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ABSTRACT

In this paper, part I of a two paper set, we describe the evolution of Green’s theorem based concepts

and methods for downward continuation and migration. This forms the foundation and context for

developing Greens theorem reverse time migration (RTM), in part II. We present the evolution of

seismic exploration wave-field prediction models, as steps towards more completeness, consistency,

realism and predictive effectiveness. Using simple and accessible analytic examples, we describe

the difference between the need for subsurface information when the goal is a structure map, and

contrast that with the case when the goal is both an accurate depth image and subsequent amplitude

analysis at depth, that is, between migration and migration-inversion. The relationship between

Green’s theorem and the Lippmann Schwinger equation of scattering theory is used to help define

the need behind the evolution of Green’s theorem concepts and developments in seismic imaging,

as well as providing a new insight for classic results like, e.g., the Sommerfeld radiation condition.

This paper provides a platform and detailed background for the second of this two paper set, where

part II provides a new and consistent theory and method for RTM.
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INTRODUCTION

An important and central concept resides behind all current seismic processing methods that seek to

extract useful subsurface information from recorded seismic data. That concept has two ingredients:

(1) from the recorded surface seismic experiment and data, to predict what an experiment with

a source and receiver at depth would record, and (2) exploiting the fact that a coincident source

receiver experiment at depth, would, for small recording times, be an indicator of only local property

changes at the coincident source-receiver position. These two ingredients, a wave-field prediction,

and an imaging condition, reside behind all current leading edge seismic migration algorithms. The

ultimate purpose of this two paper set is to advance our understanding, and provide concepts and

new algorithms for the first of these two components: subsurface wave-field prediction from surface

wave-field measurements. An accurate velocity model is required for this procedure to deliver an

accurate structure map of boundaries in the subsurface where rapid changes in physical properties

occur.

OVERBURDEN INFORMATION FOR MIGRATION AND

MIGRATION-INVERSION

In this paper, we show how to formulate and apply Green’s theorem in an appropriate manner

for one-way propagating waves. We begin with a simple discussion of back propagating waves and

imaging to illustrate how the type of a priori information needed above a target reflector depends

on our goal and level of information extraction, e.g., about the location of and changes in physical

properties across the target reflector. We show that only the velocity model above the reflector is

needed to simply locate the reflector; whereas, all properties above the reflector are required if we

want to determine both where any property has changed (structure imaging or migration) and what

specific property has changed at the imaged reflector and by what amount (migration-inversion).

We begin by exemplifying how all traditional linear backpropagation methods for predicting

waves at depth from surface reflection data need different types and degrees of a priori overburden

subsurface information for different levels of ambition for subsurface target information extraction:

migration versus migration-inversion. In traditional seismic processing, the spatial location of re-

flectors (migration) is determined by the velocity above the reflector while parameter estimation

requires all properties above the depth image where changes in earth mechanical properties are to

be determined. A very simple illustration of this idea can be obtained by using a 1D normal inci-

dent experiment using the model shown in Fig. 1, where zms represents the depth of the source and

receiver, and the depth of the first reflector is z1, and the second reflector’s depth is z2, and z2 is

the location to be determined. The recorded data, D(t), the wave-field at the coincident source and

receiver position chosen as zms = 0, is given by

D(t, zms = 0) = R1δ(t− 2t1) +R′2δ(t− 2t2) (1)

where R1 = R01 represents the reflection coefficient at the boundary between the first and second

media, and R′2 = T01R12T10 represents the amplitude of the second event and is the composite

transmission and reflection coefficient in the second medium. The two-way travel times for the first
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and second events are given by 2t1 and 2t2, respectively. Fourier transforming (1) gives

D(ω, zms = 0) = R1e
2iωt1 +R′2e

2iωt2 (2)

where the first term on the right hand side is the primary from the first reflector (at z = z1) and

the second term is the primary from the second reflector (at z = z2).

