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ABSTRACT

In this paper, part II of a two paper set, we place Green’s theorem based reverse time migration

(RTM), for the first time on a firm footing and technically consistent math-physics foundation.

The required new Green’s function for RTM application is developed and provided, and is neither

causal, anticausal, nor a linear combination of these prototype Green’s functions, nor these functions

with imposed boundary conditions. We describe resulting fundamentally new RTM theory and

algorithms, and provide a step-by-step prescription for application in 1D, 2D and 3D, the latter for

an arbitrary laterally and vertically varying velocity field. The original RTM method of running

the wave equation backwards with surface reflection data as a boundary condition is not a wave

theory method for wave-field prediction, neither in depth nor in reversed time. In fact, the latter

idea corresponds to Huygens Principle which evolved and was corrected and became a wave theory

predictor by George Green in 1826. The original RTM method, where (1) ’running the wave equation

backward in time’, and then (2) employing a zero lag cross-correlation imaging condition, is in both

of these ingredients less accurate and effective than the Green’s theorem RTM method of this two

paper set. Furthermore, all currently available Green’s theorem methods for RTM make fundamental

conceptual and algorithmic errors in their Green’s theorem formulations. Consequently, even with

an accurate velocity model, current Green’s theorem RTM formulations can lead to image location

errors and other reported artifacts. Addressing the latter problems is a principal goal of the new

Green’s theorem RTM method of this paper. Several simple analytic 1D examples illustrate the new

RTM method. We also compare the general RTM methodology and philosophy, as the high water

mark of current imaging concepts and application, with the next generation and emerging Inverse

Scattering Series imaging concepts and methods.
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INTRODUCTION

An important and central concept resides behind all current seismic processing imaging methods

that seek to extract useful subsurface information from recorded seismic data. That concept has

two ingredients: (1) from the actual recorded surface seismic experiment and data, to predict what

an experiment with a source and receiver at depth would record, and (2) exploiting the fact that a

coincident source receiver experiment at depth, would, for small recording times, be an indicator of

only local earth mechanical property changes at the coincident source-receiver position. These two

ingredients, a wave-field prediction, and an imaging condition, reside behind all current leading edge

seismic migration algorithms. The purpose of this two paper set is to advance our understanding,

and provide concepts and new algorithms for the first of these two ingredients: subsurface wave-field

prediction from surface wave-field measurements, when the wave propagation between source and

target and/or target and receiver is not a one-way propagating wave in terms of depth..

As with all current migration methods, an accurate velocity model is required for this procedure

to deliver an accurate structure map, that is, the spatial configuration of boundaries in the subsurface

that correspond to reflectors where rapid changes in physical properties occur.

In this paper, we for the first time place Reverse Time Migration (RTM) on a firm theoretical

footing derived from Green’s theorem. Green’s theorem provides a useful framework for deriving

algorithms to predict the wave-field at depth from surface measurements. There is much current

interest and activity with RTM in exploration seismology.

The original RTM was pioneered, developed and applied by Dan Whitmore and his AMOCO

colleagues in the 1980’s (Whitmore (1983)), for exploration in the overthrust belt. The traditional

seismic thinking that used a wave traveling from source down to the reflector and then up from the

reflector to the receiver was extended to allow, e.g., waves to move down and up from source to

a reflector and down and then up from reflector to the receiver. For one-way wave propagation, a

single step in depth corresponds to one step in time, with a fixed sign in the relationship between

change in depth and change in time. Hence, for one-way waves, we can equivalently go down

the up wave in space or take a step backwards in time. For two-way wave propagation, reversing

time or extrapolating down an upcoming wave are not equivalent. And to image a reflector that

reflected a turning wave requires a non-one-way wave model that reversed time can satisfy. In

wave theoretic downward continuation migration, the source wave-field and receiver wave-fields are

each extrapolated to the subsurface using one-way wave equations to obtain an experiment with

coincident sources and receivers at depth.

The idea behind the two-way wave extrapolators (Whitmore (1983), McMechan (1983), Baysal

et al. (1983)) is to handle waves propagating in any direction, including overturning waves and

prismatic waves. The most common implementation uses finite-difference techniques to solve the

wave equation, which in the acoustic case is given by(
∇2 − 1

c2
∂2
t

)
P (r, t) = 0 , (1)

where P can be either the source or receiver wave-field. To calculate the source wave-field, standard

forward modeling injecting a user defined source signature into the model at the actual source

position is done. For the receiver wave-field, the wave equation is run backwards in time and the
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recorded wave-field is injected into the model at the receiver positions as a boundary condition. The

injection of the recorded wave-field is done starting with later times and finishing with the early

times. That idea of using the measured values of the wave-field as the boundary conditions for

a wave equation run backwards in time corresponds to Huygens’ principle (Huygens, 1690). The

image, I(x) is generated using a zero lag cross-correlation imaging condition,

I(x) =

∫ tmax

0

dt S(x, t)R(x, tmax − t), (2)

where the maximum recording time is tmax, S(x, t) is the modeled source wave-field andR(x, tmax−t)
is the receiver wave-field (Fletcher et al., 2006). There are other imaging conditions cited in the

literature, among them the deconvolution imaging condition (Zhang et al., 2007) but at this point

in time it seems that the cross-correlation imaging condition is often employed. The latter imaging

principle is not equivalent to the downward continuation of sources and receivers at depth and

seeking a zero time result from a coincident source-receiver experiment.

