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ABSTRACT 
 
Zou, Y. and Weglein, A.B., 2018. ISS Q compensation without knowing, estimating or 
determining Q and without using or needing low and zero frequency data. Journal of 
Seismic Exploration, 27: 593-608. 
 
 Developing new and more effective methods to achieve Q compensation is of 
priority in seismic processing and exploration. We propose a new approach for Q 
compensation as an isolated task subseries of the inverse scattering series (ISS). This 
inverse scattering subseries achieves Q compensation without needing to know, estimate 
or to determine Q. The method avoids the pitfall of an earlier ISS method by not needing 
or using low frequency data and in particular not needing zero frequency data. This paper 
provides two contributions (1) It develops a reformulated inverse scattering series (ISS) 
Q compensation method without knowing or estimating Q and (most importantly) 
without needing zero frequency data (2) It avoids a division by zero in the subsequent 
reformulated algorithm by adding a small imaginary term to kz (adding a small amount of 
friction in the reference medium). 
 
 In this paper, we test the Q compensation algorithm in a two-reflector model and 
have obtained encouraging results. This advance in ISS Q compensation also has 
immediate significant and positive consequence for all amplitude analysis (that currently 
require low and zero frequency data) including ISS depth imaging, ISS direct parameter 
inversion, traditional iterative AVO and model matching FWI. In addition, the ISS Q 
compensation without knowing or estimating Q method can be transferred for 
electromagnetic applications where conductivity plays the role of Q, and a conductivity 
map can be output. 
 
 Once the Q compensated data is available we could use that data together with the 
original data to estimate Q. Alternatively, the anelastic equation and data could input the 
original data and ISS inverted for elastic and Q parameters. 
 
KEY WORDS:  Q compensation, inverse scattering Q compensation subseries, 
     improved seismic resolution, direct inversion, target identification.  
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INTRODUCTION 
 
 The presence of Q in the subsurface damages and reduces the 
resolution of seismic data. The purpose of Q compensation is to recover 
from (and undo) the damage and produce a data that has not experienced Q. 
In other words, for data experiencing loss with absorptive media, data 
recovery means recover data from the loss due to Q. If we could estimate Q, 
we can attempt to recover data as though it had experienced an elastic rather 
than an inelastic subsurface with absorption. Many individuals have pursued 
that path. However, there is a tremendous sensitivity to any inaccuracy in Q 
estimation. If the estimated Q is too large, it can amplify noise. If the 
estimated Q is too small, it does not provide enough recovery. Overall, it's 
generous to say that that approach [estimating Q] has had, at best, a 
checkered record of success. Hence, Q compensation remains an open and 
priority issue and seismic processing challenge. 
 
 This paper is both inspired and motivated by the earlier important 
contribution of performing Q compensation without knowing Q of Innanen 
and Lira (2010) and the linear antecedent by Innanen and Weglein (2007). 
Within this paper, we will occasionally refer to those papers for their 
extensive background references and certain mathematical detail found in 
their appendices. We first review these two earlier papers. We then point out 
the specific absolute data requirement, that is not able to be satisfied with 
field data (low and zero frequency data), and hence precluded the method 
from becoming a useful practical algorithm. Next we describe the several 
explicit advances in concept, method and subsequent new algorithms 
(introduced and developed in this paper) that can be effective and practical 
on realistic band-limited field data. 
 
 The previous ISS Q compensation algorithms (Innanen and Lira, 
2010) without knowing or estimating Q was the only Q compensation 
method at that time that did not require a Q profile. However it required low 
frequency data and in fact critically depended upon recording zero frequency 
data. The latter data requirement made that earlier approach impractical. 
 
 In this paper, we propose a new approach for the ISS Q compensation 
task without knowing or estimating Q, avoiding the pitfall of the earlier 
approach by deriving a new ISS Q compensation subseries that does not 
require or use low frequency and zero frequency data. This new approach 
contains two contributions (1) reformulated the ISS Q compensation without 
knowing or estimating Q algorithm to avoid needing and using zero 
frequency data, and (2) avoided a division by zero in the reformulated 
algorithm by adding a small imaginary number to kz, effectively placing 
absorption in the reference media. Those two contributions lead to the first 
practical Q compensation method that does not require (or determine) any 
knowledge of Q and is achievable with band limited seismic data. 