The next step is to locate the depth of the second reflector using the recorded data. To do

so, we will call upon the simple solutions to the wave equation governing wave propagation in

homogeneous media. In this example, that allows us to backpropagate separately the source and

the receiver down reversing the actual propagation paths of the recorded upgoing waves. This step

is known as downward continuation. Because, in traditional migration we assume that we know the

velocity model above each reflector to be imaged, we will treat each primary separately, thus we

write (2) as

D(ω, zms = 0) = D1(ω, zms = 0) +D2(ω, zms = 0). (3)

The source and receiver corresponding to the first primary,

D1(ω, zms = 0) = R1e
2iωt1 (4)

are downward continued in the first medium (above the shallower reflector at z1), giving

D1(ω, z) = R1e
2iωt1e−2i

ω
c0

z. (5)

In the downward continuation for the first primary, we use the medium properties (c0, ρ0) above

that first reflector and the equation(
d2

dz2
+
ω2

c20

)
D(ω, z) = 0 (6)

and, hence, the receiver and the source each contribute a factor of e−i(ω/c0)z.

The solution in (5) simulates a coincident source and receiver reflection experiment at depth z.

A non zero value of this coincident source and receiver experiment at depth at t = 0+ indicates a

reflector just below the coincident point in the medium. Hence, the next step in our example locates

the reflectors by applying the imaging condition at t = 0 to the downward continued data. The

latter is realized by integrating over all frequencies
∫
dωD1(ω, z); in other words, we do an inverse

Fourier transform evaluating the time in the exponential of the Fourier kernel with t = 0. Thus, we

obtain

D1(t = 0, z) = R1δ(2t1 − 2z/c0), (7)

corresponding to an image at z = c0t1 at the depth of the first reflector. The second primary,

D2(ω, zms = 0) = R′2e
2iωt2 , (8)

is downward continued in the medium above the first reflector using the path of an upgoing wave

satisfying the differential equation (6) and for the medium between the first and second reflector the

equation used is (
d2

dz2
+
ω2

c21

)
D(ω, z) = 0, (9)
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which relates to the properties of the medium between z1 and z2. Therefore, taking the source and

receiver to depth z in the medium below the first reflector

D2(ω, z) = D2(ω, zms = 0)e−i
2ω
c0

z1e−i
2ω
c1

(z−z1)

= R′2e
2iωt2e−i

2ω
c0

z1e−i
2ω
c1

(z−z1), (10)

and applying the imaging condition gives

D2(t = 0, z) = R′2δ

(
2t2 −

2z1
c0
− 2

c1
(z − z1)

)
. (11)

The second primary images at z = z1 + c1(t2 − t1), the depth of the second reflector, z2. Therefore

the location depends only on the velocity above each reflector (and not on the density).

However, to determine changes in mechanical properties across each reflector requires the re-

flection coefficients R1 and R12 and the removal of T01T10 from R′2 to determine R12 where R′2 =

T01R12T10. To remove T01 and T10 we must know the changes in velocity and density at the first

reflector. In other words, determining material property changes across each reflector requires the

velocity and density (and absorption and all other property changes) above these two reflectors. The

latter amplitude issue can be viewed as a consequence of the properties of the R’s and T ’s which

come from continuity conditions (note: the pressure and its normal derivative are not continuous

when the density and velocity change across a boundary). If the latter continuity of pressure and

its normal derivative were the case, then amplitude would only care about velocity changes, in this

simple acoustic example. To determine the amplitude of a reflection coefficient at depth requires

knowledge of all material properties above the reflector and not only velocity. That’s worth keeping

in mind for those pursuing/promoting ’true amplitude’ migration, especially if non linear target

identification is the ultimate goal. The general property of wave-field amplitude at depth from sur-

face measurements follows from Green’s theorem, where all medium properties are needed to provide

the Green’s functions in the medium, and necessary for determining the wave-field at depth.

