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Abstract

Direct inverse methods solve the problem of interest; in addition, they communicate whether the problem of
interest is the problem that we (the seismic industry) need to be interested in. When a direct solution does not
result in an improved drill success rate, we know that the problem we have chosen to solve is not the right
problem — because the solution is direct and cannot be the issue. On the other hand, with an indirect method, if
the result is not an improved drill success rate, then the issue can be either the chosen problem, or the particular
choice within the plethora of indirect solution methods, or both. The inverse scattering series (ISS) is the only
direct inversion method for a multidimensional subsurface. Solving a forward problem in an inverse sense is not
equivalent to a direct inverse solution. All current methods for parameter estimation, e.g., amplitude-variation-
with-offset and full-waveform inversion, are solving a forward problem in an inverse sense and are indirect
inversion methods. The direct ISS method for determining earth material properties defines the precise data
required and the algorithms that directly output earth mechanical properties. For an elastic model of the subsur-
face, the required data are a matrix of multicomponent data, and a complete set of shot records, with only
primaries. With indirect methods, any data can be matched: one trace, one or several shot records, one com-
ponent, multicomponent, with primaries only or primaries and multiples. Added to that are the innumerable
choices of cost functions, generalized inverses, and local and global search engines. Direct and indirect param-
eter inversion are compared. The direct ISS method has more rapid convergence and a broader region of con-
vergence. The difference in effectiveness increases as subsurface circumstances become more realistic and
complex, in particular with band-limited noisy data.

Introduction
Seismic processing is an inverse problem to deter-

mine the properties of a medium from measurements
of a wavefield exterior to the medium. The ultimate in-
version objective of seismic processing in seismic ex-
ploration is to use recorded reflection data to extract
useful subsurface information that is relevant to the
location and production of hydrocarbons. There is
typically a coupled chain of intermediate steps and
processing that takes place toward that objective, and
I refer to each of those intermediate steps, stages, and
tasks as objectives “associated with inversion” or in-
verse tasks toward the ultimate subsurface information
extraction goal and objective. All seismic processing
methods that are used to extract subsurface informa-
tion make assumptions and have prerequisites.

A seismic method will be effective when those as-
sumptions/conditions/requirements are satisfied. When
those assumptions are not satisfied, the method can
have difficulty and/or will fail. That failure can and
will contribute to processing and interpretation difficul-
ties with subsequent dry-hole exploration well drilling
or drilling suboptimal appraisal and development
wells.

Challenges in seismic processing and seismic explo-
ration and production are derived from the violation of
assumptions/requirements behind seismic processing
methods. Advances in seismic processing effectiveness
are measured in terms of whether the new capability
results in/contributes to more successful plays and bet-
ter informed decisions and an increased rate of success-
ful drilling.
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The purpose of seismic research is to identify and
address seismic challenges and to thereby add more ef-
fective options to the seismic processing toolbox. These
new options can be called upon when indicated, appro-
priate, and necessary as circumstances dictate.

No toolbox option is the appropriate choice under
all circumstances. For example, the most effective
method, from a technical perspective, might be more
than is necessary and needed, under a given circum-
stance, and a less effective and often less costly option
could be the appropriate and indicated choice. Under
other more complex and daunting circumstances, the
more effective and (perhaps) more costly option will be
the only possible choice that is able to achieve the ob-
jective of that processing task and interpretation goal.
The objective is to expand the number of options in
the seismic toolbox to allow a capable response to a
larger number of circumstances. As I will point out be-
low, “identify the problem” is the first, the essential, and
sometimes the most difficult (and often the most ignored
and/or underappreciated) aspect of seismic research.

Identifying and delineating the violation of assump-
tions behind seismic processingmethods is an absolutely
essential first step in a strategy and plan for developing a
response to prioritizing and pressing seismic exploration
challenges. This paper provides a new insight, and ad-
vance for the first and critical step of addressing seismic
processing challenges: problem identification.

I explain in detail and exemplify why only a direct
inversion method can help us to decide whether the
problem we (the seismic industry) are interested in
addressing is, in fact, the problem we need to address.

Seismic processing methods can be classified as
based on either statistical models and principles or
wave-theory concepts and approaches. Wave-theory
concepts used in seismic processing can be further
catalogued as modeling and inversion.

In the next section, I describe these two wave theory
approaches to seismic processing, that is, modeling and
inversion, and I will further distinguish between direct
and indirect inversion methods. That clarification rep-
resents a central theme and objective of this paper.

Modeling and inversion
Modeling, as a seismic processing tool, starts with a

prescribed wavefield source mechanism and a model
type (e.g., acoustic, elastic, anisotropic, or anelastic),
and then properties are defined within the model type
for a given medium (e.g., velocities, density, and attenu-
ation Q). The modeling procedure then provides the
seismic wavefield that the energy source produces at
all points inside and outside the medium.

Inversion also starts with an assumed known and
prescribed energy source outside the medium. In addi-
tion, the wavefield outside the medium is assumed to be
recorded and known. The objective of seismic inversion
is to use the latter source description and wavefield
measurement information to make inferences about

the subsurface medium that are relevant to the location
and production of hydrocarbons.

Direct and indirect inversion
Inversion methods can be classified as direct or indi-

rect. A direct inversion method solves an inverse prob-
lem (as its name suggests) directly. On the other hand,
an indirect inversion method seeks to solve an inverse
problem circuitously through indirect approaches that
often call up assumed aligned objectives or conditions.
There are times when the indirect approach will seek to
satisfy necessary (but typically not sufficient) condi-
tions, and properties, and it is often mistakenly consid-
ered and treated as though it was equivalent to a direct
method and solution. Indirect methods come in many va-
rieties; some are obvious, and others are more subtle and
harder to identify as being indirect. Among indicators,
identifiers, and examples of “indirect” inverse solutions
(Weglein, 2015a) are (1) model matching, (2) objective/
cost functions, (3) local and global-search algorithms,
(4) iterative linear inversion, (5) methods corresponding
to necessary but not sufficient conditions, e.g., common-
image gather flatness as an indirect migration velocity
analysis method, and (6) solving a forward problem in an
inverse sense, e.g., amplitude-variation-with-offset (AVO)
and full-waveform inversion (FWI). Regarding the last
indirect indicator, item (6), I will show that solving a for-
ward problem in an inverse sense is not equivalent to a
direct inverse solution for those same objectives.

As a simple illustration, a quadratic equation

ax2 þ bxþ c ¼ 0 (1)

can be solved through a direct method as

x ¼ −b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4ac

p

2a
; (2)

or it can be solved by an indirect method searching for
x, such that, e.g., some functional of

ðax2 þ bxþ cÞ2 (3)

is a minimum.
In the next section, this example will be further dis-

cussed and examined as a way to introduce and develop
fundamental concepts in a simple and transparent con-
text. The lesson gleaned from that simple example will
later (in this paper) be extended and applied to the
more complicated and relevant seismic inverse formu-
lations and methods. In Weglein (2013), there is an in-
troduction to the subject of direct and indirect inverse
solutions, which provides a useful background refer-
ence for this paper and contains several indirect inver-
sion references (Blum, 1972; Keys and Weglein, 1983;
Gauthier et al., 1986; Tarantola, 1986, 1987; Crase et al.,
1990; Symes and Carazzone, 1991; Chavent and Jace-
witz, 1995; Matson, 1997; Nolan and Symes, 1997;
Weglein and Matson, 1998; Biondi and Sava, 1999;
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Brandsberg-Dahl et al., 1999; Pratt, 1999, Pratt and
Shipp, 1999; Rickett and Sava, 2002; Weglein et al.,
2002, 2011; Sava and Fomel, 2003; Biondi and Symes,
2004; Sava et al., 2005; Valenciano et al., 2006; Iledare
and Kaiser, 2007; Ben-Hadj-ali et al., 2008; Symes, 2008;
Vigh and Starr, 2008; Baumstein et al., 2009; Ben-Hadj-
ali et al., 2009; Brossier et al., 2009; Hawthorn, 2009;
Sirgue et al., 2009, 2010, 2012; Liang et al., 2010; Ferre-
ira, 2011; Fichtner, 2011; Li et al., 2011, Luo et al., 2011;
Anderson et al., 2012; Guasch et al., 2012, Kapoor et al.,
2012; Weglein, 2012a, 2012b; Zhou et al., 2012; Zhang
and Biondi, 2013).

The important quadratic equation example
The direct quadratic formula solution equation 2

explicitly and directly outputs the exact roots (for all
values of a, b, and c) when the roots are real and dis-
tinct, a real double root, and imaginary and complex
roots. The quadratic equation and quadratic solution
provide a very simple and insightful example. Howwould
a search algorithm know after a double root is found that
it is the only root and not to keep looking and searching
forever for a second, nonexistent, root? How would a
search algorithm know to search for only real or for real
and complex roots? How would a search algorithm ac-
curately locate an irrational root such as

ffiffiffi
3

p
≅ 1.732 : : : ,

as x ¼ ð−b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4ac

p
Þ∕2a would directly and pre-

cisely and immediately produce? Indirect methods such
as model matching and seeking and searching and deter-
mining roots as in equation 3 are ad hoc and do not de-
rive from a firm framework and foundation and never
provide the confidence that we (the seismic industry)
are actually solving the problem of interest.

