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Abstract. Inverse scattering series is the only nonlinear, direct inversion method for the multi-
dimensional, acoustic or elastic equation. Recently developed techniques for inverse problems based
on the inverse scattering series [Weglein et al., Geophys., 62 (1997), pp. 1975–1989; Top. Rev. Inverse
Problems, 19 (2003), pp. R27–R83] were shown to require two mappings, one associating nonper-
turbative description of seismic events with their forward scattering series description and a second
relating the construction of events in the forward to their treatment in the inverse scattering series.
This paper extends and further analyzes the first of these two mappings, introduced, for 1D nor-
mal incidence, in Matson [J. Seismic Exploration, 5 (1996), pp. 63–78] and later extended to two
dimensions in Matson [An Inverse Scattering Series for Attenuating Elastic Multiples from Multi-
component Land and Ocean Bottom Seismic Data, Ph.D. thesis, Department of Earth and Ocean
Sciences, University of British Columbia, Vancouver, BC, Canada, 1997]. It brings a new and more
rigorous understanding of the mathematics and physics underlying the calculation of terms in the
forward scattering series and the events in the seismic model. The convergence of the series for 1D
acoustic models is examined, and the earlier precritical analysis is extended to critical and postcrit-
ical reflections. An explanation is proposed for the divergence of the series for postcritical incident
planewaves.
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1. Introduction. Scattering theory is a form of perturbation theory. In seis-
mic exploration, it relates the propagation of a wave in an actual medium with the
propagation of the wave in a reference medium and a perturbation operator which
describes the difference between the two media. The forward problem (or forward
modeling) is to construct the actual wave-field, given the reference wave-field and the
perturbation operator; the inverse problem is to construct the perturbation operator,
given the reference wave-field everywhere and the actual wave-field on a measurement
surface. The relation between these three quantities is nonlinear and cannot be given,
at least so far, in a closed form in either the forward or the inverse problem. This
relationship takes the form of a series which, when convergent, constructs the actual
wave-field and the perturbation operator.

Inverse scattering series is the only nonlinear, direct inversion method for the
multidimensional, acoustic or elastic equation. Early tests on the convergence of the
entire series for an acoustic medium by Carvalho [4] were not favorable for real world
application. Weglein and collaborators then developed the “subseries method” for
the inverse problem (for a description and a complete history, see Weglein et al. [13]
and references therein). The overall undertaking of the inverse scattering series was
broken up into four tasks, which otherwise would be performed simultaneously by the
series acting upon the input data. The four tasks are 1. elimination of the free surface
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multiples, 2. elimination of the internal multiples, 3. locating where rapid changes
in the medium properties occur (imaging), and 4. determining the changes at those
locations (inversion). These tasks were associated with subseries of the full series,
subseries which, if identified, would perform their job as if no other task existed in
the series. Two immediate advantages of this separation of tasks are the favorable
convergence properties of the subseries and the ability to judge the effectiveness of
each step before proceeding on to the next. To facilitate the identification of the task-
specific subseries in the inverse series, two maps have to be constructed (see [12]):
one map associates seismic events with their forward scattering series description,
while the second relates the construction of events in the forward to their usage in the
inverse scattering series. In this paper we advance the analysis of the first of these
mappings, introduced, for 1D (one-dimensional) normal incidence, by Matson [6] and
later extended by Matson to two dimensions [7].

The forward series takes as input the information about the wave-field propagat-
ing through the reference medium and about the perturbation operator and outputs
the wave-field everywhere in the actual medium. This process can be regarded as
creating data (primaries, free surface multiples, internal multiples) for a given model;
in practice, the forward series is never used for this purpose due to its inefficiency:
it takes an infinite number of terms to create any single event. The events recorded
in a seismic experiment are used by the inverse series to find the perturbation and,
although the relation between their creation in the forward and their exploitation in
the inverse series is not one-to-one, certain analogies could provide useful hints or at
least point to where various activities reside in the inverse series. The forward series
does not hint at whether events will be signal or noise in the full inverse series; it only
suggests where one might look for that answer in the subseries. Take multiples, for ex-
ample: it turns out that the inverse scattering subseries made of terms that mimic the
diagrams for multiples in the forward series is responsible for attenuating/removing
such multiples from the data [1].

The forward scattering series models seismic events in a fundamentally differ-
ent way from conventional nonperturbative theory, where seismic waves propagate
through the medium with different velocities and are reflected and transmitted at
media boundaries. To construct one event alone, the forward series needs a sequence
of terms which can be viewed as a succession of propagations in the reference medium
separated by different orders of scattering interactions with a point scatterer; the
different terms in the perturbation series correspond to the number of scattering in-
teractions a wave experiences. Even with these differences taken into account, the
wave-field output by the forward scattering series has to agree, when the series con-
verges, with the well-known nonperturbative results for any given seismic experiment.
Precritical data has been studied by Matson [7], who showed that the expected (from
wave-theory) reflected wave-field is constructed by the convergent forward scattering
series in a 2D (two-dimensional) experiment. This study brings new understanding
about the physical interpretation of these previous results; it also shows that the
same forward series converges for critical angles and diverges for postcritical, and an
explanation of this divergence is proposed.

The plan for this paper is as follows. In section 2 we present the mathematical
description for the forward scattering series for a 3D (three-dimensional) earth, both
in operator and nonoperator form; in section 3, following Matson [7], we apply this
description to a specific, 2D seismic model, and discuss the convergence of the for-
ward scattering series for that model. Section 4 presents an alternative method for



FORWARD SCATTERING SERIES AND SEISMIC EVENTS 2169

solving for the terms in the series using saddle point analysis, which, in this setting,
is equivalent to far field approximation. Section 5 presents the physical interpretation
of the approximations performed in section 4. Section 6 shows the convergence of the
forward scattering series for this model at the critical angle, and section 7 proposes
an explanation for the divergence of the series for postcritical events. Some conclu-
sions are given in section 8. Although in this paper we mainly focus on application of
the scattering theory to seismic exploration, we mention that the same methods and
discussions apply to other areas of explorative sciences like medical imaging, whole
earth exploration, etc.