 
A REVIEW OF THE PREVIOUS ISS Q COMPENSATION WITHOUT 
KNOWING OR ESTIMATING Q ALGORITHM 
 
 The Inverse-Scattering-Series (ISS) allows all seismic processing 
objectives, such as free-surface-multiple removal, internal-multiple removal, 
depth imaging, non-linear parameter estimation and Q compensation to be 
achieved directly in terms of data, and without any need to estimate or to 
determine subsurface properties. Weglein et al. (1997), Weglein et al. (2003) 
introduce the concept of isolated task subseries of the ISS to achieve those 
specific tasks. The recent ISS Q (compensation) without Q (estimation) 
algorithm (Innanen and Lira, 2010) provides a way to compensate Q in 
terms of only the data, without knowing, estimating or determining Q. This 
is a huge advantage especially for a complex subsurface where a Q profile is 
difficult or impossible to obtain. We will give a brief summary of their 
pioneering work. 
 
 Starting from a non-absorptive wave equation for the reference 
medium 
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𝐺! 𝑥, 𝑥! ,𝜔 = 𝛿 𝑥 − 𝑥!     ,                                              (1) 

 

and a two-parameter (nearly constant Q) absorptive wave equation, where 
the physical properties only vary in depth, (Aki and Richards, 2002) 
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 where 𝑐 𝑥  is a 

spatially varying wave speed and 𝜔! is a chosen reference temporal 

frequency. Innanen and Lira (2010) treat the quantity in square brackets in 

equations 1 and 2 as the operators 𝐿! and 𝐿, respectively. By defining two 

perturbation quantities 𝛼 𝑥 = 1 −
!!
!

! ! !
  and 𝛽 𝑥 =

!

!
, they arrive at a 

perturbation operator appropriate for this Q problem (for α <<1): 

 

            𝐿! − 𝐿 ≈
!
!

!!
!
𝛼 𝑥 − 2𝐹 𝜔 𝛽 𝑥 = 𝑉    .                                       (3) 

 
Eqs. (1), (2) and (3) define the assumed physics model governing wave 
propagation in this paper. 
 
 Following Weglein et al. (2003) we expand V as a series 



           𝑉 = 𝑉! + 𝑉! + 𝑉! +⋯     ,                                                                  (4) 
 
where Vn is the portion of V that is n-th order in the data. An inverse series 
for the perturbation V in terms of α and β is 
 

𝛼 𝑧 − 2𝐹 𝜔 𝛽 𝑧 = 𝛼! 𝑧 − 2𝐹 𝜔 𝛽! 𝑧 + 𝛼! 𝑧 − 2𝐹 𝜔 𝛽! 𝑧 +  ⋯     .       (5) 

 

 The inverse solution (e.g., Weglein et al., 2003) is generated by 
sequentially solving for V and summing contributions to the perturbation in 
orders of data, D (where D is the measured values of the scattered wavefield 
𝐺 − 𝐺!). At first order, from 𝐺!𝑉!𝐺! = 𝐷 for 𝑉!we have 

 

           𝐷 𝑘! ,𝜃 = −
!

!!"#! !
𝑑𝑧

!
𝑒
!!!!!

!

𝛼! 𝑧
!
− 2𝐹 𝑘! ,𝜃 𝛽! 𝑧

!    ,    (6) 

 
where the data D(xg,t), for one shot record, is first Fourier transformed over 
𝑥! and 𝑡 to find 𝐷 𝑘! ,𝜔  [𝑥!is the receiver coordinate and 𝑡 is time]. Then 
changing variables and defining 𝑘! ≡ 2𝑞! = 2 𝑘! − 𝑘!