OVERVIEW ON THE EVOLUTION OF MIGRATION CONCEPTS

AND GOALS: FROM NMO-STACK TO AVO AND MIGRATION TO

MIGRATION-INVERSION, THE UNCOLLAPSED MIGRATION

CONCEPT

As with all useful concepts, seismic migration has evolved and adapted to deal with ever more realistic

and complex media and to allow higher and more ambitious goals for the imaged amplitudes. In

seismic processing history the ’determine where anything changed’ structure/migration people and

their ideas/methods typically progressed totally independent from the ’what specifically changed’

AVO people and their theories and methods. The AVO theorists and practitioners were never too

concerned with locating the position in the earth of earth boundary changes, but rather focused on

what specifically in detail was changing somewhere, and the migration people were not too interested

in what was actually changing, after it was determined that something was changing at a point in the

subsurface. Further, AVO people assumed a simple 1D earth and asked difficult, complex, detailed

questions; while the structure seeking migration people assumed a complex multi-D earth and asked
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a less ambitious structure question ’where did anything change?’ In the 1D world, NMO-stack

evolved into AVO and multi-D migration evolved and was generalized into migration-inversion.

The two ingredients within wave equation migration are a backpropagation of waves and an

imaging condition, where the latter imaging condition enables the backpropagated waves to be

used to locate and delineate reflectors. The uncollapsed migration imaging principle introduced

by Stolt, Clayton, and Weglein in the mid-1980’s (Clayton and Stolt (1981), Stolt and Weglein

(1985), and Weglein and Stolt (1999)) extended and generalized the earlier Claerbout coincident

source and receiver at depth at time equals zero imaging condition. That earlier Claerbout principle

imaging condition was aimed at producing a structure map. This paper advances the propagation

component theory of the propagation-imaging principle duet and incorporates the Stolt-Clayton-

Weglein uncollapsed migration imaging condition. That uncollapsed imaging condition remains the

high water mark of imaging conditions today, allowing automatic amplitude analysis at depth with

respect to the normal of the imaged reflector, or imaging and inverting a point diffractor. We will

not progress the imaging condition in this two paper set. That uncollapsed migration time equals

zero but non-coincident, (but proximal, by causality) source and receiver imaging condition has been

reinvented (and sometimes relabeled), by among others Berkhout and Wapenaar (1988), de Bruin

et al. (1990a), de Bruin et al. (1990b), Sava and Fomel (2006), and Sava and Vasconcelos (2009).

Among recent contributions that have progressed seismic imaging conditions are: Vasconcelos et al.

(2010), Sava and Vasconcelos (2010), and Douma et al. (2010).

We begin by discussing the history and evolution of models for the volume beneath the measure-

ment surface within which we backpropagate surface reflection data.

THE INFINITE HEMISPHERICAL MIGRATION MODEL

The earliest wave equation migration pioneers viewed the backpropagation region as an infinite

hemispherical half space with known mechanical properties, whose upper plane surface corresponded

to the measurement surface, as in, e.g., Schneider (1978) and Stolt (1978). See Fig. 2.

There are several problems with the infinite hemispherical migration model. That model assumes:

(1) that all subsurface properties beneath the measurement surface (MS) are known, and (2) that

an anticausal Green’s function (e.g., Schneider (1978)), with a Dirichlet boundary condition on the

measurement surface, would allow measurements (MS) of the wave-field, P , on the upper plane

surface of the hemisphere to determine the value of P within the hemispherical volume, V . The first

assumption leads to the contradiction that we have not allowed for anything that is unknown to

be determined in our model, since everything within the closed and infinite hemisphere is assumed

to be known. Within the infinite hemispherical model there is nothing and/or nowhere below the

measurement surface where an unknown scattering point or reflection surface can serve to produce

reflection data whose generating reflectors are initially unknown and being sought by the migration

process.