2. Forward scattering series. In operator form, the differential equations de-
scribing wave propagation in an actual and a reference medium can be written as

LG = −I(2.1)

and

L0G0 = −I,(2.2)

where L, L0 and G, G0 are the actual and reference differential and Green’s operators,
respectively, for a single temporal frequency and I is the identity operator. The above
equations (2.1) and (2.2) assume that the source and receiver signatures have been
deconvolved. The perturbation, V, and the scattered field operator, ψs, are defined
as

V = L − L0,(2.3)

ψs = G−G0.(2.4)

The fundamental equation of scattering theory, the Lippmann–Schwinger equation,
relates ψs, G0, V, and G (see, e.g., [10]):

ψs = G−G0 = G0VG.(2.5)

When G corresponds to the pressure field in an inhomogeneous acoustic medium, an
example of L, L0, and V is (see, e.g., [5])

L =
ω2

κ
+ ∇ ·

(
1

ρ
∇
)
,(2.6)

L0 =
ω2

κ0
+ ∇ ·

(
1

ρ0
∇
)
,(2.7)

and

V =ω2

(
1

κ
− 1

κ0

)
+ ∇ ·

[(
1

ρ
− 1

ρ0

)
∇
]
,(2.8)

where κ, κ0, ρ, and ρ0 are the actual and reference bulk moduli and densities, respec-
tively. If the density is constant (ρ = ρ0 = const.) , the above expressions become

L =
ω2

κ
,(2.9)

L0 =
ω2

κ0
,(2.10)
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Fig. 2.1. Graphical representation of the terms in the forward scattering series: the first term
is an integral over all 1-interaction events, the second term is an integral over all 2-interactions
events, etc.

and

V =ω2

(
1

κ
− 1

κ0

)
.(2.11)

For an elastic isotropic actual and a homogeneous reference medium, the expressions
for L, L0, and V are different and given, e.g., in [9].

Equation (2.5) can be expanded in an infinite series by repeatedly substituting
G = G0 − G0VG into the right-hand side to obtain

ψs ≡ G−G0 = G0VG0 + G0VG0VG0 + · · · .(2.12)

This series constructs the scattered field operator ψs as a series of terms formed as
propagations in the reference medium (G0) and interactions with the inhomogeneity
(V). Note that the nth term in this series is of order n in the perturbation operator
V and, in fact, can be written as (ψs)n ≡ G0 (VG0)

n
.

For the previous example (constant density case), define k0 = ω
c0

and α =
(
1− c21

c20

)
,

where c1 and c0 are the actual and the reference medium velocities, respectively; the
series becomes

ψs

(
rg|rs;ω

)
=

∫
V

G0

(
rg|r′;ω

)
k2
0α (r′)G0 (r′|rs;ω) dr′

+

∫
V

G0

(
rg|r′;ω

)
k2
0α (r′)

∫
V

G0 (r′|r′′;ω) k2
0α (r′′)G0 (r′′|rs;ω) dr′′dr′

+ · · · ,(2.13)

where the integrals are 3D volume integrals taken over the inhomogeneity V. For an
easy physical interpretation of this series, consider the perturbation V to be composed
of point scatterers separated by the reference medium. The first term in the series
for the scattered field (2.13) represents a summation over all 1-interaction events,
i.e., events formed from a wave propagating from the source location rs to the scat-
terer location at r′, G0 (r′|rs;ω), interacting with the scatterer at r′, k2

0α (r′), and
propagating to the receiver location at rg, G0(rg|r′;ω). The second term represents
a summation over all 2-interaction events and so on. Note that, as stated before,
the propagations between source, receiver, and scatterers occur only in the reference
medium, i.e., with the Green’s function G0, even though the speed of the wave in the
actual medium is different from the speed of the wave in the reference medium. A
picture of the physical interpretation of these terms is shown in Figure 2.1.
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3. A 2D seismic profile. Matson [6, 7] describes the propagation of a wave-
field in a given 1D or 2D medium, using the forward scattering series. We use the same
2D model in this paper to give an alternate derivation, and a physical interpretation
for that derivation, for the Matson [7] result. The model is a half-space earth with no
lateral variance and an interface at z1; the scattering perturbation for this model is,
therefore,

V (z′) = k2
0αH(z′ − z1),(3.1)

where, as before, α = 1 − c20/c
2
1, c1 is the velocity in the second medium, c0 is the

velocity in the reference medium, and H is the Heaviside step function.
The propagations in the reference medium are described by the 2D Green’s func-

tion (see, e.g., [2])

G0(xg, zg|xs, zs;ω) =
1

2π

∫ ∞

−∞

eiks(xg−xs)eiν0s|zg−zs|

2iν0s
dks,(3.2)

where ks and ν0s are the horizontal and the vertical wavenumber, respectively, of the
reference medium (ν2

0s + k2
s = ω2/c20 ). Rewriting G0 as

G0(xg, zg|xs, zs;ω) =
1

2π

∫ ∞

−∞

e−iksxs

2iν0s
φ0(xg, zg|ks, zs;ω)dks(3.3)

with φ0(xg, zg|ks, zs;ω) = ei(ksxg+ν0s|zg−zs|), it is apparent that G0 represents a super-
position of weighted planewaves. This motivates the use of a planewave component as
the incident wave with the remark that one can construct solutions for point sources
from planewave solutions by performing the above-mentioned weighted integration.
Denote by P the actual wave-field and by P0, P1, etc., the corresponding term in the
forward scattering series. For simplicity consider the source location to be (0, 0); the
Born series takes the form

