′)
dα1(z

′)
dz ′

e2iqgz′

(2iqg)4

42k4
0

∫ +∞

−∞
dz ′α1(z

′)
∫ z′

−∞
dz ′′′α1(z

′′′)
dα1(z

′)
dz ′

e2iqgz′

(2iqg)4

− 2k4
0

∫ +∞

−∞
dz ′α3

1(z
′)

e2iqgz′

(2iqg)4

=− k4
0

∫ +∞

−∞
dz ′

e2iqgz′

(2iqg)4

×



[∫ z′

0

α1(z
′′)dz ′′

]2
d2α1(z

′)
dz ′2

+ 6α1(z
′)

∫ z′

0

dz ′′α1(z
′′)

dα1(z
′)

dz ′
+ 2α3

1(z
′)


 . (D.9)

This break-up is illustrated in Fig. D.3 and is summarized in Fig. D.4. The single term has
been split into a purely self-interaction component, a purely separated piece, and a mixed
self-interaction and separated diagram term. Only self-interaction at the deepest scattering
point is allowed from I33(q).

Meanwhile, we recognize I34 as being a starting point in the derivation of the internal multiple
attenuation algorithm. As explained by Matson (1997)1, the initial tests of I34 as a potential
algorithm proved successful at attenuating internal multiples, but also had the unfortunate

1 I34 = W333 in Eq. (5.8) on p. 112 (Matson, 1997), with the substitution V1 = k2
0α1. The 1-D normal

incidence version is Eq. (4.2) on p. 24 of Araújo (1994).
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Fig. D.3: Inverse scattering diagrams representing the separation of I33(q) in Eq.(D.9).

property of simultaneously “altering” primaries. The reason for this will become clearer in
the following where it is shown that this term can be further task-separated:
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Fig. D.4: Summary of the separation of I33(q) in Eq.(D.9) and Fig.D.3.

I34(qg) =− k4
0

∫ +∞

−∞
dz ′

∫ +∞

−∞
dz ′′

∫ +∞

−∞
dz ′′′α1(z

′)α1(z
′′)α1(z

′′′)H(z ′ − z ′′)H(z ′′′ − z ′′)

× e2iqgz′

(2iqg)2
e−2iqgz′′e2iqgz′′′

=k4
0

∫ +∞

−∞
dz ′′

∫ +∞

−∞
dz ′′′α1(z

′′)α1(z
′′′)H(z ′′′ − z ′′)

×
∫ +∞

−∞
dz ′

dα1(z
′)

dz ′
H(z ′ − z ′′)

e2iqgz′

(2iqg)3
e−2iqgz′′e2iqgz′′′

+ k4
0

∫ +∞

−∞
dz ′′α2

1(z
′′)

∫ +∞

−∞
dz ′′′α1(z

′′′)H(z ′′′ − z ′′)
e2iqgz′′′

(2iqg)3

=− k4
0

∫ +∞

−∞
dz ′′α1(z

′′)
∫ +∞

−∞
dz ′

dα1(z
′)

dz ′
H(z ′ − z ′′)

×
∫ +∞

−∞
dz ′′′

(
dα1(z

′′′)
dz ′′′

H(z ′′′ − z ′′) + α1(z
′′′)δ(z ′′′ − z ′′)

)
e2iqgz′

(2iqg)4
e−2iqgz′′e2iqgz′′′

− k4
0

∫ +∞

−∞
dz ′′α2

1(z
′′)

∫ +∞

−∞
dz ′′′

(
dα1(z

′′′)
dz ′′′

H(z ′′′ − z ′′) + α1(z
′′′)δ(z ′′′ − z ′′)

)
e2iqgz′′′

(2iqg)4

I34(qg) =− k4
0

∫ +∞

−∞
dz ′′α1(z

′′)
∫ z′′

−∞
dz ′′′

∫ z′′

−∞
dz ′

dα1(z
′′′)

dz ′′′
dα1(z

′)
dz ′

e2iqgz′

(2iqg)4
e−2iqgz′′e2iqgz′′′

− 2k4
0

∫ +∞

−∞
dz ′′′

∫ z′′′

−∞
dz ′′α2

1(z
′′)

dα1(z
′′′)

dz ′′′
e2iqgz′′′

(2iqg)4

− k4
0

∫ z′′′

−∞
dz ′′α3

1(z
′′)

e2iqgz′′

(2iqg)4
(D.10)

The first of the three terms in Eq. (D.10) is the portion of α3 that attenuates internal
multiples (Araújo, 1994). The other two terms act on (i.e., process) primaries, which is why
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Fig. D.5: Inverse scattering diagrams representing the separation of I34(q) in Eq.(D.10).

