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ABSTRACT

The Surface-Related Multiple Elimination (SRME) prediction followed by an adaptive sub-

traction has been (and will continue to be) the industry-standard to remove free-surface

multiples. SRME is understood to provide an approximate predictor of the amplitude

and phase of free-surface multiples. That recognition then places within the method itself

an energy-minimization adaptive-subtraction step that seeks an indirect method to bridge

the difference between the SRME prediction and the actual free-surface multiples. The

criteria of energy-minimization is reasonable and often valid for isolated free-surface multi-

ples that are not proximal with other events. However, for free-surface multiples that are

proximal to other events, the criteria behind energy-minimization adaptive-subtraction can
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be invalid. When applied under those circumstances, the proximal primary often can be

damaged. One way to reduce the dependence on the adaptive process is to obtain a more

accurate free-surface-multiple prediction. The Inverse Scattering Series (ISS) Free-Surface

Multiple Elimination (FSME) can predict free-surface multiples with accurate time and

accurate amplitude for a multi-dimensional earth, without any subsurface information. Us-

ing 1D prestack examples, a quantitative comparison is performed between the predicted

free-surface multiples by the ISS FSME, predicted free-surface multiples by the SRME and

actual free-surface multiples. We point out the origin of their differences in the physics

behind each method. The focus of this paper is to quantify the difference in the presence

of interfering events with analytic data. The analysis confirms that the ISS FSME can

predict free-surface multiples with accurate time and amplitude. The contribution of the

SRME method has been recognized and it will continue to be an important toolbox option

in the multiple-removal toolbox. The ISS FSME adds one option in the multiple-removal

toolbox with a more accurate free-surface multiple prediction. It is called for and indicated

and appropriate choice for removing interfering free-surface multiples without damaging the

primaries
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INTRODUCTION

In the beginning of the paper, it is useful to remind ourselves of the definitions of seismic

events based on their travel histories (Weglein et al., 2003). For instance, figure 1 shows dif-

ferent types of seismic events in marine seismic exploration. In marine seismic exploration,

reference waves are first defined as waves that travel directly from source to receiver and

waves that first travel up to the air-water boundary and then to the receiver. These two

types of waves did not experience the subsurface. All other events have experienced the

subsurface. Then, among the waves that did experience the subsurface, ghost events are

defined as the seismic events that begin their propagation histories by traveling up from the

source to the air-water boundary (source ghosts) or end their histories by traveling down

from the air-water boundary to the receiver (receiver ghosts) or both (source-and-receiver

ghosts). After that, events that begin their history going downward from the source and end

their history upward at the receiver are divided into primary events and multiple events.

Primary events are defined as the events that experience only one upward reflection during

their propagation history, whereas multiple events are defined as the events that experience

multiple reflections during their propagation history. Multiple events are further divided

into free-surface multiples and internal multiples depending on the location of downward

reflection between two consecutive upward reflections.

Multiples that have at least one downward reflection at the air-water (for offshore ex-

ploration) or air-land (for onshore exploration) surface are called free surface multiples,

whereas multiples that have all of their downward reflections below the air-water or air-

land surface are called internal multiples (Weglein et al., 1997). The order of a free-surface

multiple is defined as the number of reflections it has experienced only at the air-water
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or air-land surface. In contrast, the order of an internal multiple is defined by the total

number of downward reflections below the air-water or air-land surface. Notice that, these

definitions of different event types follow a sequence.

In principle, only primaries are called for to determine structure and to identify sub-

surface properties (Weglein, 2016, 2018). To obtain a data set containing of primaries, all

other events need to be predicted and removed. Hence, multiples, along with the refer-

ence waves, source ghosts, receiver ghosts and source-and-receiver ghosts, all need to be

predicted and removed from the seismic data in order to obtain the primary-only input to

imaging and inversion methods. There are two types of primaries and multiples: recorded

primaries and multiples, and unrecorded primaries and multiples. Recorded multiples can

be used to provide an approximate image of an unrecorded primary. Unrecorded multiples

must be removed in order to use a recorded multiple to find an approximate image of an

unrecorded primary. Currently in the petroleum industry, smooth velocity models are used

to locate structure and perform amplitude analysis. For a smooth velocity model, multiples

will always produce imaging artifacts. Therefore, multiples (both recorded and unrecorded)

need to be removed first from the reflection data before imaging primaries for processing

goals that seek to effectively locate and invert reflections. This paper will confine itself to

removing recorded multiples.

Both removing and using multiples are seeking the images of primaries: recorded pri-

maries and unrecorded primaries, respectively. As pointed out in Weglein (2018), the rela-

tionship between ‘removing multiples’ and ‘using multiples’ is not adversarial but comple-

mentary. This paper belongs to the study of the methods in ‘removing multiples’.

The methods for removing multiples have advanced and have become more effective.
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However, the concomitant industry trend towards ever more complex exploration areas and

difficult plays has at times outpaced advances in multiple-attenuation capability. For exam-

ple, currently, the removal of multiples, especially those that are interfering with primaries,

for an unknown and complex multidimensional subsurface, remains a key open issue, and

high priority pressing challenge. We advocate a tool-box approach, in general, and seek

to understand the place and role that each method within the toolbox plays within the

spectrum of different capabilities and responses, and how to choose the method that’s a

best match for the user’s application and objective. We also advocate adding new options

to the toolbox to increase the collection of circumstances that can be addressed.

In this particular paper, we examine and compare two methods (i.e., the Inverse Scat-

tering Series Free-Surface Multiple Elimination (ISS FSME) (Carvalho et al., 1991; Weglein

et al., 1997, 2003) and the Surface-Related Multiple Elimination (SRME)) (Berkhout, 1985;

Verschuur, 1991; Verschuur et al., 1992) for the removal of free-surface multiples. We sug-

gest a guide to when each can be the appropriate choice within the free-surface-multiple-

removal toolbox. The SRME method has been widely used has become (and will remain)

the workhorse and industry-standard for removing free-surface multiples. Similarly, the ef-

fectiveness of the ISS FSME has been demonstrated in many complicated synthetic and field

data tests (e.g., Carvalho and Weglein (1994); Maston et al. (1999); Weglein and Dragoset

(2005); Zhang (2007); Ferreira (2011)).

These free-surface multiple removal methods share a property that both methods do not

require subsurface information. However, there are significant and well-documented differ-

ence between these two methods as discussed in Weglein, Matson and Berkhout (2000);

Weglein et al. (2000); Weglein and Dragoset (2005). For example, one difference is the

SRME method predicts the approximate amplitude and time of free-surface multiples. In

5



contrast, the ISS FSME method predicts free-surface multiples with both the accurate am-

plitude and accurate time. There are circumstances where that difference will be significant

and make a difference for removing free-surface multiples without damaging interfering or

proximal primaries.

Our aim and single objective is to use examples in 1D with analytic input data to provide

a quantitative analysis between two methods in terms of predicting free-surface multiples

and removing interfering free-surface multiples without damaging primaries. The outline

of the paper is as follows: we first describe the ISS free-surface multiple prediction and

SRME free-surface multiple prediction. We study the physics theory origin of the difference

between the ISS FSME and the SRME predictions. After that, we use 1D prestack examples

for a quantitative comparison of the free-surface multiple prediction between the ISS FSME

and SRME methods. In the end, we have discussion and conclusion.