P (xg, zg|k;ω) = ei(kxg+ν0zg)

+

∫ ∞

z1

∫ ∞

−∞

1

2π

∫ ∞

−∞

eikg(xg−x′)eiν0g|zg−z′|
2iν0

dkgk
2
0αP0(x

′, z′|k;ω)dx′dz′

+

∫ ∞

z1

∫ ∞

−∞

1

2π

∫ ∞

−∞

eikg(xg−x′)eiν0g|zg−z′|
2iν0

dkgk
2
0αP1(x

′, z′ > z1|k;ω)dx′dz′

+ · · · .(3.4)

Note that the incoming wave hits all the scatterers at once; each scatterer then emits
a cylindrical wave which propagates to the receiver or to another scatterer. Each term
in the forward series represents the response, at the receiver, after a certain number
of interactions: the zeroth term represents the direct arrival, the first term represents
the wave-field after one interaction with a point scatterer, and so on. To construct
even the simplest event, one needs an infinite number of terms in the forward series.
To obtain the total wave-field at the receiver we have to solve the integrals in the
previous expression. Following Matson [7], we solve for the first term in the series

P1(xg, zg|k;ω) =

∫ ∞

z1

∫ ∞

−∞

1

2π

∫ ∞

−∞

eikg(xg−x′)eiν0g|zg−z′|
2iν0

dkgk
2
0αe

i(kx′+ν0z
′)dx′dz′.

(3.5)



2172 B. G. NITA, K. H. MATSON, AND A. B. WEGLEIN

Begin by switching the order of integration so that the integration with respect to dx′

is performed first. Hence

P1(xg, zg|k;ω) =
1

2π

∫ ∞

z1

∫ ∞

−∞

(∫ ∞

−∞
ei(k−kg)x′

dx′
)
eikgxgeiν0g|zg−z′|eiν0z

′ k2
0α

2iν0g
dkgdz

′.

(3.6)

Using ∫ ∞

−∞
ei(k−kg)x′

dx′ = 2πδ(kg − k),(3.7)

P1 becomes

P1(xg, zg|k;ω) =

∫ ∞

z1

∫ ∞

−∞
δ(kg − k)eikgxgeiν0g|zg−z′|eiν0z

′ k2
0α

2iν0g
dkgdz

′.(3.8)

Using the properties of the delta function, we see that the inside integral switches
kg → k and hence ν0g → ν0, and so the expression becomes

P1(xg, zg|k;ω) =
k2
0α

2iν0
eikxg

∫ ∞

z1

eiν0|zg−z′|eiν0z
′
dz′.(3.9)

There are two cases to be considered at this point: zg < z1 for the reflected P1 and
zg > z1 for the transmitted part. The first enters into the series for the total reflected
field, while the second is used either in the series for transmitted wave-field or for the
calculation of P2 (reflected or transmitted). We have

P1(xg, zg < z1|k;ω) =
k2
0α

2iν0
eikxge−iν0zg

∫ ∞

z1

eiν02z
′
dz′.(3.10)

The last integral, ∫ ∞

z1

eiν02z
′
dz′,(3.11)

is not defined in the Riemannian sense because the integrand oscillates, preserving its
amplitude towards infinity. We are going to define this integral to be the value of the
antiderivative of the integrand calculated at its finite boundary z1, i.e.,∫ ∞

z1

eiν02z
′
dz′ = −eiν02z1

2iν0
.(3.12)

This definition is consistent with considering that the reference medium is attenuating
the wave-field which will vanish at infinity. The attenuation is introduced in the
equations through an imaginary part in the velocity c0 (see [2, Chapter 5, equations
5.87 and 5.88] ) so that the new velocity cnew0 is

1

cnew0

=
1

c0
+ iε,

with ε being a small parameter such that ε > 0 for ω > 0. It is easy to see that, with
this new effective velocity, the value of the integral is indeed the one defined in (3.12).
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The final expression for P1 is hence

P1(xg, zg < z1|k;ω) =
k2
0α

4ν2
0

eikxgeiν0(2z1−zg).(3.13)

The same integration procedure is used for the calculation of P2, P3, etc. The calcu-
lated series for the scattered field (also denoted by P ) is

P (xg, zg < z1|k;ω) = eikxgeiν0(2z1−zg)

[
1

4

k2
0α

ν2
0

+
1

8

(
k2
0α

ν2
0

)2

+
5

64

(
k2
0α

ν2
0

)3

+ · · ·
](3.14)

and indicates a certain regularity after some algebraic operations: the series is recog-

nized to be the Taylor series of

√
1 − k2

0α

ν2
0

about
k2
0α

ν2
0

= 0 (a rigorous proof is given

in the appendix). The ratio test indicates that the series converges for
∣∣k2

0α

ν2
0

∣∣ < 1 .

By writing ν0 = k0 cos θ, with θ being the incidence angle of the incoming planewave,
this condition becomes

sin θ <
c0
c1

<
(
1 + cos2 θ

)1/2
.(3.15)

This last relation can be viewed in the following two ways:
1. First, for a fixed incidence angle θ, this is a restriction on the velocity con-

trast between the reference and the actual medium. In particular, for θ = 0
(normal incidence) the left inequality is satisfied for any two velocities; the
right inequality becomes c0 <

√
2c1, a result obtained in Matson [6].