What is the point in discussing the quadratic
formula? And what is the practical big deal
about a direct solution?

How can this example and discussion of the quadratic
equation possibly be relevant to exploration seismology?
Please imagine for a moment that equation 1 ax2 þ bxþ
c ¼ 0 was an equation whose inverse and solution for x
given by equation 2 x ¼ ð−b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4ac

p
Þ∕2a had seis-

mic exploration drill location prediction consequence.
And furthermore, suppose that this direct solution for
x did not lead to successful and/or improved drilling de-
cisions. Under the latter circumstance, we (the seismic
industry) could not blame or question the method of sol-
ution of equation 1 because equation 2 is direct and un-
questionably solving equation 1. If equation 2 was not
producing useful and beneficial results, we know that
our starting equation 1 is the issue, andwe have identified
the problem. The problem we thought we need to solve
(equation 1) is not the problem we need to solve. In con-
trast with equation 3, an indirect method, any lack of drill-
ing prediction improvement and added value or other
negative exploration consequences could be due to either
the equation you are seeking to invert and/or the bound-
less, unlimited selection, and the plethora of indirect
methods using either partial or full recorded wavefields.

That lack of clarity and definitiveness within indirect
methods obfuscates the underlying issue and makes
identification of the problem (and what is behind a seis-
mic challenge) considerably more difficult to identify
and to define. Indirect methods with search engines,
such as equation 3, lead to “workshops” for solving equa-
tion 1 and grasping at mega high-performance computing
(HPC) straws (and capital expenditure investment for
buildings full of HPC) that are required to search, seek,
and locate “solutions.” The more HPC we invest in, and
is required, the more we are literally “buying-in,” and as
stake-holders, we become committed and therefore con-
vinced of the unquestioned validity of the starting point
and our indirect thinking and methodology.

Therefore, beyond the benefit of a direct method,
such as equation 2 providing assurance that we are ac-
tually solving the problem of interest (equation 1), there
is the unique problem location and identification benefit
of a direct inverse when a seismic analysis, processing,
and interpretation produces unsatisfactory E&P results.

To bring this (quadratic equation example) closer to
the seismic experience, please imagine hypothetically
that we are not satisfied (in terms of improved drill
location and success rate) with a direct inverse of the
elastic-isotropic equation for amplitude analysis. Be-
cause we were using a direct inversion solution, we
know we need to go to a different starting point, perhaps
with a more complete and realistic model of wave propa-
gation because we can exclude the direct inverse solu-
tion method as the problem and issue. That is an
example of determining that a problem of interest is
not the same problem we need to be interested in.

How to distinguish between the “problem
of interest” and the problem we need to be
interested in

Direct inverse methods provide value for knowing
that you have actually solved the problem of interest.
Furthermore, with direct inverse solutions, there is the
enormous additional value of determining whether our
starting point, the problem of interest, is in fact the prob-
lem we need to be interested in.

Scattering theory and the forward and inverse
scattering series: The basis of direct inversion
theory and algorithms

Scattering theory is a form of perturbation theory. It
provides a direct inversion method for all seismic
processing objectives realized by a distinct isolated task
subseries of the inverse scattering series (ISS) (Weglein
et al., 2003). Each term in the ISS (and the distinct and
specific collection of terms that achieve different spe-
cific inversion associated tasks) is computable (1) di-
rectly and (2) in terms of recorded reflection data and
without any subsurface information known, estimated,
or determined before, during, or after the task is per-
formed and the specific processing objective is achieved.
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For certain distinct tasks, and subseries, e.g., free-sur-
face multiple elimination and internal multiple attenua-
tion, the algorithms not only do not require subsurface
information but in addition possess the absolutely re-
markable property of being independent of the earth
model type (Weglein et al., 2003). That is, the distinct
ISS free-surface and internal multiple algorithms are
unchanged, without a single line of code having the
slightest change for acoustic, elastic, anisotropic, and
anelastic earth models (Weglein et al., 2003; Wu and We-
glein, 2014). For those who subscribe to indirect inver-
sion methods as, e.g., the “be-all and end-all” of inversion
with various model matching approaches, it would be
a useful exercise for them to consider how they would
formulate a model-type-independent model-matching
scheme for free-surface and internal multiple removal. It
is not conceivable, let alone realizable, to have a model-
type-independent model matching scheme.

For the specific topic and focus of this paper, the in-
version task of parameter estimation, there is an obvious
need to specify the model type and what parameters are
to be determined. Hence, it is for that parameter estima-
tion/medium property objective, and that model-type-
specific ISS subseries, that the difference between the
problem of interest and the problem that we need to
be interested in, is relevant, central, and significant. Only
direct inversionmethods for earth mechanical properties
provide that assumed earth model-type evaluation,
clarity, and distinction.

The basic operator identity that relates a change in
a medium and the change in the wavefield

A direct inverse solution for parameter estimation can
be derived from an operator identity that relates the
change in a medium’s properties and the commensurate
change in the wavefield. That operator identity is general
and can accommodate any seismicmodel type, for exam-
ple, acoustic, elastic, anisotropic, heterogeneous, and
anelastic earth models. That operator identity can be
the starting point and basis of (1) perturbative scatter-
ing-theory modeling methods and (2) a firm and solid
math-physics foundation and framework for direct in-
verse methods.

Theory
Let us consider an energy source that generates a

wave in a medium with prescribed properties. With the
same energy source, let us consider a change in the
medium and the resulting change in the wavefield in-
side and outside the medium. Scattering theory is a
form of perturbation theory that relates a change (or
perturbation) in a medium to a corresponding change
(or perturbation) in the original wavefield. When the
medium changes, the resulting wavefield changes.
The direct inverse solution (Weglein et al., 2003; Zhang,
2006) for determining earth mechanical properties is
derived from the operator identity that relates the
change in a medium’s properties and the commensurate
change in the wavefield within and exterior to the

medium. Let L0, L, G0, and G be the differential oper-
ators and Green’s functions for the reference and actual
media, respectively, that satisfy

L0G0 ¼ δ and LG ¼ δ; (4)

where δ is a Dirac delta function. I define the perturbation
operator V and the scattered wavefield ψ s as follows:

V ≡ L0 − L and ψ s ≡ G − G0: (5)

The operator identity
The relationship (called the Lippmann-Schwinger or

scattering theory equation)

G ¼ G0 þ G0VG (6)

is an operator identity that follows from

L−1 ¼ L−1
0 þ L−1

0 ðL0 − LÞL−1; (7)

and the definitions of L0, L, and V .

Direct forward series and direct inverse series
The operator identity equation 6 (for a fixed-source

function) is the exact relationship between changes in
amedium and changes in the wavefield; it is a relationship
between those quantities and not a solution. However,
the operator identity equation 6 can be solved for G as

G ¼ ð1 − G0VÞ−1G0; (8)

and expanded as

G ¼ G0 þ G0VG0 þ G0VG0VG0þ · · · : (9)

The forward modeling of the wavefieldG from equation 9
for a medium described by L is given in terms of the two
parts of L, that is, L0 and V . The differential operator L0
enters through G0, and V enters as V itself. Equation 9
communicates that modeling using scattering theory re-
quires a complete and detailed knowledge of the earth
model type andmedium properties within themodel type.
Equation 9 communicates that any change in medium
properties, V , will lead to a change in the wavefield, G −
G0 that is always nonlinearly related to the medium prop-
erty change, V . Equation 9 is called the Born or Neumann
series in the scattering theory literature (see, e.g., Taylor,
1972). Equation 9 has the form of a generalized geometric
series

G−G0¼S¼arþar2þ ···¼ ar
1−r

for jrj<1; (10)

where I identify a ¼ G0 and r ¼ VG0 in equation 9, and

S ¼ S1 þ S2 þ S3þ · · · ; (11)

where the portion of S that is linear, quadratic, : : : in r is
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S1 ¼ ar;
S2 ¼ ar2;

..

.
(12)

and the sum is

S ¼ ar
1 − r

; for jrj < 1: (13)

Solving equation 13 for r, in terms of S∕a produces the
inverse geometric series

r ¼ S∕a
1þ S∕a

¼ S∕a − ðS∕aÞ2 þ ðS∕aÞ3þ · · ·

¼ r1 þ r2 þ r3þ · · · ; when jS∕aj < 1; (14)

where rn is the portion of r that is nth order in S∕a.
When S is a geometric power series in r, then r is a geo-
metric power series in S. The former is the forward
series, and the latter is the inverse series. That is exactly
what the inverse series represents: the inverse geometric
series of the forward series equation 9. This is the sim-
plest prototype of an inverse series for r, i.e., the inverse
of the forward geometric series for S.