One of the disadvantages of RTM is that it requires the availability of a large amount of memory

which increases with respect to the frequencies we want to migrate (Liu et al., 2009). As a conse-

quence, memory availability has been a limitation to the application of this technology, especially

to high resolution data from large 3D acquisitions. Nevertheless, recent improvements in computer

hardware have enabled different implementations of RTM throughout the energy industry and there

is a renewed interest in this technology due to its ability to accommodate and image in media where

waves turn, as e.g. can occur in subsalt plays. Several efforts have been aimed at improving the

efficiency of the algorithm and dealing with the high storage cost for 3D implementation. For ex-

ample, Toselli and Widlund (2000) used domain deconvolution which splits the computations across

multiple nodes to improve the efficiency of the algorithm, and Symes (2007) introduced optimal

checkpointing techniques to deal with the storage requirements, although, this type of technique can

increase the computation cost. These are examples of improvements directly related to the numeri-

cal implementation of the RTM algorithm. Other efforts to deal with the practical requirements of

RTM are based on changes in the theoretical approach to the problem. One example is the work

of Luo and Schuster (2004) where a target oriented reverse time datuming (RTD) technique based

on Green’s theorem is proposed. RTD can also be seen as a bottom-up shooting approach for RTM.

Using RTD’s formulation, only the velocity model above the datum is used to calculate the Green’s

function. No velocity under the datum is required, making the modeling more efficient. This formu-

lation also allows for target oriented RTM and/or inversion. In target oriented RTM, the idea is to

redatum the data into a mathematical surface (referred to as the datum surface) within the earth’s

subsurface and use RTM below the datum surface to obtain a local RTM image of a given target

area below the datum (Dong et al., 2009). In target oriented inversion, the inversion is carried out

only for a target area below the datum. Target oriented inversion has also been proposed using the

CFP domain.

The current formulation of RTD or bottom-up shooting for RTM, uses a high frequency approxi-

mation to Green’s theorem (interferometry equation) and measurements at the measurement surface.

This formulation presents several approximations which can impact the quality of the redatuming

or the migration (if an imaging condition is applied after RTD).

1. The first approximation is related to the measurement surface. Green’s theorem based al-
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gorithms, in principle, require measurements over a closed surface. The fact that we only

measure the wave-field in a limited surface has an effect on the quality of the redatuming and

can create artifacts in both the redatumed data and the migration. Directly addressing that

issue is one of the principle aims of this paper. These measurements can be interchanged for

sources at the surface using reciprocity principles.

2. The second approximation is the high frequency, one-way wave approximation commonly used

in interferometry. This approximation allows us to remove the need for the normal derivative

of the pressure field at the measurement surface. The normal derivative is required by Green’s

theorem in its most common form, which is the one used by (Luo and Schuster, 2004) in

their RTD formulation. As an analogy to interferometry, when used with two-way waves, this

high frequency, one-way wave approximation will create spurious multiples in the redatumed

wave-field within the earth’s subsurface (see e.g. Ramı́rez and Weglein (2009)).

Dong et al. (2009) deal with the effect of these approximations by smoothing the model, and, hence,

reducing the effect of the one-way wave approximation. However, smoothing the model does not

solve completely the problems created by the use of approximations. The redatumed wave-field will

contain artifacts. Some of these artifacts will be imaged and stacking will not remove these artifacts

completely.

Some indication of the level of current interest in RTM can be gleaned by: (1) the number of

papers devoted to that subject in recent SEG and EAGE meetings, and subsalt workshops and

(2) the November 2010 Special Section of The Leading Edge on Reversed Time Migration with an

Introduction by Etgen and Michelena (2010) and papers by Zhang et al. (2010), Jin and Xu (2010),

Crawley et al. (2010), and Higginbotham et al. (2010).

PROPAGATION FOR RTM IN A ONE DIMENSIONAL EARTH:

USING GREEN’S FUNCTIONS TO AVOID THE NEED FOR DATA

AT DEPTH, NEW NONCAUSAL OR CAUSAL GREEN’S

FUNCTIONS

Green’s theorem in 3D in the (r, ω) domain to determine a wave-field, P (r, ω) for r in V is given by

P (r, ω) =

∫
V

dr′ ρ(r′, ω)G0(r, r′, ω)

+

∮
S

dS′ n · (P (r′, ω)∇
′
G0(r, r′, ω)−G0(r, r′, ω)∇

′
P (r′, ω)) . (3)

In 1D in the slab a ≤ z ≤ b, (3) becomes

P (z, ω) =

∫ b

a

dz′ ρ(z′, ω)G0(z, z′, ω)

+
∣∣∣b
a

(
P (z′, ω)

dG0

dz′
(z, z′, ω)−G0(z, z′, ω)

dP

dz′
(z′, ω)

)
. (4)

Assuming no sources in the slab, the 1D homogeneous wave equation is(
d2

dz′ 2
+ k2

)
P (z′, ω) = 0 , for a < z′ < b (5)
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with general solution

P (z′, ω) = Aeikz
′
+Be−ikz

′
for a < z′ < b (6)

where k = ω/c. Given the conventions positive z′ increasing downward and time dependence e−iωt

in Fourier transforming from ω to t, the first term in (6) is a downgoing wave and the second term

is an upgoing wave.

The equation for the corresponding Green’s function is(
d2

dz′ 2
+ k2

)
G0(z, z′, ω) = δ(z − z′) , (7)

with causal and anticausal solutions

G+
0 (z, z′, ω) =

1

2ik
eik|z−z

′| , (8)

G−0 (z, z′, ω) = − 1

2ik
e−ik|z−z

′| . (9)

Eq. (4) suggests that the Green’s function we need is such that it and its derivative vanish at z′ = b.