2. Second, for a fixed velocity model, the restriction is on the incident angle.
Note that, given any two velocities c0 and c1, one of the two inequalities is
automatically satisfied. For c0 > c1, the condition reads c0

c1
< (1 + cos2 θ)1/2

or sin2 θ < 1 + α with α < 0.
For c0 < c1, the condition becomes sin θ < c0

c1
or θ < θc, where θc is the critical angle

θc = sin−1(c0/c1). When the series converges, the limit is

2
ν2
0

k2
0α

[
1 −

√
1 − k2

0α

ν2
0

]
− 1 =

ν0 − ν1

ν0 + ν1
,(3.16)

and so the final expression for the reflected field is

P (xg, zg < z1|k;ω) =
ν0 − ν1

ν0 + ν1
eikxgeiν0(2z1−zg),(3.17)

which is the expected result from nonperturbative theory (see, e.g., [2]).

4. An alternative derivation using saddle point approximations. The
calculation of

P1(xg, zg|k;ω) =

∫ ∞

z1

∫ ∞

−∞

1

2π

(∫ ∞

−∞

eikg(xg−x′)eiν0g|zg−z′|
2iν0

dkg

)
k2
0αe

i(kx′+ν0z
′)dx′dz′

(4.1)

contains a reordering of integrals: in the original expression the dkg integral should
be solved first, then the dx′, and finally the dz′ integral. As we saw in the previous
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section, the calculations are greatly simplified if the dx′ integration is performed first,
then the dkg, and finally the dz′ integration. However, this kind of operation has to
be performed with great care since it might impose some restrictions, which might
change the result obtained from solving the integrals in the original order.

The theorem which deals with interchanging integrals is Fubini’s theorem. It
states that when a function f is integrable on Rn = Rk × Rm, the iterated integrals
of f over Rk and Rm exist and∫

Rn

f =

∫
Rk

∫
Rm

f(x, y)dydx =

∫
Rm

∫
Rk

f(x, y)dxdy.(4.2)

The theorem gives sufficient conditions for interchanging the order of integrals, but
those conditions are not necessary. For example, you can have a function non-
integrable over Rn for which the integration in both directions would yield the same
result. The only way to show that the interchange of integrals does not hold is to
calculate the integrals in both direction and obtain different results. However, to
calculate the dkg integral first in the expression (4.1) means to find a closed form
for the Green’s function (3.2), which is not possible. For an in-depth analysis of the
cylindrical functions, see [11].

In this section we show that the interchange of integrals yields the same result
as the far field approximation of the integrals in question. The Fubini theorem does
not apply here because the function to be doubly integrated is not integrable. To be
more specific, the integral representation of the Dirac delta function,∫ ∞

−∞
ei(k−kg)x′

dx′,(4.3)

is meaningless in the strict Riemannian sense.
Recalculate P1 using saddle point approximations for the two integrals involved

without switching the order of integration, and show that the result is the one ob-
tained in Matson [7]. Saddle point or stationary phase approximation gives the leading
asymptotic behavior of generalized Fourier integrals, i.e., of the form

∫∞
−∞ F (p)eωf(p)dp,

having stationary points, i.e., points ps such that f ′(ps) = 0. The idea of the method
is to use the analyticity of the integrand to justify deforming the path of integration
to a new path on which f(p) has a constant imaginary path. How the contour is
deformed depends on the singularities and branch cuts of the integrand. Once this
has been done, the integral may be found asymptotically (ω → ∞) to be∫ ∞

−∞
F (p)eωf(p)dp ∼

∣∣∣∣ 2π

ωf ′′(ps)

∣∣∣∣
1/2

F (ps)e
isign(f ′′(ps))π

4 exp [ωf(ps)] .(4.4)

To calculate P1 in (4.1), start by rewriting

G0 =
1

2π

∫ ∞

−∞

eikg(xg−x′)eiν0g|zg−z′|
2iν0

dkg(4.5)

as

G0 =
1

2π

∫ ∞

−∞
F (p)eωf(p)dp,(4.6)

where

F (p) =
1

2i
√

1/c20 − p2
(4.7)
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and

f(p) = i

[
p(xg − x′) + |zg − z′|

√
1

c20
− p2

]
,(4.8)

p being the horizontal slowness p =
kg

ω . Note that, due to the square root, F (p)
defines two branch cuts in the complex p plane; the branch cuts are hyperbolas in
the first and third quadrant and are running very close to the coordinate axis. (For
a full discussion of the branch cuts of F, see [2, Box 6.2].) By definition, branch
cuts are lines of discontinuities for F (p) and here are given by Im

√
1/c20 − p2 = 0.

This means that when the new integration path (see Figure 6.6 in [2]) intersects these
branch cuts, F (p) is discontinuous and hence not analytic. This apparent problem
can be avoided if we relax the condition Im

√
1/c20 − p2 ≥ 0 along the integration

path. Instead we allow Im
√

1/c20 − p2 to change sign at each branch cut intersection
which, for the integration path, is equivalent to a transition to a different Riemann
sheet. The integrand looses physical interpretation while on another Riemann sheet
but gains analyticity. However, the two intersections with the branch cut insure two
sign changes and the emergence of the integrand with the correct sign at the saddle
point. (Eventually the integrand is going to be expanded in a Taylor series at that
point, and the rest of the path is going to be discarded.) To calculate the location of
the saddle point, equate the derivative of f with zero; this gives

ps =
xg − x′

c0d′
,(4.9)

with d′ =
√

(zg − z′)2 + (xg − x′)2. Calculate

f(ps) = i
d′

c0
,(4.10)

f ′′(ps) = − ic0d
′3

|zg − z′|2
,(4.11)