The second assumption, in early infinite hemispherical wave equation migration, assumes that

Green’s theorem with wave-field measurements on the upper plane surface and using an anticausal

Green’s function satisfying a Dirichlet boundary condition can determine the wave-field within V .
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That conclusion assumes that the contribution from the lower hemispherical surface of S vanishes

as the radius of the hemisphere goes to infinity. That is not the case, as we explicitly demonstrate

below. To examine the various large radius hemispherical surface contributions to Green’s theorem

wave prediction in a volume, it is instructive to review the relationship between Green’s theorem

and the Lippmann-Schwinger scattering equation.

GREEN’S THEOREM REVIEW (THE LIPPMANN-SCHWINGER

EQUATION AND GREEN’S THEOREM)

We begin with a space and time domain Green’s theorem. Consider two wave-fields P and G0 that

satisfy

(∇2 − 1

c2
∂2t )P (r, t) = ρ(r, t) (12)

and (∇2 − 1

c2
∂2t )G0(r, t, r′, t′) = δ(r− r′)δ(t− t′), (13)

where we assume 3D wave propagation and the wavefield velocity c is a constant. ρ is a general

source, i.e., it represents both active sources (air guns, dynamite, vibrator trucks) and passive sources

(heterogeneities in the earth). The causal solution to (12) can be written as

P (r, t) =

∫ t+

−∞
dt′
∫
∞
dr′ρ(r′, t′)G+

0 (r, t, r′, t′), (14)

where G+
0 is the causal whole space solution to (13) and t+ = t + ε where ε is a small positive

quantity. The integral from t+ to ∞ is zero due to the causality of G+
0 . Eq. (14) represents the

linear superposition of causal solutions G+
0 with weights ρ(r′, t′) summing to produce the physical

causal wave-field solution to (12). Eq. (14) is called the scattering equation and represents an all

space and all time causal solution for P (r, t). It explicitly includes all sources and produces the field

at all points of space and time. No additional boundary or initial conditions are required in (14).

Now consider the integral∫ t+

0

dt′
∫
V

dr′(P∇′2G0 −G0∇′2P ) =

∫ t+

0

dt′
∫
V

dr′∇′ · (P∇′G0 −G0∇′P ), (15)

and we rewrite (15) using Green’s theorem∫ t+

0

dt′
∫
V

dr′∇′ · (P∇′G0 −G0∇′P ) =

∫ t+

0

dt′
∫
S

dS′n̂ · (P∇′G0 −G0∇′P ). (16)

This is essentially an identity, within the assumptions on functions and surfaces, needed to derive

Green’s theorem. Now choose P = P (r′, t′) and G0 = G0(r, t, r′, t′) from (12) and (13). Then

replace ∇′2P and ∇′2G0 from the differential equations (12) and (13).

∇′2G0 =
1

c2
∂′2t G0 + δ(r− r′)δ(t− t′) (17)

∇′2P =
1

c2
∂′2t P + ρ(r′, t′), (18)

and assume that the out variables (r, t) are in the intervals of integration: r in V , t > 0. The left

hand side of (15) becomes:∫ t+

0

dt′
∫
V

dr′
1

c2
(P∂2t′G0 −G0∂

2
t′P ) + P (r, t)−

∫ t+

0

dt′
∫
V

dr′ρ(r′, t′)G0(r, t, r′, t′). (19)
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The expression inside the first set of parentheses is a perfect derivative ∂t′(P∂t′G0 −G0∂t′P ) inte-

grated over t′. The result is (for r in V and t > 0)

P (r, t) =

∫
V

dr′
∫ t+

0

dt′ρ(r′, t′)G0(r, t, r′, t′)− 1

c2

∣∣∣t+
t′=0

∫
V

dr′[P∂t′G0 −G0∂t′P ]

+

∫ t+

0

dt′
∫
S

dS′n̂ · (P∇′G0 −G0∇′P ). (20)

We assumed differential equations (17) and (18) in deriving (20) and G0 can be any solution of (17)

in the space and time integrals in (15), causal, anticausal, or neither. Each term on the right hand

side of (20) will differ with different choices of G0, but the sum of the three terms will always be the

same, P (r, t).

