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Summary

A direct inverse solution is derived from the operator iden-
tity relating the change in a medium’s properties and the
commensurate change in the wavefield. The direct solu-
tion is in the form of a series, called the inverse scattering
series (ISS). Each term in the series is directly computed
in terms of the recorded data, and, without subsurface in-
formation. There are isolated task inverse scattering sub-
series that perform: free surface multiple removal, inter-
nal multiple removal, depth imaging, parameter estima-
tion and Q compensation, and each achieves its objective
directly and without subsurface information. The gen-
eral operator identity is combined with the elastic wave
equation to form a specific direct solution for changes in
elastic properties and density. This paper describes the
resulting data requirements and algorithms, a distinct ISS
parameter estimation subseries, that provides a funda-
mental framework and platform for all seismic amplitude
analysis and is directly relevant for the objectives of AVO
and FWI. A view of a balanced and appropriate role for
direct and indirect methods will be presented, as well.

Introduction

Inversion methods can be classified as direct or indirect.
An example of a direct solution is given by the solution
of the quadratic equation

ax2 + bx+ c = 0, (1)

as

x =
−b±

√
b2 − 4ac

2a
(2)

whereas an indirect solution could be to find x such that
(ax2 + bx+ c)2 is a minimum. Among indicators, identi-
fiers and examples of “indirect” inverse solutions are: (1)
model matching, (2) objective/cost functions, (3) search
algorithms, (4) iterative linear inversion and (5) methods
corresponding to necessary and not sufficient conditions,
e.g., CIG flatness.

The Operator Identity

We begin our discussion of direct inverse solutions with
the key operator identity mentioned above. Let L0, G0,
L, and G be the differential operators and Green’s func-
tions for the reference and actual media, respectively, that
satisfy:

L0G0 = δ LG = δ

where δ is a Dirac delta function. Define the perturbation
operator, V and the scattered wavefield, as follows:

V = L0 − L ψs = G−G0.

The relationship

G = G0 +G0V G (3)

is an operator identity that follows from

L−1 = L−1
0 + L−1

0 (L0 − L)L−1.

For modeling the wavefield, G, for a medium described
by L

L→ G L0, V → G

where the second form has L entering the modeling al-
gorithms in terms of L0 and V . Modeling using scatter-
ing theory requires a complete and detailed knowledge of
medium properties.

Direct Forward and Direct Inverse

The operator identity equation 3 can be solved for G as

G = (1−G0V )−1G0 (4)

and

G = G0 +G0V G0 +G0V G0V G0 + . . . . (5)

Equation 5 has the form of a generalized Geometric series

G−G0 = S = ar + ar2 + · · · = ar

1− r (6)

where we identify a = G0 and r = V G0 in equation 5,
and

S = S1 + S2 + S3 + . . . . (7)

The portion of S that is linear, quadratic, . . . in r are:

S1 = ar

S2 = ar2

...

and the sum is

S =
ar

1− r . (8)
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Solving equation 8 for r, produces the inverse geometric
series,

r =
S/a

1 + S/a
= S/a− (S/a)2 + (S/a)3 + . . .

= r1 + r2 + r3 + . . .

and is the simplest prototype inverse series, that is, the
inverse of the geometric series. For the seismic inverse
problem, we associate S with the measured data

S = (G−G0)ms = Data

and the forward and inverse series follow from treating
the forward solution as S in terms of V , and the inverse
solution from V in terms of S

V = V1 + V2 + . . . (9)

where Vn is the portion of V , that is nth order in the
data. Equation 8 is the forward series; and equation 9
is the inverse series. The identity, equation 3, provides
a Geometric forward series rather than a Taylor series.
In general, a Taylor series doesn’t have an inverse series;
however, a Geometric series has an inverse series. All
conventional current mainstream inversion, including it-
erative linear inversion and FWI, are based on a Taylor
series concept. Solving a forward problem in an inverse
sense is not the same as solving an inverse problem di-
rectly.