F (ps) =
c0d

′

2i |zg − z′| ,(4.12)

and plug them into the above formula (4.4) to obtain

G0 ∼ 1

4πi

(
2πc0
iωd′

)1/2

eik0d
′
.(4.13)

(Compare with the approximation for iπH
(1)
0 (ω/c0d

′), the Green’s function for the

2D Helmholtz equation, where H
(1)
0 is the Hankel function of the first kind, given by

formula (5.3.69) in [8].) With this approximation, expression (4.1) for P1 becomes

P1(xg, zg|k;ω) =
1

4πi

∫ ∞

z1

∫ ∞

−∞
eik0d

′
(

2πc0
iωd′

)1/2

k2
0αe

i(kx′+ν0z
′)dx′dz′(4.14)
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or

P1(xg, zg|k;ω) =
k

3/2
0 α

2πi

√
π

2i

∫ ∞

z1

eiν0z
′
∫ ∞

−∞

e
iω

(
d′
c0

+ k
ω x′

)
√
d′

dx′dz′.(4.15)

Again, the innermost integral has the form

I =

∫ ∞

−∞
F (x′)eωf(x′)dx′(4.16)

with F (x′) = 1√
d′ and f(x′) = i( d′

c0
+ k

ωx
′). Note that the integrand has no branch

cuts this time since d′ =
√

(zg − z′)2 + (xg − x′)2 is always positive; the saddle point
is x′

s such that

xg − x′
s = |zg − z′| k

ν0
,(4.17)

and so we have

f(x′
s) = i

(
ν0

ω
|zg − z′| + k

ω
xg

)
,(4.18)

f ′′(x′
s) =

ic20ν
3
0

ω3 |zg − z′| ,(4.19)

and

F (x′
s) =

1√
|zg − z′|

√
c0ν0

ω
.(4.20)

Using the same high frequency approximation (4.4), we find

∫ ∞

−∞

e
iω

(
d′
c0

+ k
ω x′

)
√
d′

dx′ ∼ 1

ν0

√
2πiω

c0
ei(ν0|zg−z′|+kxg).(4.21)

Substituting this into the expression (4.15) for P1, we obtain

P1(xg, zg|k;ω) =
k2
0α

2iν0
eikxg

∫ ∞

z1

eiν0|zg−z′|eiν0z
′
dz′,(4.22)

which is the same result as that obtained before by switching the order of integration.
The rest of the terms in the series for P can be similarly shown to resemble the
expressions given by Matson [7].

5. Physical interpretation of the approximations. The two far field ap-
proximations performed in the previous derivation have an easily understandable
physical interpretation. The approximation of the first integral in the expression
of P1 represents the most important contribution arriving at the receiver from each
point scatterer (see Figure 5.1).
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Source Receiver 

∇

Fig. 5.1. The physical interpretation of the approximation of the first integral in the calculation
of P1.

 

θ

Source Receiver 

∇
Incoming planewave 

Fig. 5.2. The physical interpretation of the approximation of the second integral in the calcu-
lation of P1.

As the figure shows, each scatterer behaves as a point source producing a wave
propagating in all directions described by the Green’s function given by (3.2). How-
ever, when the integral is approximated using saddle point techniques, only the di-
rection of propagation bringing in the highest contribution is kept. The result given
by (4.13),

G0 ∼ 1

4πi

(
2πc0
iωd′

)1/2

eik0d
′
,(5.1)

represents the part arriving from the scatterer to the receiver along the straight line
connecting them, multiplied by a coefficient which accounts for the dismissal of all
the other directions.

The approximation of the second integral in the expression of P1 picks out the
most important contribution arriving at the receiver from the totality of incoming
rays. Here, the main contribution is found to be the one from the rays that make an
angle equal to the incident’s planewave angle with the vertical (see Figure 5.2); this
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can be seen from the expression of the saddle point for the x′ integration:

xg − x′
s = |zg − z′| k

′

ν0
.(5.2)

The last integral in the expression of P1 is a 1D integral along the thick line shown in
Figure 5.2. Even though the parameter of integration is z′, there is a certain relation
between z′ and x′, given by (5.2), such that the direction of integration is tilted at an
angle equal to the incident angle rather than vertical. The lack of symmetry in this
last integral is expected since the model is not symmetric: the discussion here is for
a planewave component of a line source and a line receiver. It is anticipated that the
symmetry would be recovered in the line source–line receiver case.

6. Convergence at the critical angle. The forward scattering series for the
reflected wave-field for the model discussed in this paper is (see Matson [7])

P (xg, zg < z1|k;ω) = eikxgeiν0(2z1−zg)

[
1

4

k2
0α

ν2
0

+
1

8

(
k2
0α

ν2
0

)2

+
5

64

(
k2
0α

ν2
0

)3

+ · · ·
]
.

(6.1)

The ratio test shows convergence for |k
2
0α

ν2
0
| < 1, divergence for |k

2
0α

ν2
0
| > 1, and is

inconclusive for |k
2
0α

ν2
0
| = 1. When c0 < c1, this last condition is equivalent to

k2
0α

ν2
0

= 1,

which in turn is equivalent to θ = θc; i.e., the incident angle is the critical angle. In
other words, the forward series is convergent for precritical incidence and divergent
for postcritical incidence; no information is found about the critical incidence. For a
critical incident planewave, the series becomes

P (xg, zg < z1|k;ω) = eikxgeiν0(2z1−zg)

[
1

4
+

1

8
+

5

64
+

7

128
+ · · ·

]
.(6.2)

Rewrite

R =
1

4
+

1

8
+

5

64
+

7

128
+ · · · =

∞∑
n=2

1

n!