!  with k = ω/c0 
and  𝑞! = 𝜔/𝑐 𝑐𝑜𝑠 𝜃 .  
 

 With the assumption that the data contains only primaries, Innanen 
and Lira (2010) found a closed-form for a selected set of (partial) 

contributions to 𝑉 =
!
!

!!
!
[𝛼 𝑥 − 2𝐹 𝜔 𝛽 𝑥 ] benefiting from an analogous 

ISS depth imaging subseries of Shaw and Weglein (2003) and Shaw (2005) 
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                (7) 

 
where 𝛼! 𝑧 = 𝛼!!! 𝑧

!

!!!   and 𝛽! 𝑧 = 𝛽!!! 𝑧
!

!!! . The quantities 
αn and βn are the contributions to α and β, that are nth order in the data D. F 
has been written as a function of the reference plane-wave variables θ and kz 
rather than ω (Please see Innanen and Lira, 2010 Appendix B for a detailed 
derivation). The goal of Innanen and Lira (2010) is to carry out a single 
isolated task, that of compensation for Q, and to ultimately output data that 
would not have experienced Q. The principle role of α1 in the argument of 
the exponential is to nonlinearly accomplish aspects of the inversion 
associated with wave speed deviations between the reference and actual 
media. Those tasks include internal multiple removal and depth imaging and 
amplitude analysis. 
 



 The role of β in the forward series is responsible for all the Q effects 
on the data. Thus in the inverse series, the 𝛽! is responsible for Q 
compensation, or data recovery. More precisely, the role of 𝛽!  in the inverse 
series is to accomplish aspects of the inversion associated with deviations 
between reference (𝑄 = ∞) and actual Q values. Following this observation, 
Innanen and Lira (2010) proposed an approximate form of Q compensation 
algorithm by isolating terms in the inverse series that related to 𝛽!  (which is 
responsible for Q compensation) and avoiding 𝛼! only and 𝛼! and 𝛽! 
coupled terms, output (a leading order capture of isolated 𝛽! inverse series) 
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(8) 

and the Q compensated data or recovered data is      

            𝐷!"#$ 𝑘! ,𝜃 = −
!

!!"#! !
𝛼! 𝑘! − 2𝐹 𝑘! ,𝜃 𝛽! 𝑘!     ,             (9) 

where the original input data is 

            𝐷 𝑘! ,𝜃 = −
!

!!"#! !
𝛼! 𝑘! − 2𝐹 𝑘! ,𝜃 𝛽! 𝑘!     .                   (10) 

 More terms related to Q compensation could be isolated and more 
accurate algorithms could be proposed in the future analogous to higher 
order ISS imaging subseries HOIS (Liu et al., 2004, 2005b; Liu, 2006; Wang 
et al., 2010a,b; Wang and Weglein, 2011; Wang, 2012), that can 
accommodate larger 1/Q values and larger regions where 𝑄 ≠ ∞. Another 
advantage of this algorithm is that it is formulated and operates in the data 
domain instead of the model domain [similar to the ISS free-surface multiple 
elimination algorithm (Carvalho, 1992; Weglein et al., 1997) and the ISS 
internal multiple attenuation algorithm (Araújo et al., 1994; Weglein et al., 
1997, 2003)] making the algorithm more robust to noise and bandwidth 
issues. 

 
 However, similar to the ISS depth imaging subseries (Shaw, 2005; 
Weglein et al., 2003; Liu et al., 2004, 2005a) the previous ISS Q 
compensation without knowing or estimating Q algorithm (Innanen and 
Weglein, 2007; Innanen and Lira, 2010) has a practical issue and 
shortcoming in that it requires low and zero frequency data which is not 
achievable with field data. 
 