For the seismic inverse problem, I associate S with
the measured data (see, e.g., Weglein et al., 2003)

S ¼ ðG − G0Þms ¼ Data; (15)

and the forward and inverse series follow from treating
the forward solution as S in terms of V , and the inverse
solution as V in terms of S (where S corresponds to the
measured values of G − G0). The inverse series is the
analog of equation 14, where r1; r2; : : : are replaced
with V1; V 2; : : : :

V ¼ V 1 þ V 2 þ V3þ · · · ; (16)

where Vn is the portion of V that is nth order in the mea-
sured data D. Equation 9 is the forward-scattering
series, and equation 16 is the ISS. The identity (equa-
tion 6) provides a generalized geometric forward series,
a very special case of a Taylor series. A Taylor series of
a function SðrÞ

SðrÞ¼Sð0ÞþS 0ð0ÞrþS 00ð0Þr2
2

þ ···

and sðrÞ¼SðrÞ−Sð0Þ¼S 0ð0ÞrþS 00ð0Þr2
2

þ ···; (17)

whereas the geometric series is

SðrÞ − Sð0Þ|ffl{zffl}
a

¼ ar þ ar2þ · · · : (18)

The Taylor series equation 17 reduces to the special
case of a geometric series equation 18 if

Sð0Þ ¼ S 0ð0Þ ¼ S 0 0ð0Þ
2

¼ · · ·¼ a: (19)

The geometric series equation 18 has an inverse
series, whereas the Taylor series equation 17 does not.
In general, a Taylor series does not have an inverse
series. That is the reason that inversionists committed
to a Taylor series starting point adopt the indirect linear
updating approach, where a linear approximate Taylor
series is inverted. They attempt through updating to
make the linear form an ever more accurate approxi-
mate — and its premise and justification is entirely
indirect and hence ad hoc — in the sense that some
sort of iterative linear updating of a reference medium
and model matching seek to satisfy a property that a
solution might “reasonably” satisfy.

The relationship 9 provides a geometric forward
series that honors equation 6 in contrast to a truncated
Taylor series that does not.

All conventional current mainstream parameter esti-
mation inversion, including iterative linear inversion,
AVO, and FWI, are based on a forward Taylor series de-
scription of given data (where the chosen data can often
be fundamentally and intrinsically inadequate from a di-
rect inversion perspective), that do not honor and remain
consistent with the identity equation 9.

Solving a forward problem in an inverse sense is
not the same as solving an inverse problem directly

I will show that, in general, solving a forward prob-
lem in an inverse sense is not the same as solving an
inverse problem directly. The exception is when the ex-
act direct inverse is linear, as for example, in the theory
of wave-equation migration (see, e.g., Claerbout, 1971;
Stolt, 1978; Stolt and Weglein, 2012; Weglein et al., 2016).
For wave-equation migration, given a velocity model, the
migration and structure map output is a linear function
of the input recorded reflection data.

To explain the latter statement, if I assume S ¼ ar (i.
e., that there is an exact linear forward relationship be-
tween S and r), then r ¼ S∕a is solving the inverse prob-
lem directly. In that case, solving the forward problem in
an inverse sense is the same as solving the inverse prob-
lem directly; i.e., it provides a direct inverse solution.

However, if the forward exact relationship is nonlin-
ear, for example,

Sn ¼ ar þ ar2þ · · · þarn;

Sn − ar − ar2− · · · −arn ¼ 0; (20)

and solving the forward problem 20 in an inverse sense
for r will have n roots, r1; r2; : : : ; rn. As n → ∞, the
number of roots→ ∞. However, from the direct nonlin-
ear forward problem S ¼ ar∕ð1 − rÞ, I found that the di-
rect inverse solution r ¼ S∕ðaþ SÞ has one real root.

This discussion above provides an extremely simple,
transparent, and compelling illustration of how solving a
forward problem in an inverse sense is not the same as
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solving the inverse problem directly when there is a non-
linear forward and nonlinear inverse problem. The differ-
ence between solving a forward problem in an inverse
sense (e.g., using equation 9 to solve for V) and solving
an inverse problem directly (e.g., equations 21–23) is
much more serious, substantive, and practically signifi-
cant the further I move away from a scalar single com-
ponent acoustic framework. For example, it is hard to
overstate the differences when examining the direct
and indirect inversion of the elastic heterogeneous wave
equation for earth mechanical properties and the conse-
quences for structural and amplitude analysis and inter-
pretation. This is a central flaw in many inverse
approaches, including AVO and FWI (seeWeglein, 2013).

The expansion of V in equation 16, in terms of G0 and
D ¼ ðG − G0Þms, the ISS (Weglein et al., 2003) can be
obtained as

G0V1G0 ¼ D; (21)

G0V2G0 ¼ −G0V 1G0V 1G0; (22)

G0V3G0 ¼ − G0V 1G0V1G0V1G0

− G0V 1G0V2G0 − G0V 2G0V1G0;

..

.
(23)

To illustrate how to solve equations 21–23, for V1, V2,
and V3, consider the marine case with L0 corresponding
to a homogeneous reference medium of water. Here, G0
is the Green’s function for propagation in water;D is the
data measured, for example, with towed streamer ac-
quisition; G is the total field that the hydrophone
receiver records on the measurement surface; and G0
is the field that the reference wave (due to L0) would
record at the receiver. The differential operator V then
represents the difference between earth properties L
and water properties L0. The solution for V is found us-
ing

V ¼ V1 þ V2 þ V 3þ · · · ; (24)

where Vn is the portion of V that is nth order in the data
D. Substituting equation 24 into the forward series equa-
tion 9, then evaluating equation 9 on the measurement
surface and setting terms that are equal order in the
data equal, I find equations 21–23. Solving equation 21
for V 1 involves the data D and G0 (water-speed propa-
gator) and solving for V 1 is analytic, and corresponds to
a prestack water-speed Stolt f-kmigration of the data D.

Hence, solving for V 1 involves an analytic water-
speed f-kmigration of data D. Solving for V 2 from equa-
tion 22 involves the same water-speed analytic Stolt f-k
migration of −G0V 1G0V1G0, a quantity that depends on
V 1 and G0, where V1 depends on data and water speed
and G0 is the water-speed Green’s function. Each term
in the series produces Vn as an analytic Stolt f -k migra-
tion of a new “effective data,” where the effective data,

the right side of equations 21–23, are multiplicative
combinations of factors that only depend on the data D
and G0. Hence, every term in the ISS is directly com-
puted in terms of data and water speed. That is the di-
rect nonlinear inverse solution.

There are closed-form inverse solutions for a 1D
earth and a normal incident plane wave (see, e.g., Ware
and Aki, 1969), but the ISS is the only direct inverse
method for a multidimensional subsurface.

The ISS provides a direct method for obtaining the
subsurface properties contained within the differential
operator L, by inverting the series order-by-order to
solve for the perturbation operator V , using only the
measured data D and a reference Green’s function G0,
for any assumed earth model type. Equations 21–23
provide V in terms of V 1; V2; : : : , and each of the Vi
is computable directly in terms of D and G0. There is
one equation (equation 21) that exactly produces V1,
and V 1 is the exact portion of V that is linear in the mea-
sured data D. The inverse operation to determine
V 1; V2; V3; : : : is analytic, and it never is updated with
band-limited data D. The band-limited nature of D never
enters an updating process as occurs in iterative linear
inversion, nonlinear AVO, and FWI.

The ISS and isolated task subseries
I can imagine that a set of tasks needs to be achieved

to determine the subsurface properties V from re-
corded seismic data D. These tasks are achieved within
equations 21–23. The inverse tasks (and processing ob-
jectives) that are within a direct inverse solution are
(1) free-surface multiple removal, (2) internal multiple
removal, (3) depth imaging, (4) Q compensation with-
out Q, and (5) nonlinear direct parameter estimation.
Each of these five tasks has its own task-specific subs-
eries from the ISS for V 1; V 2; : : : , and each of those
tasks is achievable directly and without subsurface in-
formation (see, e.g., Weglein et al., 2003, 2012; Innanen
and Lira, 2010). In Appendix A, I review the details of
equations 21–23 for a 2D heterogeneous isotropic elas-
tic medium.