THE INVERSE SCATTERING SERIES (ISS) FREE-SURFACE

MULTIPLE ELIMINATION (FSME) ALGORITHM

In this section, we describe the ISS FSME algorithm (Carvalho et al., 1991; Weglein et al.,

1997, 2003). We start by first describing the pre-processing steps before the ISS FSME and

then describing the ISS free-surface multiple prediction.

We use a 2D marine case as an example to illustrate the steps. Given the recorded

seismic data (see figure 1), D(xg, xs, t) where xg, xs and t represent receiver and source

locations, and time, respectively. (1) The first step is to remove the reference waves. (2)

After the removal of reference waves, the second step is to remove source ghosts, receiver

ghosts and source-and-receiver ghosts.
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(3) After the removal of reference waves and all ghosts (i.e., source ghosts, receiver

ghosts and source-and-receiver ghosts), seismic data (represented by D′1(xg, xs, t)) enters

the ISS FSME to predict and remove free-surface multiples as follows:

• D′1(xg, xs, t) is first Fourier transformed over xg, xs, t (i.e., D′1(xg, xs, t)→ D′1(kg, ks, ω),

see A-22 for Fourier transform convention).

• After Fourier transform, D′1(kg, ks, ω) enters the ISS free-surface-multiple-prediction

equations (i.e., equation 1) to predict free-surface multiples (represented byD′n(kg, ks, ω),

where n = 2, 3, 4, · · · ) with both accurate time and accurate amplitude (in opposite

polarity compared with actual free-surface multiples),

D′n(kg, ks, ω) = − 1

2πA(ω)

∫
dk eiq(zg+zs)D′1(kg, k, ω) (2iq) D′n−1(k, ks, ω),

n = 2, 3, 4, ... . (1)

The quantities A(ω), zg and zs in Equ. 1 are the source signature, receiver depth and

source depth, respectively. q =
√

ω2

c0
− k2.

• Then, these predicted free-surface multiples (D′n(kg, ks, ω), where n = 2, 3, 4, · · · ) are

Inverse Fourier transformed to xg, xs and t, and added to the input data D′1(xg, xs, t)

to obtain data without free-surface multiples, see equation 2.

D′(xg, xs, t) = D′1(xg, xs, t) +D′2(xg, xs, t) +D′3(xg, xs, t) + · · · ,

=
∞∑
n=1

D′n(xg, xs, t). (2)

The output of the ISS FSME, D′(xg, xs, t), represents the data without reference

waves, without all ghosts, and without free-surface multiples.

It should be mentioned that the subsequent prediction terms in the series (equation 2),

represented by D′2, D
′
3, ..., provide predictions of free-surface multiples of different orders.
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Specifically, each term in D′n (where n = 2, 3, 4...) when added to the earlier terms in the

series (including the data D′1) performs two functions: (1) it eliminates the nth order free-

surface multiple. and (2) it alters all higher order free-surface multiples to be prepared for

their removal by higher-order D′j terms, where j = n+ 1, n+ 2, ... .

The sum of these predictions (D′2 + D′3 + ... + D′n+1) will provide free-surface-multiple

predictions with accurate time and accurate amplitude (in opposite polarity) for free-surface

multiples up to n-th order (Weglein et al., 2003; Zhang and Shaw, 2010; Ma and Weglein,

2016).

The 2D SRME free-surface-multiple prediction, denoted by M , (Berkhout, 1985; Ver-

schuur, 1991; Verschuur et al., 1992) is calculated by using seismic data without reference

waves and without receiver-side ghosts, but retaining source-side ghosts, denoted by P , as

follows,

M(xg, xs;ω) =

∫
P (xg, x;ω)P (x, xs;ω)dx. (3)

In the above equation 3, xg, xs, ω are receiver and source location and temporal frequency,

respectively. To derive equation 3 one would have assumed that the data was generated by

a vertically-separated dipole source in the water column with the reference waves removed

and with source and receiver deghosted data (see details in Appendix B). Notice that, the

monopole source itself together with its source ghost is assumed in the SRME prediction

step to be a reasonable approximation to the dipole source (see figure B-1).

The physics theory difference between these two free-surface-multiple-prediction algo-

rithms is studied in the Appendix A and Appendix B. In the next section, we focus on a

quantitative comparison between the ISS and SRME free-surface multiple predictions.
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A QUANTITATIVE COMPARISON BETWEEN THE ISS AND SRME

FREE-SURFACE MULTIPLE PREDICTIONS

In this section, we aim to provide a quantitative comparison between the ISS free-surface

multiple prediction and SRME free-surface multiple prediction.

From last section, we know the input data to the two free-surface multiple-prediction

algorithms is different. For the ISS FSME the input is seismic data generated by a monopole

source and without reference waves and without all ghosts (see figure 2, I), whereas for the

SRME the input is seismic data generated by a dipole source and without reference waves

and without all ghosts. However, in practice, since a data due to a vertically-separated

dipole source is not realizable, the assumption within SRME is to approximate what a

dipole source would produce by a monopole source and its source-side ghosts (see figure B-1

and figure 2, II (a)).

Following that, in the first set of comparisons (see the first bullet in figure 3), we provide

different inputs to these two free-surface multiple-prediction algorithms. For ISS free-surface

multiple-prediction algorithm, we use data due to a monopole source without reference

waves and without all ghosts. For SRME free-surface multiple-prediction algorithm, we use

data due to a monopole source without reference waves and without receiver-side ghosts

(source-side ghosts are retained in the data).

In addition to the first set of comparisons, in practice, both source ghosts and receiver

ghosts are removed before removing free-surface multiples for e.g., broad-band purpose.

Hence, we carry out another set of comparisons with input data without reference waves

and without all ghosts for both algorithms, with and without noise (see the second and

third bullet in figure 3).
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In the third set of comparisons, we input data generated by an absorptive medium and

without reference waves and without all ghosts (see the fourth bullet in figure 3). We

aim to confirm that for input data generated by an absorptive medium, both free-surface

multiple-prediction algorithms remain effective, i.e., the ISS predicts free-surface multiples

with both accurate amplitude and time, and the SRME predicts free-surface multiples with

approximate amplitude and time in the presence of absorptive medium.

A first set of comparisons

In this first set of comparisons, given their assumed input of these two free-surface multiples

algorithms, we provide a quantitative comparison of the predicted free-surface multiples by

the ISS and the SRME. In other words, for ISS free-surface multiple prediction, the input

data is without reference waves and without all ghosts; for SRME free-surface multiple

prediction, the input data is without reference waves and without receiver ghosts (the

source ghosts are retained in its input data).