If we now choose G0 to be causal (= G+
0 ) in (20), then in the second term on the right hand

side the upper limit gives zero because G+
0 and ∂t′G

+
0 are zero at t′ = t+. The causality of G+

0 and

∂t′G
+
0 causes only the lower limit t′ = 0 to contribute in

− 1

c2

∣∣∣t+
t′=0

∫
V

dr′[P∂t′G
+
0 −G

+
0 ∂t′P ]. (21)

If we let the space and time limits in (20) both become unbounded, i.e., V →∞ and the t′ interval

becomes [−∞, 0], and choose G0 = G+
0 , the whole space causal Green’s function, then by comparing

(14) and (20) we see that for r in V and t > 0 that∫ t+

−∞
dt′
∫
S

dS′n̂ · (P∇′G+
0 −G

+
0 ∇′P )− 1

c2

∣∣∣t+
−∞

∫
∞
dr′[P∂t′G

+
0 −G

+
0 ∂t′P ] = 0. (22)

V =∞ means a volume that spans all space, and ∞−V means all points in ∞ that are outside the

volume V . For r in ∞ and any time t from (14) we get

P (r, t) =

∫
V

dr′
∫ t+

0

dt′ρ(r′, t′)G+
0 (r, t, r′, t′) +

∫
∞−V

dr′
∫ t+

0

dt′ρ(r′, t′)G+
0 (r, t, r′, t′)

+

∫
V

dr′
∫ 0

−∞
dt′ρ(r′, t′)G+

0 (r, t, r′, t′) +

∫
∞−V

dr′
∫ 0

−∞
dt′ρ(r′, t′)G+

0 (r, t, r′, t′). (23)

This equation holds for any r and any t.

For r in V and t > 0 (23) and (20) must agree and

− 1

c2

∣∣∣t+
0

∫
V

dr′[P∂t′G
+
0 −G

+
0 ∂t′P ]

=

∫
V

dr′
∫ 0

−∞
dt′ρ(r′, t′)G+

0 (r, t, r′, t′) +

∫
∞−V

dr′
∫ 0

−∞
dt′ρ(r′, t′)G+

0 (r, t, r′, t′) (24)

and ∫ t+

0

dt′
∫
S

dS′n̂ · [P∇′G0 −G0∇′P ] =

∫
∞−V

dr′
∫ t+

0

dt′ρ(r′, t′)G+
0 (r, t, r′, t′). (25)

The solution for P (r, t) in (14) expresses the fact that if all of the factors that both create the

wave-field (active sources) and that subsequently influence the wave-field (passive sources, e.g.,

heterogeneities in the medium) are explicitly included in the solution as in (20), then the causal
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solution is provided explicitly and linearly in terms of those sources, as a weighted sum of causal

solutions, and no surface, boundary or initial conditions are necessary or required.

From (24) and (25) the role of boundary and initial conditions are clear. The contributions to

the wave-field, P , at a point r in V and at a time, t in [0, t+] derives from three contributions:

(1) a causal superposition over the sources within the volume V during the interval of time, say

[0, t+] and (2) initial conditions of P and Pt over the volume V , providing all contributions due

to sources earlier than time t′ = 0, both inside and outside V , to the solution in V during [0, t]

and (3) a surface integral, enclosing V , integrated from t′ = 0 to t+ that gives the contribution

from sources outside V during the time [0, t+] to the field, P , in V for times [0, t+]. Succinctly

stated, initial conditions provide contributions from sources at earlier times and surface/boundary

conditions provide contributions from outside the spatial volume to the field in the volume during

the [0, t] time interval. If all sources for all space and all time are explicitly included as in (14), then

there is no need for boundary or initial conditions to produce the physical/causal solution derived

from a linear superposition of elementary causal solutions.