Direct inverse and indirect inverse
Because iterative linear inversion is the concept and

thinking behind many inverse approaches, I determined
to make explicit the difference between that approach
and a direct inverse method. The direct 2D elastic iso-
tropic inverse solution described in Appendix A is not
iterative linear inversion. Iterative linear inversion
starts with equation 21. In that approach, I solve for V1
and then change the reference medium iteratively. The
new differential operator L 0

0 and the new reference
medium G 0

0 satisfy

L 0
0 ¼ L0 − V1 and L 0

0G
0
0 ¼ δ: (25)

In the indirect iterative linear approach, all steps basi-
cally relate to the linear relationship equation 21 with a
new reference background medium, with differential
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operator L 0
0 and a new reference Green’s function G 0

0,
where in terms of the new updated reference L 0

0 equa-
tion 21 becomes

G 0
0V

0
1G

0
0 ¼ D 0 ¼ ðG − G 0

0Þms; (26)

where V 0
1 is the portion of V linear in data ðG − G 0

0Þms.
We can continue to update L 0

0 and G 0
0, and we hope that

the indirect procedure is solving for the perturbation
operator V . In contrast, the direct inverse solution
(equations 16 and A-6) calls for a single unchanged
reference medium for computing V1; V 2; : : : . For a
homogeneous reference medium, V1; V2; : : : are each
obtained by a single unchanged analytic inverse. We re-
mind ourselves that the inverse to find V 1 from data is
the same exact unchanged analytic inverse operation to
find V 2; V3; : : : from equations 21, 22, : : : , which is
completely distinct and different from equations 25
and 26 and higher iterates.

For ISS direct inversion, there are no numerical in-
verses, no generalized inverses, no inverses of matrices
that are computed from and contain noisy band-limited
data. The latter issue is terribly troublesome and diffi-
cult and is a serious practical problem, which does not
exist or occur with direct ISS methods. The inverse of
operators that contain and depend on band-limited
noisy data is a central and intrinsic characteristic and
practical pitfall of indirect methods, model matching,
updating, and iterative linear inverse approaches (e.g.,
AVO and FWI).

Are there any circumstances in which the indirect
iterative linear inversion and the direct ISS
parameter estimation would be equivalent?

Are there any circumstances in which the ISS direct
parameter inversion subseries would be equivalent
to and correspond to the indirect iterative linear ap-
proach? Let us consider the simplest acoustic single-
reflector model and a normal incident plane-wave
reflection data experiment with ideal full band-width
perfect data. Let the upper half-space have velocity c0
and the lower half-space have velocity c1 and then
analyze these two methods (direct ISS parameter esti-
mation and indirect iterative linear inversion) to use the
reflected data event to determine the velocity of the
lower half-space, c1. Yang and Weglein (2015) examine
and analyze this problem and compare the results of the
direct ISS method and the indirect iterative linear inver-
sion. They show that the direct ISS inversion to estimate
c1 converged to c1 under all circumstances and all val-
ues of c0 and c1. In contrast, the indirect linear iterative
inversion had a limited range of values of c0 and c1
where it converged to c1, and in that range, it converged
much slower than the direct ISS parameter estimation
for c1. The iterative linear inverse simply shut down and
failed when the reflection coefficient Rwas greater than
1/4 (see Appendix B and Yang, 2014).

The direct ISS parameter estimation method con-
verged to c1 for any value of the reflection coefficient

R. Hence, under the simplest possible circumstance,
and providing the iterative linear method with an ana-
lytic Fréchet derivative, as a courtesy from and a gift
delivered to the linear iterative from the ISS direct in-
version method, the ranges of usefulness, validity, and
relative effectiveness were never equivalent or compa-
rable. With band-limited data and more complex earth
models (e.g., elastic multiparameter), this gap in the
range of validity, usefulness, and effectiveness will nec-
essarily widen (see Zhang, 2006; Weglein, 2013). The
indirect iterative linear inversion and the direct ISS
parameter-estimation method are never equivalent, and
there are absolutely no simple or complicated circum-
stances in which they are equally effective. The distinct
ISS free-surface-multiple elimination subseries and inter-
nal-multiple attenuation subseries are not only not depen-
dent on subsurface properties, but they are precisely the
same unchanged algorithms for any earth model type.

There was an earlier time when free-surface multi-
ples were modeled and subtracted. Multiple-removal
methods have moved on. Parameter-estimation meth-
ods continue to be firmly connected to model matching
and subtraction. That stark and immense difference
between iterative linear updating model matching and
the direct inversion inverse scattering methods is an
essential point to consider and comprehend for those in-
terested in understanding these methodologies and their
seismic processing and interpretation consequences and
value. It is not conceivable to even formulate an iterative
linear model matching method that is not dependent on a
specified model type — let alone to compare it with ISS
model-type-independent algorithms.

Direct ISS parameter inversion: A time-lapse
application

The direct inverse ISS elastic parameter estimation
method (equation A-6) was successfully applied (Zhang
et al., 2006) in a time-lapse sense to discriminate between
pressure and fluid saturation changes. Traditional time-
lapse estimation methods were unable to predict and
match that direct inversion ISS discrimination.

Further substantive differences between iterative
linear model matching inversion and direct
inversion from the Lippmann-Schwinger
equation and the ISS

The difference between iterative linear and the direct
inverse of equation A-6 is much more substantive and
serious than merely a different way to solve G0V1G0 ¼
D (equation 21), for V1. If equation 21 is someone’s en-
tire basic theory, you can mistakenly think that

D̂PP ¼ ĜP
0 V̂

PP
1 ĜP

0 (27)

is sufficient to update (generalizing equations 25 and 26)

D̂ 0PP ¼ Ĝ 0P
0 V̂ 0PP

1 Ĝ 0P
0 : (28)
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Please note that ˆ indicates that variables are transformed
to PS space. This step loses contact with and violates the
basic operator identity G ¼ G0 þ G0VG for the elastic
wave equation. The fundamental identity G ¼ G0 þ
G0VG for the elastic wave equation is a nonlinear multi-
plicative matrix relationship. For the forward and inverse
series, the input and output variables are matrices. The
inverse solution for a change in an earth mechanical
property has a nonlinear coupled dependence on all
the data components

�
DPP DPS

DSP DSS

�
; (29)

in 2D and the P, SH, SV 3 × 3 generalization in 3D (Stolt
and Weglein, 2012, chapter 7).

A unique expansion of VG0 in orders of measure-
ment values of ðG − G0Þ is

VG0 ¼ ðVG0Þ1 þ ðVG0Þ2þ · · · . (30)

The scattering-theory equation allows that forward
series form the opportunity to find a direct inverse sol-
ution. Substituting equation 30 into equation 9 and set-
ting the terms of equal order in the data to be equal, I
have D ¼ G0V 1G0, where the higher order terms are
V 2; V3; : : : , as given in Weglein et al. (2003, p. R33, equa-
tions 7–14).

For the elastic equation, V is a matrix and the rela-
tionship between the data and V 1 is

�
DPP DPS

DSP DSS

�
¼

�
GP

0 0
0 GS

0

��
VPP

1 VPS
1

VSP
1 VSS

1

��
GP

0 0
0 GS

0

�
;

(31)

V 1 ¼
�
VPP

1 VPS
1

VSP
1 VSS

1

�
; (32)

V ¼
�
VPP VPS

VSP VSS

�
; (33)

V ¼ V 1 þ V2þ · · · ; (34)

where V1; V2 are linear, quadratic contributions to V in
terms of the data

D ¼
�
DPP DPS

DSP DSS

�
: (35)

The changes in elastic properties and density are
contained in

V ¼
�
VPP VPS

VSP VSS

�
; (36)

and that leads to direct and explicit solutions for the
changes in mechanical properties in orders of the data

D ¼
�
DPP DPS

DSP DSS

�
; (37)

Δγ
γ

¼
�
Δγ
γ

�
1
þ
�
Δγ
γ

�
2
þ · · · ; (38)

Δμ
μ

¼
�
Δμ
μ

�
1
þ
�
Δμ
μ

�
2
þ · · · ; (39)

Δρ
ρ

¼
�
Δρ
ρ

�
1
þ
�
Δρ
ρ

�
2
þ · · · ; (40)

where γ, μ, and ρ are the bulk modulus, shear modulus,
and density, respectively.

The ability of the forward series to have a direct in-
verse series derives from (1) the identity among G, G0,
and V provided by the scattering equation and then
(2) the recognition that the forward solution can be
viewed as a geometric series for the data D, in terms
of VG0. The latter derives the direct inverse series
for VG0 in terms of the data.

