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ABSTRACT

Liu, F. and Weglein, A.B., 2014. The first wave equation migration RTM with data consisting of

primaries and internal multiples: theory and 1D examples. Journal of Seismic Exploration, 23: 357-
366.

Reverse time migration (RTM) is the cutting-edge imaging method used in seismic
exploration. In earlier RTM publications, density was often chosen and used to balance a medium
with velocity variation, such that the acoustic impedance - the product of velocity and density - stays
constant. Thus, normal incidence reflections from sharp boundaries are avoided. In order to be more
complete, consistent, realistic, and predictive, general velocity and density variations (not
constrained by impedance matching) are intentionally included in our study so that we can test the
impact of reflections on the first wave equation migration RTM algorithms. The major objectives
of this article are to advance our understanding and to provide concepts, added imaging capabilities,
and new algorithms for RTM. Although our objective of extracting useful subsurface information
from recorded data is not different from that of well-known previous RTM publications, our method
is different. Although all current methods utilize the wave equation, the imaging condition they call
upon, the time and space coincidence of up- and down-going waves, ultimately results in an
asymptotic approximate imaging algorithm. All current industry applied RTM algorithms do not
correspond to predicting a coincident source and receiver experiment at depth at t = 0. That imaging
principle is the defining property of wave equation migration (WEM). The method of this paper
represents WEM for RTM. In this paper, we present the first WEM RTM imaging tests, with a
discontinuous reference medium and outputting the correct image locations and distinct reflection
coefficients from above and below each reflector, with primaries and internal multiples in the data.
There is "no cross talk" or any other artifacts as reported by other methods that seek to migrate data
with primaries and multiples. That is an implementation and analysis of Weglein et al. (2011a,b)
with primaries and internal multiples in the data.
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INTRODUCTION

One of the major early objectives of Reverse Time Migration (RTM) is
to obtain a better image of salt flanks and subsalt targets through diving waves
than can often be obtained by one way migration imaging through the complex
overburden. The key new capability of the RTM method compared with
one-way migration algorithms is to allow two-way wave propagation in the
imaging procedure. This article follows closely the idea established in Weglein
et al. (2011a,b): achieving a Green’s function with vanishing Dirichlet and
Neumann boundary conditions at the deeper boundary, to eliminate the need for
measurements at depth.

As stated in, e.g., Whitmore (1983); Baysal et al. (1983); Luo and
Schuster (2004); Fletcher et al. (2006); Liu et al. (2009) and Vigh et al. (2009),
accurate medium properties above the target are required for RTM and that
properly is shared with the new RTM method developed/progressed in this
paper. One major difference is that in most RTM algorithms in the industry, a
smoothed version of the velocity is used in the imaging procedure to avoid
reflections from the velocity model itself, while the exact velocity model is used
in the example in this article. We adopt the notations of the aforementioned
articles as much as possible while introducing some minor modifications to
allow smooth expansion/extension into new territory.

The major contributions of this article are:

® It provides the first example that predicts the source and receiver
experiment at depth starting with data that consists of primaries and
internal multiples. The new method to predict the experiment in the
volume derives from a classic, well-defined and well-understood
math-physics starting point. The latter is the essential and defining
ingredient for WEM RTM and is realized by developing a Green’s
function with both Dirichlet and Neumann boundary conditions at the
lower surface of the volume.

® It incorporates both velocity and density variation for WEM RTM.

In this paper, G; and Gj .are used to denote causal and anti-causal
Green’s functions, respectively. GJ" is used to denote the Green’s function with
vanishing Dirichlet and Neumann boundary conditions at the lower surface of
the volume. k = w/c, where c, is the constant velocity of the reference medium,
and w is the angular frequency.
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THEORY
Green’s theorem wave-field prediction with density variation

First, let us assume the wave propagation problem in a (one-dimensional)
volume V bounded by a shallower depth A and deeper depth B:

{(0/0z")[1/p(z"](3/92") + [w/p(z)e*(z)}D("\w) = 0 , M

where A < z' < B is the depth, and p(z’) and c(z") are the density and velocity
fields, respectively., and D is the wave-field. In exploration seismology, we let
the shallower depth A be the measurement surface where the seismic acquisition
takes place. The volume V is the finite volume defined in the "finite volume
model" for migration, the details of which can be found in Weglein et al.
(2011a). We measure D at the measurement surface z' = A , and the objective
is to predict D anywhere between the shallower surface and another surface with
greater depth, z' = B. This can be achieved via the solution of the
wave-propagation equation in the same medium by an idealized impulsive source
or Green’s function:

{@/0z")[1/p(z")](0/0Z") + [w?/p(z")cXz)]}G (2,2’ ,w) = 8(z—2"), (2)

where z is the location of the source, and A < z’ < B and z increase in a
downward direction. Abbreviating Gy(z,z’,w) as G,, the solution for D in the
interval A < z < B is given by Green’s theorem:

D(z,w) = [1/pz"){D(’' ,w)(3Gy/dz') — G,[dD(z",w)/0z']}|2ZE ,  (3)

where A and B are the shallower and deeper boundaries, respectively, of the
volume to which the Green’s theorem is applied. It is identical to equation (43)
of Weglein et al. (2011a), except for the additional density contribution to the
Green’s theorem. Interested readers may find the derivation of equation (3) in
section 2 of Liu and Weglein (2013).

Note that in eq. (3), the field values on the closed surface of the volume
V are necessary for predicting the field value inside V. The surface of V
contains two parts: the shallower portion z' = A and the deeper portion z' =
B. In seismic exploration, the data at z' = B is not available. For example, one
of the significant artifacts of the current RTM procedures is caused by this
phenomenon: there are events necessary for accurate wave-field prediction that
reach z' = B but never return to z' = A. The solution, based on Green’s
theorem without any approximation, was first published in Weglein et al.

(2011a) and Weglein et al. (2011b), the basic idea can be summarized as
follows.
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Since the wave equation is a second-order differential equation, its general
solution has a great deal of freedom/flexibility. In other words, for a wave
equation with a specific medium property, there are an infinite number of
solutions. This freedom in choosing the Green’s function has been taken
advantage of in many seismic-imaging procedures. For example, the most
popular choice in wave-field prediction is the physical solution G§. In
downward continuing a one-way propagating up-going wave field to a point in
the subsurface, the anti-causal solution Gj is often used in eq. (3).

Weglein et al. (2011a,b) show that (with the G choice), the contribution
from z' = B will be zero under 1 way wave assumptions, and only
measurement is required at z' = A. For two-way propagating waves, G, will
not make the contribution for z' = B vanish. However, if both G, and dG,/0z’
vanish at the deeper boundary z’ = B, where measurements are not available,
then only the data at the shallower surface (i.e., the actual measurement surface)
is needed in the calculation. We use Gg" to denote the Green’s function with
vanishing Dirichlet and Neumann boundary conditions at the deeper boundary.

Downward continuation of both source and receiver

The original Green’s theorem in eq. (3) is derived to downward continue
the wave field (i.e., receivers) to the subsurface. It can also be used to
downward continue the sources down to the subsurface by taking advantage of

reciprocity: the recording is the same after the source and receiver locations are
exchanged.

Assuming we have data on the measurement surface: D(z,,z) (its w
dependency is ignored), we can use G5(z,z,) to downward continue it from the
receiver depth z, to the target depth z:

D(z,z) = {[0D(z,,2,)/02,]Go"(z,2,) — D(z,,2)3GQ"(z,2,)/2,}/p(z,) . (4)

Taking the d/dz; operation on eq. (4), we have a similar procedure to
downward continue dD(z,,z,)/dz, to the subsurface:

0D(z,z,)/0z; = {[3?°D(z,,z,)/02,0z|G}N(z,z,) —
[0D(z,,2,)/02,][0G5N(z,2,)/0Z,1} /p(z,) . 5)
With eqs. (4) and (5), we downward continue the data D and its partial
derivative over z, to the subsurface location z. According to reciprocity, D(z,z,)

= E(z,,z), where E(z,,z) is resulted from exchanging the source and receiver
locations in the experiment to generate D at the subsurface. The predicted data
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E(z,,z) can be considered as the recording of receiver at z, for a source located
at z. For this predicted experiment, the source is located at depth z, according
to the Green’s theorem, we can downward continue the recording at z, to any
depth shallower than or equal to z.