On the other hand, if we seek to find a physical causal solution for P in terms of a linear

superposition of anticausal solutions, as we can arrange by choosing G0 = G−0 in (20), then the

initial and surface integrals do not vanish when we let V →∞ and [0, t]→ [−∞, t]. The vanishing

of the surface integral contribution (as the radius of the surface→∞) to P with the choice G0 = G+
0

is called the Sommerfeld radiation condition, and is readily understood by the comparison with (14).

In the (r, ω) domain (12) and (13) become

(∇2 + k2)P (r, ω) = ρ(r, ω) (26)

(∇2 + k2)G0(r, r′, ω) = δ(r− r′), (27)

and the causal all space and time solution analogous to (14) is

P (r, ω) =

∫
∞
dr′ρ(r′, ω)G+

0 (r, r′, ω), (28)

and Green’s second identity is∫
V

dr′(P∇
′ 2G0 −G0∇

′ 2P ) =

∮
S

dS′ n̂ · (P∇′G0 −G0∇′P ). (29)

Substituting∇2G0 = −k2G0+δ and∇2P = −k2P+ρ in Green’s theorem where
∫∞
−∞ P (r, t)eiωtdt =

P (r, ω) we find∫
V

dr′P (r′, ω)δ(r− r′) =

∫
V

dr′ρ(r′, ω)G0(r, r′, ω) +

∮
S

dS′n̂ · (P∇′G0 −G0∇′P ), (30)

if r in V . There are no initial conditions, since in r, ω we have already explicitly included all time in

Fourier transforming from t to ω. All times of sources are included in the (r, ω) domain. In r, ω the

issue is whether sources are inside or outside V . The Lippmann-Schwinger equation (28) provides

the causal physical P for all r. Eq. (28) is the r, ω version of (14) and must choose G0 = G+
0 (causal)

to have P as the physical solution built from superposition and linearity. In contrast, (30) (as in

(20)) will produce the physical solution, P , with any solution for G0 that satisfies (27).

Eq. (28) can be written as: ∫
V

ρG+
0 +

∫
∞−V

ρG+
0 . (31)
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For r in V the second term on the right hand side of (30) (with G0 = G+
0 ) equals the second term

in (31), i.e., ∫
∞−V

dr′ρG+
0 =

∮
S

dS′n̂ · (P∇′G+
0 −G

+
0 ∇′P ). (32)

Thus, the first term in (31) gives contribution to P , for r in V due to sources in V , and the second

term in (31) gives contribution to P , for r in V due to sources not in V . With G0 = G+
0∮

S

dS′n̂ · (P∇′G+
0 −G

+
0 ∇′P ), (33)

provides the contribution to the field, P , inside V due to sources outside the volume V .

What about the large |r| contribution of the surface integral to the field inside the volume? We

use Green’s theorem to predict that the contribution to the physical/causal solution P in V from

the surface integral in Green’s theorem, in general, and also∮
S

{P ∂G
+
0

∂n
−G+

0

∂P

∂n
}dS, (34)

vanishes as |r| → ∞ and in contrast the contribution to P in V from∮
S

{P ∂G
−
0

∂n
−G−0

∂P

∂n
}dS, (35)

does not vanish as |r| → ∞.

We begin with (30)

P (r, ω) =

∫
V

dr′ρ(r′, ω)G±0 (r, r′, ω) +

∮
S

dS′{P ∂G
±
0

∂n
−G±0

∂P

∂n
} r in V (36)

with G0 either causal G+
0 or anticausal G−0 . When |r| → ∞, the contribution from the second term

on the right hand side of (36) to P in V must go to 0 since

P (r, ω) =

∫
∞
dr′ρ(r′, ω)G+

0 (r, r′, ω), (37)

(the Lippmann-Schwinger equation). However, as |r| → ∞, with G0 = G−0 ,∮
S→∞

dS′{P ∂G
−
0

∂n
−G−0

∂P

∂n
}+

∫
V→∞

dr′ρ(r′, ω)G−0 (r, r′, ω) =

∫
V→∞

dr′ρ(r′, ω)G+
0 (r, r′, ω) + 0, (38)

so∮
S→∞

{P ∂G
−
0

∂n
−G−0

∂P

∂n
}dS =

∫
∞

[G+
0 (r, r′, ω)−G−0 (r, r′, ω)]ρ(r′, ω)dr′ 6= 0 for all time. (39)

Hence, the large distance surface contribution to the physical field, P , within V with the physical

field P and Pn and an anticausal Green’s function G−0 will not vanish as |r| → ∞. As we mentioned

earlier, this is one of the two problems with the infinite hemisphere model of seismic migration.