Viewing the forward problem and series as the Tay-
lor series

DðmÞ¼Dðm0ÞþD0ðm0ÞΔmþD00ðm0Þ
2

Δm2þ ···; (41)

in which the derivatives are Fréchet derivatives, in
terms of Δm, does not offer a direct inverse series,
and hence there is no choice but to solve the forward
series in an inverse sense. It is that fact that results in all
current AVO and FWI methods being modeling methods
that are solved in an inverse sense. Among references
that solve a forward problem in an inverse sense in P-
wave AVO are Clayton and Stolt (1981), Shuey (1985),
Stolt and Weglein (1985), Boyse and Keller (1986), Stolt
(1989), Beylkin and Burridge (1990), Castagna and
Smith (1994), Goodway et al. (1997), Burridge et al.
(1998), Smith and Gidlow (2000), Foster et al. (2010),
and Goodway (2010). The intervention of the explicit
relationship among G, G0, and V (the scattering equa-
tion) in a Taylor series-like form produces a geometric
series and a direct inverse solution.
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The linear equations are

�
D̂PP D̂PS

D̂SP D̂SS

�
¼

�
ĜP

0 0
0 ĜS

0

��
V̂PP

1 V̂PS
1

V̂SP
1 V̂SS

1

��
ĜP

0 0
0 ĜS

0

�
;

(42)

D̂PP ¼ ĜP
0 V̂

PP
1 ĜP

0 ; (43)

D̂PS ¼ ĜP
0 V̂

PS
1 ĜS

0 ; (44)

D̂SP ¼ ĜS
0V̂

SP
1 ĜP

0 ; (45)

D̂SS ¼ ĜS
0V̂

SS
1 ĜS

0 ; (46)

~DPPðkg;0;−kg;0;ωÞ¼−
1
4

�
1−

k2g
ν2g

�
~að1Þρ ð−2νgÞ

−
1
4

�
1þk2g

ν2g

�
~að1Þγ ð−2νgÞþ

2k2gβ20
ðν2gþk2gÞα20

~að1Þμ ð−2νgÞ; (47)

~DPSðνg; ηgÞ ¼ −
1
4

�
kg
νg

þ kg
ηg

�
~að1Þρ ð−νg − ηgÞ

−
β20
2ω2 kgðνg þ ηgÞ

�
1 −

k2g
νgηg

�
~að1Þμ ð−νg − ηgÞ; (48)

~DSPðνg;ηgÞ¼
1
4

�
kg
νg
þkg
ηg

�
~að1Þρ ð−νg−ηgÞ

þ β20
2ω2kgðνgþηgÞ

�
1−

k2g
νgηg

�
~að1Þμ ð−νg−ηgÞ; and (49)

~DSSðkg; ηgÞ ¼
1
4

�
1 −

k2g
η2g

�
~að1Þρ ð−2ηgÞ

−
�
η2g þ k2g
4η2g

−
2k2g

η2g þ k2g

�
~að1Þμ ð−2ηgÞ; (50)

where að1Þγ , að1Þμ , and að1Þρ are the linear estimates of the
changes in bulk modulus, shear modulus, and density,
respectively. Here, kg is the Fourier conjugate to the
receiver position xg and νg and ηg are the vertical wave-
numbers for the P- and S-reference waves, respectively,
where

ν2g þ k2g ¼
ω2

α20
; (51)

η2g þ k2g ¼
ω2

β20
; (52)

and α0 and β0 are the P- and S-velocities in the reference
medium, respectively. The direct quadratic nonlinear
equations are

�
ĜP

0 0

0 ĜS
0

��
V̂PP

2 V̂PS
2

V̂SP
2 V̂SS

2

��
ĜP

0 0

0 ĜS
0

�

¼−
�
ĜP

0 0

0 ĜS
0

��
V̂PP

1 V̂PS
1

V̂SP
1 V̂SS

1

��
ĜP

0 0

0 ĜS
0

��
V̂PP

1 V̂PS
1

V̂SP
1 V̂SS

1

��
ĜP

0 0

0 ĜS
0

�
;

(53)

ĜP
0 V̂

PP
2 ĜP

0 ¼ −ĜP
0 V̂

PP
1 ĜP

0 V̂
PP
1 ĜP

0 − ĜP
0 V̂

PS
1 ĜS

0V̂
SP
1 ĜP

0 ; (54)

ĜP
0 V̂

PS
2 ĜS

0 ¼ −ĜP
0 V̂

PP
1 ĜP

0 V̂
PS
1 ĜS

0 − ĜP
0 V̂

PS
1 ĜS

0V̂
SS
1 ĜS

0 ; (55)

ĜS
0V̂

SP
2 ĜP

0 ¼ −ĜS
0V̂

SP
1 ĜP

0 V̂
PP
1 ĜP

0 − ĜS
0V̂

SS
1 ĜS

0V̂
SP
1 ĜP

0 ; (56)

ĜS
0V̂

SS
2 ĜS

0 ¼ −ĜS
0V̂

SP
1 ĜP

0 V̂
PS
1 ĜS

0 − ĜS
0V̂

SS
1 ĜS

0V̂
SS
1 ĜS

0 : (57)

Because V̂PP
1 relates to D̂PP, V̂PS

1 relates to D̂PS, and so
on, the four components of the data will be coupled in
the nonlinear elastic inversion. I cannot perform the di-
rect nonlinear inversion without knowing all compo-
nents of the data. Thus, the direct nonlinear solution
determines the data needed for a direct inverse. That,
in turn, defines what a linear estimate means. That is, a
linear estimate of a parameter is an estimate of a param-
eter that is linear in data that can directly invert for that
parameter. Because DPP, DPS, DSP, and DSS are needed
to determine aγ, aμ, and aρ directly, a linear estimate for
any one of these quantities requires simultaneously
solving equations 47–50 (for further details, see, e.g.,
Weglein et al., 2009).

Those direct nonlinear formulas are like the direct
solution for the quadratic equation mentioned above
and solve directly and nonlinearly for changes in the
velocities, α, β, and the density ρ in a 1D elastic earth.
Stolt and Weglein (2012) present the linear equations
for a 3D earth that generalize equations 47–50. Those
formulas prescribe precisely what data you need as in-
put, and they dictate how to compute those sought-after
mechanical properties, given the necessary data. There
is no search or cost function, and the unambiguous
and unequivocal data needed are full-multicomponent
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data — PP, PS, SP, and SS — for all traces in each of
the P- and S-shot records. The direct algorithm deter-
mines first the data needed and then the appropriate al-
gorithms for using those data to directly compute the
sought-after changes in the earth’s mechanical proper-
ties. Hence, any method that calls itself inversion (let
alone full-wave inversion) for determining changes in
elastic properties, and in particular, the P-wave velocity
α, and that inputs only P-data, is more off base, mis-
guided, and lost than the methods that sought two or
more functions of depth from a single trace. You can
model-match P-data ad nauseum, which takes a lot of
computational effort and people with advanced degrees
in math and physics computing Fréchet derivatives, and
it requires sophisticated LP-norm cost functions and lo-
cal or global search engines, so it must be reasonable,
scientific, and worthwhile. Why can I not use just PP-
data to invert for changes in VP, VS, and density because
Zoeppritz says that I can model PP from those quantities
and because I have, using PP-data with angle variation,
enough dimension? As stated above, data dimension is
good, but it is not good enough for a direct inversion
of those elastic properties.

Adopting equations 27 and 28 as in AVO and FWI,
there is a violation of the fundamental relationship
between changes in a medium and changes in a wave-
field,G ¼ G0 þ G0VG, which is as serious as considering
problems involving a right triangle and violating the
Pythagorean theorem. That is, iteratively updating PP
data with an elastic model violates the basic relationship
between changes in a medium V and changes in the
wavefield G − G0 for the simplest elastic earth model.

This direct inverse method for parameter estimation
provides a platform for amplitude analysis and a solid
framework and direct methodology for the goals and
objectives of indirect methods such as AVO and FWI.
A direct method for the purposes of amplitude analysis
provides a method that derives from, respects, and hon-
ors the fundamental identity and relationship G ¼ G0þ
G0VG. Iteratively inverting multicomponent data has
the correct data, but it does not correspond to a direct
inverse algorithm. To honor G ¼ G0 þ G0VG, you need
the data and the algorithm that the direct inverse pre-
scribes. Not recognizing the message that an operator
identity and the elastic wave equation unequivocally
communicate is a fundamental and significant contribu-
tion to the gap in effectiveness in current AVO and FWI
methods and application (equation A-6). This analysis
generalizes to 3D with P, SH, and SV data.

The role of direct and indirect methods
There is a role for direct and indirect methods in

practical real-world applications. In our view, indirect
methods are to be called upon for recognizing that the
world is more complicated than the physics that we as-
sume in our models and methods. For the part of the
world that you are capturing in your model and physics,
nothing compares to direct methods for clarity and ef-
fectiveness. An optimal indirect method would seek to

satisfy a cost function that derives from a property of
the direct method. In that way, the indirect and direct
methods would be aligned, consistent, and cooperative
for accommodating the part of the world described by
your physical model (with a direct inverse method) and
the part that is outside (with an indirect method).

The indirect method of model matching primaries
and multiples (so-called FWI)

All model matching inverse approaches are indirect
methods. Iterative linear inversion model matching is
an indirect search methodology, which is ad hoc and
without a firm and solid foundation and theoretical and
conceptual framework. Nevertheless, we can imagine
and understand that model matching primaries and
multiples, rather than only primaries, could improve
upon matching only primaries. However, model match-
ing primaries and multiples remains ad hoc and indirect
and is always on much shakier footing than direct inver-
sion for the same inversion goals and objectives. Direct
ISS inversion for parameter estimation only requires
and inputs primaries.