1 · 3 · 5 . . . (2n− 3)

2n−1
=

∞∑
n=1

Γ(n + 1/2)

(n + 1)!Γ(1/2)
.

(6.3)

Note that the series has the form
∑∞

n=2 an with an = 1
n!

1·3·5...(2n−3)
2n−1 , and so

lim
n→∞

n

(
an

an+1
− 1

)
= lim

n→∞
n

(
2n + 2

2n− 1
− 1

)
=

3

2
> 1.(6.4)

Hence Raabe’s convergence test shows convergence. (For a full discussion of this
convergence test, see [3].) The conclusion is that the forward scattering series for this
model converges at the critical angle as well. Note that, in this case, the sum of the
series, which corresponds to the reflection coefficient, is R = 1.

7. Postcritical divergence. For a c0 < c1 model, the forward series converges
for precritical and critical incidence and diverges for postcritical incidence. From wave
nonperturbative theory, the reflection coefficient R, which should be constructed by
the forward scattering series, is

• R = ν0−ν1

ν0+ν1
< 1 for precritical incidence. In this case both ν0 and ν1 are real.
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Fig. 7.1. The graph of ν1 as a function of
αk2

0
ν2
0

.

• R = 1 for critical incidence. In this case ν1 = 0.
• R = ν0−ν1

ν0+ν1
for postcritical incidence. In this case ν1 is purely imaginary, and

hence R is complex. However, |R| = 1, and the complexity of R is attributed
to a phase-shift of the emerging wave after hitting the interface due to the
evanescent waves created in the second medium.

The term αk2
0/ν

2
0 = 1 − ν2

1/ν
2
0 is > 1 exactly when ν1 becomes imaginary. In fact,

if for this case one writes R = eiε, where ε is the phase-shift of the wave-field, then
αk2

0/ν
2
0 = 1 + tan2 ε/2, enforcing the earlier statement that the divergence is due

to the phase-shift of the reflected wave. In other words, it is the impossibility of
constructing a complex number ν1 as a series of real numbers (powers of ν0) which
leads to the divergence of the series. The graph of ν1 as a function of αk2

0/ν
2
0 is shown

in Figure 7.1.
For c0 < c1we have that α > 0, so we are looking at the positive x-axis of the

graph; if the velocity model is fixed, αk2
0 is a constant. The vertical wavenumber of

the propagating wave in the actual medium, ν1, is equal to ν0 when αk2
0/ν

2
0 = 0, i.e.,

at normal incidence. When αk2
0/ν

2
0 = 1 (at critical incidence), ν1 is zero, showing

that there is no propagation into the second medium. When αk2
0/ν

2
0 > 1 (postcritical

incidence), ν1 is complex, and it becomes unrecoverable by a Taylor series written
at αk2

0/ν
2
0 = 0; the series is now divergent. For c0 > c1 it seems like this problem

does not exist. In this case there is no critical angle, and so the vertical wavenumber
ν1 never becomes complex. However, the series inherits the divergent behavior for
αk2

0/ν
2
0 < −1 due to the singularity at αk2

0/ν
2
0 = 1. For any value of αk2

0/ν
2
0 outside the

unit sphere centered at the origin the series will diverge due to that same singularity.

8. Conclusion. We have shown that the interchange of certain integrals in the
calculation of terms in the forward scattering series yields the same result as the
far field approximations of those integrals. The later approach allows the study of
the restrictions imposed on the model by the former approach and provides new
insights and physical interpretations for the terms in the forward scattering series. It
is also anticipated that the new method would be more practical in the study of more
complicated models (e.g., line source and receiver).
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We have also proved the convergence of the forward scattering series at critical
angle for the model of Matson [7] and provided an explanation for the divergence
of the series for postcritical incident angles. The divergence is due to the inability
of the forward scattering series to construct a complex vertical wavenumber from a
series of real terms. Several possibilities for extending this result exist. First, one
could introduce imaginary terms in the calculated series by using more than just the
leading asymptotic behavior of the integral representation of the Hankel function, or of
the dx′ integral involved in the calculations. Second, one could try to make use of the
evanescent part of the wave-field emanating from the scatterers to construct a complex
vertical wavenumber. The evanescent part is always discarded when the asymptotic
behavior of the integral representation of the Hankel function is considered; using it
is attractive because it makes sense intuitively to construct an evanescent wave in the
actual medium using evanescent waves in the reference medium. Third, an imaginary
term in the reference velocity, and hence complex terms in the forward scattering
series, could be brought in by the introduction of an absorptive reference medium.
These ideas will be considered in future research.

Appendix. In section 3 we indicated how to calculate the first few terms in
the forward scattering series for the reflected wave-field in a 2D vertically varying
medium. We stated there that the calculated series for the scattered field for that
specific model is (see (3.14))

P (xg, zg| k;ω) = eikxgeiν0(2z1−zg)

[
1

4

k2
0α

ν2
0

+
1

8

(
k2
0α

ν2
0

)2

+
5

64

(
k2
0α

ν2
0

)3

+ · · ·
]
,

(A.1)

which is recognized to be the Taylor series for
√

1 − k2
0α/ν

2
0 about

k2
0α

ν2
0

= 0 after

some algebraic operations are performed on it. In this section we provide a rigorous
proof of this statement. The proof will proceed as follows: first we will write down the
general term for the transmitted wave-field and show by induction that the expression
is correct; then we will use it to calculate the general term for the reflected wave-field
and show that it corresponds to the general term in the aforementioned Taylor series.
The need for the general term for the transmitted field is obvious since the iteration
step occurs in the transmitted wave rather than the reflected one. Once the general
term for the transmitted wave-field, PT

n , is obtained, the general term for the reflected
wave-field, PR

n , is obtained by calculating

PR
n+1 (xg, zg < z1| k;ω)