Although

P (r, ω) =

∫
∞
dr′ρ(r′, ω)G−0 (r, r′, ω), (40)

9



would be a solution to (12) and (26) for all r, it would not be the causal/physical solution to (12)

and (26). And hence, in summary the contribution to the causal/physical solution for P (r, ω) for r

in V from ∫
S

dS′
(
P
dG+

0

dn
−G+

0

dP

dn

)
, (41)

goes to zero as |R| → ∞ where P and dP/dn corresponds to physical/causal boundary values of P

and dP/dn, respectively. Physical measurements of P and dP/dn on S are always causal/physical

values. The integral ∫
S

dS′
(
P
dG−0
dn
−G−0

dP

dn

)
, (42)

does not go to zero for anti-causal, G−0 , and causal/physical P and dP/dn. The latter fact bumps up

against a key assumption in the infinite hemisphere models of migration. That combined with the

fact the infinite hemisphere model assumes the entire subsurface, down to ’infinite’ depth is known,

suggests the need for a different model. That model is the finite volume model.

FINITE VOLUME MODEL FOR MIGRATION

The finite model for migration assumes that we know or can adequately estimate earth medium

properties (velocity) down to the reflector we seek to image. The finite volume model assumes

that beneath the sought after reflector the medium properties are and remain unknown. The ’finite

volume model’ corresponds to the volume within which we assume the earth properties are known

and within which we predict the wave-field from surface measurements. We have moved away from

the two issues of the infinite hemisphere model, i.e., (1) the assumption we know the subsurface to

all depths and (2) that the surface integral with an anticausal Green’s function has no contribution

to the field being predicted in the earth.

The finite volume model takes away both assumptions. However, we are now dealing with a

finite volume V , and with a surface S, consisting of upper surface SU , lower surface SL and walls,

SW (Fig. 3). We only have measurements on SU . In the following sections on: (1) Green’s theorem

for one-way propagation; and (2) Green’s theorem for two-way propagation we show how the choice

of Green’s function allows the finite volume migration model to be realized. The construction of

the Green’s function that allows for two-way propagation in V is the new and significant contri-

bution of this two paper set. It puts RTM on a firm wave theoretical Green’s theorem basis, for

the first time, with algorithmic consequence and consistent and realizable methods for RTM. The

new Green’s function is neither causal, anticausal, nor a combination of causal and/or anticausal,

Green’s functions. In the important paper by Amundsen (1994), a finite volume model for wave-field

prediction is developed which requires knowing (i.e., predicting through solving an integral equa-

tion) for the wave-field at the lower surface. In parts I and II we show that for one and two-way

propagation, respectively, that with a proper and distinct choice of Green’s function, in each case,

that absolutely no wave-field measurement information on the lower surface is required or needs to

be estimated/predicted. A major goal and contribution of this two paper set, is to show how to

properly choose the Green’s functions that allow for two-way propagation (for RTM application)

without the need for measurements on the lower boundary of the closed surface in Green’s theorem.
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FINITE VOLUME: ONE-WAY WAVE GREEN’S THEOREM

DOWNWARD CONTINUATION

Consider a 1D up-going plane wave-field P = Re−ikz propagating upward through the 1D homo-

geneous volume without sources between z = a and z = b (Fig. 4). The wave P inside V can be

predicted from

P (z, ω) =
∣∣∣b
z′=a
{P (z′, ω)

dG0

dz′
(z, z′, ω)−G0(z, z′, ω)

dP

dz′
(z′, ω)}, (43)

with the Green’s function, G0, that satisfies(
d2

dz′ 2
+ k2

)
G0(z, z′, ω) = δ(z − z′), (44)

for z and z′ in V . We can easily show that for an upgoing wave, P = Re−ikz, that if one chooses