For all multidimensional seismic applications, the
only direct inverse solution is provided by the operator
identity equation 6 and is in the form of a series of equa-
tions 21–23, the ISS (Weglein et al., 2003). It can achieve
all processing objectives within a single framework and
a single set of equations 21–23 without requiring any
subsurface information. There are distinct isolated-task
inverse scattering subseries derived from the ISS, which
can perform free-surface multiple removal (Carvalho
et al., 1992; Weglein et al., 1997), internal multiple re-
moval (Araújo et al., 1994; Weglein et al., 2003), depth
imaging (e.g., Shaw, 2005; Liu, 2006; Weglein et al., 2012),
parameter estimation (Zhang, 2006; Li, 2011; Liang, 2013;
Yang and Weglein, 2015), and Q compensation without
needing, estimating, or determining Q (Innanen and We-
glein, 2007; Lira, 2009; Innanen and Lira, 2010), and each
achieves its objective directly and without subsurface in-
formation. The direct inverse solution (e.g.,Weglein et al.,
2003, 2009) provides a framework and a firm math-
physics foundation that unambiguously defines the data
requirements and the distinct algorithms to perform each
and every associated task within the inverse problem,
directly and without subsurface information.

Having an ad hoc, indirect method as the starting
point places a cloud over issue identification when less-
than-satisfactory results arise with field data. In addi-
tion, we saw that direct inversion parameter estimation
has a significantly lower dependence on the low-fre-
quency data components in comparison with indirect
methods such as nonlinear AVO and FWI.

Only a direct solution can provide algorithmic clarity,
confidence, and effectiveness. The current industry-stan-
dard AVO and FWI, using variants of model-matching
and iterative linear inverse, are indirect methods, and
iteratively linearly updating P data or multicomponent
data (with or without multiples) does not correspond
to, and will not produce, a direct solution.
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All direct inverse methods for structural
determination and amplitude analysis
require only primaries

In Weglein (2016), the role of primaries and multiples
in imaging is examined and analyzed. The most capable
and interpretable migration method derives from pre-
dicting a source and receiver experiment at depth.
For data consisting of primaries and multiples, a dis-
continuous velocity model is needed to achieve that pre-
dicted experiment at depth. With that discontinuous
velocity model, free-surface and internal multiples play
no role in the migration and the exact same image results
with or without multiples (see Weglein, 2016). For a
smooth velocity model, multiples will result in false and
misleading images and must be removed before the mi-
gration and migration-inversion of primaries.

In Weglein et al. (2003), ISS direct depth imaging
(without a velocity model or subsurface information)
removes free-surface and internal multiples prior to the
distinct subseries that input primaries and perform depth
imaging and amplitude analysis, respectively, each di-
rectly and without subsurface information and only us-
ing and requiring primaries.

Hence, all direct inversion methods, those with and
those without subsurface/velocity information, require
only primaries for complete structural determination
and amplitude analysis. Methods that seek to use multi-
ples to address issues from less than a complete acquis-
ition of primaries are seeking an appropriate image of
an unrecorded primary.

Indirect methods are ad hoc without a clear or firm
math-physics foundation and framework, and they start
without knowing whether “the indirect solution” is in
fact a solution. A more complete or fuller data set being
matched between model data and field data, each with
primaries and multiples, could at times improve upon
matching only primaries, but the entire approach is indi-
rect and ad hoc with or without multiples, and it lacks
the benefits of a direct method. With indirect methods,
there is no framework and theory to rely on, and no con-
fidence that a solution is forthcoming under any circum-
stances.

If I seek the parameters of an elastic heterogeneous
isotropic subsurface, then the differential operator in
the operator identity is the differential operator that
occurs in the elastic, heterogeneous, isotropic wave equa-
tion. From 40 years of AVO and amplitude analysis appli-
cation in the petroleum industry, the elastic isotropic
model is the baseline minimally realistic and acceptable
earth model type for amplitude analysis, for example, for
AVO and FWI. Then, taking the operator identity (called
the Lippmann-Schwinger, or scattering theory, equation)
for the elastic-wave equation, I can obtain a direct inverse
solution for the changes in the elastic properties and
density. The direct inverse solution specifies the data re-
quired and the algorithm to achieve a direct parameter
estimation solution. In this paper, I explain how this
methodology differs from all current AVO and FWI meth-
ods, which are, in fact, forms of model matching. Multi-

component data consisting of only primaries are needed
for a direct inverse solution for subsurface properties.
This paper focuses on one specific inverse task, param-
eter estimation, within the overall and broader set of in-
version objectives and tasks. Furthermore, the impact of
band-limited data and noise are discussed and compared
for the direct ISS parameter estimation and indirect (AVO
and FWI) inversion methods.

In this paper, I focused on analyzing and examining
the direct inverse solution that the ISS inversion subs-
eries provides for parameter estimation. The distinct
issues of (1) data requirements, (2)model type, and (3) in-
version algorithm for the direct inverse are all important
(Weglein, 2015b). For an elastic heterogeneous medium,
I show that the direct inverse requires multicomponent/
PS (P- and S-component) data and prescribes how that
data are used for a direct parameter estimation solution
(Zhang and Weglein, 2006).

Conclusion
In this paper, I describe, illustrate, and analyze the

considerable conceptual, substantive, and practical ben-
efit and added value that a direct parameter inversion
from the ISS provides in comparison with all current
indirect inverse methods (e.g., AVO and FWI) for ampli-
tude analysis goals and objectives. A direct method pro-
vides (1) a solution that we (the seismic industry) can
have confidence that it is in fact solving the defined prob-
lem of interest and (2) in addition, when themethod does
not improve the drilling decisions, then we know that the
issue is that the problem of interest is not the problem
that we need to be interested in. On the other hand, indi-
rect methods such as AVO and FWI have a plethora of
approaches and paths, and when less-than-satisfactory
results occur, we do not know whether the issue is the
chosen problem of interest or the choice among innu-
merable indirect solutions, or both.

All scientific methods make assumptions — and seis-
mic processing and interpretation methods are no excep-
tion. When the assumptions behind seismic methods are
satisfied, the methods are useful and effective and can
support successful drill decisions. When the assumptions
are not satisfied, the methods can have difficulty or can
fail. The latter breakdown can contribute to unsuccessful
ill-informed drill decisions, dry-hole drilling, or subopti-
mal appraisal and development wells.

The objective of seismic research is to provide new
and effective toolbox capability for processing and in-
terpretation that will improve the drill success rate and
reduce dry-hole and suboptimal drilling decisions. To-
ward that end, the starting point in seismic research is
to identify the outstanding prioritized problems and
challenges that need to be addressed and solved.

The ability to clearly and unambiguously define the
origin and root cause behind seismic issues, problems,
breakdown, and challenges is an essential and critically
important step in designing and executing a strategy to
provide new and more capable methods to the seismic
processing and interpretation toolbox.
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Direct inversion methods can provide that problem
definition and clarity. They are also unique in providing
the confidence that the problem of interest is actually
being addressed. For ISS parameter estimation, al-
though the recorded data are of course band limited,
the band-limited data are never used to compute the up-
dated inverse operator for the next iterated linear step
because the inverse operator is fixed and analytic for
every term in the ISS. That is one of several important
and substantive differences pointed out in this paper
between the direct inverse ISS parameter estimation
method and all indirect inversion methods, e.g., AVO
and FWI. I provide an explicit analytic example and com-
parison between direct ISS parameter estimation and the
indirect linear updating model matching concepts behind
AVO and FWI.

All seismic processing methods depend on the ampli-
tude and phase of seismic data. Different processing
methods that seek to achieve a certain specific process-
ing goal can have different relative sensitivities to noise
and bandwidth. Amplitude analysis for determining earth
mechanical property changes is one of the most sensi-
tive. Methods that achieve seismic goals as a sequence
of separate intermediate steps have a natural advantage
over methods that seek to combine goals. Achieving an
intermediate, easier goal that is less demanding can sig-
nificantly enhance the ability to achieve the subsequent
more demanding seismic processing objectives. The indi-
rect methods that seek to locate structure and identify
changes in earth mechanical properties at once have a
terrible dependence on missing low-frequency data.
However, if I first locate a structure by wave-equation
migration (a process that is insensitive to missing low
frequency data), then in principle, I can determine the
earth mechanical property changes with a single fre-
quency within the bandwidth. The ISS direct amplitude
analysis method described, exemplified, tested, and
compared in this paper assumes that a set of less-daunt-
ing seismic processing tasks, using an ISS task specific
subseries, has been achieved (e.g., multiple removal,
depth imaging) before this task is undertaken. To have
a fair comparison, the indirect model matchingmethod is
tested with a data with a well-located single reflector,
and hence there are no imaging issues or multiples in
the problem. That allows a pristine, clear, and definitive
comparison of the amplitude analysis — parameter es-
timation function of the prototype direct ISS method and
the corresponding indirect model-matching iterative up-
dating approach. There are important issues of resolu-
tion and illumination, which will impact the results of
this paper, with advances in migration theory and algo-
rithms that avoid all high-frequency approximations in
the imaging principles and wave-propagation models
that can improve resolution and illumination.