The r1, r2, . . . terms in

r = S/a− (S/a)2 + (S/a)3 + . . .

= r1 + r2 + r3 + . . .

generalize for the seismic inverse in terms of V1, V2, . . . ,
and G0, G, D = (G−G0)m as follows (see, e.g., Weglein
et al., 2003)

G0V1G0 =D

G0V2G0 =−G0V1G0V1G0 (10)

G0V3G0 =−G0V1G0V1G0V1G0

−G0V1G0V2G0 −G0V2G0V1G0

...

The operator identity for the 2D
heterogeneous elastic wave equation

We exemplify the method for a 2D elastic heterogeneous
earth. The starting point for the 3D generalization is
found in Stolt and Weglein (2012). The 2D elastic wave
equation for a heterogeneous isotropic medium is

L~u =

(
fx
fz

)
L̂

(
φP

φS

)
=

(
FP

FS

)
. (11)

~u, fx, fz are the displacement and force, in displacement
coordinates and φP , φS and FP , FS are the P and S

waves and the force components in P and S coordinates.
The operators L, L0 and V are

L =

[
ρω2

(
1 0
0 1

)
+(

∂xγ∂x + ∂zµ∂z ∂x(γ − 2µ)∂z + ∂zµ∂x
∂z(γ − 2µ)∂x + ∂xµ∂z ∂zγ∂z + ∂xµ∂x

)]
L0 =

[
ρω2

(
1 0
0 1

)
+(

γ0∂
2
x + µ0∂

2
z (γ0 − µ0)∂x∂z

(γ0 − µ0)∂x∂z µ0∂
2
x + γ0∂

2
z

)]
and

V ≡ L0 − L

=

[
aρω

2 + α2
0∂xaγ∂x + β2

0∂zaµ∂z
∂z(α

2
0aγ − 2β2

0aµ)∂x + β2
0∂xaµ∂z

∂x(α2
0aγ − 2β2

0aµ)∂z + β2
0∂zaµ∂x

aρω
2 + α2

0∂zaγ∂z + β2
0∂xaµ∂x

]
.

The quantities aρ ≡ ρ/ρ0−1, aγ ≡ γ/γ0−1, aµ ≡ µ/µ0−
1 are defined in terms of γ0, µ0, ρ0, γ, µ, ρ, the bulk
modulus, shear modulus and density in the reference and
actual media, respectively.

The forward problem is found from the identity equation 5
and the elastic wave equation 11 (in PS coordinates) as

Ĝ− Ĝ0 =Ĝ0V̂ Ĝ = Ĝ0V̂ Ĝ0 + Ĝ0V̂ Ĝ0V̂ Ĝ0 + . . .(
D̂PP D̂PS

D̂SP D̂SS

)
=

(
ĜP0 0

0 ĜS0

)(
V̂ PP V̂ PS

V̂ SP V̂ SS

)(
ĜP0 0

0 ĜS0

)
+

(
ĜP0 0

0 ĜS0

)(
V̂ PP V̂ PS

V̂ SP V̂ SS

)(
ĜP0 0

0 ĜS0

)
×
(
V̂ PP V̂ PS

V̂ SP V̂ SS

)(
ĜP0 0

0 ĜS0

)
+ . . .

(12)

and the inverse solution, equation 10, for the elastic equa-
tion 11 is(

D̂PP D̂PS

D̂SP D̂SS

)
=

(
ĜP0 0

0 ĜS0

)(
V̂ PP1 V̂ PS1

V̂ SP1 V̂ SS1

)(
ĜP0 0

0 ĜS0

)
(
ĜP0 0

0 ĜS0

)(
V̂ PP2 V̂ PS2

V̂ SP2 V̂ SS2

)(
ĜP0 0

0 ĜS0

)
= −

(
ĜP0 0

0 ĜS0

)(
V̂ PP1 V̂ PS1

V̂ SP1 V̂ SS1

)(
ĜP0 0

0 ĜS0

)
×
(
V̂ PP1 V̂ PS1

V̂ SP1 V̂ SS1

)(
ĜP0 0

0 ĜS0

)
. (13)

where, for example, V̂ PP = V̂ PP1 + V̂ PP2 + V̂ PP3 + . . . and
any one of the four matrix elements of V requires(

D̂PP D̂PS

D̂SP D̂SS

)
.