G0 = G+
0 (causal, eik|z−z

′|/(2ik)), the lower surface (i.e. z′ = b) constructs P in V and the

contribution from the upper surface vanishes. On the other hand, if we choose G0 = G−0 (anticausal

solution e−ik|z−z
′|/(−2ik)), then the upper surface z = a constructs P = Re−ikz in V and there is no

contribution from the lower surface z′ = b. This makes sense since information on the lower surface

z′ = b will move with the upwave into the region between a and b, with a forward propagating causal

Green’s function, G+
0 . At the upper surface z′ = a, the anticausal G−0 will predict from an upgoing

wave measured at z′ = a, where the wave was previously and when it was moving up and deeper

than z′ = a.

Since in exploration seismology the reflection data is typically upgoing, once it is generated at

the reflector, and we only have measurements at the upper surface z′ = a, we choose an anticausal

Green’s function G−0 in one-way wave back propagation in the finite volume model. If in addition we

want to rid ourselves of the need for dP/dz′ at z′ = a we can impose a Dirichlet boundary condition

on G−0 , to vanish at z′ = a. The latter Green’s function is labeled G−D0 .

G−D0 = − e−ik|z−z
′|

2ik
−

(
−e
−ik|zI−z′|

2ik

)
(45)

where zI is the image of z through z′ = a. It is easy to see that zI = 2a− z and that

P (z) = − dG−D0

dz′
(z, z′, ω)

∣∣∣
z′=a

P (a) = e−ik(z−a)P (a), (46)

in agreement with a simple Stolt FK phase shift for back propagating an up-field. Please note

that P (z, ω) = − dG−D0 /dz′(z, z′, ω)|z′=aP (a, ω) back propagates P (z′ = a, ω), not G−D0 . The

latter thinking that G−D0 back propagates data is a fundamental mistake/flaw in many seismic back

propagation migration and inversion theories.

The multidimensional 3D generalization for downward continuing both sources and receivers for

an upgoing wave-field is as follows:∫
dG−D0

dzs
(x′s, y

′
s, z
′
s, xs, ys, zs;ω)

×

[∫
dG−D0

dzg
(x′g, y

′
g, z
′
g, xg, yg, zg;ω)D(x′g, y

′
g, z
′
g, x
′
s, y
′
s, z
′
s;ω)dx′gdy

′
g

]
dx′sdy

′
s

= M(xs, ys, zs, xg, yg, zg;ω)

= M(xm, ym, zm, xh, yh, zh;ω), (47)
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where xg + xs = xm, yg + ys = ym, zg + zs = zm, xg − xs = xh, yg − ys = yh, and zg − zs = zh.

The uncollapsed migration is M(xm, ym, zm, xh, yh, zh = 0; t = 0) and is ready for subsequent AVO

analysis in a multi-D subsurface (see e.g. Clayton and Stolt (1981), Stolt and Weglein (1985),

Weglein and Stolt (1999)).

In part II of this paper we examine Green’s theorem for two-way RTM in a 1D and multi-D

earth.

COMMENTS/SUMMARY

In this paper, we have provided an overview of the evolution of migration models for one-way wave

propagation, viewed as a progression of wave-field prediction from the perspective of Green’s theorem

concepts and methods. This provides a platform, background and context for wave-field prediction

for RTM, the subject of part II of this two paper set.
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Figure 1: Zero-offset model. The velocity is denoted by c, and the density by ρ.

 

|𝑅| → ∞ 

MS 

Figure 2: The infinite hemispherical migration model. The measurement surface is denoted by MS.

14



Figure 3: A finite volume model

Figure 4: 1D up-going plane wave-field
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