Direct and indirect methods can play an important
role and function in seismic processing, in which the for-
mer accommodates and addresses the assumed physics
and the latter provides a channel for real-world phenom-
ena beyond the assumed physics. Both are called for

within a comprehensive and effective seismic processing
and interpretation strategy.
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Appendix A

The operator identity and direct inverse solution for
a 2D heterogeneous isotropic elastic medium

I describe the forward and direct inverse method for
a 2D elastic heterogeneous earth (see Zhang, 2006).

The 2D elastic wave equation for a heterogeneous
isotropic medium (Zhang, 2006) is

Lu ¼
�
f x
f z

�
and L̂

�
ϕP

ϕS

�
¼

�
FP

FS

�
; (A-1)

where u, f x, and f z are the displacement and forces in
displacement coordinates and ϕP, ϕS, and FP, FS are the
P− and S-waves and the force components in P- and
S-coordinates, respectively. The operators L and L0
in the actual and reference elastic media are

L¼
�
ρω2

�
1 0

0 1

�

þ
� ∂xγ∂xþ∂zμ∂z ∂xðγ−2μÞ∂zþ∂zμ∂x
∂zðγ−2μÞ∂xþ∂xμ∂z ∂zγ∂zþ∂xμ∂x

��
; (A-2)

L0 ¼
�
ρω2

�
1 0
0 1

�
þ
�

γ0∂2x þ μ0∂2z ðγ0 − μ0Þ∂x∂z
ðγ0 − μ0Þ∂x∂z μ0∂2x þ γ0∂2z

��
;

(A-3)

and the perturbation V is

V≡L0−L

¼
�

aρω2þα20∂xaγ∂xþβ20∂zaμ∂z
∂zðα20aγ−2β20aμÞ∂xþβ20∂xaμ∂z

∂xðα20aγ−2β20aμÞ∂zþβ20∂zaμ∂x
aρω2þα20∂zaγ∂zþβ20∂xaμ∂x

�
;

(A-4)

where the quantities aρ ≡ ρ∕ρ0 − 1, aγ ≡ γ∕γ0 − 1, and
aμ ≡ μ∕μ0 − 1 are defined in terms of the bulk modulus,
shear modulus, and density (γ0, μ0, ρ0, γ, μ, ρ) in the
reference and actual media, respectively.

The forward problem is found from the identity equa-
tion 9 and the elastic wave equation A-1 in PS-coordi-
nates as
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Ĝ−Ĝ0¼Ĝ0V̂ Ĝ0þĜ0V̂ Ĝ0V̂ Ĝ0þ ···;�
D̂PP D̂PS

D̂SP D̂SS

�
¼
�
ĜP

0 0

0 ĜS
0

��
V̂PP V̂PS

V̂SP V̂SS

��
ĜP

0 0

0 ĜS
0

�

þ
�
ĜP

0 0

0 ĜS
0

��
V̂PP V̂PS

V̂SP V̂SS

��
ĜP

0 0

0 ĜS
0

��
V̂PP V̂PS

V̂SP V̂SS

��
ĜP

0 0

0 ĜS
0

�
þ ···;

(A-5)

and the inverse solution, equations 21–23, for the elastic
equation A-1 is

�
D̂PP D̂PS

D̂SP D̂SS

�
¼
�
ĜP

0 0

0 ĜS
0

��
V̂PP

1 V̂PS
1

V̂SP
1 V̂SS

1

��
ĜP

0 0

0 ĜS
0

�
;

�
ĜP

0 0

0 ĜS
0

��
V̂PP

2 V̂PS
2

V̂SP
2 V̂SS

2

��
ĜP

0 0

0 ĜS
0

�

¼−
�
ĜP

0 0

0 ĜS
0

��
V̂PP

1 V̂PS
1

V̂SP
1 V̂SS

1

��
ĜP

0 0

0 ĜS
0

��
V̂PP

1 V̂PS
1

V̂SP
1 V̂SS

1

��
ĜP

0 0

0 ĜS
0

�
;

..

.
(A-6)

where V̂PP ¼ V̂PP
1 þ V̂PP

2 þ V̂PP
3 þ · · · and any one of the

four matrix elements of V requires the four components
of the data

�
D̂PP D̂PS

D̂SP D̂SS

�
: (A-7)

The 3D heterogeneous isotropic elastic generalization
of the above 2D forward and direct inverse elastic iso-
tropic method begins with the linear 3D form found in
Stolt and Weglein (2012, p. 159).

In summary, from equation A-5, D̂PP can be determined
in terms of the four elements of V . The four components
V̂PP, V̂PS, V̂SP, and V̂SS require the four components of D.
That is what the general relationship G ¼ G0 þ G0VG re-
quires; i.e., a direct nonlinear inverse solution is a solution
order-by-order in the four matrix elements of D (in 2D).
The generalization of the forward series equation A-5 and
the inverse series equation A-6 for a direct inversion of an
elastic isotropic heterogeneous medium in 3D involves
the 3 × 3 data, D, and V matrices in terms of P, SH,
and SV data and start with the linear G0V1G0 ¼ D (Stolt
and Weglein, 2012, p. 179).

Appendix B

Numerical examples for a 1D normal incident wave
on an acoustic medium

Numerical examples for a 1D normal incident wave
on an acoustic medium are shown in this section. First, I
examine and compare the convergence of the ISS direct
inversion and iterative inversion. Second, the rate of
convergence of the ISS inversion subseries is examined
and studied using an analytic example, where the ISS
method converges and the iterative linear method does
not and where both methods converge.

The operator identity for a 1D acoustic medium
For a normal incidence plane wave on a 1D acoustic

medium (where only the velocity is assumed to vary),
the model I consider here consists of two half-spaces
with acoustic velocities c0 and c1 and an interface lo-
cated at z ¼ a as shown in Figure B-1. If I put the source
and receiver on the surface, z ¼ 0, the pressure wave

DðtÞ ¼ Rδðt − 2a∕c0Þ (B-1)

will be recorded, where the reflection coefficient
R ¼ ðc1 − c0Þ∕ðc1 þ c0Þ. For this example, DðtÞ is the
only input to the direct ISS inverse and the iterative in-
version methods. Because I will assume knowledge of
the velocity in the upper half-space, c0, the location of
the reflector at z ¼ a is not an issue. I will focus on only
determining the change of velocity across the reflector
at z ¼ a. The operators L0 and L in the reference and
actual acoustic media are

L0 ¼
d2

dz2
þ ω2

c20
and L ¼ d2

dz2
þ ω2

c2ðzÞ ; (B-2)

and I characterize the velocity perturbation as

αðzÞ ≡ 1 −
c20

c2ðzÞ : (B-3)

The perturbation V (Weglein et al., 2003) can be ex-
pressed as

VðzÞ ¼ L0 − L ¼ ω2

c20
−

ω2

c2ðzÞ ¼ k20αðzÞ; (B-4)

where ω is the angular frequency and k0 ¼ ω∕c0. The
functions c0 and cðzÞ are the reference and local acous-
tic velocity, respectively. Therefore, the inverse series
of V (equation 16) becomes

αðzÞ ¼ α1ðzÞ þ α2ðzÞ þ α3ðzÞþ · · · : (B-5)

That is,

V1 ¼ k20α1; V2 ¼ k20α2; · · · : (B-6)

From the ISS (equations 21–23), Shaw and Weglein
(2004) isolate the leading order imaging subseries
and the direct nonlinear inversion subseries.

Figure B-1. A 1D acoustic model with velocities c0 over c1.
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In this section, I will focus on studying the conver-
gence properties of the ISS inversion subseries. The in-
version-only terms isolated from the ISS (Zhang, 2006;
Li, 2011) are

αðzÞ ¼ α1ðzÞ −
1
2
α21ðzÞ þ

3
16

α31ðzÞþ · · · : (B-7)

For a 1D normal incidence case, the linear equa-
tion 21 solves for α1 in terms of the single trace data
DðtÞ (Shaw and Weglein, 2004) as

α1ðzÞ ¼ 4
Z

z

−∞
Dðz 0Þdz 0; (B-8)

where z 0 ¼ c0t∕2. For a single reflector, inserting dataD
(equation B-1) gives

α1 ¼ 4RHðz − aÞ; (B-9)

where R is the reflection coefficient R ¼ ðc1 − c0Þ∕ðc1þ
c0Þ and H is the Heaviside function. When z > a, sub-
stituting α1 into equation B-7, the ISS direct nonlinear
inversion subseries in terms of R can be written as
(where α is the magnitude of αðzÞ for z > a)

α¼4R−8R2þ12R3þ ···¼4R
X∞
n¼0

ðnþ1Þð−RÞn: (B-10)

After solving for α, the inverted velocity cðzÞ can be ob-
tained through c1 ¼ c0ð1 − αÞ−1∕2 (equation B-4).