Figure 4 shows the model with one horizontal reflector and a free-surface. Based on

this model, we use Cagniard-de Hoop (CdH) method (Cagniard (1939); de Hoop (1959)) to

generate the date. For a model with one horizontal reflector and a free-surface, CdH method

is able to obtain the analytical solutions of different events separately. This allows us to

(1) generate input data according to each algorithm’s assumed input and (2) attribute any

difference in the comparison to the two prediction algorithms rather than the input analytic

data. Figures 5 and 6 show the input to the ISS and SRME free-surface multiple predictions,

respectively. Figures 7 and 8 show the prediction results from the ISS and SRME. Notice

that, for the ISS free-surface multiple prediction, we use equation 1 for n = 2. Figures
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9 and 10 show the trace comparison at 500m offset between the the input data and free-

surface multiple predictions from ISS and SRME, respectively. The result show that the ISS

FSME predicts free-surface multiples with accurate time and accurate amplitude, whereas

the SRME predicts free-surface multiples with approximate time and amplitude.

A second set of comparisons

Figure 11 shows the model we used to generate analytic input data in (kx, ω) domain for a

1D subsurface. For example, a primary due to a horizontal reflector has an analytic form

shown below (see e.g., Stolt and Weglein (1985)):

−R(kx, ω)
eiq(2a−zg−zs)

2iq
, (4)

where R(kx, ω), a, zg and zs are plane wave reflection coefficient, depths of the reflector,

receiver and source, respectively; q =
√

ω2

c20
− k2x, c0 is the velocity above the reflector. For

this model, the above expression for a primary can be extended to analytically generate

other events separately. A Ricker wavelet with peak frequency at 30Hz is convolved with

the analytic form to generate the data.

Notice that, in our example, (1) only three events (two primaries and one free-surface

multiple) are generated, (2) the depths of the reflectors and velocities are chosen such that

the second primary destructively interferes with the free-surface multiple. We examine two

cases using input data with and without random noise. Notice that, the only difference

between these two tests is the input data, input data for test 1 contains no noise whereas

input data for test 2 contains random noise.

For test 1, Figures 12 to 16 show the synthetic input data, ISS free-surface multi-

ple prediction, SRME free-surface multiple prediction, results after the ISS FSME and
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SRME+adaptive, and the actual primary, respectively. Please notice that for the predic-

tions of free-surface multiples in figure 13 and figure 14, higher-order free-surface multiples

are also predicted. Please also note that the result from ISS FSME was obtained by di-

rectly subtracting the ISS prediction result from the data without an adaptive procedure,

whereas the result from SRME was obtained by combining the SRME free-surface multiple

prediction and the adaptive procedure.

Comparing the primary in the data (figure 17) with the multiple-removal result after

ISS FSME (figure 15), we find that, with the accurate multiple prediction, the ISS FSME

has surgically removed the free-surface multiple and recovered the primary.

Comparing the original data (figure 12) with the result after SRME + adaptive (figure

16), we notice, combining the approximate multiple prediction with the adaptive subtrac-

tion, the SRME can successfully remove the isolated multiple. The isolated free-surface

multiple in figure 12 is removed in figure 16. In figure 16 the arrows point to the removed

free-surface multiple. But the adaptive procedure can easily damage the primary which

interferes with the multiple (red circle in figure 16). It is worth mentioning that, we em-

ployed least-square (L2-norm) energy minimization adaptive subtraction, which is a current

standard practice in the industry, to remove the predicted free surface multiple event from

the data in figure 16.

Figures 18 to 22 provide trace plots to examine the results in detail at different offsets.

In these trace plots, red, blue and green lines represent actual data, ISS FSME multiple

prediction and SRME multiple prediction, respectively. From the offsets 100m, 500m, 1000m

and 1250m, where primary and multiple do not overlap, we can clearly see the ISS multiple

prediction matches the actual multiple in the data, whereas the SRME prediction shows a
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disagreement.

Notice that, at offset 750m, the primary and multiple overlap. figure 23 shows the

comparison between the actual primary (blue line) with the multiple-removal result after

ISS FSME (red line) and the multiple-removal result after SRME+adaptive (green line) at

offset 750m. This figure shows the primary can be recovered by ISS FSME whereas the

SRME combined with the adaptive could damage the primary.

For test 2 in which the input data have random noise, figures 24 to 29 show the synthetic

input data, multiple prediction results from ISS FSME, SRME, results after the ISS FSME

and SRME+adaptive, and the actual primary, respectively. Similarly, figures 30 to 35

provide trace plots. Examining these comparisons, we can draw the similar conclusion as

in the case without noise.

A third set of comparisons

Weglein et al. (2003) showed the model-type independent properties of both ISS free-surface

multiple elimination algorithm and internal multiple attenuation algorithm. The meaning of

model-type independent is that the the removal of free-surface multiples is achievable with

precisely the same algorithm for an entire class of earth model types. The members of the

model type class include acoustic, elastic and certain anelastic media. Matson (1997) studied

and demonstrated the effectiveness of ISS elastic multiple removal from multicomponent

land and ocean bottom seismic data. Here, we provide a numerical example to demonstrate

and confirm the effectiveness of the ISS FSME algorithm for an absorptive medium.

The input data is generated based on model show in figure 11, with Q values 200,100,

and 100 for three layers from top to bottom. The analytic input data is generated using
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the analytic forms of different events (see e.g., equation 4 for a primary) and a constant Q

model (known as frequency independent Q model), see Kolsky (1953). Figures 36, 37 and 38

show the input data, ISS free-surface multiple prediction and SRME free-surface multiple

prediction, respectively. Figures 39 and 40 show the result after the ISS FSME and SRME

+ adaptive, respectively. Figures 42 to 46 show the trace comparison between the input

data, ISS free-surface multiple prediction and SRME free-surface multiple prediction at

offset 100m, 500m, 750m, 1000m, 1250m. Figure 47 show the trace comparison at offset

750m between the actual primary, result after the ISS FSME and result after the SRME

+ adaptive. Examining the result of this test, we can conclude that, for data generated by

an acoustic medium that’s absorptive, the same ISS FSME algorithm remains effective to

accurately predict the free-surface multiple and can surgically remove free-surface multiples

that interfere with primaries, without damaging primaries. We have numerically confirmed

that the ISS FSME algorithm remains effective with data from an absorptive medium. That

is consistent with the model type independent nature of the algorithm.