Fig. D.6: Summary of the separation of I34(q) in Eq.(D.10).

I34 was not fully task-separated before. We may rewrite the first term in Eq. (D.10) as

αIM
3 (qg) = − k4

0

(2iqg)4

∫ +∞

−∞
dz ′

dα1(z
′)

dz ′
e2iqgz′

∫ z′

−∞
dz ′′α1(z

′′)e−2iqgz′′
∫ ∞

z′′
dz ′′′

dα1(z
′′′)

dz ′′′
e2iqgz′′′

(D.11)

for comparison with Eq.(5.12) in Matson (1997) and its 2-D formulation as Eq. (37) in
Weglein et al. (1997). The noticeable difference is in the integrand, where in Eq. (D.11) one
of the α1’s is not a derivative. This is because the internal multiples appear block-like in the
inversion for α. Summarizing Eqs. (D.6–D.11) and inverse Fourier transforming, holding p
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constant, gives

α3(z, p) =
2

4 cos2 θ0

(
α1(z, p)α2(z, p) +

∫ +∞

−∞
dz ′H(z − z ′)α1(z

′, p)
∂α2(z, p)

∂z

)

+
2

4 cos2 θ0

(
α2(z, p)α1(z, p) +

∫ +∞

−∞
dz ′H(z − z ′)α1(z

′, p)
∂α2(z, p)

∂z

)

− 2

16 cos4 θ0

([∫ z

0

α1(z
′, p)dz ′

]2
∂2α1(z, p)

∂z2

+ 3 α1(z, p)

∫ z

0

dz ′α1(z
′, p)

∂α1(z, p)

∂z
+ α3

1(z, p)

)

− 1

16 cos4 θ0

(
2

[∫ z

0

α2
1(z

′, p)dz ′
]

∂α1(z, p)

∂z
+ α3

1(z, p)

)
+ αIM

3 (z, p) (D.12)

Substituting α2(z, p) into Eq. (D.12) we find (see Figs. D.7 and D.8)

α3(z, p) =
2

8 cos4 θ0

(
2α3

1(z, p) + 6α1(z, p)

∫ z

0

α1(z
′, p)dz ′

∂α1(z, p)

∂z

+

[∫ z

0

α1(z
′, p)dz ′

]2
∂2α1(z, p)

∂zz

)

− 2

16 cos4 θ0

([∫ z

0

α1(z
′, p)dz ′

]2
∂2α1(z, p)

∂z2

+ 3 α1(z, p)

∫ z

0

dz ′α1(z
′, p)

∂α1(z, p)

∂z
+ α3

1(z, p)

)

− 1

16 cos4 θ0

(
2

[∫ z

0

α2
1(z

′, p)dz ′
]

∂α1(z, p)

∂z
+ α3

1(z, p)

)
+ αIM

3 (z, p). (D.13)

Notice that the terms derived from G0V1G0V2G0 and G0V2G0V1G0 have the opposite sign to
the terms derived from G0V1G0V1G0V1G0. Summing all like terms gives

α3(z, p) =
1

16 cos4 θ0

(
3α3

1(z, p) + 2

[∫ z

0

α1(z
′, p)dz ′

]2
∂2α1(z, p)

∂zz

+ 12α1(z, p)

∫ z

0

α1(z
′, p)dz ′

∂α1(z, p)

∂z
− 2

[∫ z

0

α2
1(z

′, p)dz ′
]

∂α1(z, p)

∂z

)

+ αIM
3 (z, p) (D.14)

The G0V1G0V2G0 and G0V2G0V1G0 terms contain parts that are opposite in polarity to their
cousins in the G0V1G0V1G0G0 and therefore, to some degree, these terms counteract each
other. This implies that a straight-ahead implementation of the inverse series contains certain
inefficiencies (see also discussion by Innanen, 2003). The strategy of task separation coupled
with an understanding of how nonlinear direct inversion can be accomplished presents an
opportunity to avoid any such inherent inefficiencies.
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Fig. D.7: The break-up of the G0V2G0V1G0 term into task-specific pieces.

Fig. D.8: The break-up of the G0V1G0V2G0 term into task-specific pieces.
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