Such a Green’s function removes the need for measurements at z′ = b. Eq. (7) is an inhomogeneous

differential equation with general solution A1e
ikz′ +B1e

−ikz′ +G0(z, z′, ω) where the first two terms

are the general solution to the homogeneous differential equation and the third term is any particular

solution to the inhomogeneous differential equation. The choice G0(z, z′, ω) = G+
0 (z, z′, ω) gives the

following general solution of (7):

G0(z, z′, ω) = A1e
ikz′ +B1e

−ikz′ +
1

2ik
eik|z−z

′| . (10)

Its derivative is

dG0

dz′
(z, z′, ω) = A1e

ikz′ik +B1e
−ikz′(−ik)

+
1

2ik
eik|z−z

′|ik sgn(z − z′)(−1) . (11)

Now we impose boundary conditions in order to find A1 and B1. The requirement that (10) and

(11) vanish at z′ = b gives

0 = A1e
ikb +B1e

−ikb +
1

2ik
eik

b−z︷ ︸︸ ︷
|z − b|

0 = A1e
ikbik +B1e

−ikb(−ik) +
1

2ik
eik

b−z︷ ︸︸ ︷
|z − b|ik sgn(z − b)︸ ︷︷ ︸

−1

(−1)

A1e
ikb +B1e

−ikb = − 1

2ik
eik(b−z)

A1e
ikb −B1e

−ikb = − 1

2ik
eik(b−z)

2A1e
ikb = −2

1

2ik
eik(b−z)

A1 = − 1

2ik
e−ikz , (12)

2B1e
−ikb = 0

B1 = 0 . (13)
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Substituting (12) and (13) into (10) gives

G0(z, z′, ω) = − 1

2ik
e−ikzeikz

′
+

1

2ik
eik|z−z

′|

= − 1

2ik
(e−ik(z−z′) − eik|z−z

′|) . (14)

Note the following about (14):

1. When z′ = b, G0(z, b, ω) vanishes:

G0(z, b, ω) = − 1

2ik
(e−ik(z−b) − eik

b−z︷ ︸︸ ︷
|z − b|) = − 1

2ik
(e−ik(z−b) − e−ik(z−b)︸ ︷︷ ︸

0

) . (15)

2. When a < z′ < b, G0(z, z′, ω) is neither causal nor anticausal due to the presence of the term

−1/(2ik) e−ik(z−z′).

3. When z′ = a, G0(z, a, ω) is the sum of anticausal and causal terms, but not in general or at

any other depth.

G0(z, a, ω) = − 1

2ik
(e

−ik (z − a)︸ ︷︷ ︸
|z−a| − eik|z−a|) = − 1

2ik
e−ik|z−a|︸ ︷︷ ︸

anticausal

+
1

2ik
eik(z−a)︸ ︷︷ ︸
causal

. (16)

4. Normally one uses Dirichlet or Neumann or Robin boundary conditions on the surface S (in

our 1D case at both a and b). Constructing the Green’s function (14) has enabled us to use

both Dirichlet and Neumann boundary conditions on part of the surface S (in our 1D case

only at b).

The Green’s function for two-way propagation that will eliminate the need for data at the lower

surface of the closed Green’s theorem surface is found by finding a general solution to the Green’s

function for the medium in the finite volume model and imposing both Dirichlet and Neumann

boundary conditions at the lower surface. We confirm that the Green’s function (14), when used in

Green’s theorem, will produce a two-way wave for a < z < b with only measurements on the upper

surface. Substituting (6), (14), and their derivatives into (4) gives P (z, ω) = Aeikz + Be−ikz, i.e.,

we recover the original two-way wave-field. The details are in Appendix A.

A and B can be derived from the measured data P (a) and P ′(a):

P (a) = Aeika +Be−ika

P ′(a) = Aeikaik +Be−ika(−ik)

P ′(a)

ik
= Aeika −Be−ika

2Aeika = P (a) +
P ′(a)

ik

A = e−ika
ikP (a) + P ′(a)

2ik
, (17)

2Be−ika = P (a)− P ′(a)

ik

B = eika
ikP (a)− P ′(a)

2ik
. (18)

6



In a homogeneous medium the 3D equivalent of (5) is

(∇
′ 2 + k2)P (x′, y′, z′, ω) = 0 , (19)

where k = ω/c. Fourier transforming over x′ and y′ gives d2

dz′ 2
−k2

x′ − k2
y′ +

ω2

c2︸ ︷︷ ︸
≡k2

z′

P (kx′ , ky′ , z
′, ω) = 0 , (20)

which looks like the 1D problem(
d2

dz′ 2
+ k2

z′

)
P (kx′ , ky′ , z

′, ω) = 0 , (21)

with general solution

P (kx′ , ky′ , z
′, ω) = Aeikz′z

′
+Be−ikz′z

′
. (22)

We illustrate, in the next section, a more complicated 1D example, where the finite volume

contains a reflector.

RTM AND GREEN’S THEOREM: TWO-WAY WAVE PROPAGATION

IN A 1D FINITE VOLUME THAT CONTAINS A REFLECTOR

Consider a single reflector example with the following properties: z increases downward, the source

is located at depth zs (where 0 < zs < a), the receiver is located at depth zg (where zs < zg < a),

for 0 ≤ z ≤ a the medium is characterized by c0, for z > a the medium is characterized by c1, and

the reflection coefficient R and transmission coefficient T at the interface (z = a) are given by

R =
c1 − c0
c0 + c1

, (23)

T =
2c0

c0 + c1
. (24)

Assume the source goes off at t = 0. Then the wave-field P for z < a, i.e., above a, is given by

P =
eik|z−zs|

2ik
+R

e−ik(z−a)

2ik
eik(a−zs) . (25)

In the time domain, the front of the plane wave travels with δ(t− |z − zs|/c0) out from the source.

Hence, the first term in (25) for P is the incident wave-field (an impulse) and for the second term

in P

δ

t− |a− zs|
c0︸ ︷︷ ︸

from source to reflector

− |z − a|
c0︸ ︷︷ ︸

from reflector to field point z

 . (26)

Fourier transforming gives:∫ ∞
−∞

eiωtδ

(
t− |a− zs|

c0
− |z − a|

c0

)
dt = e

(
iω

(
|a−zs|

c0
+
|z−a|

c0

))

for z < a = eik(a−zs)−ik(z−a) = e−ik(z−(2a−zs)) . (27)
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Therefore 2a − zs − z is the travel path from the source to the reflector and up to the field point

z. If instead of an incident Green’s function we choose a plane wave, we drop the 1/(2ik) and set

zs = 0, and then the incident plane wave passes the origin z = 0 at t = 0.