The ISS FSME is more computational costly than the SRME. The ISS free-surface

multiple prediction equation is in wavenumber-frequency domain, the obliquity factor in

it (2iq) precludes the transform from wavenumber-frequency domain to space-frequency

to obtain a convolutional equation (which is cheaper) as in SRME free-surface multiple

prediction.
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DISCUSSION

Providing pre-requisites of the ISS FSME algorithm

The ISS FSME has the pre-requisites: source signature estimation, removal of reference

waves, and source and receiver-side deghosting. Providing these pre-requisites is relatively

mature for marine application. Advances in acquisition (e.g. over/under cable and dual-

sensor towed streamer), have made the requirement of the following more effective meth-

ods realizable. Weglein and Secrest (1990), Osen et al. (1998), and Tan (1999) provide

effective methods to estimate the source signature and radiation pattern using Green’s the-

orem. For the removal of the reference waves, the distinct advantages (e.g., (1) no need

for Fourier transforms over receivers and sources, and (2) can accommodate a horizontal

or non-horizontal measurement surface) of applying Green’s theorem method on marine

data have been demonstrated by Weglein et al. (2002b); Zhang (2007); Mayhan and We-

glein (2013). For deghosting, the industry widely used P − Vz method (e.g., Amundsen

(1993)) can be effective when the measurement surface is horizontal. The Green’s the-

orem based deghosting method (Weglein et al. (2002a); Zhang (2007); Mayhan (2013))

has been extended to accommodate a depth-variable cable by the recent work of Wu and

Weglein (2017), Zhang (2017) and Shen (2017). To provide the pre-requisites for on-land

application, the recent work of Wu and Weglein (2014, 2015, 2016a,b) has contributed to

extending off-shore Green’s theorem preprocessing for wavelet estimation, reference waves

(including ground roll) prediction and removal, and deghosting to the on-shore elastic case,

in preparation for on-shore processing.
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A new adaptive criteria that aligned with the algorithm itself

We have showed, given its pre-requisites, the ISS FSME will predict free-surface multiples

with an accurate time and an accurate amplitude. These predicted multiples can be used

to surgically remove free-surface multiples that interfere with primaries, without damaging

the primaries. In practice, an adaptive step could still be needed. The energy-minimization

criteria is viewed (by some thoughtful individuals) as the biggest impediment to effective

multiple removal under complex circumstances. New adaptive criteria need to be developed.

We are developing a new adaptive criteria derived as a property of the multiple removal

algorithm. One candidate criteria is proposed in Weglein (2012).

CONCLUSION

We examined the origin of the missing obliquity factor in the SRME prediction step. We

then used 1D prestack examples for a quantitative comparison of the free-surface-multiple

prediction between the ISS FSME and SRME methods. The ISS FSME method provides a

toolbox capability and option for a more accurate prediction of free-surface multiples. There

are circumstances where this new and more effective capability might not be needed. For

example, to remove isolated free-surface multiples, an approximated free-surface multiple

prediction plus an adaptive subtraction by SRME method might be sufficient and suggested

due to its less computational costs. However, there are many circumstances that this new

capability is preferred. For example, (1) to remove a free-surface multiple that is interfering

with a primary without damaging the primary, by providing a more accurate free-surface

multiple prediction and relying less on the adaptive step. (2) And when it is unclear if a

free-surface multiple is (or is not) interfering with a primary, the ISS FSME would be a
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prudent choice. When this capability is needed, the ISS FSME method provides an option

in the toolbox.
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APPENDIX A

THE ISS AND ITS SUBSERIES FOR FREE-SURFACE MULTIPLE

ELIMINATION

Before the derivation of the Inverse Scattering Series (ISS) Free-Surface Multiple Elimina-

tion (FSME), we first provide (following Weglein et al. (2003)) a very brief introduction

and background on the scattering series for solving seismic forward and inverse problems.

The seismic forward problem

The seismic forward modeling problem is to predict the wavefield in a medium when the

medium properties that govern wave propagation in the medium and the source that gen-

erates the wavefield are prescribed. For example, for an acoustic, one parameter (variable

velocity, constant density) medium, the single frequency wave equation for the pressure field

due to a localized Dirac delta function source at ~rs

[∇2 + k2]G(~r, ~rs, ω) = −δ(~r − ~rs), (A-1)

where k = ω/c(~r), ω is the temporal frequency and c(~r) is the velocity configuration. The

wavefield G(~r, ~rs, ω) at ~r due to source at ~rs can be modeled directly using e.g., a finite

difference, finite element, Lattice Boltsman method given the medium properties c(~r) and

the source function.

In scattering theory, the forward problem is derived differently. Scattering theory is a

form of perturbation theory. That is, in scattering theory, the actual medium is separated

into two parts, one part is called reference (the unperturbed) medium, the other part is called

the perturbation (the difference between the actual medium and the reference medium). In
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general, we can express the differential equations governing wave propagation in the actual

medium and reference medium as

LG = −δ(~r − ~rs), (A-2)

and

L0G0 = −δ(~r − ~rs), (A-3)

respectively. In the acoustic (variable velocity, constant density) model of equation A-1,

L = ∇2+k2 where k = ω/c(~r). L, L0 here are general differential operators in the actual and

reference medium, respectively. G, G0 are the actual and reference wavefields, respectively.

δ is a Dirac delta source function, and ~r, ~rs are the receiver and source locations, respectively.

The perturbation differential operator is defined as V ≡ L−L0. Notice that the differential

operators L and L0 contain the properties in the actual and the reference media that govern

wave propagation in those medium, respectively. Different Earth model-types are described

by different forms of operators L and L0. These operators contain the (spatially variant)

parameters of the specific earth model type (e.g., acoustic, elastic, anisotropic and anelastic).

For example, for an acoustic, variable velocity constant density model type, L = ∇2 + k2,

where k = ω/c(~r) as illustrated in equation A-1. L0 = ∇2 + k2, where k0 = ω/c0(~r) as in

[∇2 + k20]G0(~r, ~rs, ω) = −δ(~r − ~rs).

We can express the actual medium differential operator L in terms of a reference medium

differential operator L0 and a perturbation operator V as L = L0 + V . The perturbation

operator is defined as V = L− L0. Thus, equation A-2 can be written as

(L0 + V )G = −δ, (A-4)
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Rearranging the above expression as follows,

L0G = −δ − V G,

G = −L−10 δ − L−10 V G (A-5)

Now substituting δ = −L0G0 (equation A-3) and considering L−10 = −G0, we have,

G = L−10 L0G0 − L−10 V G,

G = G0 +G0V G. (A-6)

The last equation A-6 is called the Lippmann-Schwinger equation (e.g., Taylor, 1972).

The Lippmann-Schwinger equation is an operator relationship between G (the wavefield in

the actual medium), G0 (the wavefield in the reference medium) and V (the perturbation).

G appears on both sides of equation A-6. To solve A-6 for G we can treat G = G0 (the

first term on the right hand side of A-6) as a first approximation for G. Then substituting

G = G0 on the right hand side of A-6, we find an approximation for G as G0 + G0V G0,

and then once again substitute this expression for G on the right hand side of A-6 we find

an updated approximation for G as

G0 +G0V G0 +G0V G0V G0. (A-7)

Then, continuing this successive substitution process for G on the right hand side of A-6,

we find,

G = G0 +G0V G0 +G0V G0V G0 +G0V G0V G0V G0 + · · · . (A-8)

The difference between the actual wavefield G and reference wavefield G0 is defined as

scattered wavefield, ψs = G−G0.

The seismic forward problem is solved in scattering theory by equation A-8, i.e., given

the reference wavefield G0 and perturbation V (the right hand side of A-8), equation A-8
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can be used as a forward modeling tool to obtain the actual wavefield G (the left hand of

A-8). The recorded seismic data corresponds to the wavefield evaluated on the measurement

surface.

The seismic inverse problem

The seismic inverse problem is to solve for the medium properties L in terms of measured

wavefield and the source.