In seismic migration, we downward continue E(z,z) to the same
subsurface depth z with GiN(z,z,) to have an experiment with coincident source
and receiver:

E(sz) = {[aE(Zs,Z)/aZs]GgN(Z’Zs)

— E(z,,2)[0GN(z,2)/92)} p(z)) ,
= {[0D(z,z,)/3z,)GN(z,z,)
— D(z,z,)[0G3N(z,2,)/82,)}/p(z,) . (6)

If z, < z, and we assume the data is deghosted, the 3/dz, operation on
D(z,,z,) is equivalent to multiplying —ik, in this case, eq. (6) can be further

simplified:

E(z,z) = —[{[0GN(z,2)/0z] + ikGRN(z,2)}/p(z)]/D(z,2) . ™)

NUMERICAL EXAMPLES

As an example, for a 2-reflector model (with an ideal impulsive source
located at z,, the depth of receiver is z, > z, the geological model is listed in
Table 1), the data and its various derivatives can be expressed as:

D(z,.2) = (ox 20y + ay™) ,

0D(z,,z,)/0z,

(pO/Z)X_l{y - O‘yhl) s

®)
0D(z,,2)/0z; = —(p/2)x {y + ay™!) ,
02D(z,,z,)/02,0z, = (pok/2D)x {y — ay™') ,

where x = e%, y = elf%, g = 2, o = e*k@)[R, + (1 — R?)B], and B =
E::O(_ 1)"R‘1‘R§“e ik,(2n+2)[a,—a,] .

And R, = (c,0; = copp)/(€10; + €oog), and R, = (cy0, — €,0,)/(Cy0, + Cypy) are
the reflection coefficients from geological boundaries.
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Above the first reflector

For z < a,, the boundary values of the Green’s function are:

GoMz.z) = pole @7 — e M2 12ik = pyoy ' —o”'y)2ik ,

GhN(z,z,) = polox'—o7'x)/2ik ,
0GoN(z,2,)/0z, = poloy '+o7ly)/ -2 , ®
aGN(z,z,)/0z, = polox~'+o71x)/ -2
After substituting eq. (8) into eq. (7), we have:
E(z,z) = {1 + e*@~2 [R, + (1 — R})B]}/(2ik/p,y) - (10)
The result above can be Fourier transformed into the time domain to have:
E(z,z,t)/(—pyce/2) = H(t) + R{H(t — t) + (1 — R}
X i(—l)“R?R;‘“H[t -t — 2n + 2),] , (11)
n=0

where t; = (2a;, — 2z)/c, and t, = (a, — a,)/c,. Balancing out the —p,cy/2
factor*, the data after removing the direct wave is denoted as D(z,t) =
(=2/poce)E(z,2,t) — H(D):

D(z,t) = RH(t—t) + (1-R}) Y. (= 1yRIRSH[t—t,— 2n+2)t,] . (12)

n=0

Table 1. The properties of an acoustic medium with two reflectors, at depth a, and a,.

Depth Range Velocity Density
(—o.a)) Co Po
(ay, &) Cy P
(a5, ) C 02

* This factor is present in the incident wave, i.e., causal Green’s function for a homogeneous
medium with density p, and velocity c,.
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We take the imaging condition as first letting z —> a, through values
smaller than a,, and then (subsequently) taking the limit as t - 0, that is,
approaching zero from positive values, we find:

lim( lim D(z,t)) = R, , (13)
=0+ z7ay
where
af=a1—£1 81>0,
(14)

0" =0+¢ & >0,
and we obtained the image of the first reflector at the actual depth a, with the
correct reflection coefficient as amplitude.
Between the first and second reflectors

For a, < z < a,, we have:
GMNz,z) = [RN — AN Dp + (N = RA Dp /2, (1 + Rp/py]
15)
0GeN(z,2,)/0z, = [RN — N — (A — R 'V/I2k,(1 + Ry)/ko]

where N = ek@-a) ;= ek@-a) k= w/c,. Substituting eq. (15) into eq. (8),
and transforming the aforementioned result into the time domain, we have:

E(z,z,0)/(—p,c,/2) = H(t) + 2 Y (~1)"RIRIH{t — [2n(a, — a,)/c,]}

n=1

+ Y (= 1)"™RIFIRIH{t — [2z + 2na, — 2(n + Da,]/c,}
n=0

+ Y, (—1)"R'RZH{t — [2(n + 1)a, — 2na, — 2z)/c,} .