The transmitted wave field is for z > a

P =
1

2ik
Teik|a−zs|eik1(z−a) , (28)

with R and T given by (23); then (25) and (28) provide the solution for the total wave field every-

where.

Now we introduce Green’s theorem. The total wave-field P satisfies{
d2

dz′ 2
+

ω2

c2(z′)

}
P = δ(z′ − zs) , (29)

and the Green’s function G will satisfy{
d2

dz′ 2
+

ω2

c2(z′)

}
G = δ(z − z′) , (30)

where

c(z′) =

{
c0 z′ < a

c1 z′ > a
. (31)

The solution for P is given in (25) and (28). The solution for G will be determined below. GH and

GP are a homogeneous solution and particular solution, respectively, of the following differential

equations: {
d2

dz2
+

ω2

c2(z)

}
GH = 0 , (32){

d2

dz2
+

ω2

c2(z)

}
GP = δ . (33)

A particular solution, GP , can be given by (25) and (28) and with z′ replacing zs, we find

P (z, zs, ω) =
∣∣∣B
A
{P (z′, zs, ω)

dG

dz′
(z, z′, ω)−G(z, z′, ω)

dP

dz′
(z′, zs, ω)} , (34)

where A = zg, the depth of the MS, and B > a is the lower surface of Green’s theorem.

The ’source’ at depth z is within [A,B] and either above or below the reflector at z = a; conditions

will be placed on the solution, G, (for a source within the volume) for the field point of G at depth

z′ to satisfy at B. That is

(G(z, z′, ω))z′=B = 0 , (35)

and

(
dG

dz′
(z, z′, ω)

)
z′=B

= 0 . (36)

First pick the ’source’ in the Green’s function to be above the reflector, then (25) and (28) provide

a specific solution when we substitute for zs in P , the parameter, z, and for z in P the parameter,

z′. The latter allows a particular solution for G for the case that z in G is within [A,B] but above

z = a. Please note: The physical source is outside the volume, but the ’source’ in the Green’s
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function is inside the volume. Also, note that for the case of the (output point, z) ’source’ in the

Green’s function to be below the reflector and within [A,B] that a different solution for P other

than what is given in (25) and (28), would be needed for a particular solution of G. The latter would

require a solution for P where the source is in the lower half space.

What about the general solution for GH?{
d2

dz′ 2
+

ω2

c2(z′)

}
GH = 0 . (37)

The general solution to (37) is, for any incident plane wave, A(k) for [A,B]

GH =

{
A1e

ikz′ +B1e
−ikz′ z′ < a

C1e
ik1z

′
+D1e

−ik1z′ z′ > a
. (38)

The general solution to (37) has to allow the possibility of an incident wave from either direction,

that’s what general solution means! The general solution for G for the single reflector problem and

the source, z, above the reflector is given by

G(z, z′, ω) =

{
eik|z

′−z|

2ik +R e−ik(z′−a)

2ik eik(a−z) +A1e
ikz′ +B1e

−ikz′ z′ < a
T

2ike
ik|a−z|eik1(z′−a) + C1e

ik1z
′
+D1e

−ik1z′ z′ > a
(39)

for the source z being above the reflector and we choose C1 and D1 such that

G(z,B, ω) = 0 , and (40)[
dG

dz′
(z, z′, ω)

]
z′=B

= 0 , (41)

where, for z′ > a, GP is T/(2ik)eik|a−z|eik1(z′−a). Eq. (39) will be the Green’s function needed in

Green’s theorem to propagate/predict above the reflector at z′ = a where P is given by (25) and

(28). To determine A1 and B1, make the solutions for z′ < a and z′ > a and their derivatives

match at z′ = a (conditions of continuity across the reflector). The details are in Appendix B. In

practice, the deghosted scattered wave is upgoing (one-way) and finding its vertical derivative is

simply ikz × P . Deghosting precedes migration.

For downward continuing past the reflector, as previously stated, the P solution needed for

the particular solution of the Green’s function starts with a source in the lower half space where

k1 = ω/c1. That’s how it works. In practice for a v(x, y, z) medium a modeling will be required that

imposes a double vanishing boundary condition at depth to produce the Green’s function for RTM.

MULTIDIMENSIONAL RTM

Consider a volume V inside a homogeneous medium; V is bounded on the left by x′ = A, on the

right by x′ = L1, on the top by z′ = B, and on the bottom by z′ = L2 (Fig. 1). We want to use

Green’s theorem to estimate the wave-field P in V which requires we measure P and ∂P/∂n on the

boundary S of V . However, we can place receivers only at z′ = B. Can we construct a Green’s

function G such that it and its normal derivative ∂G/∂n vanish on three sides of V so that P can

be estimated in V using only the measurements on z′ = B?
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G can be written as the sum of a homogeneous solution GH and a particular solution GP where

G satisfies the partial differential equation (∇′ 2 + k2)G = δ(r − r
′
) and GH satisfies the partial

differential equation (∇′ 2 + k2)GH = 0. We try solutions of the form:

G(r
′
, r, ω) =

∑
m,n

Am,n(r)Xm(x′)Zn(z′) +GP (r
′
, r, ω) , (42)

GH(r
′
, r, ω) =

∑
m,n

Am,n(r)Xm(x′)Zn(z′) , (43)

with the boundary conditions that G and ∂G/∂n vanish at x′ = A, z′ = L2, and x′ = L1, i.e.,

at x′ = A G = 0 and − ∂G

∂x′
= 0, (44)

at z′ = L2 G = 0 and
∂G

∂z′
= 0, and (45)

at x′ = L1 G = 0 and
∂G

∂x′
= 0. (46)

Substituting (43) into (∇′ 2 + k2)GH = 0 gives:

0 =

(
∂2

∂x′ 2
+

∂2

∂z′ 2
+ k2

)
Xm(x′)Zn(z′)

= X ′′m(x′)Zn(z′) +Xm(x′)Z ′′n(z′) + k2Xm(x′)Zn(z′)

=
X ′′m(x′)

Xm(x′)
+
Z ′′n(z′)

Zn(z′)
+ k2

=⇒ Z ′′n(z′)

Zn(z′)
= −λ2

0 = Z ′′n(z′) + λ2Zn(z′)

Zn(z′) = C1e
iλnz

′
+ C2e

−iλnz
′

(47)

0 = X ′′m(x′) + (k2 − λ2︸ ︷︷ ︸
≡µ2

)Xm(x′)

Xm(x′) = C3e
iµmx

′
+ C4e

−iµmx
′

, (48)

where µ2
m −→ Xm(x′) and λ2

n −→ Zn(z′). We assume Xm(x′) and Zn(z′) are orthonormal and

complete and µ2 ≡ k2 − λ2 ≥ 0.