The seismic inverse problem is solved in scattering theory by first solving for V . Then

V is added to the reference medium operator L0 to obtain the actual medium operator L.

To derive the inverse scattering method to solve for V , let’s first examine the forward series

A-8. We note that equation A-8 has the form of a generalized geometric series (Weglein,

2017)

G−G0 = S = ar + ar2 + ar3 + ... =
ar

1− r
, (A-9)

for |r| < 1, where we have identified in our ??? analog a = G0 and r = V G0. If we identify

S1 = ar, S2 = ar2, ..., as the portion of S linear in r, quadratic in r, etc, then, equation A-9

becomes

S = S1 + S2 + S3 + · · · = ar

1− r
. (A-10)

Solving A-10 for r, in terms of S/a produces an inverse geometric sereis

r =
S/a

1 + S/a
= S/a− (S/a)2 + (S/a)3 + · · · ,= r1 + r2 + r3 + · · · , (A-11)

when |S/a| < 1, where rn is the portion of r that is nth order in S/a.

For the seismic inverse problem, we associate S with the recorded values of the scattered

wavefield S = (ψs)ms = (G−G0)ms, and the forward series follow from treating the forward

21



solution as S in terms of V , and the inverse series as V in terms of S. The inverse series is

the analog of equation A-11, where r1, r2, · · · are replaced with V1, V2, · · · :

V = V1 + V2 + V3 + · · · , (A-12)

where Vn is the portion of V that is nth order in the data, D. Substituting equation A-12

into equation A-8 and evaluating both sides of equation A-8 on the measurement surface,

and setting terms of equal order in the data equal, peoduces the following set of equations

(ψs)ms = (G0V1G0)ms, (A-13)

0 = (G0V2G0)ms + (G0V1G0V1G0)ms, (A-14)

0 = (G0V3G0)ms + (G0V2G0V1G0)ms + (G0V1G0V2G0)ms + (G0V1G0V1G0V1G0)ms, (A-15)

0 = (G0VnG0)ms + (G0V1G0Vn−1G0)ms + · · ·+ (G0V1G0V1G0V1 · · ·G0V1G0)ms. (A-16)

V1 can be solved in equation A-13 using the measured scattered wavefield (ψs)ms and the

reference wavefield G0. Then, substitute V1 into equation A-14, solve for V2 as in equation

A-13. In this manner, we can compute any Vn only using the measured scattered wavefield

(ψs)ms and the reference wavefield G0. Hence V =
∑∞

n=1 Vn is an explicit direct inversion

solution, and doesn’t require any subsurface information. The inverse step in A-13 - A-16

for V1, V2, V3, ... involves inverting the same unchanged operator G0 and when the reference

medium is homogeneous that matrix inverse is analytic (Weglein et al., 2003).

The inverse scattering series methods were first developed by Moses (1956), Prosser

(1969) and Razavy (1975). Weglein et al. (1981) and Stolt and Jacobs (1980) applied

the inverse scattering series methods to extract multidimensional earth information from

seismic data. Carvalho (1992) performed empirical tests of the ISS method for a normal

incident plane wave on a 1D acoustic medium. The result indicated the full series only
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convergences when the difference between the actual Earth’s acoustic velocity and reference

velocity (water velocity) is less than 11%. In response, the idea of isolated task-specific

subseries was developed: (1) free-surface multiple elimination; (2) internal multiple at-

tenuation/elimination; (3) Q compensation without knowing or estimating Q; (4) depth

imaging; and (5) inversion (parameter estimation). The identification of terms in the ISS

to be included in a given task-specific subseries used several different types of analysis with

testing of new concepts to evaluate, refine and develop embryonic thinking largely based on

forward series processes and analogues and physical intuition (Weglein et al., 2003). For ex-

ample, for free-surface multiples, understanding how the forward scattering series produces

a free-surface multiple event provides a “hint” where the inverse process might be located.

That “hint”, due to a symmetry between event creation and event removal, turns out to be

useful. For internal multiples location of terms that perform attenuation and elimination is

described in (Weglein et al., 2003) page R55-R62. For the purpose of this paper, it is useful

to review the thinking behind locating the ISS subseries for removing free-surface multiples.

Gfs
0 corresponds to a wave due to a Dirac delta point source in the water column

that propagates up and reflects off the free-surface and has a field point below the free-

surface. In the absence of a free surface, a forward series equation (A-8) describing the

data is constructed from the direct propagating Green’s function, Gd
0, and the perturbation

operator, V .

With the free surface present, the forward series is constructed from G0 = Gd
0 +Gfs

0 and

the same perturbation operator, V . Hence, Gfs
0 is the sole difference between the forward

series with and without the free surface; therefore Gfs
0 is responsible for generating those

events that owe their existence to the presence of the free surface, i.e., ghosts and free-

surface multiples. In the inverse series, equations (A-13) to (A-16), it is reasonable to infer
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that Gfs
0 will be responsible for all the extra tasks that inversion needs to perform when

starting with data containing ghosts and free-surface multiples rather than data without

those events. Those extra inverse tasks include deghosting and the removal of free-surface

multiples.

The inverse series expansions, equations (A-13) to (A-16), consist of terms (G0VnG0)m

with G0 = Gd
0+Gfs

0 . Source and receiver deghosting is realized by removing the two outside

G0 = Gd
0 +Gfs

0 functions and replacing them with Gd
0.

Data is considered the measured values of scattered wavefield, equation A-13. The

source and receiver deghosted data (represented by D̃), is related to V1 as D̃ = (Gd
0V1G

d
0)m.

After the deghosting operation, the objective is to remove the free-surface multiples from

the deghosted data, D̃.

The terms in the inverse series expansions, (A-13) to (A-16), replacing D with input

D̃, contain both Gd
0 and Gfs

0 between the operators Vi. The outer Gd
0’s (rather than G0 =

Gd
0 + Gfs

0 ) indicate that the data have been source and receiver deghosted. The inner Gd
0

and Gfs
0 are where the four inversion tasks (internal multiple removal, depth imaging, Q

compensation without knowing or estimating Q, inversion/parameter estimation) reside. If

we consider the inverse scattering series and G0 = Gd
0 + Gfs

0 , and if we assume that the

data has been source and receiver deghosted (i.e., Gd
0 replaces (Gfs

0 + Gd
0) on the outside

contributions), then the terms in the series are of three types:

Type1 :
(
Gd

0ViG
fs
0 VjG

fs
0 VkG

d
0

)
ms

Type2 :
(
Gd

0ViG
fs
0 VjG

d
0VkG

d
0

)
ms

Type3 :
(
Gd

0ViG
d
0VjG

d
0VkG

d
0

)
ms
.