Considering the convergence property of the series for
α or the inversion subseries, I can calculate the ratio test

���� αnþ1

αn

���� ¼
���� ðnþ 2Þð−RÞnþ1

ðnþ 1Þð−RÞn
���� ¼

����nþ 2
nþ 1

R

����: (B-11)

If limn→∞jðαnþ1∕αnÞj < 1, this subseries converges abso-
lutely. That is,

jRj < lim
n→∞

nþ 1
nþ 2

¼ 1: (B-12)

Therefore, the ISS direct nonlinear inversion subseries
converges when the reflection coefficient jRj is less than
one, which is always true. Hence, for this example, the
ISS inversion subseries will converge under any velocity
contrasts between the two media.

For the iterative linear inversion, I use the first linear
estimate of α ¼ α11 to compute the first estimate of
c1 ¼ c11. Then, I choose the first estimate of c1 ¼ c0ð1−
α11Þ−1∕2 ≡ c11 as the new reference velocity, c10 ¼ c0ð1−
α11Þ−1∕2, where α11 ¼ 4R1 and R1¼ðc1−c0Þ∕ðc1þc0Þ.
Repeating the linear process with a new reflection coef-
ficient R2 (again exploiting the analytic inverse gener-
ously provided by ISS to benefit the iterative linear
inverse approach) gives

R2 ¼
c1 − c10
c1 þ c10

; α21 ¼ 4R2 and c21 ¼ c10ð1 − α21Þ−1∕2 ¼ c20;

(B-13)

..

.

Rnþ1 ¼
c1 − cn0
c1 þ cn0

; αnþ1
1 ¼ 4Rnþ1 and

cn1 ¼ cn−10 ð1 − αn1 Þ−1∕2 ¼ cn0 ; (B-14)

where αn1 ¼ nth estimate of α1 and cn1 ¼ nth estimate of
c1. The questions are (1) under what conditions does cn1
approach c1, and (2) when it converges, what is its rate of
convergence?

From the above analysis, I can see that the ISSmethod
for α always converges and the resulting α can be used to
find c1. For the iterative linear inverse, there are values of
α1, such that you cannot compute a real c11. When α11 > 1
and 4R > 1, R > 1∕4 and you cannot compute an up-
dated reference velocity and the method simply shuts
down and fails. The ISS never computes a new reference
and does not suffer that problem, with the series for α
always converging and then outputting c1, the correct un-
known velocity below the reflector.

The convergence of the ISS direct inversion and
iterative inversion

In this section, I will examine and compare the con-
vergence property of the ISS inversion (equation B-10)
and the iterative linear inversion for different velocity
contrasts in the 1D acoustic case. In the 1D normal inci-
dent acoustic model (Figure B-1), only one parameter
(velocity) varies and a plane wave propagates into the
medium. There is only a single reflector, and I assume
the velocity is known above the reflector and unknown
below the reflector. I will compare the convergence of
the perturbation α and the inversion results by using the
ISS direct nonlinear method and the iterative linear
method.

With the reference velocity c0 ¼ 1500m∕s, two ana-
lytic examples with different velocity contrasts for c1 ¼
2000 and 3000m∕s are examined. Figure B-2 shows
the estimated α by the ISS method (green line) for
c1 ¼ 2000m∕s. The red line represents the actual α that
is calculated from the model. The horizontal axis rep-
resents the order of the ISS inversion subseries. The
vertical axis shows the value of α. The updated estima-
tion of α using the iterative inversion method (blue line)
is shown in Figure B-3. The horizontal axis represents
the iteration numbers in the iterative inversion method.
From Figures B-2 and B-3, I can see that at the small
velocity contrast, the estimated α by ISS method be-
comes the actual α after about five orders of calculation
and the updated estimation of α by the iterative inversion
method goes to zero as expected because after several
iterations, the updatedmodel is close to and approaching
to the actual model. Figure B-4 represents the velocity
estimation. The green and blue lines represent the esti-
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mated velocity by using the ISS inversionmethod and the
iterative inversion method, respectively. We can see that
at the small velocity contrast, both methods converge
and produce correct velocity after five orders of itera-
tions and the ISS inversion method converges faster than
the iterative inversion method.

Figure B-5 shows the estimated α by the ISS method
(green line) for c1 ¼ 3000m∕s. When the velocity contrast
is larger, i.e., R > 0.25, the iterative inversion method
cannot be computable, but the ISS inversion method al-
ways converges (see the green line in Figure B-5) after
the summation of more orders in computing α.

As we know, the reflection coefficient R is almost
always less than 0.2 in practice, so that the ISS method

and the iterative method converge, but the ISS method
converges faster than the iterative method. Moreover,
for more complicated circumstances (e.g., the elastic
nonnormal incidence case), the difference between the
ISS method and the iterative method is much greater, not
just on the algorithms, but also on data requirements and
on how the band-limited noisy nature of the seismic data
impacts the inverse operators in the iterative method but
not in the ISS method.

The rate of convergence of the ISS inversion
subseries

The rate of convergence of the estimated α for the
ISS inversion subseries (equation B-10) is analytically
examined and studied. Because α is always convergent

Figure B-5. The estimated α at R ¼ 0.3333: The horizontal
axis is the order of the ISS subseries, and the vertical axis rep-
resents the value of α. The red line shows the actual value of
α ¼ 0.7500. The green line shows the estimation of α using the
ISS inversion method order by order.

Figure B-4. The estimated velocity by using the ISS inversion
method (green line) and the iterative inversion method (blue
line).

Figure B-3. The updated α at R ¼ 0.1429: The horizontal axis
is the iteration numbers, and the vertical axis shows the up-
dated value of α. The blue line represents the updated estima-
tion of α using the iterative inversion method.

Figure B-2. The estimated α at R ¼ 0.1429: The horizontal
axis is the order of the ISS subseries and the vertical axis
shows the value of α. The red line shows the actual value of
α ¼ 0.4375. The green line shows the estimation of α using the
ISS inversion method order by order.
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when R < 1, the summation of this subseries (Zhang,
2006) is

α ¼ 4R
X∞
n¼0

ðnþ 1Þð−RÞn ¼ 4R
1

ð1þ RÞ2 : (B-15)

If the error between the estimated and the actual α is
monotonically decreasing, it means that the subseries
is a term-by-term added-value improvement toward de-
termining the actual medium properties. If this error is
increasing before decreasing, it means that the estimate
of α becomes worse before it gets better. The error for
the first order and the error for the second order have
the relation

jα − α1 − α2j > jα − α1j; (B-16)

i.e.,
����4R 3R2 þ 2R3

ð1þ RÞ2
���� >

����4R−R2 − 2R

ð1þ RÞ2
����: (B-17)

After simplification, it gives

R2 þ R − 1 > 0: (B-18)
I can solve it and obtain the reflection coefficient
R< ½ð−1− ffiffiffi

5
p Þ∕2�¼−1.618 or R> ½ð−1þ ffiffiffi

5
p Þ∕2�¼0.618.

Therefore, when R > 0.618, the error increases first.
Similarly, if the error for the third order is greater than
that for the second order, I get R > 0.667. If the error for
the fourth order is greater than that for the third order, I
obtain R > 0.721. In summary, when R > 0.618, the er-
ror increases and the estimated α gets worse before get-
ting better. The sum of terms in the direct inverse ISS
solution (for very large contrasts) requires certain par-
tial sums to be temporarily worse in order for the entire
series to produce the correct velocity. The dashed
green line in Figure B-6 shows that when the reflection
coefficient R is equal to 0.618, the error for the first or-
der is equal to the error for the second order.

As the analytic calculation, when the reflection coef-
ficient R is smaller than 0.618, this inversion subseries
gives a monotonically term-by-term added-value im-
provement toward determining c1. When the reflection

coefficient is larger than 0.618, the ISS inversion series
still converges, but the estimation of α will become
worse before it gets better. Each term in the series
works toward the final goal. Sometimes when more
terms in the series are included, the estimation looks
temporarily worse, but once it starts to improve the es-
timation at a specific order, the approximations never
become worse again, and every single term after that
order will produce an improved estimation. The locally
worse partial sum behavior is, in fact, purposeful and
essential for convergence to and for computing the ex-
act velocity. The direct inverse solution fulfills its com-
mitment to always predict c1 and not necessarily to
having order-by-order improvement. The ISS direct in-
version always converges in contrast to the iterative
linear inverse method. This property has also been in-
dicated by Carvalho (1992) in the free-surface-multiple
elimination subseries; e.g., what appears to make a sec-
ond-order free-surface multiple larger with a first-order
free-surface algorithm is actually helpful and necessary
for preparing the second-order multiple to be removed
by the higher order terms.
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