The boundary conditions on the left are G(A, z′) = 0 and Gx′(A, z
′) = 0, on the right G(L1, z

′) =

0 and Gx′(L1, z
′) = 0, and on the bottom G(x′, L2) = 0 and Gz′(x

′, L2) = 0. Substituting these

10



boundary conditions into (42) gives:

0 = G(A, z′, x, z) =
∑
m,n

Am,n(r)Xm(A)Zn(z′) +GP (A, z′, x, z) , (49)

0 = Gx′(A, z
′, x, z) =

∑
m,n

Am,n(r)X ′m(A)Zn(z′) +
d

dx′
GP (A, z′, x, z) , (50)

0 = G(L1, z
′, x, z) =

∑
m,n

Am,n(r)Xm(L1)Zn(z′) +GP (L1, z
′, x, z) , (51)

0 = Gx′(L1, z
′, x, z) =

∑
m,n

Am,n(r)X ′m(L1)Zn(z′) +
d

dx′
GP (L1, z

′, x, z) , (52)

0 = G(x′, L2, x, z) =
∑
m,n

Am,n(r)Xm(x′)Zn(L2) +GP (x′, L2, x, z) , (53)

0 = Gz′(x
′, L2, x, z) =

∑
m,n

Am,n(r)Xm(x′)Z ′n(L2) +
d

dz′
GP (x′, L2, x, z) . (54)

Eq. (49) is:

−GP (A, z′, x, z) =
∑
m,n

Am,n(r)Xm(A)Zn(z′) . (55)

Multiplying by Zs(z
′), integrating, and substituting (47) and (48) give:

−
∫ B

L2

GP (A, z′, x, z)Zs(z
′) dz′ =

∑
m

Am,s(r)Xm(A)

−
∫ B

L2

GP (A, z′, x, z)(C1e
iλsz

′
+ C2e

−iλsz
′
) dz′

=
∑
m

Am,s(r)(C3e
iµmA + C4e

−iµmA) . (56)
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In similar fashion we get:

−
∫ B

L2

d

dx′
GP (A, z′, x, z)(C1e

iλsz
′
+ C2e

−iλsz
′
) dz′

=
∑
m

Am,s(r)iµm(C3e
iµmA − C4e

−iµmA) , (57)

−
∫ B

L2

GP (L1, z
′, x, z)(C1e

iλsz
′
+ C2e

−iλsz
′
) dz′

=
∑
m

Am,s(r)(C3e
iµmL1 + C4e

−iµmL1) , (58)

−
∫ B

L2

d

dx′
GP (L1, z

′, x, z)(C1e
iλsz

′
+ C2e

−iλsz
′
) dz′

=
∑
m

Am,s(r)iµm(C3e
iµmL1 − C4e

−iµmL1) , (59)

−
∫ L1

A

GP (x′, L2, x, z)(C3e
iµsx

′
+ C4e

−iµsx
′
) dz′

=
∑
m

Am,s(r)(C1e
iλnL2 + C2e

−iλnL2) , (60)

−
∫ L1

A

d

dz′
GP (x, L2, x, z)(C3e

iµsx
′
+ C4e

−iµsx
′
) dz′

=
∑
m

Am,s(r)iλn(C1e
iλnL2 − C2e

−iλnL2) . (61)

The Am,s coefficients are determined by the imposed Dirichlet and Neumann boundary conditions

on the base and walls of the finite volume.

GENERAL STEP-BY-STEP PRESCRIPTION FOR RTM IN A FINITE

VOLUME WHERE THE VELOCITY CONFIGURATION IS C(X, Y, Z)

Step (1) For a desired downward continued/migration output point (x, y, z) for determining P (x, y, z, ω){
∇′ 2 +

ω2

c2(x′, y′, z′)

}
G0(x′, y′, z′, x, y, z, ω) = δ(x− x′)δ(y − y′)δ(z − z′) , (62)

for a source at (x, y, z) and P is the physical/causal solution satisfying{
∇
′ 2 +

ω2

c2(x′, y′, z′)

}
P (x′, y′, z′, xs, ys, zs, ω) = A(ω)δ(x′ − xs)δ(y′ − ys)δ(z′ − zs). (63)

G0 is the auxiliary or Green’s function satisfying{
∇
′ 2 +

ω2

c2(x′, y′, z′)

}
G0(x, y, z, x′, y′, z′, ω) = δ(x− x′)δ(y − y′)δ(z − z′) , (64)

for (x, y, z) in V and G0 and ∇′G0 · n̂′ are both zero for (x′, y′, z′) on the lower surface SL and the

walls SW of the finite volume. The solution for G0 in V and on S can be found by a numerical

modeling algorithm where the ’source’ is at (x, y, z) and the field, G0, at (x′, y′, z′) and ∇G0 · n̂
are both imposed to be zero on SL and SW . Once that model is run for a source at (x, y, z) for

G0(x′, y′, z′, x, y, z, ω) [for every eventual wave prediction point, (x, y, z), for P ] where G0 satisfies
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Dirichlet and Neumann conditions for (x′, y′, z′) on SL and SW we output G0(x′, y′, z′, x, y, z, ω) for

(x′, y′, z′) on SU (the measurement surface).