A few key points
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D̂PP can be determined in terms of(
V̂ PP V̂ PS

V̂ SP V̂ SS

)
and V̂ PP or V̂ PS , V̂ SP , V̂ SS require a series in(

D̂PP D̂PS

D̂SP D̂SS

)
.

That’s what the general relationship G = G0 + G0V G
requires, that is, a direct non-linear inverse solution is a
solution order by order in the data matrix (in 2D)(

D̂PP D̂PS

D̂SP D̂SS

)
.

The direct solution is not iterative linear inversion. Iter-
ative linear starts with

G0V1G0 = D, (14)

solves for V1, changes the reference medium, finds a new
L0 and G0 (and require generalized inverses of noisy ban-
dlimited data dependent operators). The next linear step
involves V ′1 ,

G′0V
′
1G
′
0 = D′ = (G−G′0)ms

L′0 = L0 − V1

L′0G
′
0 = δ

where V ′1 is the portion of V linear in the data (G−G′0)ms.
The direct inverse solution equations 9 and 13 call for
a single unchanged reference medium, for computing
V1, V2, . . . . For a homogeneous reference medium they
are obtained by an analytic inverse. The inverse to find
V1 from data, is the same inverse to find V2, V3, . . . , from
equation 10. There are no numerical inverses, no gener-
alized inverses, no inverses of matrices that contain noisy
bandlimited data.

The difference between iterative linear and the direct in-
verse of equation 13 is much more substantive and seri-
ous than merely a different way to solve G0V1G0 = D,
equation 14, for V1. If equation 14 is our entire basic the-

ory, you can mistakenly think that D̂PP = ĜP0 V̂
PP
1 ĜP0

is sufficient to update D̂PP = ĜP0
′V̂ PP1

′ĜP0
′. That step

loses contact with and violates the basic operator identity
G = G0 +G0V G for the elastic wave equation. That’s as
serious as considering problems involving a right triangle
and violating the Pythagorean theorem in your method.

That is, iteratively updating PP data with an elastic
model violates the basic relationship between changes in
a medium, V and changes in the wavefield, G − G0 for
the simplest elastic earth model.

This direct inverse method provides a platform for am-
plitude analysis, AVO and FWI. It communicates when a
“FWI” method should work, in principle. Iteratively in-
verting multi-component data has the correct data but

doesn’t corresponds to a direct inverse algorithm. To
honor G = G0 +G0V G, you need both the data and the
algorithm that direct inverse prescribes. Not recogniz-
ing the message that an operator identity and the elastic
wave equation unequivocally communicate is a fundamen-
tal and significant contribution to the gap in effectiveness
in current AVO and FWI method and application (equa-
tion 13). This analysis generalizes to 3D with P , Sh, and
Sv data.

There’s a role for direct and indirect methods in practical
real world application. Indirect methods are to be called
upon for recognizing that the world is more complicated
than the physics that we assume in our models and meth-
ods. For the part of the world that you are capturing in
your model (and methods) nothing compares to direct
methods for clarity and effectiveness. The listed refer-
ences provide detail and examples. An optimal indirect
method would seek to satisfy a cost function that derives
from a property of the direct method. In that way the
indirect and direct method would be aligned and cooper-
ative for accommodating the part of the world described
by your physical model and the part that is outside.

Conclusions

This paper: (1) describes the direct inverse parameter es-
timation algorithm (subseries) and its data requirements
(2) compares that direct inversion with current FWI ap-
proaches; and (3) will provide an application for 4D.
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