n=0

Balancing out the —p,c,/2 factor, the data after removing the direct wave
is denoted as D(z,t) = (—2/p,c,)E(z,z,t) — H(t):

D@t = 2 Y, (~1)"RIRH{t — [2n(a, — a,)/c,]}
n=1
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+ Y, (= D"™'RIHIRIH{t — [2z + 2na, — 2(n + Dajl/c,}

n=0

+ Y (~D)"R'RIH{t — [2(n + 1)a, — 2na, — 2z)/c;} ,
n=0
and after taking the t = 0* imaging condition, we have:
R —R, if(z =a + ¢g)
D(z,t) =¢ 0 if(a; <z <a) , (16)
R, if(z=a —¢)
where €,,6, = 0 and then t = 0*. Note that in the previous section, i.e., to
image above the first reflector at a;, we obtain the amplitude R, when z
approaches a, from above. In this section we image below the first reflector at
a,, the amplitude of the image is —R, when z approaches a, from below, as it
should.
Below the second reflector
For z > a,, the boundary value of the Green’s function is:
GMNz,z) = {[V'RA=NT) + RvVN—RA H]u
+ RV RA=NTY) + vOA—RA D™}
2iky(1 + R)(1 + Rylpy]
where A = ekz-a) = e*@& ) andy = ek@ ) k= w/c,.

The final downward continuation result can be expressed as:

Ez,2) = (0y/2ik,)[1 — Rye®-2) 4 (1 — R *:2z-20

(=]
X Z (_1)n+1Rr11+1Rr21eik,(2n+2)(a2~a1) ] .

n=0
The time domain counterpart of the equation above is:
E(z,2,t) = —(0,6,/2){H(t) — RH[t - (2z—2a,)/c,]

+ (1 — ROH[t — 2z—2a)/c, — 2n+2)(a,—a)lc,] .
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Balancing out the —p,c,/2 factor, the data after removing the direct wave
is denoted as D(z,t) = (—2/p,c,)E(z,z,t) — H(t):

D(z,t) = —RH[t — (2z—2a,)/c,]
+ (1 — RYH[t — (2z—2a))/c, — (2n+2)(a,—a,)/c)]
and after taking the t = O* imaging condition, we have:

D(z,t) = { , (17)
0 if (a, < z)

where ¢ = 0*. Note that in the previous section, i.e., to image between the first
and second reflectors, we obtain the amplitude R, when z approach a, from
above. In this section we image below the second reflector at a,, the amplitude
of the image is —R, when z approaches a, from below, as it should.

SUMMARY

Green’s theorem provides a solid math-physics foundation to realize that
requirement. For two way propagating waves and seismic reflection data, it calls
for a Green’s function, GBY, that vanishes along with its normal derivative, on
the lower surface of the volume. Although the expressions of GBN in this article
are analytic, they have been validated by finite-difference scheme for future
generalization of the procedure for a multidimensional éarth, the detail can be
found in Liu and Weglein (2013).

We also have reported the first wave equation migration RTM imaging
tests, with a discontinuous reference medium and images that have the correct
depth and amplitude (that is, producing the reflection coefficient at the correctly
located target) with primaries and multiples in the data. The current paper is an
extension, implementation and analysis of Weglein et al. (2011a,b) with
primaries and multiples in the data. There are no artifacts, "cross-talk" or other
problems reported in the literature with other methods for migrating primaries
and multiples for imaging and/or illumination in Weglein (2014).

To accurately predict structure and reflection coefficient information in
cases where two way propagation is necessary calls for wave equation migration
(WEM) RTM. WEM requires the production of a source and receiver
experiment in the subsurface. The two main circumstances where RTM is called
for include: (1) diving waves, in, e.g., presalt plays, and (2) when data with
primaries and multiples is being imaged and inverted. The first of these two
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circumstances will often use a smooth velocity and density model whereas the
latter requires an accurate discontinuous velocity and density model. This paper
is the first detailed, transparent and analytic demonstration of how the second
of these two applications would be carried out for wave equation migration
RTM with primaries and internal multiples in the data. For practical reasons
[smooth velocity (achievable) versus discontinuous (unachievable) velocity], the
near term added value of this first WEM RTM (compared to all current industry
applied asymptotic RTM) will be in the first of these two circumstances, for
diving waves, where we anticipate it will provide improved amplitude
information at, e.g., the imaged presalt target.
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