Step (2) Downward continue the receiver

P (x, y, z, xs, ys, zs, ω) =

∫ {
∂GDN0

∂z′
(x, y, z, x′, y′, z′, ω)P (x′, y′, z′, xs, ys, zs, ω)

− ∂P

∂z′
(x′, y′, z′, xs, ys, zs, ω)GDN0 (x, y, z, x′, y′, z′, ω)

}
dx′dy′ , (65)

where z′ = fixed depth of the cable and (xs, ys, zs) = fixed location of the source. This brings the

receiver down to (x, y, z), a point below the measurement surface in the volume V .

Step (3) Now downward continue the source

P (xg, yg, z, x, y, z, ω) =

∫ {
∂GDN0

∂zs
(x, y, z, xs, ys, zs, ω)P (xg, yg, z, xs, ys, zs, ω)

− ∂P

∂zs
(xg, yg, z, xs, ys, zs, ω)GDN0 (x, y, z, xs, ys, zs, ω)

}
dxsdys. (66)

P (xg, yg, z, x, y, z, ω) is a downward continued receiver to (xg, yg, z) and the source to (x, y, z) and

change to midpoint offset P (xm, xh, ym, yh, zm, zh = 0, ω) and∫
dω

{
∂GDN0

∂zs
(x, y, z, xs, ys, zs, ω)P (xg, yg, z, xs, ys, zs, ω)

− ∂P

∂zs
(xg, yg, z, xs, ys, zs, ω)GDN0 (x, y, z, xs, ys, zs, ω)

}
, (67)

and Fourier transform over xm, xh, ym, yh to find P̃ (kxm , kxh
, kym , kyh , kzm , zh = 0, t = 0) the RTM

uncollapsed migration for a general v(x, y, z) velocity configuration.

RTM AND INVERSE SCATTERING SERIES (ISS) IMAGING: NOW

AND THE FUTURE

In practice, RTM is often applied using a wave equation that avoids reflections at reflectors above

the target. Impedance matching at boundaries in the modeling, allows density and velocity to

both have rapid variation at a reflector, but are arranged so that the normal incidence reflection

coefficient will be zero. The result ia a smooth ’apparent velocity’ that can support diving waves,

but seeks to avoid the discontinuous velocity model commitment that including reflections would

require. In RTM, including those reflections above the reflector to be imaged, drives a need for an

accurate and discontinuous velocity model. The ISS imaging methods welcome (and require) all the

reflectors above the one reflector being imaged, without implying a concomitant need for an accurate

discontinuous velocity model.

One way to view the RTM to Inverse Scattering Series (ISS) (Weglein et al., 2003) imaging step

is as removing reflectionless reflectors by an ’impedance matching’ differential equation in RTM to

avoid the need for a commitment to an accurate and discontinuous velocity. With ISS imaging we

have the opposite situation: the welcome of all reflections to the imaging of any reflector, and without

the need to know or determine the discontinuous velocity model. That is the next step, and our first
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field data tests with ISS imaging are underway. In the interim, we thought it useful to provide an

assist to current best imaging RTM practice. We will be returning reflections to reflectors thereby

turning the problem, observation, and obstacle in current RTM into the instrument of significant

imaging progress, and without the need for a velocity model, discontinuous or otherwise.

SUMMARY

Migration and migration-inversion require velocity information for location and beyond velocity only

for amplitude analyses at depth. So when we say the medium is ’known,’ the meaning of known

depends on the goal: migration or migration-inversion. Backpropagation and imaging each evolved

and then extended/generalized and merged into migration-inversion (Fig. 2).

For one-way wave propagation the double downward continued data, D is

D(at depth) =

∫
Ss

∂G−D0

∂zs

∫
Sg

∂G−D0

∂zg
DdSg dSs , (68)

where D in the integrand = D(on measurement surface), ∂G−D0 /∂zs = anticausal Green’s function

with Dirichlet boundary condition on the measurement surface, s = shot, and g = receiver. For

two-way wave double downward continuation:

D(at depth) =

∫
Ss

[
∂GDN0

∂zs

∫
Sg

{
∂GDN0

∂zg
D +

∂D

∂zg
GDN0

}
dSg

+ GDN0

∂

∂zs

∫
Sg

{
∂GDN0

∂zg
D +

∂D

∂zg
GDN0

}
dSg

]
dSs , (69)

where D in the integrands = D(on measurement surface). GDN0 is neither causal nor anticausal.

GDN0 is not an anticausal Green’s function; it is not the inverse or adjoint of any physical propagating

Green’s function. It is the Green’s function needed for RTM. GDN0 is the Green’s function for the

model of the finite volume that vanishes along with its normal derivative on the lower surface and the

walls. If we want to use the anticausal Green’s function of the two-way propagation with Dirichlet

boundary conditions at the measurement surface then we can do that, but we will need measurements

at depth and on the vertical walls. To have the Green’s function for two-way propagation that doesn’t

need data at depth and on the vertical sides/walls, that requires a non-physical Green’s function

that vanishes along with its derivative on the lower surface and walls.

In the Inverse Scattering Series (ISS) model (sketch 4 in Fig. 2) the Lippmann-Schwinger (LS)

equation over all space, rather than Green’s theorem, is called upon and the Lippmann-Schwinger

equation requires no imposed boundary conditions on S since all boundary conditions are already

incorporated in LS from linearity/superposition and causality. See, e.g., Weglein et al. (2003), Stolt

and Jacobs (1980), Weglein et al. (2009), and Weglein et al. (2006).

The appropriate Green’s function, for a closed surface integral in Green’s theorem, with an

arbitrary and known medium within the volume can be satisfied with any Green’s function satisfying

the propagation properties within the volume and with Dirichlet, Neumann, or Robin boundary

conditions on the closed surface. The issue and/or problem in exploration reflection seismology is

the measurements are only on the upper surface.
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Why Green’s theorem for migration algorithms?