 In this paper a new starting point, and concomitant algorithm, 
specifically designed to avoid the need for that unachievable low and zero 



frequency data, is developed providing a new and practical ISS Q 
compensation algorithm, without knowing or estimating Q, while avoiding 
the pitfall of the earlier approach for ISS Q compensation. The new 
algorithm provided in the next section of this paper does not require or use 
low frequency data and has absolutely no interest in or need for zero 
frequency data. This new approach contains two contributions (1) 
reformulated the ISS Q compensation without knowing or estimating Q 
algorithm to avoid using zero frequency data, and (2) avoided division by 
zero in the reformulated algorithm by adding a small imaginary number to 
kz.  In the next section, we will discuss the two contributions and advances in 
this paper, in detail. 

 

REFORMULATING 1D PRESTACK ISS Q COMPENSATION 
WITHOUT KNOWING OR ESTIMATING Q AND WITHOUT 
USING OR NEEDING LOW/ZERO FREQUENCY DATA 
 

 As we discussed in the last section, Innanen and Lira (2010) provides 
an ISS Q compensation without knowing or estimating Q algorithm for a 1D 
subsurface, with offset data, and Innanen and Weglein (2007) provided the 
linear relationship and starting point.  

 

 The Q compensated data (𝐷!"#$) which is the data without suffering 

Q, can be obtained by compensating the data experiencing Q as following, 
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  (11) 

and the original data (D) experiencing Q is related to 𝛼! and 𝛽! by the 
following equation, 
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𝛼! 𝑧
!
− 2𝐹 𝑘! ,𝜃 𝛽! 𝑧
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where 𝛼! and 𝛽!are linear approximations of (i.e. the portion that is linear in 

data) 𝛼 = 1 −
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! ! !
 and 𝛽 𝑥 =

!

!
 respectively. 𝐹 𝑘! ,𝜃 =
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where 𝜔 𝑘! ,𝜃 = −
!!!!

!!"#$
 and the reference frequency 𝜔! is a component of 

the A-D model, which in our numerical studies we choose to be the highest 



frequency in a given experiment, D is the reflection data we obtained from a 
subsurface with absorption, and the 𝐷!"#$  is the data after Q compensation. 

 

 To calculate 𝐷!"#$, we need 𝛽! 𝑧 . Innanen and Weglein (2007) 

proposed and described in detail how to estimate β1 as a function of 
pseudodepth z. Eq. (10) can be rewritten as follows, 

 

           𝛼! 𝑘! − 2𝐹 𝑘! ,𝜃 𝛽! 𝑘! = −4𝑐𝑜𝑠
!
𝜃 𝐷 𝑘! ,𝜃      .                   (13) 

 

 To solve for 𝛽!, Innanen and Weglein (2007) use the data at two 

incidence angles, 𝐷 𝑘! ,𝜃!  and 𝐷 𝑘! ,𝜃! , where  𝜃 = 𝑐𝑜𝑠
!!

𝑘!𝑐!/2𝜔 , as 
follows 

 

           𝛼! 𝑘! − 2𝐹 𝑘! ,𝜃! 𝛽! 𝑘! = −4𝑐𝑜𝑠
!
𝜃! 𝐷 𝑘! ,𝜃!      ,               (14) 

and 

           𝛼! 𝑘! − 2𝐹 𝑘! ,𝜃! 𝛽! 𝑘! = −4𝑐𝑜𝑠
!
𝜃! 𝐷 𝑘! ,𝜃!      ,               (15) 

 

and then solve for 𝛽!. This results in 

 

           𝛽! 𝑘! = 2
! !!,!! !"#

!
!! !! !!,!! !"#

!
!!

! !!,!! !! !!,!!
      .                                (16)   

 Similarly, we can solve eqs. (14) and (15) for α1. Then 𝛼!and 𝛽! can 
be used in eq. (9) for Q compensation.  

 

 This is the previous ISS Q compensation without knowing or 
estimating Q algorithm. However, as we mentioned, there is an issue in this 

earlier approach. In eqs. (14) and (15) the solutions for 𝛼! 𝑘!  and 𝛽! 𝑘!  

require knowledge of data 𝐷 𝑘! ,𝜃  at 𝑘! = 0, which corresponds (for any 

fixed  𝜃) to 𝜔 = 0. Furthermore in eq. (8), the integral of the 𝛽! 𝑧
!!  (in the 

e exponential 𝑑𝑧
!!