=

∫ ∞

z1

dz′
∫ ∞

−∞
dx′ 1

2π

(∫ ∞

−∞

eikg(xg−x′)eiν0g|zg−z′|
2iν0

dkg

)
k2
0αP

T
n (x′, z′| k;ω) .(A.2)

To simplify the writing we introduce the notation

k2
0α

ν2
0

= X(A.3)

and

Sn =
Xn

2nn!
(1 + R)

n+1
,(A.4)
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where

(1 + R) =
2

X

[
1 − Taylor

(√
1 −X

)]
(A.5)

and Taylor
(√

1 −X
)

stands for the Taylor series of
√

1 −X about X = 0. Notice
that Sn is a series in X of lowest order n. Also denote by Sj

n the coefficient of the jth
order in Sn, and notice that all these coefficients are zero for j < n.

We will prove by induction that the general term for the transmitted wave-field
PT
n for n ≥ 1 is

PT
n (xg, zg > z1| k;ω) = eikxgeiν0zgXn

n∑
l=0

[−iν0 (zg − z1)]
l
Sn
l .(A.6)

The first step of the induction is to verify this relation for n = 1, i.e., to check that

PT
1 = eikxgeiν0zgX

{
S1

0 + [−iν0 (zg − z1)]S
1
1

}
.(A.7)

Note that S1
0 = 1/4 and S1

1 = 1/2, and hence this is the expression (2.25) found in
Matson [7]. For the second step of the induction we assume that the relation (A.6)
for PT

n is true, and we calculate PT
n+1 and show that it has the same form; i.e., we

want to prove that

PT
n+1 (xg, zg > z1| k;ω) = eikxgeiν0zgXn+1

n+1∑
l=0

[−iν0 (zg − z1)]
l
Sn+1
l .(A.8)

We have

PT
n+1 =

∫ ∞

z1

dz′
∫ ∞

−∞
dx′ 1

2π

(∫ ∞

−∞

eikg(xg−x′)eiν0g|zg−z′|
2iν0

dkg

)
k2
0αP

T
n (x′, z′| k;ω)

=

∫ ∞

z1

dz′
∫ ∞

−∞
dx′ 1

2π

(∫ ∞

−∞

eikg(xg−x′)eiν0g|zg−z′|
2iν0

dkg

)

× k2
0αe

ikx′
eiν0z

′
Xn

n∑
l=0

[−iν0 (z′ − z1)]
l
Sn
l .(A.9)

We now solve the dkg and the dx′ by either one of the two methods described in the
text and obtain

PT
n+1 =

∫ ∞

z1

dz′
k2
0α

2iν0
eikxgeiν0|zg−z′|eiν0z

′
Xn

n∑
l=0

[−iν0 (z′ − z1)]
l
Sn
l

= eikxgXn+1 ν0

2i

∫ ∞

z1

dz′eiν0|zg−z′|eiν0z
′

n∑
l=0

[−iν0 (z′ − z1)]
l
Sn
l

= eikxgXn+1 (−iν0)

2

∑n

l=0

∫ ∞

z1

dz′eiν0|zg−z′|eiν0z
′
[−iν0 (z′ − z1)]

l
Sn
l .(A.10)

We split the integral into two integrals in order to be able to evaluate the absolute
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value and get

PT
n+1 = eikxgXn+1 (−iν0)

2

n∑
l=0

{∫ zg

z1

dz′eiν0zg [−iν0 (z′ − z1)]
l
Sn
l

+

∫ ∞

zg

dz′eiν0(2z
′−zg) [−iν0 (z′ − z1)]

l
Sn
l

}
.(A.11)

The first integral has an easy solution; the second is a bit more tedious since it involves
integration by parts. After solving the two integrals, we find

PT
n+1 = eikxgeiν0zgXn+1

{
n∑

l=0

Sn
l

2(l + 1)
[−iν0 (zg − z1)]

l+1

(A.12)

+
(−iν0)

2

[
Sn

0 (−iν0)
0

(
− 1

2iν0

)

+ Sn
1 (−iν0)

1

(
− 1

2iν0
(zg − z1) +

1

(2iν0)2

)

+ Sn
2 (−iν0)

2

(
− 1

2iν0
(zg − z1)

2 +
2

(2iν0)2
(zg − z1) −

2

(2iν0)3

)
...

+ Sn
n(−iν0)

n

(
−1

2iν0
(zg − z1)

n +
n

(2iν0)2
(zg − z1)

n−1 + · · · + (−1)n+1n!

(2iν0)n+1

)]}
.

Grouping together the terms with like powers of [−iν0 (z′ − z1)] in the expression
above, we find

PT
n+1 = eikxgeiν0zgXn+1

{
[−iν0 (zg − z1)]

n+1 Sn
n

2(n + 1)

(A.13)

+ [−iν0 (zg − z1)]
n

(
Sn
n−1

2n
+

Sn
n

2

1

2

)

+ [−iν0 (zg − z1)]
n−1

(
Sn
n−2

2(n− 1)
+

Sn
n

2

n

22
+

Sn
n−1

2

1

2

)

+ [−iν0 (zg − z1)]
n−2

(
Sn
n−3

2(n− 2)
+

Sn
n

2

n(n− 1)

23
+

Sn
n−1

2

n− 1

22
+

Sn
n−2

2

1

2

)
...

+ [−iν0 (zg − z1)]
1

(
Sn

0

2
+

Sn
n

2

n(n− 1) . . . 2

2n
+

Sn
n−1

2

(n− 1) . . . 2

2n−1
+ · · · + Sn

1

2

1

2

)

+ [−iν0 (zg − z1)]
0

(
0 +

Sn
n

2

n!