1. Allows a wave theoretical platform/framework for wave-field prediction from surface measure-

ments that builds on quantitative and potential field theory history and evolution.

2. Allows (x, ω) processing without transform artifacts and yet is wave theoretic in a (x, ω) world

where up-down is not so simple to define as in (k, ω). Deghosting (Zhang (2007)) and wavelet

estimation (Weglein and Secrest (1990)) are other examples where Green’s theorem provides

(x, ω) advantage.

3. Allows avoidance of very common pitfalls and erroneous algorithm derivations based on qual-

itative (at best) methods launched from Huygens’ principle or discrete matrix inverses and it

allows the wave theoretic imaging conditions introduced by Clayton and Stolt (1981) and Stolt

and Weglein (1985) to be used rather than the lesser cross-correlation of wave-field imaging

concepts.

Backpropagation is quantitative from Green’s theorem rather than these G−1
0 , G∗0, less wave

theoretic more generalized inverse, discrete matrix thinking approaches for backpropagation. For

RTM and Green’s theorem the data, D, at depth is definitely not

D 6=
∫
G−1

0S

∫
G−1

0RD (Huygens) , (70)

where G−0 indicates an anticausal Green’s function. This is OK with Huygens but violates Green’s

theorem and the equation is not dimensionally consistent with the right hand side not having the

dimension of data, D. The data, D, at depth for one-way waves is

D =

∫
Ss

∂G−D0

∂zs

∫
Sg

∂G−D0

∂zg
DdSg dSs (Green) , (71)

where D = Dirichlet boundary condition on top and G−0 anticausal. This is OK with Green but not

for two-way RTM propagation. The data, D, at depth for two-way waves is

D =

∫
Ss

[
∂GDN0

∂zs

∫
Sg

{
∂GDN0

∂zg
D +

∂D

∂zg
GDN0

}
dSg

+ GDN0

∂

∂zs

∫
Sg

{
∂GDN0

∂zg
D +

∂D

∂zg
GDN0

}
dSg

]
dSs (Green) , (72)

where DN = Dirichlet and Neumann boundary conditions to be imposed on bottom and walls and

GDN0 is neither causal nor anticausal nor a combination. Please see Fig. 3.

COMMENTS AND FUTURE DEVELOPMENTS

In this manuscript, we provide a firm foundation for RTM based on Green’s theorem. As in the

case of interferometry (Ramı́rez and Weglein (2009)) misuse, abuse and/or misunderstanding of

Green’s theorem in RTM has also led to strange and curious interpretations, and to opinions being

offered about the cause of artifacts and observed problems and communicating ’deep new insights’

that are neither new nor accurate. We communicate here to simply understand and stick with
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Green’s theorem as the guide and solution in both cases, interferometry and RTM. The original

RTM methods of running the wave equation backwards with surface reflection data as a boundary

condition is not a wave theory method for wave-field prediction, neither in depth nor in reversed

time. In Huygens’ principle the wave-field prediction doesn’t have the dimension of a wave-field. In

fact that idea corresponds to the Huygens’ principle idea (Huygens (1690)) which was made into a

wave theory predictor by George Green in 1826.
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APPENDIX A: CONFIRMATION THAT THE GREEN’S FUNCTION

EQ. (14), WHEN USED IN GREEN’S THEOREM, WILL PRODUCE

A TWO-WAY WAVE FOR A < Z < B WITH ONLY MEASUREMENTS

ON THE UPPER SURFACE.

P (z, ω)

=

∫ b

a

dz′

−1

2ik
e−ikzeikz

′
+

1

2ik
eik|z−z

′|︸ ︷︷ ︸
G0(z,z′,ω)

 ρ(z′, ω)︸ ︷︷ ︸
0

+|ba

(Aeikz
′
+Be−ikz

′︸ ︷︷ ︸
P (z′,ω)

)

−1

2ik
e−ikzeikz

′
ik +

1

2ik
eik|z−z

′|ik sgn(z − z′)(−1)︸ ︷︷ ︸
dG0(z,z′,ω)

dz′



−

−1

2ik
e−ikzeikz

′
+

1

2ik
eik|z−z

′|︸ ︷︷ ︸
G0(z,z′,ω)

 (Aeikz
′
ik +Be−ikz

′
(−ik)︸ ︷︷ ︸

dP (z′,ω)

dz′

)


=
−1

2
|ba(���

��
Aeik(2z′−z) +A sgn(z − z′)eikz

′
eik|z−z

′|

+Be−ikz +B sgn(z − z′)e−ikz
′
eik|z−z

′|

−���
��

Aeik(2z′−z) +Aeikz
′
eik|z−z

′| +Be−ikz −Be−ikz
′
eik|z−z

′|)

=
−1

2
(A sgn(z − b)︸ ︷︷ ︸

−1

eikbe

ik |z − b|︸ ︷︷ ︸
b−z

+��
��

Be−ikz +B sgn(z − b)︸ ︷︷ ︸
−1

e−ikbe

ik |z − b|︸ ︷︷ ︸
b−z

+Aeikbe

ik |z − b|︸ ︷︷ ︸
b−z +��

��
Be−ikz −Be−ikbe

ik |z − b|︸ ︷︷ ︸
b−z

−A sgn(z − a)︸ ︷︷ ︸
1

eikae

ik |z − a|︸ ︷︷ ︸
z−a

−����Be−ikz −B sgn(z − a)︸ ︷︷ ︸
1

e−ikae

ik |z − a|︸ ︷︷ ︸
z−a

−Aeikae

ik |z − a|︸ ︷︷ ︸
z−a −����Be−ikz +Be−ikae

ik |z − a|︸ ︷︷ ︸
z−a )

=
−1

2
(−���

��
Aeik(2b−z) −Be−ikz +���

��
Aeik(2b−z) −Be−ikz

−Aeikz −((((
((

Be−ik(2a−z) −Aeikz +(((
(((

Be−ik(2a−z))

=
−1

2
(−2Aeikz − 2Be−ikz)

= Aeikz +Be−ikz
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APPENDIX B: EVALUATING A1, B1, C1, AND D1 IN EQ. (39).