!!

!
𝛽! 𝑧

!! ) is very sensitive to low and zero frequency in 

the data. Therefore, the zero 𝑘! value of 𝛽! depends on the 𝜔 = 0 

component of the data (𝐷 𝑘! ,𝜃!  and 𝐷 𝑘! ,𝜃! ). The requirement of low 
and zero frequency data made those earlier approaches impractical. 
 

 For prestack data, and an assumed one dimensional subsurface, β1 will 
be a one dimensional function of kz and the data is a two dimensional 
function of (kz,θ). Thus there is one free parameter in the data. Any choice of 
the free parameter will give a different β1, as it should, and a different ISS Q 
compensation subseries will be responsible for Q compensation. We 



reformulated the equations for calculating β1 from the kz, θ domain to the kz, 
kx domain. Two kx values will solve for α1 and β1 and for each two specific 
values will have a different solution for α1 and β1 and a distinct ISS Q 
compensation subseries. When kx is relatively small, the reformulated 
equations will provide a similar α1 or β1 looking result as we can obtain in 
the kz, θ domain. However, this reformulation will avoid the requirement of 
zero frequency data in the previous algorithm for α1 or β1 and the subsequent 
Q compensation subseries. If the selected kx values are not small the α1 and 
β1 will not provide a similar appearing result as we obtain in the kz, θ domain 
(more detailed discussion in Appendix B), a different subseries that is 
responsible for Q compensation (or ISS imaging for α1) needs to be 
identified and isolated, which will be pursued and progressed in future work. 
Thus in order to estimate β1, we reformulated eqs. (14) and (15), 

            𝛼!(𝑘!) − 2𝐹(𝑘! , 𝑘!!)𝛽!(𝑘!) = −4
!!
!

!!
!
!!!!

!
𝐷(𝑘! , 𝑘!!)     ,             (17) 

and  

            𝛼! 𝑘! − 2𝐹 𝑘! , 𝑘!! 𝛽! 𝑘! = −4
!!
!

!!
!
!!!!

!
𝐷 𝑘! , 𝑘!!       .             (18) 

Eq. (16) becomes  

            𝛽! 𝑘! = 2

! !!,!!!
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!

!!
!
!!!!

!
!! !!,!!!

!!
!
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!
!!!!

!

! !!,!!!
!! !!,!!!

      .                                (19) 

 

 Eq. (19) uses data at two different 𝑘! values instead of data at two 

different angles. Since 𝜔/𝑐! = 𝑘!!
! + 𝑞!

! for 𝐷(𝑘! , 𝑘!!) and 𝜔/𝑐! =

𝑘!!
! + 𝑞!

! for 𝐷(𝑘! , 𝑘!!), the 𝑘! = 0 component of 𝛽! is no longer related 

to ω = 0 component of the data, thus avoiding the pitfall of requiring zero 

frequency data (now the 𝑘! = 0 in 𝛽! is related to 𝜔/𝑐! = 𝑘! in the data). 
That is, 𝐷(𝑘! ,𝜔) with 𝑘! = 𝜔/𝑐! will provide the 𝑘! = 0 in β1(kz). 

 

 The Q compensation formula [eq. (9)] becomes,  

      

𝐷!"#$ 𝑘! , 𝑘! =

−
!

!
∫ 𝑑𝑧!
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!
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𝑒
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!!!

!
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!!
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!
𝛼! 𝑧

!
– 2𝐹 𝑘! , 𝑘! 𝛽! 𝑧

!
.   