We interpret these types of terms from a task isolation point of view. Type 1 terms have
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only Gfs
0 between two Vi,Vj contributions; these terms when added to D̃ remove free-surface

multiples and perform no other task. Type 2 terms have both Gd
0 and Gfs

0 between two Vi,Vj

contributions; these terms perform free-surface multiple removal plus a task associated with

Gd
0. Type 3 have only Gd

0 between two Vi,Vj contributions; these terms do not remove any

free-surface multiples. The idea behind task separated subseries is two fold: 1) isolate the

terms in the overall series that perform a given task as if no other tasks exist (e.g., Type 1

above) and 2) not to return to the original inverse series with its coupled tasks involving

Gfs
0 and Gd

0, but rather restart the problem with an input data free of free-surface multiples,

D′.

With the idea of task separated subseries, the subseries for removing free-surface mul-

tiples resides in Type 1 terms. Collecting all Type 1 terms, we have

D′1 ≡D̃ = (Gd
0V1G

d
0)ms, (A-17)

D′2 =(Gd
0V2G

d
0)m = −(Gd

0V1G
fs
0 V1G

d
0)ms. (A-18)

D′3 =− (Gd
0V1G

fs
0 V1G

fs
0 V1G

d
0)ms

− (Gd
0V2G

fs
0 V1G

d
0)ms

− (Gd
0V1G

fs
0 V2G

d
0)ms (A-19)

· · ·

D′1 ≡ D̃ is the first term; it is the seismic data after the removal of direct wave and source

and receiver deghosting.

D′3 can be simplified as (see e.g., Weglein et al. (2003))

D′3 = (Dd
0V1G

fs
0 V1G

fs
0 V1G

d
0)ms. (A-20)
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Equation A-17 can be expressed as follows,

D′1 (xg, zg, xs, zs, ω) =

∫
dx1dz1dx2dz2G

d
0 (xg, zg, x1, z1, ω)V1 (x1, z1, x2, z2, ω)Gd

0 (x2, z2, xs, zs, ω) .

(A-21)

Following the Fourier transform convention defined in e.g., Clayton and Stolt (1981); We-

glein et al. (2003),

D(kg, ks, ω) =

∫ ∫ ∫
D(xg, xs, t)e

iksxs−ikgxg+iωtdtdxgdxs, (A-22)

Fourier transforming over xg, xs on both sides of equation A-21,

D′1 (kg, zg, ks, zs, ω) =

∫
dx1dz1dx2dz2G

d
0 (kg, zg, x1, z1, ω)V1 (x1, z1, x2, z2, ω)Gd

0 (x2, z2, ks, zs, ω) .

(A-23)

Gd
0 (kg, zg, x1, z1, ω) and Gd

0 (x2, z2, ks, zs, ω) are (see e.g., Clayton and Stolt (1981))

Gd
0 (kg, zg, x1, z1, ω) = −e

−i(kgx1−qg |z1−zg |)

2iqg
= −e

−i(kgx1−qg(z1−zg))

2iqg
, (A-24)

and

Gd
0 (x2, z2, ks, zs, ω) = −e

i(ksx2+qs|z2−zs|)

2iqs
= −e

i(ksx2+qs(z2−zs))

2iqs
, (A-25)

Respectively. Notice that, in equations A-24 and A-25, we have assumed z1 > zg and

z2 > zs to remove the absolute value (|z1 − zg| → (z1 − zg), |z2 − zs| → (z2 − zs)) in the

Green’s functions. That assumption corresponds to the assumption that the perturbation

V1(x1, z1, x2, z2) is below the source zs and receiver depth zg (i.e., measurement surface). The

positive direction for z is pointing downward, hence, perturbation below the measurement

surface means z1 > zg and z2 > zs.

Substituting equations A-24 and A-25 into equation A-23, we have

D′1 (kg, zg, ks, zs, ω) =

∫
dx1dz1dx2dz2

e−i(kgx1−qg(z1−zg))

2iqg
V1 (x1, z1, x2, z2, ω)

ei(ksx2+qs(z2−zs))

2iqs

=
e−iqgzge−iqszs

2iqg2iqs
V1 (kg, qq, ks, qs, ω) , (A-26)
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where we have recognize the integrals over x1, z1, x2, z2 as Fourier transforms.

Similarly, in Equation A-18,

D′2(xg, zg, xs, zs, ω) =
(
Gd

0(xg, zg, x1, z1)V2(x1, z1, x2, z2, ω)Gd
0(x2, z2, xs, zs, ω)

)
ms

can be expressed as

D′2 (kg, zg, ks, zs, ω) =
e−iqgzge−iqszs

2iqg2iqs
V2 (kg, qq, ks, qsω) . (A-27)

And for

(
Gd

0(xg, zg, x1, z1, ω)V2(x1, z1, x2, z2, ω)Gd
0(x2, z2, xs, zs, ω)

)
ms

=

−
(
Gd

0(xg, zg, x1, z1, ω)V1(x1, z1, x2, z2, ω)Gfs
0 (x2, z2, x3, z3, ω)V1(x3, z3, x4, z4, ω)

×Gd
0(x4, z4, xs, zs, ω)

)
ms
,

(A-28)

the left hand side can be expressed as

LHS =
e−iqgzge−iqszs

2iqg2iqs
V2 (kg, qq, ks, qs, ω) . (A-29)

To solve for the right hand side of equation A-28, we have Gd
0 (kg, zg, x1, z1, ω) and

Gd
0 (x2, z2, ks, zs, ω) expressed in equations A-24, A-25, respectively. Gfs

0 (x2, z2, x3, z3, ω)

can be expressed as follows (see figure A-1),

Gfs
0 (x2, z2, x3, z3, ω) =

1

2π

∫
dk
eik(x2−x3)eiq(z2+z3)

2iq
, (A-30)

Notice that, we have assumed the free-surface is at depth z = 0 in this expression. The

right hand side now can be expressed as follows,

RHS = −Gd
0V1G

fs
0 V1G

d
0 = −

∫
dx1dz1dx2dz2dx3dz3dx4dz4

e−i(kgx1−qg(z1−zg))

2iqg

× V1 (x1, z1, x2, z2, ω)
1

2π

∫
dk
eik(x2−x3)eiq(z2+z3)

2iq
V1 (x3, z3, x4, z4, ω)

ei(ksx4+qs(z4−zs))

2iqs

= −e
−iqgzge−iqszs

2iqg2iqs

1

2π

∫
dkV1 (kg, qq, k, q, ω)

1

2iq
V1 (k, q, ks, qs, ω) . (A-31)
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Canceling common factors on both sides (equations A-29 and A-31), we have

V2(kg, ks, ω) = − 1

2π

∫
dkV1(kg, k, ω)

1

2iq
V1(k, ks, ω). (A-32)

Substituting V1 with D′1 using equation A-26 and V2 with D′2 using equation A-27, we

obtain the second term D′2 as follows,

D′2(kg, ks, ω) = − 1

2π

∫
dkD1(kg, k, ω)(2iq)eiq(zg+zs)D1(k, ks, ω). (A-33)

Next, we show one example from Zhang (2007) to demonstrate that the ISS free-surface

multiple-prediction algorithm predicts free-surface multiples with accurate time and ampli-

tude.