2n+1
+

Sn
n−1

2

(n− 1)!

2n
+ · · · + Sn

1

2

1!

22
+

Sn
0

2

1

2

)}
.

We next show that the coefficients of [−iν0 (zg − z1)]
j

in the above expression are
exactly equal to Sn+1

j , and hence this last expression is the one required for the
second step of the induction (see (A.8)).
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For the first coefficient recall that, by definition, we have

Sn =
Xn

2nn!
(1 + R)

n+1
,(A.14)

and hence we can write

Sn+1 =
Xn+1

2n+1(n + 1)!
(1 + R)

n+2
=

X

2(n + 1)
(1 + R)Sn.(A.15)

This is an equality of two series, which implies that the coefficients of identical powers
from both sides are equal. By equating the coefficients of the n+ 1 power, we obtain

Sn+1
n+1 =

1

2(n + 1)
Sn
n .(A.16)

For the second coefficient we start with the identity

Sn =
Xn

2nn!
(1 + R)

n+1
(A.17)

and rewrite it as

Sn =
Xn

2nn!
(1 + R)

n
(1 + R) =

X

2n
Sn−1 +

Xn

2nn!
R (1 + R)

n
.(A.18)

By equating the coefficients of the n + 1 power from both sides, we find

Sn+1
n =

1

2n
Sn
n−1 +

1

4
Sn
n ,(A.19)

where we have used that the coefficient of the first power of X in the expression for
R is 1/4.

For the third coefficient we start with the identity

Sn−1 =
Xn−1

2n−1(n− 1)!
(1 + R)

n
(A.20)

and rewrite it as

Sn−1 =
X

2(n− 1)
Sn−2 +

Xn−1

2n−1(n− 1)!
R (1 + R)

n−2
+

Xn−1

2n−1(n− 1)!
R2 (1 + R)

n−2
.

(A.21)

By equating the coefficients of the n + 1 power from both sides, we find

Sn+1
n−1 =

1

2(n− 1)
Sn
n−2 +

1

4
Sn
n−1 +

n

8
Sn
n .(A.22)

For this last expression we have used again the fact that the coefficient of the first
power of X in the expression for R is 1/4.

The procedure outlined for these first three coefficient can be continued without
difficulty to show that all the coefficients in the expression (A.13) coincide with those
in (A.8). This concludes the second step of the induction and hence the proof that
the expression for the transmitted wave-field PT

n is

PT
n (xg, zg > z1| k;ω) = eikxgeiν0zgXn

n∑
l=0

[−iν0 (zg − z1)]
l
Sn
l .(A.23)
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The general term in the forward scattering series representation (3.14) for the
reflected wave-field can hence be calculated using the following formula:

PR
n+1 (xg, zg < z1| k;ω)

(A.24)

=

∫ ∞

z1

dz′
∫ ∞

−∞
dx′ 1

2π

(∫ ∞

−∞

eikg(xg−x′)eiν0g|zg−z′|
2iν0

dkg

)
k2
0αP

T
n (x′, z′| k;ω) .

Introducing the expression for PT
n , we find

PR
n+1 =

∫ ∞

z1

dz′
∫ ∞

−∞
dx′ 1

2π

(∫ ∞

−∞

eikg(xg−x′)eiν0g|zg−z′|
2iν0

dkg

)
k2
0αe

ikx′
eiν0z

′
Xn

×
n∑

l=0

[−iν0 (z′ − z1)]
l
Sn
l .(A.25)

Solving for the dx′ and the dkg integrals gives

PR
n+1 = eikxgXn+1 (−iν0)

2

∫ ∞

z1

dz′
n∑

l=0

[−iν0 (z′ − z1)]
l
Sn
l e

iν0(2z
′−zg).(A.26)

Notice that this integral has been dealt with before: it is the integral appearing in the
second part of (A.11), and its solution is given in the second part of (A.12). However,
the limits of integration are different: the solution for our integral may be obtained
from the second part of (A.12) by replacing zg with z1. This substitution cancels
most of the terms, and the result is

PR
n+1 = eikxgeiν0zgXn+1 (−iν0)

2

[
−Sn

0

1

2iν0
− Sn

1

1

22iν0
− · · · − Sn

n

n!

2n+1iν0

]
(A.27)

or

PR
n+1 = eikxgeiν0zgXn+1 1

4

[
Sn

0 +
Sn

1

21
1! +

Sn
2

22
2! + · · · + Sn

n

2n
n!

]
.(A.28)

Again, the sum inside the square brackets is an expression that we have already
analyzed before: it is the coefficient of [−iν0 (zg − z1)]

0
in (A.13). It was shown there

that

1

4

[
Sn

0 +
Sn

1

21
1! +

Sn
2

22
2! + · · · + Sn

n

2n
n!

]
= Sn+1

0 ,(A.29)

and hence the expression for PR
n+1 becomes

PR
n+1 (xg, zg < z1| k;ω) = eikxgeiν0zgXn+1Sn+1

0 .(A.30)

Recall from (A.4) and (A.5) that Sn+1
0 represents the coefficient of the n + 1 degree

in the series for 1 +R, and hence it is the coefficient of the n+ 1 degree in the Taylor

series for
√

1 − k2
0α/ν

2
0 about

k2
0α

ν2
0

= 0 after some algebraic operations are performed

on it. The total scattered field P is the summation of all PR
n and hence it represents

the full Taylor series for
√

1 − k2
0α/ν

2
0 about

k2
0α

ν2
0

= 0 after some algebraic operations

are performed on it.
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