                                                                                                            (20) 



  

            In eqs. (17) and(18), the required data at 𝑘! = 0 is no longer related 

to requiring data at ω = 0. However, in the new reformulated ISS Q 

compensation algorithm [eq. (20)] 𝑘! appears in the denominator and 

division by 𝑘! = 0 is not defined. To avoid division by zero, we add a small 

imaginary number (adding a small amount of friction in the reference) to 𝑘! 

so that the denominator will not be zero. This is the second contribution in 
this work. Eqs. (17)-(20) provide the new and practical ISS Q compensation 

algorithm that inputs data, 𝐷(𝑥! , 𝑡), one shot record [for a 1D subsurface], a 

data that has suffered damage due to absorption, and outputs a data 

𝐷!"#$(𝑥! , 𝑡) with the damage due to Q removed. This algorithm is a first 

order inverse scattering subseries with higher order subseries required for: 
(1) larger values of 1/Q and (2) cases where the region that the data 
experiences Q is larger. Extensions for a multidimensional 2D and 3D 
acoustic subseries are clear (and will be necessary) and further developments 
and contributions for an anelastic multidimensional subsurface are planned. 

 
 There are positive benefits from the approach and contribution in this 

paper for all seismic processing methods that currently require low and zero 
frequency data. Among the latter methods are AVO, and non-linear iterative 
AVO, FWI and ISS direct depth imaging without a velocity model. In 
particular the approach in this paper could be used in the ISS imaging sub-
series to avoid the need for zero frequency data. A discussion can be found 
in Appendix A. 

 
 There are two ways that the method described in this paper could be 

used to estimate Q: (1) the relationship between Dcomp and D could be used 
to determine Q, and (2) a parameter estimation series for 𝛽!, 𝛽!, 𝛽!,… could 
be computed to determine 𝛽(𝑟) = ∑𝛽!(𝑟) and Q. Neither of these Q 
determination methods would require low or zero frequency data. 

 
 This new Q compensation method assumes that the input data consists 

of primaries, and hence that the reference wave, all ghosts, and all multiples 
have been removed from the recorded data. These event removal steps are 
essential prerequisites for this methodology. In addition, the data used in this 
Q compensation algorithm, 𝐷(𝑘! ,𝜔), where for a fixed 𝑘! we use the data 
such that 𝜔 ≥ 𝑘! to avoid evanescent waves. Evanescent waves are not 
needed in this algorithm. 

 
 This advance in ISS Q compensation also has immediate positive and 

consequential implication and application to electromagnetic (EM) probes, 
where EM target identification interests and activities would welcome 
determining a conductivity map. A conductivity map can be used to separate 
brine water from hydrocarbons. 



 
 For example, the wave equation for the electric field in a conducting 

material is  

          𝛻!𝐸 − 𝜇𝜎𝐸 − 𝜇𝜖𝐸 = 0    .                                                          (21) 

 
 A plane wave solution to the wave equation is  

          𝐸(𝑟, 𝑡) = 𝐸!𝑒
!(!"!!⋅!)

𝑒
!!⋅!      , (22) 

where |𝛼| = 𝜔 𝜇𝜖[
!

!
+

!

!
1 +

!!

!!!!
]! !, 𝛽 =

!"#

!!
, σ is the conductivity of 

the material, µ is the permeability and ε is the permittivity. 

 
 There is a similarity between the EM waves propagating in a 

conducting medium and the seismic waves in an absorptive medium. The 

second exponential factor, 𝑒!!⋅! , gives an exponential decay in the 

amplitude of the wave. Therefore, the current Q compensation method 
provided in this paper could also be used for EM waves in a conducting 
medium. 

 
 The ability to remove the effects of absorption will enhance the high 
frequency components of the data. The recently developed first migration 
method that is equally effective at all frequencies at the target [Weglein et al. 
(2016) and Weglein (2018)] will enhance the low frequency contributions 
for specular and non-specular target resolution and identification. Taken 
together they will improve both the low and high end frequency components 
of a target image and the resolving power of a probing wavefield and, e.g., 
they have the potential to advance medical imaging and to aid early cancer 
detection. We plan to pursue the latter broad band target resolution 
enhancement for medical imaging. 
 