Figure A-2 shows the model used to generated input data. The generated data contain

the reference waves (yellow line), source and receiver ghosts (dashed blue line), free-surface

multiples (black line), and primaries (red line). This data is first pre-processed by Green’s

theorem to remove reference waves, source and receiver ghosts, then, the pre-processed data

(contains only primaries and free-surface multiples, see solid line in figure A-3) enter the

ISS FSME algorithm. The result after the ISS FSME is shown in figure A-3 using dashed

line. Notice that, the result after the ISS FSME is obtained by D′2 +D′1. When D′2 is added

to D′1, two things happen, the first-order free-surface multiple is eliminated, all higher-order

free-surface multiples are altered, and prepared for their removal by D′3, D
′
4, etc.

APPENDIX B

COMPARING THE ISS FSME WITH SRME

In appendix A, we have provided a brief derivation of the ISS FSME algorithm. The ISS

FSME inputs seismic data that is generated by monopole sources (or source arrays) and that
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has the reference waves and source ghosts, receiver ghosts and source-and-receiver ghosts

removed. This algorithm predicts the exact time and exact amplitude of all free-surface

multiples at all offsets. That provides a good starting point and opportunity to understand

under what set of approximations we can derive the SRME prediction with approximate

prediction of the amplitude and phase of the free-surface multiples. That then locates and

identifies the origin of the missing physics in the SRME prediction. It turns out that the

SRME prediction corresponds to a data with the reference waves removed and with source

and receiver deghosted data, but where the source consists of a vertically separately dipole

source in the water column. The vertically-separated dipole source is defined as the limit

of two vertically separately (of opposite sign) Dirac delta sources as the distance between

them approaches zero and the source amplitude goes to infinity, in such a way that the

product of source amplitude and the distance between them remains constant. Since a

data due to a vertically dipole source is not realizable in practice, the idea within SRME

is to somehow approximate what a dipole source would produce by keeping the source side

ghost (see figure B-1). That substitution is the origin of the missing or erroneous physics

and results in an approximate prediction of both amplitude and phase of the free-surface

multiples. To put a light on that we examine the consequence of that substitution on the

exact ISS FSME prediction in Appendix B.

Follow the SRME prescription to input the data with only direct wave and receiver-side

ghosts removed (i.e., without source-side deghosting), in this case, equations A-17 to A-18

become

D′′1 =
(
Gd

0V1

(
Gd

0 +Gfs
0

))
ms
, (B-1)

D′′2 =
(
Gd

0V2

(
Gd

0 +Gfs
0

))
ms

= −
(
Gd

0V1G
fs
0 V1

(
Gd

0 +Gfs
0

))
ms
. (B-2)
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With

Gfs
0 (x2, z2, ks, zs, ω) =

ei(ksx2+qs(z2+zs))

2iqs
,

Equation B-1 now becomes,

D′′1 (kg, zg, ks, zs, ω) =
e−iqgzg

(
e−iqszs − eiqszs

)
2iqg2iqs

V1 (kg, qq, ks, qs, ω) (B-3)

The left part of Equation B-2 becomes,

D′′2 (kg, zg, ks, zs, ω) =
e−iqgzg

(
e−iqszs − eiqszs

)
2iqg2iqs

V2 (kg, qq, ks, qs, ω) (B-4)

The right part of equation B-2 becomes,

−
e−iqgzg

(
e−iqszs − eiqszs

)
2iqg2iqs

1

2π

∫
dkV1 (kg, qq, k, q, ω)

1

2iq
V1 (k, q, ks, qs, ω) (B-5)

We have,

V2(kg, ks, ω) = − 1

2π

∫
dkV1(kg, k, ω)

1

2iq
V1(k, ks, ω) (B-6)

Now, substituting V1, V2 with D′′1 , D
′′
2 in equations B-3 and B-4, respectively, we have

D′′2 (kg, zg, ks, zs, ω) =
1

2π

∫
dkD′′1 (kg, zg, k, zs, ω)

2iqeiqzg

(eiqzs − e−iqzs)
D′′1 (k, zg, ks, zs, ω) .

(B-7)

Let’s take a look at the factor (eiqzs − e−iqzs) in the denominator. For a source that is close

to the free-surface (which means zs is small, since the free-surface is assumed to be at depth

z = 0 in this case), the factor (eiqzs − e−iqzs) can be approximated by

eiqzs − e−iqzs ≈ iqe−iqzs2zs.

Under this approximation, equation B-7 becomes

D′′2 (kg, zg, ks, zs, ω) =
1

2π

∫
dkD′′1 (kg, zg, k, zs, ω)

2iqeiqzg

(eiqzs − e−iqzs)
D′′1 (k, zg, ks, zs, ω)

≈ 1

2π

∫
dkD′′1 (kg, zg, k, zs, ω)

(
eiq(zg+zs)

)
D′′1 (k, zg, ks, zs, ω)

1

zs
(B-8)
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Now, if receiver in the actual experiment is close to the free-surface (zg is small), then

equation B-8 will be proportional to

1

2π

∫
dkD′′1 (kg, zg, k, zs, ω)D′′1 (k, zg, ks, zs, ω) . (B-9)

Inverse Fourier transform on kg and ks, we have

1

2π

∫
dkD′′1(xg, k, ω)D′′1(k, xs;ω).

Expressing D′′1(xg, k, ω) and D′′1(k, xs;ω) using their Fourier Transforms,

1

2π

∫
dk

∫
dx′D′′1(xg, x

′;ω)eikx
′
∫
dx′′D′′1(x′′, xs;ω)e−ikx

′′
.

Rearrange the above equation,

1

2π

∫
dx′
∫
dx′′D′′1(xg, x

′;ω)D′′1(x′′, xs;ω)

∫
dkeik(x

′−x′′).

We have

1

2π

∫
dx′
∫
dx′′D′′1(xg, x

′;ω)D′′1(x′′, xs;ω)

∫
dkeik(x

′−x′′)

=
1

2π

∫
dx′
∫
dx′′D′′1(xg, x

′;ω)D′′1(x′′, xs;ω)

(
2πδ(x′ − x′′)

)
=

∫
dxD′′1(xg, x;ω)D′′1(x, xs;ω). (B-10)

We obtain the convolutional SRME free-surface-multiple-prediction equation. Hence, the

industry standard free-surface algorithm, SRME, can be derived as an approximation to

the ISS FSME algorithm. The ISS FSME predicts the exact time and amplitude of all

free-surface multiples of different orders at all offsets. SRME predicts the approximate

amplitude and phase of free surface multiples at all offsets.
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Figure 1: Illustration of different seismic events in marine environment. Yellow solid line:

reference waves; Green and light blue dashed: source ghost and receiver ghost, respectively;

Dark blue dashed line: free surface multiple; Orange dashed line: internal multiple; solid

black line: primary.
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Figure 2: ISS free-surface multiple prediction algorithm and SRME free-surface multiple

prediction algorithm
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Figure 3: Three sets of comparisons between the ISS free-surface multiple prediction and

SRME free-surface multiple prediction
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Figure 4: A 1D subsurface model with a horizontal reflector and a free-surface. –
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Figure 5: Input data for the ISS free-surface multiple prediction. Notice that, only primaries

and free-surface multiples are generated for ISS FSME input.
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Figure 6: Input data for the SRME free-surface multiple prediction. Notice that, primaries

and free-surface multiples and their source ghosts are generated for SRME input
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Figure 7: ISS free-surface multiple prediction (D′2 in equation 1) with the input in figure 5.
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Figure 8: SRME free-surface multiple prediction (equation 3) with the input in figure 6.
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Figure 9: A trace comparison at 500m offset between the input of the ISS FSME and its

prediction. The red and blue line represent input data to the ISS FSME and its prediction,

respectively. We can see the ISS free-surface multiple prediction agrees with the actual free-

surface multiple very well. Notice that, the predicted free-surface multiple has opposite sign

compared with the actual free-surface multiple, we first flip the polarity of the prediction,

then compare it with the actual data for easy comparison.
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Figure 10: A trace comparison at 500m offset between the input of the SRME and its

prediction. The red and blue represent the input data to the SRME and its prediction

for free-surface multiples, respectively. We can see from this trace comparison, the SRME

provides an approximate free-surface multiple prediction.