For z′ > a choose C1 and D1 such that

G(z,B, ω) = 0 and[
dG

dz′
(z, z′, ω)

]
z′=B

= 0

=⇒ T

2ik
eik|a−z|eik1(B−a) + C1e

ik1B +D1e
−ik1B = 0

T

2ik
eik|a−z|eik1(B−a)ik1 + C1e

ik1Bik1 +D1e
−ik1B(−ik1) = 0

=⇒ C1e
ik1B +D1e

−ik1B = − T

2ik
eik|a−z|eik1(B−a)

C1e
ik1B −D1e

−ik1B = − T

2ik
eik|a−z|eik1(B−a)

Adding and subtracting give

2C1e
ik1B = − 2T

2ik
eik|a−z|eik1(B−a)

C1 = − T

2ik
eik|a−z|e−ik1a

2D1e
−ik1B = 0

D1 = 0

For z′ = a choose A1 and B1 such that

G(z, a, ω)|z′<a = G(z, a, ω)|z′>a and[
dG

dz′
(z, z′, ω)

]
z′<a at z′=a

=

[
dG

dz′
(z, z′, ω)

]
z′>a at z′=a

=⇒ eik|a−z|

2ik
+R

1︷ ︸︸ ︷
e−ik(a−a)

2ik
eik(a−z) +A1e

ika +B1e
−ika

=
T

2ik
eik|a−z| eik1(a−a)︸ ︷︷ ︸

1

+ C1︸︷︷︸
−(T/2ik)eik|a−z|e−ik1a

eik1a + D1︸︷︷︸
0

e−ik1a

eik|a−z|

2ik
ik sgn(a− z) +R

1︷ ︸︸ ︷
e−ik(a−a)

2ik
(−ik)eik(a−z) +A1e

ikaik +B1e
−ika(−ik)

=
T

2ik
eik|a−z| eik1(a−a)︸ ︷︷ ︸

1

ik1

+ C1︸︷︷︸
−(T/2ik)eik|a−z|e−ik1a

eik1aik1 + D1︸︷︷︸
0

e−ik1a(−ik1)
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=⇒ eik|a−z|

2ik
+

R

2ik
eik(a−z) +A1e

ika +B1e
−ika =

T

2ik
eik|a−z| − T

2ik
eik|a−z| = 0

1

2
sgn(a− z)eik|a−z| − R

2
eik(a−z) +A1ike

ika −B1ike
−ika =

Tik1

2ik
eik|a−z| − Tik1

2ik
eik|a−z| = 0

=⇒ A1e
ika +B1e

−ika = −e
ik|a−z|

2ik
− R

2ik
eik(a−z)

A1e
ika −B1e

−ika = − 1

2ik
sgn(a− z)eik|a−z| + R

2ik
eik(a−z)

Adding and subtracting give

2A1e
ika = − 1

2ik
eik|a−z|(1 + sgn(a− z))

A1 = − 1

4ik
e−ikaeik|a−z|(1 + sgn(a− z))

2B1e
−ika = − 1

2ik
eik|a−z|(1− sgn(a− z))− 2R

2ik
eik(a−z)

B1 = − 1

4ik
eikaeik|a−z|(1− sgn(a− z))− 2R

4ik
eik(2a−z) = − 1

4ik
(eikaeik|a−z|(1− sgn(a− z)) + 2Reik(2a−z))

Check:

G(z, a, ω)|z′<a −G(z, a, ω)|z′>a

=
eik|a−z|

2ik
+

R

2ik
eik(a−z) +

(
− 1

4ik
e−ikaeik|a−z|(1 + sgn(a− z))

)
eika

+

(
− 1

4ik
(eikaeik|a−z|(1− sgn(a− z)) + 2Reik(2a−z))

)
e−ika

− T

2ik
eik|a−z| −

(
− T

2ik
eik|a−z|e−ik1a

)
eik1a − (0)e−ik1a

=
1

2ik
eik|a−z|︸ ︷︷ ︸

cancels 1

+
R

2ik
eik(a−z)︸ ︷︷ ︸

cancels 2

− 1

4ik
eik|a−z|︸ ︷︷ ︸

cancels 1

− 1

4ik
eik|a−z|sgn(a− z)︸ ︷︷ ︸

cancels 3

− 1

4ik
eik|a−z|︸ ︷︷ ︸

cancels 1

+
1

4ik
eik|a−z|sgn(a− z)︸ ︷︷ ︸

cancels 3

− 2R

4ik
eik(a−z)︸ ︷︷ ︸

cancels 2

− T

2ik
eik|a−z|︸ ︷︷ ︸

cancels 4

+
T

2ik
eik|a−z|︸ ︷︷ ︸

cancels 4

=0 as desired
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Figure 1: Two dimensional finite volume model

 

 3. finite volume with approximately  

known model (Stolt, SEP24) 
 4.  infinite hemisphere with  

unknown model (ISS) 

Known 

       

Unknown 

Known 

       
Approximately Known 

Unknown   

 1. infinite hemisphere with known model 

Unknown  

 2. finite volume with known model 

Figure 2: Backpropagation model evolution
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Figure 3: Qualitative vs. quantitative wave propagation:

(Left) Huygens (1690), and e.g., Whitmore (1983), McMechan (1983), Fletcher et al. (2006),

Berkhout (1997), Claerbout (1992), Dong et al. (2009), Luo and Schuster (2004)

(Right) Green (1828), and e.g., Morse and Feshbach (1953), Born and Wolf (1999), Stolt (1978),

Schneider (1978), Esmersoy and Oristaglio (1988), Weglein and Secrest (1990), Weglein et al.

(1997), Liu et al. (2006), Ramı́rez and Weglein (2009), and Weglein et al. (2011)
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