 
A 1D PRESTACK NUMERICAL TEST FOR ISS Q COMPENSATION 
WITHOUT KNOWING OR ESTIMATING Q AND WITHOUT USING 
OR NEEDING LOW/ZERO FREQUENCY DATA 
 
 In this section, we test the new algorithm for a 1D prestack two 
reflector model as shown in Fig. 1.  

 The data is generated analytically (only primaries) in the 𝑘!,𝑘! domain  

using the following analytic form,  



  

𝐷 𝑘! , 𝑘! =

𝑅! 𝑘! , 𝑘!
!
!!!!!

!!!

+

𝑇!" 𝑘! , 𝑘! 𝑅! 𝑘! , 𝑘! 𝑇!" 𝑘! , 𝑘!
!

!!! !!!
!!

!!
!!!!!

!
! !!

! !!,!! !! !!!!!

!!!   

!!!

    ,   (23) 

 

where the reflection coefficients use the form in Wu and Weglein (2010), 

  

          𝑅!(𝑘! , 𝑘!) =
!(!!,!!) !!!!

!/(!!
!
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!)! !!!!(!!,!!)!!
!/(!!

!
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!)

!(!!,!!) !!!!
!/(!!

!
!!!

!)! !!!!(!!,!!)!!
!/(!!

!
!!!

!)
    ,          (24) 

and  

          𝛾 𝑘! , 𝑘! =
!!

!!

1 +
! !!,!!

!

!!

  ,                                                       (25) 

 

and 𝑅! can be calculated similarly. 
 

  

Fig. 1. Model. 
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 Fig. 2 (left) shows the data from the model with Q, (middle) shows 
that data after being processed by the new ISS Q without Q subseries, and 
(right) shows data from the model that has no Q.  

  

Fig. 2. Left: Data generated by the model with Q. Middle: The data (with Q) after ISS Q 
compensation without knowing or estimating Q Right: Data generated by the same model 
but without Q. 
 
 

 The single trace comparison of this new algorithm show an effective 
Q compensation without knowing or needing Q and without low frequency 
data. Of course these results can be used to estimate Q (which can have its 
own value) once you know how data with Q would look without Q.  

Fig. 3. One trace comparison. Red line: Data with Q. Green line: Data with Q after Q 
compensation. Blue line: Data without Q.  



  

Fig. 4. One trace comparison magnifying the event in Fig. 3 between 3.2s-3.5s. Red line: 
Data with Q. Green line: Data with Q after Q compensation. Blue line: Data without Q. 

 
 
CONCLUSION 
 
 In this paper, we propose a new approach for the ISS Q compensation 
without knowing or estimating Q, avoiding the pitfall of the earlier approach 
and deriving a new ISS Q compensation subseries that does not require or 
use low frequency data. This new approach contains two specific 
contributions (1) the reformulated ISS Q compensation algorithm without 
knowing or estimating Q avoids needing or using zero frequency data, and 
(2) the new method avoided a division by zero in the reformulated algorithm 
by adding a small imaginary number to 𝑘!. We also tested the algorithm in a 
two-reflector model and obtained an encouraging result. The reformulation 
idea in this paper could be transferred to all seismic amplitude analysis 
methods including: AVO and FWI, ISS depth imaging and ISS parameter 
estimation methods to avoid the same serious issue and practical impediment 
of requiring low and zero frequency data. Applications beyond seismic 
exploration are discussed (e.g., improving the imaging resolution of EM 
exploration and the efficacy of medical imaging for early cancer detection) 
as well as plans for further seismic ISS Q compensation effectiveness and 
capability. 
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APPENDIX A 
 
REFORMULATION OF 𝛼! AND 𝛼! IN THE ISS IMAGING SUBSERIES 
 

 The ISS Q compensation algorithm [in this paper] is very 
similar and closely related to the leading order ISS depth imaging subseries. 
The leading order and higher order ISS depth imaging subseries (LOIS) and 
(HOIS) also depends on the low and zero frequency components in the data. 
In Shaw (2005), the first term in the LOIS imaging subseries,  

 

           𝛼! 𝑧, 𝑝 = −8𝑐𝑜𝑠
!
𝜃 𝑒

!!!! !!! !!!!!