–

52



X (m)

Z
 (

m
)

 

 

500 1000 1500 2000

200

400

600

800

1000 1500

1600

1700

1800

1900

2000

2100

2200

2300

Figure 11: A 1D subsurface model with two primary events and one free-surface multiple

event.
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Figure 12: Input data generated based on the model shown in figure 11. –
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Figure 13: Prediction of free-surface multiple by the ISS FSME (D′2 in equation 1) using

the input data shown in figure 12.
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Figure 14: Prediction of free-surface multiple by the SRME using the input data shown in

figure 12.
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Figure 15: Free-surface multiple removal result after directly subtracting the ISS prediction

result (figure 13) from the data (figure 12).
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Figure 16: Free-surface multiple removal result by combing the SRME prediction (figure

14) and adaptive subtraction.
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Figure 17: Actual primaries in the data shown in figure 12. –
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Figure 18: Trace comparison at Offset 100m. Red, blue and green line represent actual

data, ISS free-surface multiple prediction and SRME prediction, respectively.
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Figure 19: Trace comparison at Offset 500m. Red, blue and green line represent actual

data, ISS free-surface multiple prediction and SRME prediction, respectively.
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Figure 20: Trace comparison at Offset 750m. Red, blue and green line represent actual

data, ISS free-surface multiple prediction and SRME prediction, respectively.
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Figure 21: Trace comparison at Offset 1000m. Red, blue and green line represent actual

data, ISS free-surface multiple prediction and SRME prediction, respectively.
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Figure 22: Trace comparison at Offset 1250m. Red, blue and green line represent actual

data, ISS free-surface multiple prediction and SRME prediction, respectively.
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Figure 23: Trace comparison at Offset 750m. Red, blue and green represent the actual

primary, result after ISS FSME and result after the SRME + adaptive, respectively.
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Figure 24: Input data with random noise added on the analytic data. –
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Figure 25: Prediction of free-surface multiple by the ISS FSME (D′2 in equation 1) using

the input data shown in figure 24.
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SRME Pred with noise
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Figure 26: Prediction of free-surface multiple by the SRME using the input data shown in

figure 24.
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Figure 27: Free-surface multiple removal result after directly subtracting the ISS prediction

result (figure 25) from the data (figure 24).
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SRME Adaptive Sub with noise
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Figure 28: Free-surface multiple removal result by combing the SRME prediction (figure

26) and adaptive subtraction.
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Figure 29: Actual primaries in the data shown in figure 24. –
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Figure 30: Trace comparison at Offset 100m. Red, blue and green line represent actual

data, ISS free-surface multiple prediction and SRME prediction, respectively.
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Figure 31: Trace comparison at Offset 500m. Red, blue and green line represent actual

data, ISS free-surface multiple prediction and SRME prediction, respectively.

–

73



0.95 1 1.05 1.1 1.15
−2

−1

0

1

2
x 10

−4 Offset 750 m (noise)

Time(s)

A
m

p
lit

u
d

e

Figure 32: Trace comparison at Offset 750m. Red, blue and green line represent actual

data, ISS free-surface multiple prediction and SRME prediction, respectively.
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Figure 33: Trace comparison at Offset 1000m. Red, blue and green line represent actual

data, ISS free-surface multiple prediction and SRME prediction, respectively.
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Figure 34: Trace comparison at Offset 1250m. Red, blue and green line represent actual

data, ISS free-surface multiple prediction and SRME prediction, respectively.
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Figure 35: Trace comparison at Offset 750m. Red, blue and green represent the actual

primary, result after ISS FSME and result after the SRME + adaptive, respectively.
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Figure 36: Input data generated from an absorptive medium. –
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Figure 37: Prediction of free-surface multiple by the ISS FSME (D′2 in equation 1) using

the input data generated by an absorptive medium shown in figure 36.
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Figure 38: Prediction of free-surface multiple by the SRME using the input data generated

by an absorptive medium shown in figure 36.
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Figure 39: Free-surface multiple removal result after directly subtracting the ISS prediction

result (figure 37) from the data (figure 36).
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Figure 40: Free-surface multiple removal result by combing the SRME prediction (figure

38) and adaptive subtraction.
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Figure 41: Actual primaries in the input data shown in figure 36. –
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Figure 42: Trace comparison at Offset 100m. Red, blue and green line represent actual

data, ISS free-surface multiple prediction and SRME prediction, respectively.
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Figure 43: Trace comparison at Offset 500m. Red, blue and green line represent actual

data, ISS free-surface multiple prediction and SRME prediction, respectively.
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Figure 44: Trace comparison at Offset 750m. Red, blue and green line represent actual

data, ISS free-surface multiple prediction and SRME prediction, respectively.
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Figure 45: Trace comparison at Offset 1000m. Red, blue and green line represent actual

data, ISS free-surface multiple prediction and SRME prediction, respectively.
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Figure 46: Trace comparison at Offset 1250m. Red, blue and green line represent actual

data, ISS free-surface multiple prediction and SRME prediction, respectively.
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Figure 47: Trace comparison at Offset 750m. Red, blue and green represent the actual

primary, result after ISS FSME and result after the SRME + adaptive, respectively.
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Figure A-1: Green’s function Gfs
0 , travels up from the source to the free-surface and then

down to the receiver.
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Figure A-2: Model used to generated data in Zhang (2007) to test the ISS FSME. –

91



Figure A-3: A trace comparison between the input data D′1 (solid line) to the ISS FSME

and output data D′1+D′2 after the ISS FSME. When D′2 is added to D′1, two things happen,

the first-order free-surface multiple is eliminated, all higher-order free-surface multiples are

altered, and prepared for their removal by D′3, D
′
4, etc.
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Figure B-1: (a) Monopole source and its 2D Green’s function in kx, ω domain. (b) Dipole

source and its 2D Green’s function. (c) Monopole source & its source ghosts and their 2D

Green’s functions. Free-surface is at depth z = 0. q =
√

ω2

c0
− k2x, where ω, kx and c0 are

the temporal frequency, horizontal wavenumber, and medium velocity.
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