!

!!

𝐷 𝑘! , 𝑝 𝑑𝑘!    ,        (A-1) 

where 𝑝 = 𝑠𝑖𝑛 𝜃 /𝑐!, 𝜃 is the incident angle. The second term 

  

 𝛼! 𝑧, 𝑝 =
!

!!"!!!
𝛼!
!
𝑧, 𝑝 + 𝛼!

!

!
𝑧
!, 𝑝 𝑑𝑧

! !!! !,!

!"
    ,       (A-2) 

 
and all higher terms and the closed form of the ISS leading-order imaging 
subseries depend on an integral of 𝛼!, and thus depends on the low and zero 
vertical wave numbers 𝑘! in 𝛼!. According to eq. (A-1), the low and zero 
vertical wave numbers of 𝛼! depend on the 𝑘! = 0  component of data 
𝐷(𝑘! , 𝑝). For any p we choose, the 𝑘! = 0 component is related to the ω = 0 
component of the data. As discussed in the last section, acquiring reliable 
zero frequency data is impractical. In order to avoid this pitfall, we have to 
reformulate the previous formula from the 𝑘!, p domain to a domain where 
𝑘! = 0 is NOT related to ω = 0. Luckily, when 𝑘! is relatively small, the 
data in the 𝑘!, 𝑘! domain is a good approximation to data in the 𝑘!, p 
domain. Thus we can reformulate the algorithm in 𝑞!, 𝑘! domain, as 
following, and the first term becomes  

           𝛼! 𝑧, 𝑘! = −8
!!
!

!!
!
!!!

!

!

!!

𝑒
!!!! !!! !!!!!

𝐷 𝑘! , 𝑘! 𝑑𝑘!     .     (A-3) 

The second term becomes,  

             𝛼! 𝑧, 𝑘!  =  𝑑𝑘!𝑒
!!!!!!
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𝑑𝑧
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𝑒
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𝑧
!, 𝑘! +

!
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                                      𝛼!
!
!

!
𝑧
!, 𝑘! 𝑑𝑧

! !!! !
!,!!

!!!
     .                         (A-4) 

 

 After reformulating the terms in 𝑞!, 𝑘! domain, 𝑞!= 0 is not related to 

ω = 0, since 𝜔/𝑐! = 𝑘!
! + 𝑞!

!. This reformulation could be a new approach 

to avoid requiring zero frequency data in the ISS imaging subseries. 
 



APPENDIX B 

 

A NUMERICAL EXAMPLE FOR REPLACING 𝐷(𝑘! ,𝜃) BY 𝐷(𝑘! , 𝑘!) 

WHEN 𝑘! IS NOT SMALL 
 

 The following figure shows the numerical test for calculating 𝛼! and 

𝛼! by replacing 𝐷(𝑘! ,𝜃) by 𝐷(𝑘! , 𝑘!) when 𝑘! is not small. The model 

contains two reflectors. If we use 𝐷(𝑘! ,𝜃), for each θ, we will get a "box" 

like result for 𝛼!, and the first term of 𝛼! (or 𝛼!", for more detail, see Shaw, 

2005). However, when we replace 𝐷(𝑘! ,𝜃) by 𝐷(𝑘! , 𝑘!) when 𝑘! is 

relatively big, the shape of 𝛼! and 𝛼! changes (as shown in the following 
figure) and a different subseries will be responsible for ISS depth imaging 
and Q compensation. Finding these subseries is a part of our future plan. In 

our current work, we replace 𝐷(𝑘! ,𝜃) by 𝐷(𝑘! , 𝑘!) with a small 𝑘! and the 

current Q compensation subseries provides a good result. 

  

  
Fig. B-1.  Green line: 𝛼!, Blue line: the first term of 𝛼! (or 𝛼!"). Red line: the second 
term of 𝛼! (or 𝛼!!). 


